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1 Introduction
A posteriori error estimation and related adaptive mesh-re�ning algorithms are one important basement of
modern scienti�c computing. Starting from an initial mesh T0 and based on a computable a posteriori error
estimator, such algorithms iterate the loop

solve → estimate → mark → refine (1.1)

to create a sequence of successive locally re�ned meshes Tℓ, corresponding discrete solutions Uℓ, as well
as a posteriori error estimators ìℓ. We consider the frame of conforming Galerkin discretizations, where Tℓ is
linked to a�nite-dimensional subspaceXℓ of aHilbert spaceHwith correspondingGalerkin solutionUℓ ∈ Xℓ,
where successive re�nement guarantees nestedness Xℓ ⊆ Xℓ+1 ⊂ H for all ℓ ∈ ℕ0.

Convergence of this type of adaptive algorithm in the sense of

lim
ℓ→∞

‖u − Uℓ‖H = 0

has �rst been addressed in [8] for 1D FEM and [23] for 2D FEM. We note that already the pioneering work
[8] observed that validity of some Céa-type quasi-optimality and nestedness Xℓ ⊆ Xℓ+1 for all ℓ ∈ ℕ0 imply
a priori convergence

lim
ℓ→∞

‖U∞ − Uℓ‖H = 0, (1.2)

where U∞ is the unique Galerkin solution in X∞ := ⋃ℓ∈ℕ0 Xℓ. From a conceptual point of view, it thus only
remained to identify the limit u = U∞. Based on such an a priori convergence result (1.2), a general theory of
convergence of adaptive FEM is devised in [48, 55], where the analytical focus is on estimator convergence

lim
ℓ→∞

ìℓ = 0. (1.3)
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Moreover, the recent work [13] gives an analytical frame to guarantee convergence with optimal convergence
rates; see also the overview article [30] for the current state of the art of adaptive BEM. Throughout, it is
however implicitly assumed that the local contributions ìℓ(T) of the error estimator ìℓ are weighted with the
local mesh-size, i.e., |T|á for some appropriate á > 0, or that ìℓ is locally equivalent to a mesh-size weighted
error estimator.

In this work, we consider two particular error estimators whose local contributions are not weighted
by the local mesh-size. We devise a joint analytical frame which proves estimator convergence (1.3). First,
we let ìℓ be the Faermann error estimator [12, 28, 29] for BEM for the weakly-singular integral equation with
H = H̃−1/2(Γ). The local contributions of ìℓ are overlappingH1/2-seminorms of the residualF−AUℓ ∈ H

1/2(Γ).
The striking point of ìℓ is that it is the only a posteriori BEM error estimator which is known to be both reliable
and e�cient without any further assumptions on the given data, i.e., it holds

C−1e� ìℓ ≤ ‖u − Uℓ‖H ≤ Crel ìℓ

with ℓ-independent constants Ce�, Crel > 0. We note that ìℓ is not equivalent to an ℎ-weighted error estimator
which prevents to follow the arguments from the available literature.

Second, our analysis covers the two-level error estimators for BEM [26, 39, 41, 45, 50, 51] or the adaptive
FEM-BEMcoupling [5, 37, 44, 49]. The local contributions are projections of the computable error between two
Galerkin solutions onto one-dimensional spaces, spanned by hierarchical basis functions. These estimators
are known to be e�cient. On the other hand, reliability is only proven under an appropriate saturation as-
sumption which is even equivalent to reliability for the symmetric BEM operators [4, 24, 25]. However, such a
saturation assumption is formally equivalent to asymptotic convergence of the adaptive algorithm [35] which
cannot be guaranteed mathematically in general and is expected to fail on coarse meshes.

Outline. The remainder of the paper is organized as follows: In Section 2, we introduce an abstract frame
which covers both BEM aswell as the FEM-BEM coupling.We formally state the adaptive loop (Algorithm 2.2).
Under three assumptions on the error estimator which are later veri�ed for the particularmodel problems, we
prove that the adaptive loop drives the underlying error estimator to zero (Propositions 2.4 and 2.5). Section 3
treats the weakly-singular integral equation associated with the Laplacian. We prove that the two-level error
estimator (Theorem 3.1) as well as the Faermann error estimator (Theorem 3.2) �t into the abstract framework.
In Section 4, we consider the hyper-singular integral equation associated with the Laplacian. We prove that
the two-level error estimator �ts into the abstract framework (Theorem 4.1). The �nal Section 5 considers a
nonlinear Laplace transmission problem which is reformulated by some FEM-BEM coupling. We prove that
the two-level error estimator �ts into the abstract framework as well (Theorem 5.2).

Notation. Associated quantities are linked through the same index, i.e., U⋆ is the discrete solution with re-
spect to the discrete space X⋆ which corresponds to the triangulation T⋆. Throughout, the star is understood
as general index and may be accordingly replaced by the level of the adaptive algorithm (e.g., Uℓ) or by the
in�nity symbol (e.g., X∞). All constants as well as their dependencies are explicitly given in statements and
results. In proofs, we shall use A ≲ B to abbreviate A ≤ c B with some generic multiplicative constant c > 0
which is clear from the context. Moreover, A ≃ B abbreviates A ≲ B ≲ A.

2 Abstract Setting

2.1 Model Problem

LetH be a Hilbert space with dual spaceH∗ and A : H → H∗ be a bi-Lipschitz continuous operator, i.e.,

C−1cont ‖w − v‖H ≤ ‖Aw − Av‖H∗ ≤ Ccont ‖w − v‖H for all v, w ∈ H. (2.1)

Here, ‖⋅‖H∗ denotes the operator norm onH∗,

‖F‖H∗ = sup
v∈H\{0}

|⟨F, v⟩|
‖v‖H

for all F ∈ H∗. (2.2)
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Suppose that there exists some subspaceX00 ⊆ H such that for any given closed subspaceX00 ⊆ X⋆ ⊆ H and
any continuous linear functional F ∈ H∗ onH, the Galerkin formulation

⟨AU⋆, V⋆⟩ = ⟨F, V⋆⟩ for all V⋆ ∈ X⋆ (2.3)

admits a unique solution U⋆ ∈ X⋆, where ⟨⋅, ⋅⟩ denotes the duality bracket between H and its dual H∗. Par-
ticularly, this implies the existence of a unique solution u ∈ H of

Au = F. (2.4)

Moreover, we suppose that there holds the Céa-type estimate

‖u − U⋆‖H ≤ CCéa minV⋆∈X⋆‖u − V⋆‖H, (2.5)

where the constant CCéa > 0 depends only on the operator A (and possibly on F). To be precise, we will write
u = u(F) and U⋆ = U⋆(F) in the following to indicate that u(F) resp. U⋆(F) are the unique solutions with
respect to some given right-hand side F ∈ H∗.

Remark 2.1. (i) The assumptions (2.1)–(2.5) are particularly satis�ed withX00 = {0}, Ccont = max{C̃cont, C
−1
mon},

and CCéa = C̃cont/Cmon if A is Lipschitz continuous and strongly monotone in the sense

‖Aw − Av‖H∗ ≤ C̃cont ‖w − v‖H and Cmon‖w − v‖
2
H ≤ ⟨Aw − Av, w − v⟩

for all v, w ∈ H; see, e.g., [58, Section 25.4] for the corresponding proofs. In particular, this also covers linear
problems in the frame of the Lax–Milgram lemma, e.g., the symmetric BEM formulations of Section 3–4.

(ii) The assumptions (2.1)–(2.5) are motivated by the FEM-BEM coupling formulations in Section 5.
(iii) For A being linear, it is also su�cient if, additionally to (2.1), A satis�es a uniform inf-sup condition

along the sequence of discrete subspaces Xℓ generated by Algorithm 2.2 below.

2.2 Adaptive Algorithm

We shall assume that Xℓ is a �nite-dimensional subspace of H related to some triangulation Tℓ and that
Uℓ(F) ∈ Xℓ is the corresponding Galerkin solution (2.3) for X⋆ = Xℓ. Starting from an initial mesh T0, the
triangulations Tℓ are successively re�ned by means of the following realization of (1.1), where

ìℓ(F) := ìℓ(F;Tℓ) with ìℓ(F;Eℓ) := ( ∑
T∈Eℓ ìℓ(F; T)

2)
1/2
< ∞ for all Eℓ ⊆ Tℓ

is a computable a posteriori error estimator. Its local contributions ìℓ(F; T) ≥ 0measure, at least heuristically,
the error u(F) − Uℓ(F) locally on each element T ∈ Tℓ.

Algorithm 2.2. Input: Right-hand side F ∈ H∗, initial mesh T0 with X0 ⊇ X00, and bulk parameter 0 < è ≤ 1.
For ℓ = 0, 1, 2, . . . iterate the following:

(i) Compute Galerkin solution Uℓ(F) ∈ Xℓ.
(ii) Compute re�nement indicators ìℓ(F; T) for all T ∈ Tℓ.
(iii) Determine some setMℓ ⊆ Tℓ of marked elements which satis�es

è ìℓ(F)
2 ≤ ìℓ(F;Mℓ)

2. (2.6)

(iv) Generate a newmeshTℓ+1 andhence an enriched spaceXℓ+1 by re�nement of at least allmarked elements
T ∈Mℓ.
Output: Sequence of successively re�ned triangulations Tℓ as well as corresponding Galerkin solutions

Uℓ(F) ∈ Xℓ and error estimators ìℓ(F), for ℓ ∈ ℕ0.
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2.3 Auxiliary Estimator and Assumptions

The following convergence results of Propositions 2.4 and 2.5 require an auxiliary error estimator

ñℓ(F) := ñℓ(F;Tℓ) with ñℓ(F;Eℓ) := ( ∑
T∈Eℓ ñℓ(F; T)

2)
1/2
< ∞ for all Eℓ ⊆ Tℓ

with local contributions ñℓ(F; T) ≥ 0. For all ℓ ∈ ℕ0, we suppose that there exists some set Rℓ ⊆ Tℓ with
Mℓ ⊆ Rℓ which satis�es the following three assumptions (A1)–(A3):
(A1) ìℓ(F) is a local lower bound of ñℓ(F): There is a constant C1 > 0 such that for all ℓ ∈ ℕ0 holds

ìℓ(F;Mℓ) ≤ C1 ñℓ(F;Rℓ).

(A2) ñℓ(F) is contractive on Rℓ: There is a constant C2 > 0 such that for all ℓ, m ∈ ℕ0 and all ä > 0 holds

C−12 ñℓ(F;Rℓ)
2 ≤ ñℓ(F)

2 −
1

1 + ä
ñℓ+m(F)

2 + (1 + ä−1)C2 ‖Uℓ+m(F) − Uℓ(F)‖
2
H.

The constants C1, C2 > 0 may depend on F, but are independent of the level ℓ ∈ ℕ0, i.e., in particular inde-
pendent of the discrete spacesXℓ and the corresponding Galerkin solutionsUℓ(F). If ñℓ(F) is not well-de�ned
for all F ∈ H∗, but only on a dense subsetD ⊆ H∗, we require the following additional assumption:
(A3) ìℓ(⋅) is stable on Mℓ with respect to F: There is a constant C3 > 0 such that for all ℓ ∈ ℕ0 and F� ∈ H∗

holds
|ìℓ(F;Mℓ) − ìℓ(F

�;Mℓ)| ≤ C3‖F − F
�‖H∗ .

2.4 Remarks

Some remarks are in order to relate the abstract assumptions (A1)–(A3) to the applications, we have in mind.

