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Boundary Layers in a Two-Point Boundary Value Problem
with a Caputo Fractional Derivative
Abstract: A two-point boundary value problem is considered on the interval [0, 1], where the leading term in
the di�erential operator is a Caputo fractional derivative of order ä with 1 < ä < 2. Writing u for the solution
of the problem, it is known that typically u��(x) blows up as x → 0. A numerical example demonstrates
the possibility of a further phenomenon that imposes di�culties on numerical methods: u may exhibit a
boundary layer at x = 1 when ä is near 1. The conditions on the data of the problem under which this layer
appears are investigated by �rst solving the constant-coe�cient case using Laplace transforms, determining
preciselywhen a layer is present in this special case, thenusing this information to enlighten our examination
of the general variable-coe�cient case (in particular, in the construction of a barrier function for u). This
analysis proves that usually no boundary layer can occur in the solution u at x = 0, and that the quantity
M = maxx∈[0,1] b(x), where b is the coe�cient of the �rst-order term in the di�erential operator, is critical:
when M < 1, no boundary layer is present when ä is near 1, but when M ≥ 1 then a boundary layer at x = 1
is possible. Numerical results illustrate the sharpness of most of our results.

Keywords: Fractional Di�erential Equation, Caputo Fractional Derivative, Boundary Value Problem, Bound-
ary Layer

MSC 2010: 34A08, 34B08

||
Martin Stynes: Applied Mathematics Division, Beijing Computational Science Research Center, P. R. China;
and Department of Mathematics, National University of Ireland, Cork, Ireland, e-mail: m.stynes@ucc.ie
José Luis Gracia: Department of Applied Mathematics and Institute of Mathematics and Applications, University of Zaragoza,
Spain, e-mail: jlgracia@unizar.es

1 Introduction
Boundary value problems whose di�erential operators involve fractional derivatives are of great interest, as
these non-classical derivatives can model some physical processes where integer-order derivatives are un-
suitable; see [6, 8] for an extensive list of recent applications and mathematical developments in this area.
Thus the precise behaviour of solutions to fractional-derivative boundary value problems is of fundamental
importance.

Let ä ∈ (1, 2). Letg ∈ C1[0, 1]withg� absolutely continuous on [0, 1]. Then the Caputo fractional derivative
Dä

∗g associated with the point x = 0 is de�ned by

Dä
∗g(x) :=

1
Γ(2 − ä)

x

∫
t=0

(x − t)1−äg��(t) dt for 0 < x ≤ 1;

see [4, 10, 15]. The Riemann–Liouville fractional derivative Dä
RL of order ä associated with the point x = 0 is

de�ned by

Dä
RLg(x) :=

d2

dx2 [
1

Γ(2 − ä)

x

∫
t=0

(x − t)1−äg(t) dt] for 0 < x ≤ 1;

see [4]. These fractional derivatives are related by the formula (see [4, Lemma 3.4])

Dä
∗g(x) = Dä

RLg(x) −
g(0)

Γ(1 − ä)
x−ä −

g�(0)
Γ(2 − ä)

x1−ä. (1.1)
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In the present paper we shall consider the two-point boundary value problem

Lu(x) := −Dä
∗u(x) + b(x)u�(x) + c(x)u(x) = f(x) for x ∈ (0, 1), (1.2a)

u(0) − á0u
�(0) = ã0, u(1) + á1u

�(1) = ã1, (1.2b)

where 1 < ä < 2. The constants á0, á1, ã0, ã1 and the functions b, c and f are given. We assume that b, c, f ∈
C1[0, 1] with c ≥ 0 in [0, 1]. We assume also that

á1 ≥ 0 and á0 ≥
1

ä − 1
. (1.3)

The conditions on c,á0 andá1 guarantee that (1.2) satis�es a comparison/maximumprinciple; see Theorem3.1
below.

The problem (1.2) models superdi�usion of particle motion when convection is present; see the discus-
sion and references in [6, Section 1]. It is a member of the general class of boundary value problems that is
analysed in [10]. It is also discussed in [1]. Numerical methods for its solution are presented in [5, 7, 15] and
their references.

Existence anduniqueness of a classical solution to (1.2) is established in [15]. It is proved thatu ∈ C1[0, 1]∩
C2(0, 1], and for some constants C̃i one has the sharp bounds

|u(i)(x)| ≤
{
{
{

C̃i if i = 0, 1,

C̃2x
ä−i if i = 2,

for all x ∈ (0, 1]. (1.4)

Thus u��(x)may blow up at the interval endpoint x = 0.
These results tell us a lot about the nature of the solution u, but in one respect they are seriously de�cient:

all constants C̃i that appear above depend on the parameter ä, but they can be extremely large when ä is
near 1, because in certain cases (as we shall see) the solution u develops a boundary layer at x = 1 (i.e., |u�(1)|
becomes very large) when ä is near 1. It is well known that, when computing numerical solution of problems
with integer-order di�erential operators, such layers can cause a deterioration in accuracy [13]. This is also the
case for the fractional-derivative problem (1.2): see [5, 6, 15], where computed solutions of (1.2) become less
accurate when ä is near 1. This loss of accuracy appears in only some numerical examples in these papers,
and no explanation is given there, but it is in fact con�ned to problems whose solutions exhibit a boundary
layer at x = 1. In the present paper we shall cast light on when such layers appear in solutions of (1.2).

For a concrete example exhibiting a boundary layer, consider (1.2) with b ≡ 1.9, c ≡ 0 andf ≡ 1. Take á0 =
1/(ä − 1), á1 = 0, ã0 = 0.4 and ã1 = 1.7. For constant-coe�cient problems like this, an explicit formula for u(x)
will be derived in Section 2 below. Using this formula, we plot the solution for the values ä = 1.6, 1.4, 1.2, 1.1
in Figure 1. It is clear from this �gure that a boundary layer at x = 1 develops in the solution when ä is near 1.

Figure 1 of [12] also showsaboundary layer developing as the order of the fractional derivative approaches
a certain limiting value, though the boundary value problem under discussion there is not the same as (1.2).

Furthermore, there is currently great interest in the construction of numerical methods for problemswith
variable order of fractional derivative (see, e.g., [3, 14]); this implies that one should pay close attention to
how the solution of (1.2) depends on the value of the parameter ä.

For these two reasons (loss of accuracy in numerical solution only for certain values of ä; design of nu-
merical methods for variable ä) our aim in the present paper is to investigate in detail how u behaves as a
function of ä (as well as a function of x).

The structure and main results of the paper are as follows. In Section 2 Laplace transforms are used to
derive an explicit formula for the solution u of (1.2) in the special case when b is a nonzero constant and c ≡ 0.
From this formula we deduce that, when ä is near 1, a boundary layer in u at x = 1 can appear only if b ≥ 1,
while u never has a boundary layer at x = 0 even though max[0,1]|u(x)| blows up as ä → 1+ if b ≥ 1. In
Section 3 the general case of (1.2) is considered and a comparison/maximum principle is used, with some
guidance from Section 2, to explore how u depends on ä. In this general case we �nd that a boundary layer
in u at x = 1 when ä is near 1 is possible only when max[0,1] b(x) ≥ 1. Note here that it is the maximum of b,
not of |b|, that is the signi�cant quantity. It is shown also that a boundary layer at x = 0 (when ä is near 1) is
possible only ifmax[0,1] b(x) > 1 andmin[0,1] b(x) ≤ 0 andmin[0,1] c(x) = 0.
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Figure 1. Exact solution for b ≡ 1.9, c ≡ 0, f ≡ 1, á0 = 1/(ä − 1), á1 = 0, ã0 = 0.4 and ã1 = 1.7, with ä = 1.6 (1st row, left), ä = 1.4
(1st row, right), ä = 1.2 (2nd row, left) and ä = 1.1 (2nd row, right), showing development of a boundary layer when ä is near 1.