Choice of ñℓ. Below, we shall verify that assumptions (A1)–(A3) hold with ìℓ(F) being the Faermann error
estimator [12, 28, 29] for BEMresp.ìℓ(F)being the two-level error estimator for BEM [4, 24–26, 39, 41, 45, 50, 51]
and the FEM-BEM coupling [5, 37, 49]. In either case, ñℓ(F) denotes some weighted-residual error estimator,
see [11, 14, 15, 19, 20] for BEM and [2, 18, 37] for the FEM-BEM coupling.

Necessity of (A3). In these cases, the weighted-residual error estimator ñℓ imposes additional regularity as-
sumptions on the given right-hand side F. For instance, the weighted-residual error estimator for the weakly-
singular integral equation [11, 15, 19, 20] requiresF ∈ H1(Γ), while the natural space for the residual isH1/2(Γ),
see Section 3 for further details and discussions. Convergence (1.3) of Algorithm 2.2 for arbitrary F ∈ H1/2(Γ)
then follows by means of stability (A3).

Veri�cation of (A1)–(A2). For two-level estimators, (A1) has �rst been observed in [12, 14] for BEMand in [5] for
the FEM-BEM coupling, and follows essentially from scaling arguments for the hierarchical basis functions.
For the Faermann error estimator and a simpli�ed 2DBEM setting, (A1) is also proved in [12]. Finally, the novel
observation (A2) follows from an appropriately constructed mesh-size function and re�nement of marked
elements as well as appropriate inverse-type estimates, where we shall build on the recent developments of
[1]; see, e.g., the proof of Theorem 3.1 below.

Veri�cation of (A3). Suppose that the operator A is linear and ìℓ(⋅) is e�cient:

ìℓ(F) ≤ Ce� ‖u(F) − Uℓ(F)‖H for all F ∈ H∗.

Provided ìℓ(⋅) has a semi-norm structure, the corresponding triangle inequality yields

ìℓ(F) ≤ ìℓ(F
�) + ìℓ(F − F

�) ≤ ìℓ(F
�) + Ce� ‖u(F − F

�) − Uℓ(F − F
�)‖H

≤ ìℓ(F
�) + Ce�CCéa ‖u(F − F

�)‖H
≤ ìℓ(F

�) + Ce�CCéa ‖A
−1‖‖F − F�‖H∗ , (2.7)

where ‖A−1‖ denotes the operator norm of A−1, and the (bounded) inverse exists due to (2.1). This proves
stability (A3) with C3 = Ce�CCéa ‖A

−1‖.
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Marking Strategy. In view of optimal convergence rates, one usually asks for #Rℓ ≲ #Mℓ in (A1) andminimal
cardinality of Mℓ in (2.6). We stress, however, that this is not necessary for the present analysis, where our
focus is on a �rst plain convergence result.

2.5 Abstract Convergence Analysis

We start with the observation that (A2) already implies convergence of the auxiliary estimator ñℓ. We note
that the following lemma is, in particular, independent of the marking strategy (2.6), i.e., we do not use any
information about how the sequence (Tℓ)ℓ∈ℕ0 is generated.
Lemma 2.3. Suppose (A2) for some �xed F ∈ H∗. Under nestedness Xℓ ⊆ Xℓ+1 of the discrete spaces for all
ℓ ∈ ℕ0, the auxiliary estimator ñℓ(F) converges, i.e., the limit

ñ∞(F) := lim
ℓ→∞

ñℓ(F) (2.8)

exists inℝ. Moreover, it holds
lim
ℓ→∞

ñℓ(F;Rℓ) = 0.

Proof. First, we prove that (A2) implies boundedness of (ñℓ)ℓ∈ℕ0 . We recall that nestedness Xℓ ⊆ Xℓ+1 for all
ℓ ∈ ℕ0 in combination with the Céa lemma (2.5) implies that the limit limℓ Uℓ(F) =: U∞(F) exists in H, see,
e.g., [7, 17, 48] or even the pioneering work [8]. For ℓ = 0 and ä = 1, assumption (A2) implies

1
2
ñm(F)

2 ≤ ñ0(F)
2 + 2C2 sup

k∈ℕ0‖U0 − Uk‖
2
H ≤ M < ∞.

Next, we multiply (A2) by (1 + ä) and observe

0 ≤ ñℓ(F;Rℓ)
2 ≲ ñℓ(F)

2 − ñℓ+k(F)
2 + äñℓ(F)

2 + C2(ä)‖Uℓ+k(F) − Uℓ(F)‖
2
H (2.9)

with C2(ä) := (1 + ä)(1 + ä
−1)C2 = ä

−1(1 + ä)2C2. Let ù > 0. Because of the boundedness of ñℓ(F), we can hence
choose ä > 0 and ℓ0 ∈ ℕ such that

äñℓ(F)
2 + C2(ä) ‖Uℓ+k(F) − Uℓ(F)‖

2
H ≤ ù

for all ℓ ≥ ℓ0 and k ∈ ℕ0. Together with (2.9), this shows

ñℓ(F)
2 − ñℓ+k(F)

2 ≥ −ù. (2.10)

Let a, b ∈ ℝ be accumulation points of (ñℓ(F)2)ℓ∈ℕ0 . First, choose ℓ ≥ ℓ0 and k ∈ ℕ such that |ñℓ(F)2 − a| +
|ñℓ+k(F)

2 − b| ≤ ù. With (2.10), this implies
a − b ≥ −3ù.

Second, choose ℓ ≥ ℓ0 and k ∈ ℕ such that |ñℓ(F)2 − b| + |ñℓ+k(F)2 − a| ≤ ù to derive

b − a ≥ −3ù.

Since ù > 0 was arbitrary, the last two estimates imply a = b. Altogether, (ñℓ(F)2)ℓ∈ℕ0 is a bounded sequence
in ℝ with unique accumulation point. By elementary calculus, (ñℓ(F)2)ℓ∈ℕ0 is convergent with limit ñ∞(F)2.
Continuity of the square root concludes (2.8). In particular, this and (2.9) prove ñℓ(F;Rℓ) → 0 as ℓ → ∞.

Proposition 2.4. Suppose assumptions (A1)–(A2) hold for some �xed F ∈ H∗. Under nestedness Xℓ ⊆ Xℓ+1

of the discrete spaces for all ℓ ∈ ℕ0 and due to the marking strategy (2.6), Algorithm 2.2 guarantees estimator
convergence limℓ→∞ ìℓ(F) = 0.

Proof. The marking criterion (2.6) and assumption (A1) show

èìℓ(F)
2 ≤ ìℓ(F;Mℓ)

2 ≲ ñℓ(F;Rℓ)
2.

Hence, the assertion limℓ→∞ ìℓ(F) = 0 follows from Lemma 2.3.
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Proposition 2.5. Suppose that D ⊆ H∗ is a dense subset of H∗ such that assumptions (A1)–(A2) are satis�ed
for all F ∈ D. In addition, suppose validity of (A3). Under nestedness Xℓ ⊆ Xℓ+1 of the discrete spaces for all
ℓ ∈ ℕ0 and due to the marking strategy (2.6), Algorithm 2.2 guarantees convergence limℓ→∞ ìℓ(F) = 0 for all
F ∈ H∗.

Proof. Let ù > 0 and choose F� ∈ D such that ‖F − F�‖H∗ ≤ ù. The marking criterion (2.6) as well as (A3)
and (A1) show

è ìℓ(F) ≤ ìℓ(F;Mℓ) ≲ ìℓ(F
�;Mℓ) + ‖F − F

�‖H∗ ≲ ñℓ(F�;Rℓ) + ù.

Lemma 2.3 yields limℓ→∞ ñℓ(F
�;Rℓ) = 0, whence è lim supℓ→∞ ìℓ(F) ≲ ù. With ù → 0, elementary calculus

concludes the proof.

3 Weakly-Singular Integral Equation

3.1 Model Problem

We consider the weakly-singular integral equation

Au(x) = ∫
Γ

G(x − y) u(y) dΓ(y) = F(x) for all x ∈ Γ (3.1)

on a relatively open, polygonal part Γ ⊆ àΩ of the boundary of a bounded, polyhedral Lipschitz domain
Ω ⊂ ℝd, d = 2, 3. For d = 3, we assume that the boundary of Γ (a polygonal curve) is Lipschitz itself. Here,

G(z) = −
1
2ð
log|z| resp. G(z) =

1
4ð

|z|−1 (3.2)

denotes the fundamental solution of the Laplacian in d = 2, 3. The reader is referred to, e.g., the monographs
[42, 46, 53, 56] for proofs of and details on the following facts: The simple-layer integral operatorA : H → H∗

is a continuous linear operator between the fractional-order Sobolev space H = H̃−1/2(Γ) and its dual H∗ =
H1/2(Γ) := {v̂|Γ : v̂ ∈ H1(Ω)}. Duality is understood with respect to the extended L2(Γ)-scalar product ⟨⋅, ⋅⟩.
In 2D, we additionally assume diam(Ω) < 1 which can always be achieved by scaling. Then, the simple-layer
integral operator is also elliptic:

⟨v, Av⟩ ≥ Cell ‖v‖
2
H̃−1/2(Γ) for all v ∈ H = H̃−1/2(Γ)

with some constant Cell > 0 which depends only on Γ. Thus, A meets all assumptions of Section 2, and
‖v‖2A := ⟨Av, v⟩ even de�nes an equivalent Hilbert norm onH.

3.2 Discretization

Let T⋆ be a ã-shape regular triangulation of Γ into a�ne line segments for d = 2 resp. plane surface triangles
for d = 3. For d = 3, ã-shape regularity means

sup
T∈T⋆
diam(T)2

|T|
≤ ã < ∞ (3.3a)

with |⋅| being the two-dimensional surface measure, whereas for d = 2, we impose uniform boundedness of
the local mesh-ratio

diam(T)
diam(T�)

≤ ã < ∞ for all T, T� ∈ T⋆ with T ∩ T� ̸= 0. (3.3b)

To abbreviate notation, we shall write |T| := diam(T) for d = 2. In addition, we assume that T⋆ is regular in
the sense of Ciarlet for d = 3, i.e., there are no hanging nodes.

With X⋆ = P0(T⋆) being the space of T⋆-piecewise constant functions, we now consider the Galerkin
formulation (2.3).
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3.3 Weighted-Residual Error Estimator

According to the Galerkin formulation (2.3), the residualF−AU⋆(F) ∈ H
1/2(Γ) hasT⋆-piecewise integralmean

zero, i.e.,
∫
T

(F − AU⋆(F)) dΓ = 0 for all T ∈ T⋆. (3.4)

Let us suppose for the moment that the right-hand side has additional regularity F ∈ H1(Γ) ⊂ H1/2(Γ). Since
A : H̃−1/2(Γ) → H1/2(Γ) is an isomorphism with additional stability A : H̃−1/2+s(Γ) → H1/2+s(Γ) for all −1/2 ≤
s ≤ 1/2 (we note thatA is not isomorphic for s = ±1 and Γ ⫋ àΩ), a Poincaré-type inequality inH1/2(Γ) shows

‖u(F) − U⋆(F)‖H̃−1/2(Γ) ≃ ‖F − AU⋆(F)‖H1/2(Γ) ≲ ‖ℎ1/2⋆ ∇Γ(F − AU⋆(F))‖L2(Γ) =: ç⋆(F), (3.5)

see [11, 15, 19, 20]. Here, ∇Γ(⋅) denotes the surface gradient, and ℎ⋆ ∈ P
0(T⋆) is the local mesh-width function

de�ned pointwise almost everywhere by ℎ⋆|T := diam(T) for all T ∈ T⋆. Overall, this proves the reliability
estimate

‖u(F) − U⋆(F)‖H̃−1/2(Γ) ≤ C̃rel ç⋆(F), (3.6)

and the constant C̃rel > 0 depends only on Γ and the ã-shape regularity (3.3) of T⋆; see [15]. In 2D, it holds
that C̃rel = C log

1/2(1 + ã), where C > 0 depends only on Γ; see [11]. In particular, the weighted-residual error
estimator can be localized via

ç⋆(F) = ( ∑
T∈T⋆ ç⋆(F; T)

2)
1/2

with ç⋆(F; T) = diam(T)
1/2‖∇Γ(F − AU⋆(F))‖L2(T). (3.7)

Recently, convergence of Algorithm 2.2 has been shown even with quasi-optimal rates, if çℓ(F) = ìℓ(F) is
used for marking (2.6); see [31, 34]. We stress that our approach with çℓ(F) = ñℓ(F) = ìℓ(F) would also give
convergence çℓ(F) → 0 as ℓ → ∞. Since this is, however, a much weaker result than that of [34], we omit the
details.

Unlike reliability (3.6) of ç⋆(F) which is proved for general F ∈ H1(Γ), the converse estimate ç⋆(F) ≲
‖u(F) − U⋆(F)‖H̃−1/2(Γ) (so-called e�ciency) is only known for special right-hand sides F ∈ H1(Γ) which guar-
antee equivalence of the weakly-singular integral equation (3.1) to some 2D Laplace problem

−ΔU = 0 inΩ ⊂ ℝ2 subject to U = g on Γ = àΩ

with smooth Dirichlet data g; see [10] for quasi-uniform meshes and the very recent work [3] for the general-
ization to locally re�ned meshes which are ã-shape regular (see (3.3b)).

3.4 Two-Level Error Estimator

In the frame of weakly-singular integral equations (3.1), the two-level error estimator was introduced in [51].
Let T̂⋆ denote the uniform re�nement of T⋆. For each element T ∈ T⋆, let T̂⋆|T := {T� ∈ T̂⋆ : T� ⊂ T} denote
the set of sons of T. Let {öT, ÿT,1, . . . , ÿT,D} be a basis of P0(T̂⋆|T) with �ne-mesh functions ÿT,j which satisfy
supp(ÿT,j) ⊆ T and ∫T ÿT,j dΓ = 0. We note that usuallyD = 1 for d = 2 andD = 3 for d = 3. Typical choices are
shown in Figure 1. Then, the local contributions of the two-level error estimator from [24, 26, 41, 45, 51] read

ì⋆(F; T)
2 =

D

∑
j=1

ì⋆,j(F; T)
2 with ì⋆,j(F; T) =

⟨F − AU⋆(F), ÿT,j⟩

⟨AÿT,j, ÿT,j⟩1/2
. (3.8)

Put di�erently, we test the residualF−AU⋆(F) ∈ H
1/2(Γ)with the additional hierarchical basis functions from

P0(T̂⋆)\P
0(T⋆). This quantity is appropriately scaled by the corresponding energy norm

‖ÿ‖H̃−1/2(Γ) ≃ ⟨Aÿ, ÿ⟩1/2 = ‖ÿ‖A.
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+1

öT

+1

+1

−1

−1

ÿT,1

+1

+1

−1

−1

ÿT,2

+1+1

−1−1

ÿT,3

Figure 1. For d = 3, uniform bisection-based mesh-re�nement usually splits a coarse mesh element T ∈ Tℓ (left) into four sons
T� ∈ T̂ℓ (right) so that |T|/4 = |T�|. Typical hierarchical basis functions ÿT,j are indicated by their piecewise constant values ±1
on the son elements T�.

Note that unlike the weighted-residual error estimator ç⋆(⋅) from (3.7), the two-level error estimator ì⋆(F) is
well-de�ned under minimal regularity F ∈ H1/2(Γ) of the given right-hand side.

The two-level estimator is known to be e�cient [24, 26, 41, 45, 51]:

ì⋆(F) ≤ Ce� ‖u(F) − U⋆(F)‖H̃−1/2(Γ), (3.9)

while reliability
‖u(F) − U⋆(F)‖H̃−1/2(Γ) ≤ Crel ì⋆(F)

holds under (see [26, 41, 45, 51]) and is even equivalent to (see [24]) the saturation assumption

‖u(F) − Û⋆(F)‖A ≤ qsat ‖u(F) − U⋆(F)‖A

in the energy norm ‖⋅‖A ≃ ‖⋅‖H̃−1/2(Γ). Here, 0 < qsat < 1 is a uniform constant, and Û⋆(F) is the Galerkin
solution with respect to the uniform re�nement T̂⋆ of T⋆. The constant Ce� > 0 depends only on Γ and the
ã-shape regularity of T⋆, while Crel > 0 additionally depends on the saturation constant qsat.

With the help of Propositions 2.4 and 2.5, we aim to prove the following convergence result for the related
adaptive mesh-re�ning algorithm. Recall that for d = 3, re�nement of an element T ∈ Tℓ does not necessarily
imply that diam(T�) < diam(T) for the sons T� ∈ Tℓ+1 of T. However, it is reasonable to assume that each
marked element T ∈ Mℓ is re�ned into at least two sons T� ∈ Tℓ+1 which satisfy |T�| ≤ ê |T| with some
uniform 0 < ê < 1 (and ê = 1/2 for usual mesh-re�nement strategies for d = 2, 3).

Theorem 3.1. Suppose that the two-level error estimator (3.8) is used for marking (2.6). Suppose that the mesh-
re�nement guarantees uniform ã-shape regularity (3.3) of the meshes Tℓ generated, as well as that all marked
elements T ∈ Mℓ are re�ned into sons T� ∈ Tℓ+1 with |T�| ≤ ê |T| with some uniform constant 0 < ê < 1. Then,
Algorithm 2.2 guarantees

lim
ℓ→∞

ìℓ(F) = 0 for all F ∈ H1/2(Γ).

The claim of Theorem 3.1 follows from Proposition 2.5 as soon as we have veri�ed the abstract assump-
tions (A1)–(A3). We will show (A1)–(A2) for a slight variant ñ⋆(⋅) of the weighted-residual error estimator ç⋆(⋅)
from (3.7) and for all right-hand sides F ∈ H1(Γ). Afterward, assumption (A3) is shown for all F ∈ H1/2(Γ),
and the �nal claim then follows from density ofH1(Γ) withinH1/2(Γ).

Proof of Theorem 3.1. For a given right-hand side F ∈ H1(Γ), the weighted-residual error estimator ç⋆(F) from
(3.7) is well-de�ned.

Note that ã-shape regularity (3.3) implies for d = 3 the pointwise equivalence

C−1mesh diam(T) ≤ |T|
1/2 ≤ diam(T) for all T ∈ Tℓ,

where Cmesh = √ã > 0. In the spirit of [21], we hence use the modi�ed mesh-width function ℎ̃ℓ ∈ P0(Tℓ)
de�ned pointwise almost everywhere by ℎ̃ℓ|T = |T|

1/(d−1) and note that ℎ̃ℓ = ℎℓ for d = 2. Then, we consider
an equivalent weighted-residual error estimator ñℓ(F) given by

C−1/2mesh çℓ(F; T) ≤ ñℓ(F; T) :=
""""ℎ̃

1/2
ℓ ∇Γ(F − AUℓ(F))

""""L2(T) ≤ çℓ(F; T). (3.10)
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It has �rst been noted in [12, Theorem 8.1] for 2D that

ìℓ,j(F; T) ≤ Clocçℓ(F; T) for all T ∈ Tℓ, (3.11)

where the constant Cloc > 0 depends only on ã-shape regularity of Tℓ, and the proof transfers to 3D as well.
For completeness, we include the short argument: With supp(ÿT,j) ⊆ T, we infer

ìℓ,j(F; T) =
⟨F − AUℓ(F), ÿT,j⟩

‖ÿT,j‖A
≤ ‖ℎ−1/2ℓ (F − AUℓ(F))‖L2(T) ‖ℎ1/2ℓ ÿT,j‖L2(T)

‖ÿT,j‖A
. (3.12)

With the inverse estimate from [38, Theorem 3.6] and norm equivalence, we obtain

‖ℎ1/2ℓ ÿT,j‖L2(T) = ‖ℎ1/2ℓ ÿT,j‖L2(Γ) ≲ ‖ÿT,j‖H̃−1/2(Γ) ≃ ‖ÿT,j‖A,

where the hidden constants depend only on Γ and ã-shape regularity (3.3) of Tℓ. We note that the assumption
∫T ÿT,j dΓ = 0 together with the approximation result of [16, Theorem 4.1] also proves the converse estimate

‖ÿT,j‖A ≃ ‖ÿT,j‖H̃−1/2(Γ) ≲ ‖ℎ1/2ℓ ÿT,j‖L2(T),
where the hidden constant depends only on Γ. This proves that the quotient on the right-hand side of (3.12)
remains bounded. Due to (3.4), the Poincaré estimate yields

‖ℎ−1/2ℓ (F − AUℓ(F))‖L2(T) ≲ ‖ℎ1/2ℓ ∇Γ(F − AUℓ(F))‖L2(T).
This concludes (3.11). Together with (3.10), this proves (A1) with C1 = ClocC

1/2
meshD

1/2 and Rℓ =Mℓ.
The veri�cation of (A2) hinges on the use of the equivalent mesh-size function. Note that each marked

element T ∈ Mℓ = Rℓ is re�ned and that the mesh-size sequence is pointwise decreasing. With q = ê1/(d−1),
this implies the pointwise estimate

ℎ̃ℓ − ℎ̃ℓ+k ≥ ℎ̃ℓ − ℎ̃ℓ+1 ≥ (1 − q) ℎ̃ℓö⋃Rℓ for all ℓ, k ∈ ℕ,

where ö⋃Rℓ denotes the characteristic function of the set ⋃Rℓ := ⋃T∈Rℓ T. Hence, the estimator ñℓ(⋅)
from (3.10) satis�es

(1 − q) ñℓ(F;Rℓ)
2 = (1 − q) ∫

⋃Rℓ
ℎ̃ℓ|∇Γ(F − AUℓ(F))|

2 dΓ

≤ ∫
Γ

ℎ̃ℓ|∇Γ(F − AUℓ(F))|
2 dΓ − ∫

Γ

ℎ̃ℓ+k|∇Γ(F − AUℓ(F))|
2 dΓ

= """"ℎ̃
1/2
ℓ ∇Γ(F − AUℓ(F))

""""
2
L2(Γ) − """"ℎ̃1/2ℓ+k∇Γ(F − AUℓ(F))

""""
2
L2(Γ).

For arbitrary a, b ≥ 0 and ä > 0, the Young inequality gives (a + b)2 ≤ (1 + ä)a2 + (1 + ä−1)b2 and hence
a2 ≥ (1 + ä)−1((a + b)2 − (1 + ä−1)b2). Together with the triangle inequality, this leads us to

(1 − q) ñℓ(F;Rℓ)
2 ≤ ñℓ(F)

2 −
1

1 + ä
ñℓ+k(F)

2 +
1 + ä−1

1 + ä
""""ℎ̃

1/2
ℓ+k∇ΓA(Uℓ(F) − Uℓ+k(F))

""""
2
L2(Γ).