Notation. We use the standard notation Ck(I) to denote the space of real-valued functions whose deriva-
tives up to order k are continuous on an interval I, and write C(I) for C0(I). For each g ∈ C[0, 1], set ‖g‖∞ =
maxx∈[0,1]|g(x)|.

In several inequalities C denotes a generic positive constant that depends on the data b, c, f, ã0, ã1, á1
of the boundary value problem (1.2) but is independent of ä and x; note that C can take di�erent values in
di�erent places. A subscripted C (e.g., C1) denotes a �xed positive constant that can depend on all the data
of the boundary value problem (1.2) except ä and x.

2 The Case Where b is Constant and c ≡ 0
In Section 2 we consider the special case of problem (1.2) where c ≡ 0, and b is constant with b ̸= 0. Our results
could be extended to the case where b and c are arbitrary constants, but when c ̸= 0 the details becomemuch
more complex; see Remark 2.1. We shall use Laplace transforms to derive an explicit formula for the solution
u of (1.2) in terms of Mittag-Le�er functions.

Our examination of this special case gives useful and penetrating insights into the properties of the
solution u of (1.2). Furthermore, the precise form of the solution that we �nd in Section 2.2 is very helpful
when constructing a barrier function in Section 3 to analyse the solution of (1.2) when b and c are no longer
constants.
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2.1 General Right-Hand Side f
Extend the domain of f to [0,∞) in such a way that the extension (which we also call f) is smooth and has
support in [0, 2]. To solve (1.2), we treat it as an initial-value problem on [0,∞) with the initial condition
u(0) − á0u

�(0) = ã0 from (1.2b), and apply the standard Laplace transform operator L, de�ned by Lv(s) =
∫
∞
t=0 e
−stv(t) dt. The second boundary condition u(1) + á1u

�(1) = ã1 of (1.2b) will be invoked later.
De�ne the two-parameter Mittag-Le�er function by

Eá,â(z) =
∞

∑
k=0

zk

Γ(ák + â)
for á, â, z ∈ ℝ with á > 0. (2.1)

We shall need the properties [11, (1.80), (1.82)] that for constant á, â, ã and ë one has

L{xâ−1Eá,â(±ëx
á)} =

sá−â

sá ∓ ë
(2.2)

and
Dã
RL(x

â−1Eá,â(ëx
á)) = xâ−ã−1Eá,â−ã(ëx

á). (2.3)

Note that when ã = 1 thenDã
RL ≡ d/dx (see [4, p. 27]); thus (2.3) implies that

d
dx

(xâ−1Eá,â(ëx
á)) = xâ−2Eá,â−1(ëx

á). (2.4)

Applying L to (1.2a) and observing that L{Dä
∗u} = sä−2[s2L{u} − su(0) − u�(0)] from [11, (2.253)], we obtain

(−sä + bs)L{u} + sä−1u(0) + sä−2u�(0) − bu(0) = L{f}.

Hence
L{u} = −

L{f}
s(sä−1 − b)

+
u(0)
s

+
sä−3u�(0)
sä−1 − b

= −
L{f}

s(sä−1 − b)
+
ã0 + á0u

�(0)
s

+
sä−3u�(0)
sä−1 − b

(2.5)

using the boundary condition (1.2b) at x = 0.
To �nd the inverse Laplace transform of −L{f}/[s(sä−1 − b)], we imitate [4, p. 135]. Using the integration

theorem for Laplace transforms,
L{f}

s(sä−1 − b)
=

L{∫
x
r=0 f(r)dr}

sä−1 − b
. (2.6)

By (2.4) one has
d
dx

Eä−1,1(bx
ä−1) = x−1Eä−1,0(bx

ä−1), (2.7)

where the �rst term in the Mittag-Le�er series for Eä−1,0(bx
ä−1) vanishes since Γ(0) = ∞. But (2.2) yields

L{Eä−1,1(bx
ä−1)} =

sä−2

sä−1 − b

so the di�erentiation theorem for Laplace transforms gives

L{x−1Eä−1,0(bx
ä−1)} = sL{Eä−1,1(bx

ä−1)} − Eä−1,1(0) =
sä−1

sä−1 − b
− 1 =

b
sä−1 − b

.

Consequently, from (2.6) we have

L{f}
s(sä−1 − b)

=
1
b
L{x−1Eä−1,0(bx

ä−1)}L{
x

∫
r=0

f(r)dr}.

Now the convolution theorem for Laplace transforms yields

L
−1{

L{f}
s(sä−1 − b)

}(x) =
1
b

x

∫
t=0

t−1Eä−1,0(bt
ä−1)[

x−t

∫
r=0

f(r) dr] dt. (2.8)
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Taking the inverse transform of (2.5) and invoking (2.8) and (2.2), we get

u(x) = ã0 + á0u
�(0) + u�(0)xEä−1,2(bx

ä−1) −
1
b

x

∫
t=0

t−1Eä−1,0(bt
ä−1)[

x−t

∫
r=0

f(r) dr] dt. (2.9)

By virtue of (2.4) one can di�erentiate (2.9) to obtain

u�(x) = u�(0)Eä−1,1(bx
ä−1) −

1
b

x

∫
t=0

t−1Eä−1,0(bt
ä−1)f(x − t) dt. (2.10)

Consequently, imposing the boundary condition u(1) + á1u
�(1) = ã1 of (1.2b), one has

ã1 = ã0 + á0u
�(0) + u�(0)Eä−1,2(b) −

1
b

1

∫
t=0

t−1Eä−1,0(bt
ä−1)[

1−t

∫
r=0

f(r) dr] dt

+ á1{u
�(0)Eä−1,1(b) −

1
b

1

∫
t=0

t−1Eä−1,0(bt
ä−1)f(1 − t) dt}

whence

u�(0) =
ã1 − ã0 +

1
b ∫

1
t=0 t
−1Eä−1,0(bt

ä−1)[ ∫
1−t
r=0 f(r) dr + á1f(1 − t)] dt

á0 + Eä−1,2(b) + á1Eä−1,1(b)
. (2.11)

Substitution of (2.11) into (2.9) and (2.10) yields explicit formulas for u(x) and u�(x).

2.2 Constant Right-Hand Side f
In this section we simplify the results of Section 2.1 by taking f to be constant so that we can then investigate
in detail the solution u. Furthermore, the formulas of Section 2.2 will be of great help in the construction of a
barrier function in Section 3 to analyse the structure and behaviour of u in the case of variable b, c and f.