Finally, we use an inverse estimate from [1, Corollary 3]:

‖ℎ1/2ℓ ∇ΓAVℓ‖L2(Γ) ≤ Cinv ‖Vℓ‖H̃−1/2(Γ) for all Vℓ ∈ P
0(Tℓ). (3.13)

With this, we derive

(1 − q) ñℓ(F;Rℓ)
2 ≤ ñℓ(F)

2 −
1

1 + ä
ñℓ+k(F)

2 +
1 + ä−1

1 + ä
Cinv ‖Uℓ(F) − Uℓ+k(F)‖

2
H̃−1/2(Γ).

This proves assumption (A2) with C2 = max{Cinv, (1 − q)
−1}.

To see (A3), recall that A is linear and ìℓ(⋅) is always e�cient (see (3.9)). Therefore, (A3) follows with the
abstract arguments of (2.7).
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3.5 Faermann’s Residual Error Estimator

For a given triangulation T⋆ of Γ, letN⋆ be the set of nodes of T⋆. De�ne the node patch

ø⋆(z) := ⋃ {T ∈ T⋆ : z ∈ T} ⊆ Γ,

i.e., the union of all elements which contain z. The Faermann error estimator was introduced in [28, 29] for
d = 2 resp. d = 3. Its local contributions read

ì⋆(F; T)
2 := ∑

z∈T∩N⋆|F − AU⋆(F)|
2
H1/2(ø⋆(z)) for all T ∈ T⋆. (3.14)

Here, |⋅|Hs(ø), for 0 < s < 1, denotes the Sobolev–Slobodeckij seminorm

|u|2Hs(ø) = ∫
ø

∫
ø

|u(x) − u(y)|2

|x − y|d−1+2s
dΓ(x) dΓ(y) for all u ∈ Hs(ø).

So far, the Faermann error estimator is the only a posteriori BEM error estimator which is proven to be reliable
and e�cient [12, 28, 29]:

C−1e� ì⋆(F) ≤ ‖u(F) − U⋆(F)‖H̃−1/2(Γ) ≤ Crel ì⋆(F). (3.15)

The constants Ce�, Crel > 0 depend only on Γ and the shape regularity (3.3) of T⋆. We note that e�ciency of,
e.g., the weighted-residual error estimator ç⋆(⋅) is so far only mathematically proved for 2D and particular
smooth right-hand sides F; see [3].

Theorem 3.2. Suppose that the Faermann error estimator (3.14) is used for marking (2.6). Suppose that the
mesh-re�nement guarantees uniform ã-shape regularity (3.3) of the meshes Tℓ generated, as well as that all
marked elements T ∈Mℓ are re�ned into sons T� ∈ Tℓ+1 with |T�| ≤ ê |T| with some uniform constant 0 < ê < 1.
For all F ∈ H1/2(Γ), Algorithm 2.2 then guarantees estimator convergence

lim
ℓ→∞

ìℓ(F) = 0 (3.16)

as well as convergence of the discrete solutions:

lim
ℓ→∞

‖u(F) − Uℓ(F)‖H̃−1/2(Γ) = 0. (3.17)

Note that the convergence (3.17) follows from the estimator convergence (3.16) and reliability (3.15). Hence, the
claim of Theorem 3.2 follows from Proposition 2.5 as soon as we have veri�ed the abstract assumptions (A1)–
(A3). While the proofs of (A2)–(A3) are similar to those of the two-level error estimator from Theorem 3.1, the
proof of (A1) is technically more involved and yields ìℓ(F;Mℓ) ≲ ñℓ(F;Rℓ) with Rℓ consisting of all marked
elements plus one additional layer of elements, i.e.,

Rℓ := {T ∈ Tℓ : there exists T� ∈Mℓ with T ∩ T� ̸= 0}. (3.18)

Proof of assumptions (A2)–(A3) for Theorem 3.2. In view of (3.18), we require amodi�edmesh-width function
ℎ̃ℓ : Γ → ℝ which is contractive on each element T which touches a marked element. For a subset Eℓ ⊆ Tℓ,
we de�ne the k-patch øk

ℓ (Eℓ) ⊆ Tℓ inductively by

ø0
ℓ(Eℓ) = Eℓ and øk

ℓ(Eℓ) = {T ∈ Tℓ : there exists T� ∈ øk−1
ℓ (Eℓ) with T ∩ T� ̸= 0}. (3.19a)

For simplicity, we write

øℓ(⋅) := ø
1
ℓ(⋅) and øk

ℓ (T) := ø
k
ℓ({T}) for elements T ∈ Tℓ. (3.19b)

Then, there exists ℎ̃ℓ : Γ → ℝ which satis�es, for �xed k ∈ ℕ and arbitrary ℓ ∈ ℕ,

C−1mesh diam(T) ≤ ℎ̃ℓ|T ≤ diam(T) for all T ∈ Tℓ, (3.20a)
ℎ̃ℓ+1|T ≤ ℎ̃ℓ|T for all T ∈ Tℓ, (3.20b)

ℎ̃ℓ+1|T ≤ q ℎ̃ℓ|T for all T ∈ øk
ℓ (Tℓ\Tℓ+1) (3.20c)
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with constantsCmesh > 0 and 0 < q < 1. We note that Tℓ\Tℓ+1 are precisely the re�ned elements. For bisection-
based mesh-re�nement in 2D and 3D, the explicit construction of such a modi�ed mesh-width function ℎ̃ℓ is
given in [31, Lemma 2]. In [13, Section 8.7], the construction is generalized to ã-shape regular triangulations
Tℓ of n-dimensional manifolds, n ≥ 2. For d = 2, i.e. Γ being a one-dimensional manifold, the construction is
even simpler.

Overall, we consider an equivalent weighted-residual error estimator ñℓ(F) given by

C−1/2mesh çℓ(F; T) ≤ ñℓ(F; T) :=
""""ℎ̃

1/2
ℓ ∇Γ(F − AUℓ(F))

""""L2(T) ≤ çℓ(F; T)
with arbitrary, but �xed k ≥ 1.

To prove (A2) withRℓ = øℓ(Mℓ), we note that all marked elements are re�ned, i.e., øk
ℓ (Mℓ) ⊆ ø

k
ℓ (Tℓ\Tℓ+1).

Therefore, property (3.20c) of ℎ̃ℓ ensures ℎ̃ℓ+1|T ≤ q ℎ̃ℓ|T for all T ∈ Rℓ. Arguing as in Theorem 3.1, we prove
(A2).

To see (A3), recall thatA is linear and ìℓ(⋅) is always e�cient (see (3.15)). Therefore, (A3) follows with the
abstract arguments of (2.7).

The following proposition provides an estimate for the Slobodeckij seminorm, needed to establish the local
lower bound (A1). It is related to recent results from [40], which studies scalability of di�erentHs-seminorms.
Unlike [40], we consider node patches

ø⋆(z) := ⋃ {T ∈ T⋆ : z ∈ T} (3.21)

instead of elements.

Proposition 3.3. Let T⋆ be a triangulation of Γ, z ∈ N⋆, and s ∈ (0, 1). Then,

|v|Hs(ø⋆(z)) ≤ C⋆ diam(ø⋆(z))
1−s‖∇Γv‖L2(ø⋆(z)) for all v ∈ H1(ø⋆(z)). (3.22)

The constant C⋆ > 0 depends only on Γ and the ã-shape regularity of T⋆.

We postpone the proof of Proposition 3.3 and show how it implies (A1) for all F ∈ H1(Γ).

Proof of assumption (A1) for Theorem 3.2. Let T ∈ Tℓ. Summing (3.22) over z ∈ Nℓ ∩ T, we get

∑
z∈Nℓ∩T|v|

2
Hs(øℓ(z)) ≲ ∑

z∈Nℓ∩T diam(øℓ(z))
2(1−s)‖∇Γv‖

2
L2(øℓ(z)).

For s = 1/2, v = F −AUℓ(F) ∈ H
1(Γ), and ø := ⋃øℓ(Mℓ) = ⋃Rℓ (see (3.19) for the de�nition of the patch), this

shows

ìℓ(F;Mℓ)
2 = ∑

T∈Mℓ ∑
z∈Nℓ∩T|F − AUℓ(F)|

2
H1/2(øℓ(z))

≲ ∑
T∈Mℓ ∑

z∈Nℓ∩T diam(T)‖∇Γ(F − AUℓ(F))‖
2
L2(øℓ(z))

≃ """"ℎ̃
1/2
ℓ ∇Γ(F − AUℓ(F))

""""
2
L2(ø) = ñℓ(F;Rℓ)

2.

This concludes the proof.

To establish Proposition 3.3, we need two additional lemmas. The �rst enables us to use a “generalized” scal-
ing argument which allows for bi-Lipschitz deformations of the reference domain. A mapping ê : O → ℝd

with O ⊂ ℝk open and 1 ≤ k ≤ d is called bi-Lipschitz if it satis�es for some constants L1, L2 > 0

L1|x − y| ≤ |ê(x) − ê(y)| ≤ L2|x − y| for all x, y ∈ O. (3.23)

This allows us to formulate the following lemma.
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Lemma 3.4 (Generalized scaling property of Sobolev seminorms). Let ê : O → ℝd be bi-Lipschitz, see (3.23).
Then, it holds

C−1Lk/2−s
1 |v ∘ ê|Hs(O) ≤ |v|Hs(ê(O)) ≤ CLk/2−s

2 |v ∘ ê|Hs(O) (3.24)

for all v ∈ Hs(ê(O)) and 0 < s ≤ 1. The constant C > 0 satis�es

C ≤ (L2/L1)
(d+2)/2. (3.25)

Proof. First, we consider the case 0 < s < 1. According to Rademacher’s theorem [27, Section 3.1], Lipschitz
continuous functions are di�erentiable almost everywhere. An immediate consequence of (3.23) thus is

L1|v| ≤ |Dê(x)v| ≤ L2|v| for all v ∈ ℝk and a.e. x ∈ O. (3.26)

Denote the Jacobian determinant by Jê := √det((Dê)T(Dê)). Interpreting (3.26) as an estimate for the eigen-
values of (Dê)T(Dê), one obtains

Lk
1 ≤ Jê ≤ L

k
2 a.e. in O. (3.27)

The estimates (3.27) and (3.23) show

|v|2Hs(ê(O)) = ∫
O

∫
O

|v ∘ ê(x) − v ∘ ê(y)|2

|ê(x) − ê(y)|k+2s
Jê(x)Jê(y) dx dy

≤ L2k
2 ∫

O

∫
O

|v ∘ ê(x) − v ∘ ê(y)|2

|ê(x) − ê(y)|k+2s
dx dy

≤ L−(k+2s)1 L2k
2 ∫

O

∫
O

|v ∘ ê(x) − v ∘ ê(y)|2

|x − y|k+2s
dx dy = L−(k+2s)1 L2k

2 |v ∘ ê|
2
Hs(O).

This proves |v|Hs(ê(O)) ≤ (L2/L1)
k/2+sLk/2−s

2 |v ∘ ê|Hs(O). With (L2/L1) ≥ 1 and k/2 + s ≤ (d + 2)/2, we obtain the
upper estimate of (3.24). The lower estimate follows analogously.

The case s = 1 follows from the chain rule and (3.26)–(3.27), where Γ := ê(O) is the induced surface: The
pointwise estimate

L−22 |∇(v ∘ ê)|2 ≤ |(∇Γv) ∘ ê|
2 ≤ L−21 |∇(v ∘ ê)|2

and integration over O show

L−22 Lk
1|v ∘ ê|

2
H1(O) ≤ |v|2H1(ê(O)) ≤ L−21 Lk

2|v ∘ ê|
2
H1(O).

This concludes the proof for s = 1.

It remains to bound the Lipschitz constants (L2/L1)
(d+2)/2 in (3.25) for our particular case of ê(O) being a node-

patchonapolyhedral surface. To that end, de�ne for anyN ≥ 3 the referencepatch ø̂N ⊂ ℝ
2 = ℂ to be the com-

pact regular polygon with corners e
2ðikN , for k = 0, . . . , N − 1 (where 0 is an interior point). Moreover, let conv{⋅}

denote the closed convex hull. De�ne ø̂�
1 := conv{0, 1, i} and, for N ≥ 2, ø̂�

N := ø̂N+1\ interior(conv{0, 1, e
2ðiN+1 }),

where 0 is a boundary vertex; see Figure 2. The next lemma constructs appropriate uniformly bi-Lipschitz
pullbacks to the reference patches. Since the proof is elementary but lengthy, we only sketch it and refer to
[47] for the details.

Lemma 3.5. Let z ∈ N⋆ be somenode of a triangulationT⋆ of Γ ⊂ ℝd, and letd = 2, 3. LetN := # {T ∈ T⋆ : z ∈ T}
be the number of elements in the node patch ø⋆(z) from (3.21) and de�ne

ø̂ := (−1, 1) for d = 2 and ø̂ :=
{
{
{

ø̂�
N for z ∈ àΓ,

ø̂N for z ̸∈ àΓ,
for d = 3.

Then, there exists êz : ø̂ → ø⋆(z) bi-Lipschitz with

C−1 diam(ø⋆(z)) ≤ L1 and L2 ≤ C diam(ø⋆(z)). (3.28)

The constant C > 0 depends only on Γ and the ã-shape regularity of T⋆.
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Figure 2. Reference patches ø̂N and ø̂�
N in Lemma 3.5 for z ∈ àΓ andN = 4 as well asN = 9 resp. for z ̸∈ àΓ andN = 5 as well

asN = 10 (from left to right).

Sketch of proof. We only sketch the case d = 3, whereas the simpler case d = 2 is left to the reader. Let
T̂1, . . . , T̂N denote the elements in ø̂ = ⋃N

j=1 T̂j and let T1, . . . , TN denote the elements of ø⋆(z) = ⋃N
j=1 Tj.

Without loss of generality, we assume that the numbering of the elements is such that # (T̂i∩T̂j) = # (Ti∩Tj) ∈
{1,∞} for all 1 ≤ i, j ≤ N. This allows us to �nd a unique a�ne mapping êj : T̂j → Tj which satis�es

êj(0) = z and êj(T̂j ∩ T̂i) = Tj ∩ Ti for all i = 1, . . . , N.

De�ne ê : ø̂ → ø⋆(z) as
ê|T̂j = êj for all j = 1, . . . , N.

If z� ∈ (T̂j ∩ T̂i)\{0}, we have êj(z
�) ∈ Ti ∩ Tj and êi(z

�) ∈ Ti ∩ Tj by de�nition. Since the êj are a�ne, there
holds êi|Ê = êj|Ê on Ê = T̂i ∩ T̂j. This shows that ê is well-de�ned and continuous. Straightforward arguments
show thatN and the Lipschitz continuity of the êj depend only on the ã-shape regularity of T⋆. The Lipschitz
continuity (3.28) of ê depends additionally on Γ.

With this at hand, the proof of Proposition 3.3 follows.

Proof of Proposition 3.3. Using the mapping ê = êz from Lemma 3.5, we can apply Lemma 3.4 withO = ø̂ and
ê(O) = ø⋆(z). This immediately gives

|v|Hs(ø⋆(z)) ≃ diam(ø⋆(z))
(d−1)/2−s|v ∘ ê|Hs(ø̂)

for all v ∈ H1(ø⋆(z)), s ∈ (0, 1],with constants dependingonly on the ã-shape regularity ofTℓ. On the reference
patch, we can use the continuous embeddingH1(ø̂) ⊂ Hs(ø̂) and Poincaré’s inequality to obtain

|v ∘ ê|Hs(ø̂) = minc∈ℝ
|v ∘ ê − c|Hs(ø̂) ≤ minc∈ℝ

‖v ∘ ê − c‖Hs(ø̂) ≲ minc∈ℝ
‖v ∘ ê − c‖H1(ø̂) ≲ |v ∘ ê|H1(ø̂).

The hidden constant depends only on ø̂ and is hence controlled by the ã-shape regularity of Tℓ. Combining
the last two estimates, we get

|v|Hs(ø⋆(z)) ≃ diam(ø⋆(z))
(d−1)/2−s|v ∘ ê|Hs(ø̂) ≲ diam(ø⋆(z))

(d−1)/2−s|v ∘ ê|H1(ø̂) ≃ diam(ø⋆(z))
1−s|v|H1(ø⋆(z)).

This concludes the proof.

3.6 Remarks and Extensions

The inverse estimates of [38, Theorem3.6] and [1, Corollary 3] also apply to higher-order discretizationsPp(T⋆)
with piecewise polynomials of degree p ≥ 0 and curved surface triangles (where Γ is assumed to be piecewise
smooth). Also Proposition 3.3 can be proved for non-polygonal boundaries. Consequently, the convergence
results of Theorems 3.1 and 3.2 also transfer to these settings. Moreover, rectangular elements can be covered.

In [28] the spaces Pp(T⋆) are de�ned by local pullback with the arc-length parametrization. While this
is immaterial for piecewise a�ne boundaries, Pp(T⋆) depends on the chosen parametrization for non-a�ne
boundaries. For 2D BEM, this restriction is removed in the recent work [33].
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4 Hyper-Singular Integral Equation

4.1 Model Problem

We consider the hyper-singular integral equation

Au(x) = −àn(x) ∫
Γ

àn(y)G(x − y) u(y) dΓ(y) = F(x) for all x ∈ Γ (4.1)

on a relatively open, connected, and polygonal part Γ ⫋ àΩ of the boundary of a bounded, polyhedral
Lipschitz domain Ω ⊂ ℝd, d = 2, 3. (The case Γ = àΩ is sketched in Section 4.5 below.) For d = 3, we assume
that the boundary of Γ (a polygonal curve) is Lipschitz itself. In (4.1), G denotes the fundamental solution of
the Laplacian; see (3.2). Moreover, àn(x) denotes the normal derivative at x ∈ Γwith n(x) the outer unit normal
vector ofΩ. The reader is referred to, e.g., the monographs [42, 46, 53, 56] for proofs of and details on the fol-
lowing facts: The hyper-singular integral operator A : H → H∗ is a continuous linear operator between the
fractional-order Sobolev spaceH = H̃1/2(Γ) and its dualH∗ = H−1/2(Γ). Duality is understood with respect to
the extended L2(Γ)-scalar product ⟨⋅, ⋅⟩. Then, the hyper-singular integral operator is also elliptic:

⟨Av, v⟩ ≥ Cell ‖v‖
2
H̃1/2(Γ) for all v ∈ H = H̃1/2(Γ)

with some constant Cell > 0 which depends only on Γ. Thus, A meets all assumptions of Section 2, and
‖v‖2A := ⟨Av, v⟩ even de�nes an equivalent Hilbert norm onH.

4.2 Discretization

Let T⋆ be a ã-shape regular triangulation of Γ as de�ned in Section 3.2. With X⋆ = S̃
1(T⋆) := P

1(T⋆) ∩ H̃
1/2(Γ)

being the space of T⋆-piecewise a�ne, globally continuous functions which vanish at the boundary of Γ, we
now consider the Galerkin formulation (2.3).

4.3 Weighted-Residual Error Estimator

For a given right-hand side F ∈ L2(Γ), the residual F − AU⋆(F) ∈ H
−1/2(Γ) has additional regularity F − AU⋆ ∈

L2(Γ), since A : H̃1/2+s(Γ) → H−1/2+s(Γ) is stable for −1/2 ≤ s ≤ 1/2 (but not isomorphic for s = ±1/2). It is
proved in [14] that

‖u(F) − U⋆(F)‖H̃1/2(Γ) ≃ ‖F − AU⋆(F)‖H−1/2(Γ) ≲ ‖ℎ1/2⋆ (F − AU⋆(F))‖L2(Γ) =: ç⋆(F). (4.2)

Overall, this proves the reliability estimate

‖u(F) − U⋆(F)‖H̃1/2(Γ) ≤ C̃rel ç⋆(F),

and the constant C̃rel > 0 depends only on Γ and the ã-shape regularity (3.3) of T⋆. In particular, the weighted-
residual error estimator can be localized via

ç⋆(F) = ( ∑
T∈T⋆ ç⋆(F; T)

2)
1/2

with ç⋆(F; T) = diam(T)
1/2‖F − AU⋆(F)‖L2(T).

Recently, convergence of Algorithm 2.2 has been shown even with quasi-optimal rates, if çℓ(F) = ìℓ(F) is
used for marking (2.6), see [32, 36]. We stress that our approach with çℓ(F) = ñℓ(F) = ìℓ(F) would also give
convergence çℓ(F) → 0 as ℓ → ∞. Since this is, however, a much weaker result than that of [36], we omit the
details.
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4.4 Two-Level Error Estimator

Let T̂⋆ denote the uniform re�nement of T⋆. Let N̂⋆ be the corresponding set of nodes. Let zT,j ∈ T ∩ N̂⋆,
j = 1, . . . , D denote the new nodes of the uniform re�nement T̂⋆ within T. Let {vT,1, . . . , vT,D} ⊂ S1(T̂⋆) denote
the �ne-mesh hat functions which satisfy vT,j(zT,j) = 1 and vT,j(z) = 0 for all z ∈ N̂⋆\{zT,j}. We note that (in
dependence of the chosen mesh-re�nement) usually D = 1 for d = 2 and D = 3 for d = 3. In this setting, the
two-level error estimator has �rst been proposed by [50]. Its local contributions read

ì⋆(F; T)
2 =

D

∑
j=1

ì⋆,j(F; T)
2 with ì⋆,j(F; T) =

{
{
{

⟨F−AU⋆(F),vT,j⟩
⟨AvT,j ,vT,j⟩1/2 for zT,j ∉ àΓ,

0 otherwise.
(4.3)

Put di�erently, we test the residual F−AU⋆(F) ∈ H
−1/2(Γ)with the additional hierarchial basis functions from

S̃1(T̂⋆)\S̃
1(T⋆). This quantity is appropriately scaled by the corresponding energy norm

‖vT,j‖H−1/2(Γ) ≃ ⟨AvT,j, vT,j⟩1/2 = ‖vT,j‖A.
Note that unlike theweighted-residual error estimator ç⋆(⋅), the two-level error estimator ì⋆(F) is well-de�ned
under minimal regularity F ∈ H−1/2(Γ) of the given right-hand side.