First, taking f constant in (2.11) and recalling (2.7), we have

u�(0) =
ã1 − ã0 +

f
b ∫

1
t=0 [á1 + (1 − t)] d

dtEä−1,1(bt
ä−1) dt

á0 + Eä−1,2(b) + á1Eä−1,1(b)

=
ã1 − ã0 +

f
b [á1Eä−1,1(b) − á1 − 1 + ∫

1
t=0 Eä−1,1(bt

ä−1) dt]
á0 + Eä−1,2(b) + á1Eä−1,1(b)

=
ã1 − ã0 +

f
b [á1Eä−1,1(b) − á1 − 1 + Eä−1,2(b)]

á0 + Eä−1,2(b) + á1Eä−1,1(b)
, (2.12)

where we integrated by parts then invoked (2.4) with â = 2. Substituting (2.12) into (2.9) gives us u(x); this
formula can be written in a variety of ways, the most compact of which seems to be

u(x) = ã0 +
(á0 + x)f

b
+
[á0 + xEä−1,2(bx

ä−1)][ã1 − ã0 − (1 + á0 + á1)f/b]
á0 + Eä−1,2(b) + á1Eä−1,1(b)

. (2.13)

The correctness of this formula can be veri�ed by substitution into (1.2), using (2.4) and, by (1.1) and (2.3),

Dä
∗(xEä−1,2(bx

ä−1)) = x1−äEä−1,2−ä(bx
ä−1) −

x1−ä

Γ(2 − ä)

= x1−ä
∞

∑
k=1

(bxä−1)k

Γ(k(ä − 1) + 2 − ä)
= bEä−1,1(bx

ä−1).
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Remark 2.1. In the case of constant b, c, f with c ̸= 0, one can use the above Laplace transform technique to
obtain a closed-form representation of the solution by imitating [9, (35)]. For example, to invert [s(sä−bs−c)]−1,
write

1
s(sä − bs − c)

=
1

s(sä − c)(1 − bs
sä−c ) =

1
s(sä − c)

∞

∑
r=0

(
bs

sä − c
)
r
=

∞

∑
r=0

brsr−1

(sä − c)r+1

then appeal to [11, (1.80)]:

L{xák+â−1E(k)
á,â(±ëx

á)} =
k! sá−â

(sá ∓ ë)k+1
,

where E(k)
á,â(y) = (dk/dyk)Eá,â(y). This will yield an in�nite sum of derivatives of Mittag-Le�er functions,

which is very complicated. As our main aim in Section 2 is to gain insight into the solution of the general
problem (1.2), we do not consider c ̸= 0 any further.

Remark 2.2. Di�erentiating (2.13) twice by invoking (2.4), one gets

u��(x) = [
ã1 − ã0 − (1 + á0 + á1)f/b
á0 + Eä−1,2(b) + á1Eä−1,1(b)

]
1
x
Eä−1,0(bx

ä−1). (2.14)

When ã1 − ã0 ̸= (1 + á0 + á1)f/b, on recalling the de�nition (2.1) and Γ(0) = ∞ it follows that as x → 0 one has
u��(x) ∼ C̃xä−2. This coincides with the bound on |u��(x)| that is derived in [15, Corollary 3.5] for the general
case of variable b, c and f. Furthermore, the next term in the series expansion of the Mittag-Le�er function
in (2.14) is C̃x−1(xä−1)2 = C̃x2ä−3 which matches [15, Example 3.7], where it was shown that the derivative
bounds (1.4) are sharp.

Remark 2.3. The coe�cient of f in the formula (2.13) for u(x) is

(á0 + x)[á0 + Eä−1,2(b) + á1Eä−1,1(b)] − [á0 + xEä−1,2(bx
ä−1)](1 + á0 + á1)

b[á0 + Eä−1,2(b) + á1Eä−1,1(b)]

=
1

b[á0 + Eä−1,2(b) + á1Eä−1,1(b)]
{á0[Eä−1,2(b) − 1 − xEä−1,2(bx

ä−1) + x]

+ xEä−1,2(b) − xEä−1,2(bx
ä−1) + á1[(á0 + x)Eä−1,1(b) − á0 − xEä−1,2(bx

ä−1)]}

=
1

1 + á0 + bEä−1,ä+1(b) + á1[1 + bEä−1,ä(b)]
{á0[Eä−1,ä+1(b) − xäEä−1,ä+1(bx

ä−1)]

+ xEä−1,ä+1(b) − xäEä−1,ä+1(bx
ä−1) + á1[(á0 + x)Eä−1,ä(b) − xäEä−1,ä+1(bx

ä−1)]}, (2.15)

where we used the elementary identity

Eä−1,1+i(z) = zEä−1,ä+i(z) + 1 for i = 0, 1.

The formula (2.15) is the inspiration for our choice of barrier function in Theorem 3.10.

We turn now to our main interest: investigating how the solution u changes as ä approaches 1, and in par-
ticular determining when boundary layers appear in u. Observe �rst that, since á0 > 1 by condition (1.3), it
follows from (2.12) that |u�(0)| ≤ C for some constant C, i.e., there is never a boundary layer in u at x = 0.

In the subsections that follow, we show that when ä is near 1, the magnitudes of ‖u‖∞ and |u�(1)| depend
strongly on whether b < 1 or b ≥ 1.

Di�erentiating (2.13) gives

u�(1) =
f
b
⋅
á0[1 − Eä−1,1(b)] + Eä−1,2(b) − Eä−1,1(b)

á0 + Eä−1,2(b) + á1Eä−1,1(b)
+

(ã1 − ã0)Eä−1,1(b)
á0 + Eä−1,2(b) + á1Eä−1,1(b)

. (2.16)
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Figure 2. Contour ã(1, ÿ) of equation (2.18).

2.2.1 Case b > 1
Assume in Section 2.2.1 that b > 1 and f ̸= 0. Suppose that 1/(ä − 1) = K for some positive integerK. Then for
i = 1, 2 we have

Eä−1,i(b) =
∞

∑
k=0

bk

Γ((ä − 1)k + i)
≥

bK

Γ(1 + i)
≥

1
2
b1/(ä−1). (2.17)

It follows that limä→1+ Eä−1,i(b) = ∞ and Eä−1,i(b) ≫ 1/(ä − 1) as ä → 1+. Consequently, when á0 = 1/(ä − 1),
by virtue of (2.12) one has limä→1+ u�(0) = f/b and hence, recalling (1.2b),

lim
ä→1+ u(0) = limä→1+[ã0 + á0u

�(0)] =
{
{
{

∞ if f > 0,

−∞ if f < 0.

Thus when b > 1 and f ̸= 0 we do not have ‖u‖∞ ≤ C independently of ä. Nevertheless, recalling from above
that limä→1+ u�(0) = f/b, there is no boundary layer at x = 0.

To discuss limä→1+ u�(1), we use more sophisticated machinery. Set ò = ä − 1 for brevity. Let ã(1, ÿ) be the
complex-plane contour of Figure 2 where we choose ÿ = 2òð/3. This contour divides the complex plane into
two regions, which we denote by G−(1, ÿ) and G+(1, ÿ). The real number b > 1 lies in the region G+(1, ÿ), so
by [11, Theorem 1.1], for arbitrary but �xed n > 0 we have

Eò,n(b) =
1
ò
b(1−n)/ò exp(b1/ò) +

1
2ðò�

∫
ã(1,ÿ)

æ(1−n)/ò exp(æ1/ò)
æ − b

dæ, (2.18)

where � is the imaginary unit.
Our interest lies in what happens when ä → 1+ (i.e., ò → 0+, so ÿ → 0+) with b > 1 �xed. For æ ∈ ã(1, ÿ)

and ÿ su�ciently small we have

|æ − b| ≥ min{b − 1, b sinÿ} = b sinÿ ≥ bÿ/2 = bòð/3.