The two-level estimator ì⋆(⋅) is known to be e�cient [4, 25, 26, 41, 45, 50]:

ì⋆(F) ≤ Ce� ‖u(F) − U⋆(F)‖H̃1/2(Γ), (4.4)

while reliability
‖u(F) − U⋆(F)‖H̃1/2(Γ) ≤ Crel ì⋆(F) (4.5)

holds under [26, 41, 45, 50] and is even equivalent to [4, 25] the saturation assumption

‖u(F) − Û⋆(F)‖A ≤ qsat ‖u(F) − U⋆(F)‖A (4.6)

in the energy norm ‖⋅‖A ≃ ‖⋅‖H̃1/2(Γ). Here, 0 < qsat < 1 is a uniform constant, and Û⋆(F) is the Galerkin
solution with respect to the uniform re�nement T̂⋆ of T⋆. The constant Ce� > 0 depends only on Γ and the
ã-shape regularity of T⋆, while Crel > 0 additionally depends on the saturation constant qsat. (The saturation
assumption (4.6) for the H̃1/2-norm ‖⋅‖A = ‖⋅‖H̃1/2/(Γ) implies reliability (4.5), but is not necessary though.)

Theorem 4.1. Suppose that the two-level error estimator (4.3) is used for marking (2.6). Suppose that the mesh-
re�nement guarantees uniform ã-shape regularity of the meshes Tℓ generated, as well as that all marked ele-
ments T ∈ Mℓ are re�ned into sons T� ∈ Tℓ+1 with |T�| ≤ ê |T| with some uniform constant 0 < ê < 1. Then,
Algorithm 2.2 guarantees

lim
ℓ→∞

ìℓ(F) = 0 for all F ∈ H1/2(Γ).

Proof. With Proposition 2.5, it remains to verify the abstract assumptions (A1)–(A3).
We use the modi�ed mesh-width function ℎ̃ℓ from the proof of Theorem 3.2 and de�ne the modi�ed

weighted-residual error estimator

C−1/2mesh çℓ(F; T) ≤ ñℓ(F; T) :=
""""ℎ̃

1/2
ℓ (F − AUℓ(F))

""""L2(T) ≤ çℓ(F; T). (4.7)

Arguing analogously to the proof of Theorem 3.1, we verify contraction (A2). The only di�erence is that instead
of (3.13), we use the inverse-type estimate

‖ℎ1/2ℓ AVℓ‖L2(Γ) ≤ Cinv ‖Vℓ‖H̃1/2(Γ) for all Vℓ ∈ S̃
1(Tℓ), (4.8)

where the constant Cinv > 0 depends only on Γ and ã-shape regularity of Tℓ; see [1, Corollary 3].
It is proved in [14, Theorem 5.4] that

ìℓ,j(F; T) ≲ ‖ℎ
1/2
ℓ (F − AUℓ)‖L2(supp(vT,j)),
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where the hidden constant depends only on Γ and ã-shape regularity ofTℓ. By de�nition (4.2) of theweighted-
residual error estimator and (4.7), this implies

ìℓ(F; T)
2 ≲ ∑

T�∈Tℓ
T�∩T ̸=0

çℓ(F; T)
2 ≃ ∑

T�∈Tℓ
T�∩T ̸=0

ñℓ(F; T)
2.

Using the notation from the proof of Theorem 3.2, this yields (A1) with Rℓ := øℓ(Mℓ) being the marked ele-
ments plus one additional layer of elements; see (3.19) for the de�nition of øℓ(⋅) = ø

1
ℓ(⋅).

Finally, stability (A3) follows from e�ciency (4.4); see (2.7).

4.5 Remarks and Extensions

The inverse estimate (4.8) of [1, Corollary 3] also applies to higher-order discretizations S̃p(T⋆) := Pp(T⋆) ∩
H̃1/2(Γ) with piecewise polynomials of degree p ≥ 1 and curved surface triangles. Consequently, the conver-
gence results of Theorems 3.1 and 3.2 also transfer to these settings. Moreover, also rectangular elements can
be covered.

If the boundary Γ is closed, i.e. Γ = àΩ, the hypersingular operator W : H1/2
0 (Γ) → H−1/20 (Γ) is well-

de�ned and elliptic, where H±1/20 (Γ) = {v ∈ H±1/2(Γ) : ⟨v, 1⟩ = 0}. Therefore, well-posedness of (4.1) requires
the compatibility condition F ∈ H−1/20 (Γ). On the one hand, one may formulate the weak formulation of (4.1)
as well as its Galerkin discretization with respect to the subspaces H = H1/2

0 (Γ) and X⋆ = P
p(T⋆) ∩ H

1/2
0 (Γ).

On the other hand, one can choose the full space H = H1/2(Γ) and X⋆ = P
p(T⋆) ∩ H

1/2(Γ) and consider the
naturally stabilized formulation

a(u, v) := ⟨Au, v⟩ + ⟨u, 1⟩⟨v, 1⟩ = ⟨F, v⟩ for all v ∈ H = H1/2(Γ). (4.9)

The compatibility condition on F and 1 ∈ S1(T⋆) = P1(T⋆) ∩ H
1/2(Γ) ensure that both, the exact solution

u = u(F) ∈ H1/2(Γ) of (4.9) as well as the Galerkin approximation U⋆ = U⋆(F) ∈ S
1(T⋆), satisfy ⟨u(F), 1⟩ =

0 = ⟨U⋆(F), 1⟩, i.e., u(F) ∈ H
1/2
0 (Γ) as well as U⋆(F) ∈ P

1(T⋆) ∩ H
1/2
0 (Γ). In either case, the weighted-residual

error estimator coincides with (4.2) and the two-level error estimator is obtained analogously to Section 4.4.
For the two-level error estimator, we refer, e.g., to [25] for the H1/2

0 (Γ)-based discretization and to [4] for the
stabilized approach. In any case, Theorem 4.1 holds accordingly.

5 FEM-BEM Coupling

5.1 Model Problem

Let Ω ⊂ ℝd be a Lipschitz domain with polygonal boundary Γ := àΩ, d = 2, 3. Let B : ℝd → ℝd be Lipschitz
continuous, i.e.,

|Bx − By| ≤ C4|x − y| for all x, y ∈ ℝd (5.1)

for some C4 > 0. In addition, we assume that the induced operator B : L2(Ω)d → L2(Ω)d, (Bf)(x) := B(f(x))
is strongly monotone:

∫
Ω

(Bf − Bg) ⋅ (f − g) dΩ ≥ C5‖f − g‖
2
L2(Ω) for all f,g ∈ L2(Ω)d

with monotonicity constant C5 > 1/4. (Arguing as in [52], this assumption can be sharpened to C5 > qK/4,
where 1/2 ≤ qK < 1 is the contraction constant of the double-layer integral operator.) We consider a possibly
nonlinear Laplace transmission problem which is reformulated in terms of the Johnson–Nédélec FEM-BEM
coupling [43]: For given data (f, u0, õ0) ∈ L

2(Ω) × H1/2(Γ) × H−1/2(Γ), �nd u = (u, õ) ∈ H := H1(Ω) × H−1/2(Γ)



M. Feischl et al., Convergence of ABEM and Adaptive FEM-BEM Coupling | 501

such that

∫
Ω

B∇u ⋅ ∇v dΩ − ∫
Γ

õv dΓ = ∫
Ω

fv dΩ + ∫
Γ

õ0v dΓ, (5.2a)

∫
Γ

((1/2 − K)u +Võ)÷ dΓ = ∫
Γ

(1/2 − K)u0÷dΓ (5.2b)

for all v = (v, ÷) ∈ H. Here,

V÷(x) := ∫
Γ

G(x − y)÷(y) dΓ(y) and Kv(x) := ∫
Γ

àn(y)G(x − y)v(y) dΓ(y)

are the simple-layer integral operator and the double-layer integral operator, respectively, with G being the
fundamental solution (3.2) of the Laplacian. To ensure ellipticity ofV : H−1/2(Γ) → H1/2(Γ) = (H−1/2(Γ))∗, we
assume diam(Ω) < 1 for d = 2 by scaling; see also Section 3. Let ‖v‖2H := ‖v‖2H1(Ω) +‖÷‖

2
H−1/2(Γ) for v = (v, ÷) ∈ H

denote the canonical product norm onH.
The left-hand side of (5.2) gives rise to some operator A : H → H∗. The right-hand side of (5.2) gives

rise to some F ∈ H∗ which depends on the given data f, u0, õ0. Then, (5.2) can equivalently be reformulated
by (2.3) withX⋆ = H. Note that ⟨õ, ÷⟩V := ∫Γ ÷Võ dΓ de�nes a scalar product onH−1/2(Γ)with induced norm
‖⋅‖2V := ⟨⋅, ⋅⟩V. The following proposition states that the FEM-BEM formulation (5.2) �ts into the abstract frame
of Section 2.

Proposition 5.1. The operatorA : H → H∗ associated with the left-hand side of (5.2) is bi-Lipschitz continuous
(see (2.1)), where Ccont > 0 depends only on C4, C5, and Ω. Let F ∈ H∗ and let X⋆ be a closed subspace of H.
Provided that (0, 1) ∈ X⋆, i.e. X00 = span{(0, 1)}, the variational formulation (2.3) admits a unique solution
U⋆(F) = (U⋆(F), Φ⋆(F)) ∈ X⋆, and the Céa lemma (2.5) holds. The constant CCéa > 0 depends only on C4, C5,
andΩ.

Sketch of proof. The statements on unique solvability and Céa-type quasi-optimality are proved in [2]; see
also [54] for the linear Laplace transmission problem, where B is the identity. It only remains to show that A
is bi-Lipschitz. The upper bound in (2.1) follows from Lipschitz continuity (5.1) of B and the continuity of the
boundary integral operatorsV : H−1/2(Γ) → H1/2(Γ) and K : H1/2(Γ) → H1/2(Γ). For the lower bound in (2.1),
we use the de�nition of the dual norm

‖Au − Av‖H∗ = sup
w=(w,ö)∈H\{(0,0)}

|⟨Au − Av,w⟩|
‖w‖H

.

For u = (u, õ), v = (v, ÷) ∈ H, we choose w = u − v + (0, 1) ∫Γ(
1
2 − K)(u − v) + V(õ − ÷) dΓ. By continuity of

V and K, it follows ‖w‖H ≲ ‖u − v‖H, where the hidden constant depends only on Ω. Moreover, w = (0, 0)
implies that u = v and õ−÷ = −⟨õ−÷, 1⟩V =: c ∈ ℝ is constant. With this identity, it follows 0 = (1+⟨1, 1⟩V)c.
Ellipticity ofV proves 0 = c = õ − ÷, i.e., w = 0 yields u = v.

The theory of implicit stabilization provided in [2] shows ⟨Au − Av,w⟩ ≳ ‖u − v‖2H, where the hidden
constant depends only on C5, and Ω. For u ̸= v, we altogether obtain |⟨Au − Av,w⟩|/‖w‖H ≥ C

−1
cont‖u − v‖H,

where Ccont > 0 depends only on C4, C5, andΩ.

5.2 Discretization

Let TΩ
⋆ be a ã-shape regular triangulation of Ω into triangles for d = 2 resp. tetrahedrons for d = 3. Here,

ã-shape regularity means

sup
T∈TΩ⋆
diam(T)d

|T|
≤ ã < ∞

with |⋅| being the d-dimensional volume measure. Suppose that TΩ
⋆ is regular in the sense of Ciarlet, i.e., TΩ

⋆
admits no hanging nodes. Let TΓ

⋆ := TΩ
⋆ |Γ be the triangulation of Γ which is induced by TΩ

⋆ . Note that TΓ
⋆ then
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is ã̃-shape regular in the sense of (3.3), where ã̃ > 0 depends only on ã. Moreover, for d = 3, TΓ
⋆ is regular in

the sense of Ciarlet as well. We formally consider T⋆ := TΩ
⋆ ∪ T

Γ
⋆ with the abstract notation of Section 2. Let

S1(TΩ
⋆ ) be the space of piecewise a�ne, globally continuous functions on TΩ

⋆ and P0(TΓ
⋆) be the space of all

TΓ
⋆-piecewise constant functions.WithX⋆ := S1(TΩ

⋆ )×P
0(TΓ

⋆), we now consider the Galerkin formulation (2.3).
The discrete solution with respect to X⋆ will be denoted byU⋆ = (U⋆, Φ⋆).