Consequently (cf. [11, p. 33]), for some positive constants C one obtains

!!!!!!!
1

2ðò�
∫

ã(1,ÿ)

æ(1−n)/ò exp(æ1/ò)
æ − b

dæ
!!!!!!!
≤

C
ò2 ∫

ã(1,ÿ)

|æ(1−n)/ò| exp(|æ|1/ò cos(2ð/3)) dæ ≤
C
ò2

as ò → 0+, where the contour integral is bounded since cos(2ð/3) < 0. Thus (2.18) implies that for b > 1 one
has

Eä−1,n(b) =
1

ä − 1
b(1−n)/(ä−1) exp(b1/(ä−1)) + O(

1
(ä − 1)2

) as ä → 1+. (2.19)
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It follows from (2.19) that Eä−1,1(b)/Eä−1,2(b) ≈ b1/(ä−1) when ä is near 1. Consequently, when ä is near 1, if
á1 > 0 then (2.16) and (2.17) imply that

|u�(1)| ≈ Cmin{á0, Eä−1,1(b)}, (2.20)

while if á1 = 0, then (2.16) and (2.17) imply that

|u�(1)| ≈
Cá0 Eä−1,1(b)
á0 + Eä−1,2(b)

≈
Cá0 b

1/(ä−1)Eä−1,2(b)
á0 + Eä−1,2(b)

≈ Cb1/(ä−1)min{á0, Eä−1,2(b)}. (2.21)

Thus when b > 1 there is a boundary layer at x = 1, and it is much stronger when á1 = 0.

2.2.2 Case b = 1
Assume in Section 2.2.2 that b = 1 and f ̸= 0. Then (2.13) yields

u(0) = ã0 + á0f +
á0[ã1 − ã0 − (1 + á0 + á1)f]
á0 + Eä−1,2(1) + á1Eä−1,1(1)

= ã0 + á0{
ã1 − ã0 + f[Eä−1,2(1) + á1Eä−1,1(1) − 1 − á1]

á0 + Eä−1,2(1) + á1Eä−1,1(1)
}. (2.22)

Suppose that 1/(ä − 1) is an integer. Then

Eä−1,2(1) =
∞

∑
k=0

1
Γ((ä − 1)k + 2)

≥

1ä−1−1
∑
k=0

1
Γ(3)

+

2ä−1−1
∑

k= 1ä−1
1

Γ(4)
+

3ä−1−1
∑

k= 2ä−1
1

Γ(5)
+ ⋅ ⋅ ⋅

=
1

ä − 1
[

1
Γ(3)

+
1

Γ(4)
+

1
Γ(5)

+ ⋅ ⋅ ⋅ ] =
e − 2
ä − 1

. (2.23)

Likewise, one has

Eä−1,2(1) ≤

1ä−1−1
∑
k=0

1
Γ(2)

+

2ä−1−1
∑

k= 1ä−1
1

Γ(3)
+

3ä−1−1
∑

k= 2ä−1
1

Γ(4)
+ ⋅ ⋅ ⋅

=
1

ä − 1
[

1
Γ(2)

+
1

Γ(3)
+

1
Γ(4)

+ ⋅ ⋅ ⋅ ] =
e − 1
ä − 1

. (2.24)

One can show similarly that
e − 1
ä − 1

≤ Eä−1,1(1) ≤
e

ä − 1
. (2.25)

Invoking (2.23)–(2.25) in (2.22), for f > 0 and ä su�ciently close to 1 one obtains

u(0) ≥ ã0 + á0{
ã1 − ã0 + f[ e−2+á1(e−1)ä−1 − 1 − á1]

á0 +
e−1+á1e
ä−1

} = ã0 +
ã1 − ã0 + f[ e−2+á1(e−1)ä−1 − 1 − á1]

1 + e−1+á1e
á0(ä−1) .

But á0 ≥ 1/(ä − 1), so it follows that as ä → 1+ with 1/(ä − 1) an integer, then u(0) → ∞ if f > 0. Otherwise, if
f < 0 then u(0) → −∞ as ä → 1+. Thus when b = 1 and f ̸= 0 we do not have ‖u‖∞ ≤ C independently of ä.

Furthermore, the condition (1.3) compared with (2.24) and (2.25) shows that á0 ≥ 1
3Eä−1,i(1) for i = 1, 2

when ä is near 1. Consequently, (2.16) implies that |u�(1)| ≈ CEä−1,1(1) ≈ C/(ä − 1) when ä is near 1; thus u
exhibits a boundary layer at x = 1.

2.2.3 Case 0 ≤ b < 1
Assume in Section 2.2.3 that 0 ≤ b < 1. Then

Eä−1,2(b) =
∞

∑
k=0

bk

Γ((ä − 1)k + 2)
≤

∞

∑
k=0

bk =
1

1 − b
. (2.26)
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The estimate (2.26) is qualitatively sharp when ä is near 1 because for 0 ≤ k ≤ ⌊1/(ä − 1)⌋, where ⌊n⌋ denotes
the greatest integer less than or equal to n, one has

1
Γ((ä − 1)k + 2)

≥
1

Γ(3)
=

1
2

so

Eä−1,2(b) ≥
⌊1/(ä−1)⌋

∑
k=0

bk

2
=

1 − b1+⌊1/(ä−1)⌋

2(1 − b)
≥

1
4(1 − b)

for ä su�ciently close to 1. (2.27)

Similarly to (2.26) and (2.27), one has

1
2(1 − b)

≤ Eä−1,1(b) ≤
1

è(1 − b)
, (2.28)

where è = min{Γ(x) : 1 ≤ x ≤ 2}.
From (2.26)–(2.28) and (2.12), since á0 ≥ 1/(ä − 1) one obtains |u�(0)| ≤ C/á0 for some constant C, so

u�(0) → 0 as ä → 1+. Furthermore, (2.13) and (2.16) now yield

‖u‖∞ + |u�(1)| ≤ C for 0 ≤ b < 1

for some constant C = C(b). Thus no boundary layers are present in u when 0 ≤ b < 1.

Remark 2.4. The analysis above of the cases b > 1, b = 1 and 0 ≤ b < 1 shows that, as a function of ä,
the nature of the solution u undergoes a fundamental change when b moves from b ≥ 1 to b < 1. This is
shown graphically in Figure 3, where u changes dramatically as bmoves from 0.9 to 1.1 (as well as the evident
changes in shape in these graphs, note the changes in scale of the y axis).

The regime b < 0 is not discussed separately in Section 2 since we are able to handle it easily in Section 3
when we discuss the general variable-coe�cient case; see Theorem 3.5.

3 Boundary Layers in the Variable-Coe�cient Problem
In numerical solutions of (1.2) computed by the �nite di�erence method of [15], when ä is near 1 we have
observed boundary layers at x = 1 in certain examples but we have never observed a layer at x = 0. The
results of Section 3 will extend those of Section 2, prove in most cases that a boundary layer cannot occur at
x = 0, and provide substantial information about when boundary layers can appear at x = 1when ä is near 1.

The key tool in the analysis presented in Section 3 is the following comparison principle, which will be
used several times.

Theorem 3.1 ([15, Theorem 2.1]). Let z ∈ C1[0, 1] ∩ C2(0, 1]. Assume that |z��(x)| ≤ Kx−è for 0 < x ≤ 1, where
è ∈ (0, 1) andK are constants that are independent of x. Let b, c ∈ C[0, 1]with c(x) ≥ 0 for all x ∈ (0, 1). Assume
that z satis�es the inequalities

−Dä
∗z + bz� + cz ≥ 0 on (0, 1),

z(0) − á0z
�(0) ≥ 0 and z(1) + á1z

�(1) ≥ 0,

where á0 and á1 satisfy (1.3). Then z ≥ 0 on [0, 1].

The bounds (1.4) show that the solution u of (1.2) satis�es the regularity hypotheses imposed on z in Theo-
rem 3.1. We shall apply Theorem 3.1 to Bi ± u for various barrier functions Bi, concluding that Bi ± u ≥ 0, i.e.,
that |u| ≤ Bi on [0, 1].

We begin with a general result that provides a useful relationship between u�(1) and u�(0).
For any function õ ∈ C[0, 1], set ‖õ‖[0,x] = max0≤t≤x|õ(t)| for 0 ≤ x ≤ 1.

Lemma 3.2. There exists a constant C such that

|u�(x)| ≤ |u�(0)| + Cxä−1[1 + ‖u‖[0,x] + |u�(0)|]Eä−1,1(‖b‖[0,x] x
ä−1) for 0 ≤ x ≤ 1.
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Figure 3. Exact solution for ä = 1.05, c ≡ 0, f ≡ 1, á0 = 1/(ä − 1), á1 = 0, ã0 = 0.4, ã1 = 1.7, and b = 0.9 (top left �gure),
b = 1.0 (top right �gure), b = 1.1 (bottom �gure), showing e�ect on solution u of moving from b < 1 to b > 1.

Proof. Set y(x) = u�(x) − u�(0) for 0 ≤ x ≤ 1. On multiplying (1.2a) by (x − t)ä−2/Γ(ä − 1) then integrating from
t = 0 to t = x, after some manipulation of the fractional derivative term one obtains [7] a weakly singular
Volterra integral equation of the second kind in the unknown y: for 0 < x ≤ 1,

y(x) −
1

Γ(ä − 1)

x

∫
t=0

(x − t)ä−2b(t)y(t) dt =
1

Γ(ä − 1)

x

∫
t=0

(x − t)ä−2{b(t)u�(0) + c(t)u(t) − f(t)} dt

:= g(x), say. (3.1)

From [2, p. 343] the solution of (3.1) can be expressed as

y(x) = g(x) +
x

∫
t=0

Rá(x, t)g(t) dt for 0 ≤ x ≤ 1, (3.2)

where
Rá(x, t) := (x − t)ä−2

∞

∑
n=1

(x − t)(n−1)(ä−1) Φn(x, t; ä) (3.3)

and theΦn are de�ned iteratively by

Φ1(x, t; ä) := b(t)/Γ(ä − 1),

Φn(x, t; ä) :=
1

Γ(ä − 1)

1

∫
z=0

(1 − z)ä−2 z(n−1)(ä−1)−1 b(t + (x − t)z)Φn−1(t + (x − t)z, t; ä) dz for n = 1, 2, . . .
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An inductive argument using Euler’s beta function shows easily (cf. [2, Lemma 6.1.3]) that

|Φn(x, t; ä)| ≤
‖b‖n[0,x]

Γ(n(ä − 1))
for n = 1, 2, . . . and 0 ≤ t ≤ x ≤ 1. (3.4)

Consequently, the in�nite series in (3.3) is uniformly convergent for 0 ≤ t ≤ x ≤ 1. Hence we can move the
summation sign of (3.3) outside the integral in (3.2). Again appealing to (3.4), from (3.2) we get

|y(x)| ≤ |g(x)| + ‖g‖[0,x]
∞

∑
n=1

‖b‖n[0,x]
Γ(n(ä − 1))

x

∫
t=0

(x − t)(n−1)(ä−1)+ä−2 dt

= |g(x)| + ‖g‖[0,x]
∞

∑
n=1

‖b‖n[0,x]x
n(ä−1)

n(ä − 1)Γ(n(ä − 1))

= |g(x)| + ‖g‖[0,x]
∞

∑
n=1

(‖b‖[0,x]x
ä−1)n

Γ(n(ä − 1) + 1)

≤ ‖g‖[0,x] Eä−1,1(‖b‖[0,x] x
ä−1) (3.5)

by the de�nition (2.1) of the Mittag-Le�er function.
Recalling the de�nition of g in (3.1), it follows that

‖g‖[0,x] ≤ C(1 + ‖u‖[0,x] + |u�(0)|)
1

Γ(ä − 1)

x

∫
t=0

(x − t)ä−2 dt

= C(1 + ‖u‖[0,x] + |u�(0)|)
xä−1

Γ(ä)
≤ C(1 + ‖u‖[0,x] + |u�(0)|)xä−1 (3.6)

as infä∈(1,2) Γ(ä) > 0. Combining (3.5), (3.6) and u�(x) = u�(0) + y(x) yields the required result.

Inequality (3.5) is sharp if g and b are positive constants; see [2, Theorem 6.1.1].
First, we show that in the special case where c > 0 on [0, 1], the solution u is uniformly bounded for

ä ∈ (1, 2) and no boundary layer appears at x = 0 when ä is near 1; there is also no boundary layer at x = 1 if
á1 > 0.

If c ≥ c > 0 for some constant c, set

C1 = max{|ã0|, |ã1|,
‖f‖∞
c

}.

Theorem 3.3. Assume that c ≥ c > 0 for some constant c. Then
(i) ‖u‖∞ ≤ C1,
(ii) |u�(0)| ≤ C1+|ã0|

á0 ≤ (ä − 1)(C1 + |ã0|),

(iii) |u�(1)| ≤ C1+|ã1|
á1 if á1 > 0,

(iv) |u�(1)| ≤ CEä−1,1(‖b‖∞) for some constant C if á1 = 0.

Proof. (i) De�ne the constant barrier function B1(x) ≡ C1. Then B1 ± u ≥ 0 by Theorem 3.1, so (i) is valid.
(ii) By (1.2b) we have u(0) − á0u

�(0) = ã0, so (1.3) and (i) yield

|u�(0)| =
!!!!!!!
u(0) − ã0

á0

!!!!!!!
≤

‖u‖∞ + |ã0|
á0

≤
C1 + |ã0|

á0
≤ (ä − 1)(C1 + |ã0|).

(iii) Use the boundary condition u(1) + á1u
�(1) = ã1 and (i) to derive (iii).

(iv) This follows immediately from Lemma 3.2, (i) and (ii).

Theorem 3.3 shows that when c is strictly positive on [0, 1] there is no boundary layer at x = 0 and, if one also
has á1 > 0, there is no boundary layer at x = 1. But when á1 = 0 one may have a layer at x = 1, as the next
example demonstrates.
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Figure 4. Example showing boundary layer at x = 1 is possible when c > 0 and á1 = 0.