5.3 Weighted-Residual Error Estimator

Assume additional regularity (f, u0, õ0) ∈ L
2(Ω) × H1(Γ) × L2(Γ). Following [18], it is proved in [5] for linear

problems and in [2] for strongly monotone problems that

‖u(F) − U⋆(F)‖H ≃ ‖F − AU⋆(F)‖H∗ ≲ ç⋆(F),
where the error estimator ç⋆(F)2 := ∑T∈T⋆ ç⋆(F; T)2 is de�ned by

ç⋆(F; T)
2 := diam(T)2 ‖f‖2L2(T) + diam(T)(""""[B∇U⋆ ⋅ n]""""

2
L2(àT\Γ) + """"õ0 + Φ⋆ − B∇U⋆ ⋅ n""""

2
L2(àT∩Γ)) (5.3a)

for T ∈ TΩ
⋆ resp.

ç⋆(F; T)
2 := diam(T) """"∇Γ((1/2 − K)(U⋆ − u0) +VΦ⋆)

""""
2
L2(T) (5.3b)

for T ∈ TΓ
⋆. Here, [B∇U⋆ ⋅ n] denotes the jump of B∇U ⋅ n across interior facets E, where E = T+ ∩ T− for some

T+, T− ∈ TΩ
⋆ with T+ ̸= T−. By means of the estimator reduction principle [7], it follows that Algorithm 2.2

converges for çℓ(F) = ìℓ(F); see [2].

5.4 Two-Level Error Estimator

Two-level error estimators for the adaptive coupling of FEM and BEM have �rst been proposed in [49]. Let
T̂Ω
⋆ denote the uniform re�nement of TΩ

⋆ . Let N̂
Ω
⋆ be the corresponding set of nodes and T̂Γ

⋆ := T̂Ω
⋆ |Γ be the

induced triangulation of Γ. For each element T ∈ TΩ
⋆ , let zT,j ∈ T ∩ N̂

Ω
⋆ , j = 1, . . . , D

Ω denote the new nodes
of the uniform re�nement T̂Ω

⋆ within T. Let vT,j ∈ S1(T̂Ω
⋆ ) denote the �ne-mesh hat functions, which satisfy

vT,j(zT,j) = 1 and vT,j(z) = 0 for all z ∈ N̂Ω
⋆ \{zT,j}. Moreover, let {öT, ÷T,j, . . . , ÷T,DΓ } denote a basis of P0(T̂Γ

⋆|T)
for each element T ∈ TΓ

⋆, with öT being the characteristic function on T and ∫Γ ÷T,j dΓ = 0. Then, the two-level
estimator ì2

⋆ := ∑T∈T⋆ ì⋆(F; T)2 is de�ned by

ì⋆(F; T)
2 :=

DΩ
∑
j=1

ì⋆,j(F; T)
2 with ì⋆,j(F; T) :=

⟨F − AU⋆(F), (vT,j, 0)⟩
‖vT,j‖H1(Ω)

(5.4a)

for T ∈ TΩ
⋆ and

ì⋆(F; T)
2 :=

DΓ
∑
j=1

ì⋆,j(F; T)
2 with ì⋆,j(F; T) :=

⟨F − AU⋆(F), (0, ÷T,j)⟩

‖÷T,j‖V
(5.4b)

forT ∈ TΓ
⋆. Note that unlike theweighted-residual error estimator (5.3), the two-level error estimator (5.4) does

not require additional regularity of the data, but only (f, u0, õ0) ∈ L
2(Ω) × H1/2(Γ) × H−1/2(Γ).

The two-level estimator ì⋆ is known to be e�cient:

ì⋆(F) ≤ Ce�‖u(F) − U⋆(F)‖H,

while reliability
‖u(F) − U⋆(F)‖H ≤ Crelì⋆(F)

holds under the saturation assumption

‖u(F) − Û⋆(F)‖H ≤ qsat‖u(F) − U⋆(F)‖H;
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see [5] for the linear Johnson–Nédélec coupling and the seminal work [49] for some nonlinear symmetric cou-
pling. Here, Û⋆(F) denotes the Galerkin solution with respect to the uniform re�nement (T̂Ω

⋆ , T̂
Γ
⋆) of (T

Ω
⋆ ,T

Γ
⋆),

and 0 < qsat < 1 is a uniform constant. The details are left to the reader.

Theorem 5.2. Suppose that the two-level error estimator (5.4) is used for marking (2.6). Suppose that the mesh-
re�nement guarantees uniform ã-shape regularity of the meshes TΩ

ℓ ,T
Γ
ℓ generated, as well as that all marked

elements T ∈ Mℓ ⊆ T
Ω
ℓ ∪ T

Γ
ℓ are re�ned into sons T� ∈ Tℓ+1 = T

Ω
ℓ+1 ∪ T

Γ
ℓ+1 with |T�| ≤ ê |T| with some uniform

constant 0 < ê < 1, where |⋅| denotes the d-dimensional volumemeasure forT ∈ TΩ
ℓ resp. the (d−1)-dimensional

surface measure for T ∈ TΓ
ℓ . Then, Algorithm 2.2 guarantees

lim
ℓ→∞

ìℓ(F) = 0 for all F ∈ H∗.

Our proof of Theorem 5.2 requires the following two results, which essentially state stability of two-level de-
compositions of the discrete space X̂ℓ := S1(T̂Ω

ℓ ) × P
0(T̂Γ

ℓ ). The following lemma is a consequence of [57,
Theorem 4.1] and explicitly stated in [49, Lemma 3.1]. It provides a hierarchical splitting of S1(T̂Ω

ℓ ).

Lemma 5.3. Let PΩ
ℓ : H1(Ω) → S1(TΩ

ℓ ) and PΩ
T,j : H1(Ω) → span{vT,j} denote the H1-orthogonal projections.

For V̂ℓ ∈ S
1(T̂Ω

ℓ ), it then holds

C−16 ‖V̂ℓ‖
2
H1(Ω) ≤ ‖P

Ω
ℓ V̂ℓ‖

2
H1(Ω) + ∑

T∈TΩℓ
DΩ
∑
j=1

‖PΩ
j,TV̂ℓ‖

2
H1(Ω) ≤ C6‖V̂ℓ‖

2
H1(Ω).

The constant C6 > 0 depends only onΩ and the ã-shape regularity of TΩ
ℓ .

The following lemma is found in [24, Proposition 4.5] and provides a hierarchical splitting ofP0(T̂Γ
ℓ ). Although

[24] is only formulated for 2D BEM, the results and proofs hold verbatim for 3D. (For 3D BEM and uniform
meshes, the claim is already found in [51]).

Lemma 5.4. Let PΓ
ℓ : H−1/2(Γ) → P0(TΓ

ℓ ) and PΓ
T,j : H−1/2(Γ) → span{÷T,j} denote the orthogonal projections

with respect to theV-induced scalar product ⟨⋅, ⋅⟩V onH−1/2(Γ). For Ψ̂ℓ ∈ P
0(T̂Γ

ℓ ), it then holds

C−17 ‖Ψ̂ℓ‖
2
V ≤ ‖P

Γ
ℓ Ψ̂ℓ‖

2
V + ∑

T∈TΓℓ
DΓ
∑
j=1

‖PΓ
j,TΨ̂ℓ‖

2
V ≤ C7‖Ψ̂ℓ‖

2
V.

The constant C7 > 0 depends only on Γ and the ã-shape regularity of TΓ
ℓ .

Proof of Theorem 5.2. The proof is similar to the one of Theorem 3.1 and relies on the veri�cation of (A1)–
(A3) to apply Proposition 2.5. For patches, we use the notation (3.19) from the proof of Theorem 3.2, but now
de�ned for volume elements, i.e., TΩ

ℓ instead of TΓ
ℓ = Tℓ in (3.19).

We de�ne the equivalent mesh-size function ℎ̃ℓ : Ω → ℝ as in (3.20) in the proof of Theorem 3.2, but
now for volume elements T ∈ TΩ

ℓ , as well as ℎ̃ℓ(T) := |T|1/(d−1) for boundary elements T ∈ TΓ
ℓ . The auxiliary

estimator ñℓ(F)2 := ∑T∈Tℓ ñℓ(F; T)2 is de�ned by

ñℓ(F; T)
2 := ‖ℎ̃ℓf‖

2
L2(T) + """"ℎ̃1/2ℓ [B∇Uℓ ⋅ n]

""""
2
L2(àT\Γ) + """"ℎ̃1/2ℓ (õ0 + Φℓ − B∇Uℓ ⋅ n)

""""
2
L2(àT∩Γ)

for volume elements T ∈ TΩ
ℓ and

ñℓ(F; T)
2 := """"ℎ̃

1/2
ℓ ∇Γ((1/2 − K)(Uℓ − u0) +VΦℓ)

""""
2
L2(T) (5.5)

for boundary elementsT ∈ TΓ
ℓ . We note that çℓ(F; T) ≃ ñℓ(F; T) for allT ∈ TΩ

ℓ ∪T
Γ
ℓ , where the hidden constants

depend only on the ã-shape regularity of TΩ
ℓ .
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To prove (A1), we proceed similarly to the proof of [5, Theorem 12]. Let T ∈ TΩ
ℓ . Denote by EΩ

ℓ (zT,j) all
interior facets of the patch øℓ(zT,j) := {T

� ∈ TΩ
ℓ : zT,j ∈ T

�} ⊆ TΩ
ℓ . Piecewise integration by parts shows

⟨F − AUℓ(F), (vT,j, 0)⟩ = ∫
Ω

fvT,j dΩ + ∫
Γ

(õ0 + Φℓ)vT,j dΓ − ∫
Ω

B∇Uℓ ⋅ ∇vT,j dΩ

= ∑
T�∈øℓ(zT,j) (∫

T� fvT,j dΩ + ∫
Γ∩àT� (õ0 + Φℓ − B∇Uℓ ⋅ n)vT,j dΓ)

− ∑
E∈EΩℓ (zT,j)∫E [B∇Uℓ ⋅ n]vT,j dE,

where we have used that div B∇Uℓ = 0 on each element T ∈ TΩ
ℓ . Note that

diam(T) ‖∇vT,j‖L2(Ω) ≃ ‖vT,j‖L2(Ω) ≃ diam(T)
d/2

and consequently also ‖vT,j‖L2(E) ≲ diam(T)(d−1)/2 for each facet E ⊆ T. For the volume contributions of the
two-level estimator, this yields the estimate

ìℓ,j(F; T)
2 ≲ diam(T)2‖f‖2L2(øℓ(zT,j)) + ∑

T�∈øℓ(zT,j) diam(T) ‖[B∇Uℓ ⋅ n]‖
2
L2(àT�\Γ)

+ ∑
T�∈øℓ(zT,j) diam(T) ‖õ0 + Φℓ − B∇Uℓ ⋅ n‖

2
L2(àT�∩Γ)

≲ çℓ(F; øℓ(zT,j))
2 ≃ ñℓ(F; øℓ(zT,j))

2.