Example 3.4. Consider our boundary value problem (1.2) with ä = 1.01, á0 = 1/(ä − 1), á1 = 0, ã0 = 0.4,
ã1 = 1.7 and constant functions b(x) ≡ 1.1, c(x) ≡ 1 and f(x) ≡ 3.25. In Figure 4 we show the solution (values
at the mesh points, joined by a piecewise linear curve) computed by the �nite di�erence scheme of [15] on a
uniform mesh of width 1/2048. A boundary layer at x = 1 is clearly visible.

Set
M = max

x∈[0,1]
b(x).

We observe that M can have any sign. In Theorems 3.5, 3.8 and 3.10 we shall consider the regimes M < 0,
0 ≤ M ≤ 1 andM > 1 respectively and in each case we shall derive bounds on ‖u‖∞, |u�(0)| and |u�(1)|.

The case where b is strictly negative is addressed �rst. ForM < 0, set

C2 = max{|ã0|, |ã1| −
(1 + á1)‖f‖∞

M
} and C3 = max{|ã0| + C2,

‖f‖∞ + C2 ‖c‖∞
−M

}.

Theorem 3.5. Assume thatM < 0. Then
(i) ‖u‖∞ ≤ C2,
(ii) |u�(0)| ≤ (ä − 1)(C2 + |ã0|),
(iii) |u�(1)| ≤ C3.

Proof. (i) Set B2(x) = C2 + x‖f‖∞/M for 0 ≤ x ≤ 1. Then B2 ≥ 0 so

LB2(x) = b(x)B�
2(x) + c(x)B2(x) ≥

b(x)‖f‖∞
M

≥ ‖f‖∞,

B2(0) − á0B
�
2(0) = C2 −

á0‖f‖∞
M

≥ |ã0| and B2(1) + á1B
�
2(1) = C2 +

(1 + á1)‖f‖∞
M

≥ |ã1|

by de�nition of C2. It follows from (1.2) and Theorem 3.1 that B2 ± u ≥ 0, i.e., |u(x)| ≤ B2(x) for 0 ≤ x ≤ 1. As
B2(x) ≤ C2, we have proved (i).

(ii) To obtain (ii), use the boundary condition u(0) − á0u
�(0) = ã0, (1.3) and (i).

(iii) Set w(x) = u(x) − u(1). Then by (1.2) and (i) we have

|Lw(x)| = |f(x) − c(x)u(1)| ≤ ‖f‖∞ + C2‖c‖∞,

|w(0) − á0w
�(0)| = |ã0 − u(1)| ≤ |ã0| + C2, w(1) = 0.

Set v(x) = C3(1 − x). Then

Lv(x) = −C3b(x) + C3(1 − x)c(x) ≥ −C3M,

v(0) − á0v
�(0) = C3(1 + á0) ≥ C3, v(1) = 0.
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It follows from the de�nition of C3 and Theorem 3.1 that v ± w ≥ 0, i.e., |w(x)| ≤ v(x) for all x. Hence

|u�(1)| = lim
x→1− |u(1) − u(x)|

1 − x
≤ lim

x→1− v(x)
1 − x

= C3,

which completes the proof of (iii).

In the proof of Theorem 3.5 (iii) we did not use Lemma 3.2 since it will yield only a crude bound on |u�(1)|
when |M| ≥ 1.

Thus whenM < 0, the solution u of (1.2) is bounded independently of ä and has no boundary layers.
For 0 < M ≤ 1 set

ò0(M, ä) = min{
1.13
1 −M

,
ä[0.13 + exp (M1/(ä−1))]

ä − 1
}, ò1(M, ä) = min{

1
1 −M

,
ä[exp (M1/(ä−1)) − 1]

(ä − 1)M1/(ä−1) }.

In these de�nitions, ifM = 1 then each òi equals the second term in {. . . }, while ifM → 1− with ä �xed, then
the �rst term blows up so the second term gives the minimum, and if ä → 1+ with M ∈ (0, 1) �xed, then by
L’Hôpital’s rule the second term is approximately ä/(ä − 1) so the �rst term gives the minimum.

Lemma 3.6. For 0 ≤ M ≤ 1 one has

0 < Eä−1,ä(M) ≤ ò0(M, ä) and 0 < Eä−1,ä+1(M) ≤ ò1(M, ä).

Proof. For 0 ≤ M < 1 we have 0 < Eä−1,ä+1(M) ≤ 1/(1 −M) by the argument used to prove (2.26).
For 0 ≤ M ≤ 1, letting ⌈r⌉ denote the smallest integer satisfying ⌈r⌉ ≥ r, we also have the alternative

bound

Eä−1,ä+1(M) ≤
⌈ 1ä−1 ⌉−1
∑
k=0

1
Γ(2)

+
⌈ 2ä−1 ⌉−1
∑

k=⌈ 1ä−1 ⌉
M1/(ä−1)

Γ(3)
+

⌈ 3ä−1 ⌉−1
∑

k=⌈ 2ä−1 ⌉
M2/(ä−1)

Γ(4)
+ ⋅ ⋅ ⋅

≤ (
1

ä − 1
+ 1) ⋅

1
M1/(ä−1) [M

1/(ä−1) +
M2/(ä−1)

2!
+
M3/(ä−1)

3!
+ ⋅ ⋅ ⋅ ]

=
ä

(ä − 1)M1/(ä−1) [exp (M
1/(ä−1)) − 1].

The arguments for Eä−1,ä(M) are similar; observe that 1/Γ(ä) < 1.13 sincemin1<ä<2 Γ(ä) ≈ 0.885603.

One could derive similar and sharper estimates for Eä−1,ä(M) and Eä−1,ä+1(M) by imitating the sophisticated
analysis of [11, Theorem 1.1], but our approach is simpler and adequate for our purposes.

De�ne
õr(x) = xäEä−1,ä+1(rx

ä−1) for r ∈ ℝ and 0 ≤ x ≤ 1. (3.7)

In this notation, the function õb(x) appears prominently in the formula (2.15) of Remark 2.3. For each r ∈ ℝ,
one has õ�

r(x) = xä−1Eä−1,ä(rx
ä−1) by (2.4) so õr(0) = õ�

r(0) = 0. Hence, using (1.1) and (2.3), we get

−Dä
∗õr(x) + rõ�

r(x) = −Eä−1,1(rx
ä−1) + rxä−1Eä−1,ä(rx

ä−1)

= −
∞

∑
k=0

(rxä−1)k

Γ(k(ä − 1) + 1)
+

∞

∑
m=0

(rxä−1)m+1

Γ(m(ä − 1) + ä)
= −1, (3.8)

as Γ(m(ä − 1) + ä) = Γ((m + 1)(ä − 1) + 1) so the in�nite series now cancel each other except for the k = 0 term.
When r ≥ 0 it is easy to see that õ�

r(x) > 0 for 0 < x < 1. Hence for r ≥ 0 one has 0 ≤ õr(x) ≤ õr(1) for
0 ≤ x ≤ 1.

The barrier functions B3 and B4 of Lemma 3.7 and Theorem 3.10 will make use of the property (3.8) with
r = M.

Lemma 3.7. Assume thatM ≥ 0. Set

B3(x) = max{|ã0|, |ã1|} + ‖f‖∞[õM(1) − õM(x) + á1õ
�
M(1)] for 0 ≤ x ≤ 1.