The contribution ìℓ(F; T) of the two-level estimator for boundary elements T ∈ TΓ
ℓ coincides essentially with

the two-level estimator (3.8) of Section 3, and çℓ(F; T) coincides essentially with the corresponding de�ni-
tion (3.5) in Section 3. Arguing along the lines of Theorem 3.1, we hence obtain, for each boundary element
T ∈ TΓ

ℓ ,
ìℓ,j(F; T)

2 ≲ çℓ(F; T)
2 ≃ ñℓ(F; T)

2.

Summing over all j and T ∈ Mℓ = MΩ
ℓ ∪ M

Γ
ℓ ⊆ TΩ

ℓ ∪ T
Γ
ℓ , we prove assumption (A1) with Rℓ = RΩ

ℓ ∪ R
Γ
ℓ =

øℓ(M
Ω
ℓ ) ∪M

Γ
ℓ .

For the veri�cation of (A2) we proceed similarly to the proof of Theorems 3.1 and 3.2. Each contribution
of the estimator ñℓ(F) can be estimated separately.

First, note that ℎ̃ℓ+1|⋃RΩℓ ≤ qℎ̃ℓ|⋃RΩℓ for the constant 0 < q < 1 from (3.20). Therefore,

‖ℎ̃ℓ+kf‖
2
L2(⋃RΩℓ ) ≤ q2‖ℎ̃ℓf‖2L2(⋃RΩℓ ),

and we further obtain
(1 − q2)‖ℎ̃ℓf‖

2
L2(⋃RΩℓ ) ≤ ‖ℎ̃ℓf‖2L2(Ω) − ‖ℎ̃ℓ+kf‖

2
L2(Ω).

Second, note that ℎ̃ℓ − ℎ̃ℓ+k ≥ (1 − q)ℎ̃ℓ on⋃RΩ
ℓ . We estimate

(1 − q) ∑
T∈RΩℓ

""""ℎ̃
1/2
ℓ [B∇Uℓ ⋅ n]

""""
2
L2(àT\Γ) ≤ ∑

T∈RΩℓ
""""(ℎ̃ℓ − ℎ̃ℓ+k)

1/2[B∇Uℓ ⋅ n]
""""
2
L2(àT\Γ)

≤ ∑
T∈TΩℓ

""""ℎ̃
1/2
ℓ [B∇Uℓ ⋅ n]

""""
2
L2(àT\Γ) − ∑

T∈TΩℓ
""""ℎ̃

1/2
ℓ+k[B∇Uℓ ⋅ n]

""""
2
L2(àT\Γ).

For the second term, we note that the jumps [B∇Uℓ ⋅ n] across newly created facets in TΩ
ℓ+k vanish. Hence,

∑
T∈TΩℓ

""""ℎ̃
1/2
ℓ+k[B∇Uℓ ⋅ n]

""""
2
L2(àT\Γ) = ∑

T∈TΩℓ+k
""""ℎ̃

1/2
ℓ+k[B∇Uℓ ⋅ n]

""""
2
L2(àT\Γ).

The triangle inequality and Young’s inequality yield, for all ä > 0,

∑
T∈TΩℓ+k

""""ℎ̃
1/2
ℓ+k[B∇Uℓ ⋅ n]

""""
2
L2(àT\Γ) ≤ (1 + ä) ∑

T∈TΩℓ+k
""""ℎ̃

1/2
ℓ+k[B∇Uℓ+k ⋅ n]

""""
2
L2(àT\Γ)

+ (1 + ä−1) ∑
T∈TΩℓ+k

""""ℎ̃
1/2
ℓ+k[(B∇Uℓ − B∇Uℓ+k) ⋅ n]

""""
2
L2(àT\Γ).
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A scaling argument and Lipschitz continuity of B show that

∑
T∈TΩℓ+k

""""ℎ̃
1/2
ℓ+k[(B∇Uℓ − B∇Uℓ+k) ⋅ n]

""""
2
L2(àT\Γ) ≤ Cinv‖Uℓ − Uℓ+k‖

2
H1(Ω).

The constant Cinv > 0 depends only on C4 and ã-shape regularity of TΩ
ℓ . Details can be found, e.g., in the

proof of [1, Theorem 15]. Arguing as in the proof of Theorem 3.1, we obtain

(1 − q) ∑
T∈RΩℓ

""""ℎ̃
1/2
ℓ [B∇Uℓ ⋅ n]

""""
2
L2(àT\Γ) ≤ ∑

T∈TΩℓ
""""ℎ̃

1/2
ℓ [B∇Uℓ ⋅ n]

""""
2
L2(àT\Γ)

−
1

1 + ä
∑

T∈TΩℓ+k
""""ℎ̃

1/2
ℓ+k[B∇Uℓ+k ⋅ n]

""""
2
L2(àT\Γ) + 1 + ä−11 + ä

Cinv‖Uℓ − Uℓ+k‖
2
H1(Ω).

Third, similar arguments as before yield

(1 − q) ∑
T∈RΩℓ

""""ℎ̃
1/2
ℓ (õ0 + Φℓ − B∇Uℓ ⋅ n)

""""
2
L2(àT∩Γ) ≤ ∑

T∈TΩℓ
""""ℎ̃

1/2
ℓ (õ0 + Φℓ − B∇Uℓ ⋅ n)

""""
2
L2(àT∩Γ)

−
1

1 + ä
∑

T∈TΩℓ+k
""""ℎ̃

1/2
ℓ+k(õ0 + Φℓ+k − B∇Uℓ+k ⋅ n)

""""
2
L2(àT∩Γ)

+
1 + ä−1

1 + ä
Cinv‖Uℓ − Uℓ+k‖

2
H.

Fourth, note that ñℓ(F; T) for boundary elements T ∈ TΓ
ℓ is de�ned in much the same way as in the proof

of Theorem 3.1. Therefore, the contraction of the BEM contribution ñℓ(F;R
Γ
ℓ) from (5.5) follows with the same

arguments as in the proof of Theorem 3.1. In addition to the inverse estimate (3.13) for the simple-layer integral
operatorV, we require a similar estimate for the double-layer integral operator:

‖ℎ1/2ℓ ∇Γ(1/2 − K)Uℓ‖L2(Γ) ≲ ‖Uℓ‖H1/2(Γ),
which is also provided by [1, Corollary 3].

Combining the last four steps, we prove assumption (A2).
For the last assumption (A3), the de�nition of ìℓ from (5.4) shows

!!!!ìℓ(F;Mℓ) − ìℓ(F
�;Mℓ)

!!!!
2 ≤ ∑

T∈TΩℓ
DΩ
∑
j=1

⟨F − F� − (AUℓ(F) − AUℓ(F
�)), (vT,j, 0)⟩

2

‖vT,j‖2H1(Ω)

+ ∑
T∈TΓℓ

DΓ
∑
j=1

⟨F − F� − (AUℓ(F) − AUℓ(F
�)), (0, ÷T,j)⟩

2

‖÷T,j‖2V
. (5.6)

De�ne the scalar product
⟨⟨u, v⟩⟩ := ∫

Ω

∇u ⋅ ∇v dΩ + ∫
Ω

uv dΩ + ⟨õ, ÷⟩V

for all u = (u, v), v = (v, ÷) ∈ H with induced norm |||⋅|||2 = ⟨⟨⋅, ⋅⟩⟩. By the Riesz theorem, there exists a unique
Ŵℓ = (Wℓ, Ξℓ) ∈ X̂ℓ with

⟨⟨Ŵℓ, V̂ℓ⟩⟩ = ⟨F − F
� − (AUℓ(F) − AUℓ(F

�)), V̂ℓ⟩

Let Pℓ : H → Xℓ with Pℓv := (PΩ
ℓ v, PΓ

ℓ÷) for all v = (v, ÷) ∈ H. Together with symmetry of the orthogonal
projection Pℓ, the last identity and the Galerkin orthogonality prove

|||PℓŴℓ|||
2 = ⟨⟨PℓŴℓ, PℓŴℓ⟩⟩ = ⟨⟨Ŵℓ, PℓŴℓ⟩⟩ = 0.

From Lemmas 5.3 and 5.4, it thus follows

|||Ŵℓ|||
2 ≃ ∑

T∈TΩℓ
DΩ
∑
j=1

‖PΩ
T,jŴℓ‖

2
H1(Ω) + ∑

T∈TΓℓ
DΓ
∑
j=1

‖PΓ
T,jΞ̂ℓ‖

2
V.
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Westress that the last term is equal to the right-hand side of (5.6) andproceedbyusing theLipschitz continuity
of A to estimate

!!!!ìℓ(F;Mℓ) − ìℓ(F
�;Mℓ)

!!!! ≲ |||Ŵℓ||| = ‖F − F
� − (AUℓ(F) − AUℓ(F

�))‖X̂∗ℓ
≲ ‖F − F�‖H∗ + ‖Uℓ(F) − Uℓ(F�)‖H.

Arguing along the lines of Proposition 5.1, one proves that A is even bi-Lipschitz continuous with respect to
the discrete dual space X∗

ℓ , i.e., ‖Vℓ − Ṽℓ‖H ≃ ‖AVℓ − AṼℓ‖X∗ℓ for all Vℓ, Ṽℓ ∈ Xℓ. Therefore, we get

‖Uℓ(F) − Uℓ(F
�)‖H ≃ ‖AUℓ(F) − AUℓ(F

�)‖X∗ℓ = ‖F − F�‖X∗ℓ ≤ ‖F − F�‖H∗ .
Altogether, we see

!!!!ìℓ(F;Mℓ) − ìℓ(F
�;Mℓ)

!!!! ≲ |||Ŵℓ||| ≲ ‖F − F
�‖H∗ ,

which proves assumption (A3).

5.5 Remarks and Extensions

Although this section focused on the Johnson–Nédélec coupling [43], the same results hold also for the sym-
metric coupling [22] and the one-equation Bielak–MacCamy coupling [9]. We refer to [18] for the symmetric
coupling in the presence of strongly monotone nonlinearities and the �rst introduction of the corresponding
weighted-residual error estimator and to [50] for the corresponding two-level estimator.

In [18], the analysis, based on the discrete (symmetric) Steklov–Poincaré operator, required the addi-
tional assumption that the initial boundarymeshTΓ

0 is su�ciently �ne. This assumption has �rst been proved
to be unnecessary in [6], where the original argument of [18] is re�ned. We note that even the extended argu-
ment is restricted to the symmetric Steklov–Poincaré operator and thus only applies to the symmetric cou-
pling. Themethod of implicit stabilization from [2] provides an alternate proof of this fact which also transfers
to the Johnson–Nédélec as well as the Bielak–MacCamy coupling, i.e., no assumption on TΓ

0 is required.
For the Bielak–MacCamy coupling, well-posedness of the coupling formulation in the presence of

stronglymonotonenonlinearities has �rst beenproved in [2],where also the correspondingweighted-residual
error estimator is derived. The derivation of the corresponding two-level error estimator is not found in the
literature yet, but is easily obtained by adapting the arguments of, e.g., [5, 50].

Finally, we note that we only restricted to the lowest-order caseX⋆ = S
p(TΩ

⋆ ) ×P
p−1(TΓ

⋆)with p = 1 for the
ease of presentation. All results also hold accordingly for higher order p ≥ 1.
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