Then |u(x)| ≤ B3(x) for x ∈ [0, 1] and

‖u‖∞ ≤ ‖B3‖∞ = B3(0) = max{|ã0|, |ã1|} + ‖f‖∞[õM(1) + á1õ
�
M(1)]. (3.9)
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Proof. The discussion preceding the lemma of the properties of õr implies that B3(x) ≥ 0 for 0 ≤ x ≤ 1. By
(3.8), õ�

M(x) > 0 on (0, 1) and the de�nition ofM, we have

LB3(x) = −Dä
∗B3(x) +MB�

3(x) + [b(x) −M]B�
3(x) + c(x)B3(x)

= ‖f‖∞ + [M − b(x)]õ�
M(x)‖f‖∞ + c(x)B3(x) ≥ ‖f‖∞

and

B3(0) − á0B
�
3(0) = max{|ã0|, |ã1|} + ‖f‖∞[õM(1) + á1õ

�
M(1)] ≥ |ã0|,

B3(1) + á1B
�
3(1) = max{|ã0|, |ã1|} ≥ |ã1|.

It follows from Theorem 3.1 that B3 is a barrier function for ±u, i.e., |u(x)| ≤ B3(x) on [0, 1]. Then (3.9) is
immediate from the properties of õM.

Theorem 3.8. Assume that 0 ≤ M ≤ 1. Then
(i) ‖u‖∞ ≤ max{|ã0|, |ã1|} + ‖f‖∞[ò1(M, ä) + á1ò0(M, ä)],
(ii) |u�(0)| ≤ (ä − 1)[|ã0| +max{|ã0|, |ã1|}] + ä[(e − 1) + á1(e + 0.13)]‖f‖∞,

(iii) |u�(1)| ≤
{
{
{

(|ã1| + ‖u‖∞)/á1 if á1 > 0,

ò0(M, ä)max{‖f‖∞ + ‖c‖∞|ã1|, 2[|ã0| + |ã1|]} if á1 = 0.

Proof. (i) Combine Lemmas 3.6 and 3.7.
(ii) The boundary condition (1.2b) and the condition (1.3) yield |u�(0)| ≤ (ä − 1)(|ã0| + ‖u‖∞). Now invoke

part (i) and observe that ò0(M, ä) ≤ ä(0.13 + e)/(ä − 1) and ò1(M, ä) ≤ ä(e − 1)/(ä − 1).
(iii) If á1 > 0, then the result follows from the boundary condition (1.2b). Thus, assume that á1 = 0. Set

w1(x) = u(x) − u(1) = u(x) − ã1. Then by (1.2) we have

|Lw1(x)| = |f(x) − c(x)ã1| ≤ ‖f‖∞ + ‖c‖∞|ã1|,

|w1(0) − á0w
�
1(0)| = |ã0 − ã1| ≤ |ã0| + |ã1|, w1(1) = 0.

Set v1(x) = K[õM(1) − õM(x)], where õM is de�ned in (3.7) and

K = max{‖f‖∞ + ‖c‖∞|ã1|, [|ã0| + |ã1|]/õM(1)}.

Then v1 ≥ 0 and v�1 ≤ 0, so by (3.8) we get

Lv1(x) = −Dä
∗v1(x) +Mv�1(x) + [b(x) −M]v�1(x) + c(x)v1(x) ≥ K,

v1(0) − á0v
�
1(0) = K[õM(1) − õM(0) + á0õ

�
M(0)] = KõM(1), v1(1) = 0.

It follows from the de�nition ofK and Theorem 3.1 that v1 ± w1 ≥ 0, i.e., |w1(x)| ≤ v1(x) for all x. Hence

|u�(1)| = lim
x→1− |u(1) − u(x)|

1 − x
≤ lim

x→1− v1(x)
1 − x

= Kõ�
M(1). (3.10)

But 0 < õ�
M(1) < ò0(M, ä) by Lemma 3.6, and õM(1) = Eä−1,ä+1(M) ≥ 1/2 on taking the �rst term in the Mittag-

Le�er series. Combining these inequalities with (3.10) and the de�nition ofK completes the proof.

If instead of 0 ≤ M ≤ 1 one has the stronger hypothesis that ‖b‖∞ ≤ 1, then a bound similar to that for the
case á1 = 0 in Theorem 3.8 (iii) can be derived quickly using Lemma 3.2, Theorem 3.8 (i), (ii) and (2.25).

For 0 ≤ M < 1, Theorem3.8 (i) bounds ‖u‖∞ independently of ä. Theorem3.8 (ii) shows that for 0 ≤ M ≤ 1,
when ä is near 1 there is no boundary layer in u atx = 0. The situation in Theorem3.8 (iii) ismore complicated;
to clarify it, we give now a simpler but slightly less sharp corollary of this part of the theorem.

Corollary 3.9. Assume that 0 ≤ M ≤ 1. Then for some constant C we have

|u�(1)| ≤
{
{
{

C/(1 −M) if 0 ≤ M < 1,

C/(ä − 1) ifM = 1.
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Proof. Substitute the bound of Theorem 3.8 (i) into Theorem 3.8 (iii) and recall the de�nitions of ò1(M, ä) and
ò0(M, ä).

Theorem 3.8 (ii) shows that as ä → 1+ there is no boundary layer at x = 0 when 0 ≤ M ≤ 1. Corollary 3.9
shows that as ä → 1+, no boundary layer is present at x = 1 when 0 ≤ M < 1, but when M = 1 a boundary
layer is possible there and the discussion in Section 2.2.2 shows that then the estimate |u�(1)| ≤ C/(ä − 1) of
Corollary 3.9 is sharp in general.

In Theorem 3.8 and Corollary 3.9 we state no result for the caseM > 1, despite the fact that our arguments
can be extended to this case, because the bound provided by Lemma 3.7 is then excessively large.

The next result gives a satisfactory bound on ‖u‖∞ whenM > 1 under the extra hypothesis that b > 0 on
[0, 1]. In the de�nition of B4 below, the expression multiplying ‖f‖∞ imitates closely the coe�cient of f that
we reported in (2.15).

Theorem 3.10. Assume thatM > 1 and b ≥ b > 0 for some constant b. For 0 ≤ x ≤ 1, set

B4(x) = max{|ã0|, |ã1|} +
‖f‖∞{á0[õM(1) − õM(x)] + xõM(1) − õM(x) + á1[(á0 + x)õ�

M(1) − õM(x)]}
1 + á0 + bõM(1) + á1[1 + bõ�

M(1)]
.

Then |u(x)| ≤ B4(x) for x ∈ [0, 1] and for some constant C one has
(i) ‖u‖∞ ≤ ‖B4‖∞ ≤ Cmin{á0, õM(1) + á1õ

�
M(1)},

(ii) |u�(0)| ≤ C,
(iii) |u�(1)| ≤ Cmin{á0, õM(1) + á1õ

�
M(1)} if á1 > 0,

(iv) |u�(1)| ≤ CM1/(ä−1)min{á0, õM(1)} if á1 = 0.

Proof. The expression xõM(1)−õM(x) vanishes at x = 0, 1 and its second-order derivative is negative by (2.4),
so the expression is positive on (0, 1). It is easy to see that õ�

M(1) > õM(1) so we also have xõ�
M(1) − õM(x) > 0

on (0, 1). Consequently, B4(x) ≥ 0 for 0 ≤ x ≤ 1.
Now

B4(0) − á0B
�
4(0) = max{|ã0|, |ã1|} ≥ |ã0| and B4(1) + á1B

�
4(1) = max{|ã0|, |ã1|} ≥ |ã1|.

For 0 < x < 1, by (3.8) one has

LB4(x) = c(x)B4(x) +
‖f‖∞{á0 + b(x)õM(1) + 1 + á1[b(x)õ

�
M(1) + 1] + (M − b)õ�

M(x)(1 + á0 + á1)}
1 + á0 + bõM(1) + á1[1 + bõ�

M(1)]
≥ ‖f‖∞.

Thus B4 is a barrier function for ±u by Theorem 3.1. Hence, recalling that á0 ≥ 1/(ä− 1) > 1, for some Cwe get

‖u‖∞ ≤ ‖B4‖∞ ≤ max{|ã0|, |ã1|} +
‖f‖∞{á0õM(1) + õM(1) + á1(á0 + 1)õ�

M(1)}
1 + á0 + bõM(1) + á1[1 + bõ�

M(1)]

≤ C[1 +
á0õM(1) + á0á1õ

�
M(1)

á0 + õM(1) + á1õ�
M(1)

] ≤ Cmin{á0, õM(1) + á1õ
�
M(1)}.

This proves (i).
For (ii) and (iii), use the result of (i) and the boundary conditions (1.2b).
To prove (iv), de�ne the function

ũ(x) = u(x) − (1 − x)
ã0 − ã1
1 + á0

− ã1, (3.11)

which is the solution of the problem

Lũ(x) = ̃f(x) for x ∈ (0, 1),

ũ(0) − á0ũ
�(0) = 0, ũ(1) = 0,

with
̃f(x) = f(x) + [b(x) − (1 − x)c(x)]

ã0 − ã1
1 + á0

− ã1c(x).
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ä = 1.1 ä = 1.01 ä = 1.001 ä = 1.0001 ä = 1.00001 ä = 1.000001 ä = 1.0000001
(ä − 1)max0≤j≤N|uj| 5.8374 7.6438 7.6043 7.6004 7.6000 7.6000 7.6000
(ä−1)|uN−uN−1|/(xN−xN−1) 5.0045 7.5954 7.5795 7.5777 7.5775 7.5775 7.5775

Table 1. Verifying sharpness of Theorem 3.10 (i), (iii).

Applying the barrier function B4 of (i) above to ũ yields

|ũ(x)| ≤
‖ ̃f‖∞{á0[õM(1) − õM(x)] + xõM(1) − õM(x)}

1 + á0 + bõM(1)
for x ∈ [0, 1].

Hence

|ũ�(1)| = lim
x→1− |ũ(1) − ũ(x)|

1 − x
= lim

x→1− |ũ(x)|
1 − x

≤
‖ ̃f‖∞[(á0 + 1)õ�

M(1) + õM(1)]
1 + á0 + bõM(1)

.

Recalling the identity (2.25), we have

õM(1) = Eä−1,ä+1(M) = [Eä−1,2(M) − 1]/M, õ�
M(1) = Eä−1,ä(M) = [Eä−1,1(M) − 1]/M

and (2.19) implies that Eä−1,1(M)/Eä−1,2(M) ≈ M1/(ä−1) as ä → 1+. Consequently,

|ũ�(1)| ≤
Cá0 õ

�
M(1)

á0 + õM(1)
≤

Cá0 M
1/(ä−1)õM(1)

á0 + õM(1)
≤ CM1/(ä−1)min{á0, õM(1)}.

Part (iv) of the theorem follows from this estimate and (3.11).

Thus, in the caseM > 1with b > 0, Theorem 3.10 (ii) shows that there is no boundary layer at x = 0when ä is
near 1, even though ‖u‖∞ may be unbounded as ä → 1+ (see Section 2.2.1).

The accurate approximations (2.20) and (2.21) show that Theorem3.10 (iii), (iv) is sharp for constant b > 1.
The next example shows numerically that the bounds of Theorem 3.10 (i), (iii) are sharp for a variable-

coe�cient problem when á0 = 1/(ä − 1) < õM(1).

Example 3.11. Consider the test problem

−Dä
∗u(x) + (x + 0.2)u�(x) = 2(3 + x) for x ∈ (0, 1), (3.12a)

u(0) −
1

ä − 1
u�(0) = 0.4, u(1) + u�(1) = 1.7. (3.12b)

The exact solution of this problem is unknown. Observe that M = 1.2 so õM(1) ≫ 1/(ä − 1) = á0 by an
inequality similar to (2.17). To check the bounds of Theorem 3.10 (i), (iii), we use the �nite di�erence scheme
of [15] to compute an approximate numerical solution {uj}

N
j=0 of (3.12) on a uniform mesh {xj := j/N}Nj=0 with

N = 2048 for various values of ä close to 1, then evaluate (ä−1)max0≤j≤N|uj| and (ä−1)|uN −uN−1|/(xN −xN−1)
to approximate (ä − 1)‖u‖∞ and (ä − 1)|u�(1)|.

As each row of Table 1 is approximately constant as ä → 1+, the bounds of Theorem 3.10 (i), (iii) are sharp
for this example.

4 Conclusions
We considered a two-point boundary value problem whose leading term is a Caputo fractional derivative
of order ä with 1 < ä < 2. The dependence of the solution on the parameter ä has not previously been
investigated analytically, despite a growing interest in the research literature in the numerical solution of
problems with variable fractional derivatives. By considering �rst the special case of a constant-coe�cient
operator, for which the solution can be determined explicitly, we showed that when ä is near 1, the solution of
the boundary value problemmay exhibit a boundary layer at the endpoint x = 1 of the domain. Moving on to
the general case of a variable-coe�cient di�erential operator, we then determined conditions on the data of



M. Stynes and J. L. Gracia, A Two-Point Boundary Value Problem with a Caputo Derivative | 95

the problemunderwhich boundary layers at each endpoint (x = 0, 1) cannot occur. This analysis showed that
a crucial parameter in the presence or absence of a boundary layer atx = 1 is the quantityM := maxx∈[0,1] b(x),
where b is the coe�cient of the �rst-order term in the di�erential operator.

In all cases considered, we showed that |u�(0)| ≤ C, i.e., no boundary layer in u appears at x = 0 when
ä is near 1. The only data regime where this bound is not guaranteed by our theory (Theorems 3.3 and 3.10)
is when min[0,1] c(x) = 0 and M > 1 without the additional property that b > 0 on [0, 1], but our numerical
experience (using the �nite di�erence method of [15]) is that in this case also no boundary layer appears at
x = 0. At x = 1, our theory proves rigorously that when ä is near 1, no boundary layer appears in u if M < 1,
but one can have such layers whenM ≥ 1. This agrees with our numerical experience.

This analysis of the solution u of (1.2) leads naturally to the question: can one construct a numerical
method that will yield an accurate approximation of u when it has a boundary layer at x = 1?

Correction Statement (December 6, 2014): In the electronic version of this paper (published September 26,
2014), the statement and proof of Theorem 3.10 parts (i) and (iii) were incorrect owing to an error of the
authors. The expressionmin{á0, õM(1)} in parts (i) and (iii) of the original electronic version is now replaced
bymin{á0, õM(1) + á1õ

�
M(1)}. Note that in Theorem 3.10 (iv), the same expressionmin{á0, õM(1)} appears and

should not be changed.
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project MEC/FEDER MTM 2010-16917 and the Diputación General de Aragón.
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