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Abstract

This paper presents two novel contributions on the recently introduced Mixed High-
Order (MHO) methods [19]. We first address the hybridization of the MHO method for
a scalar diffusion problem and obtain the corresponding primal formulation. Based on
the hybridized MHO method, we then design a novel, arbitrary order method for the
Stokes problem on general meshes. A full convergence analysis is carried out showing
that, when independent polynomials of degree k are used as unknowns (at elements for
the pressure and at faces for each velocity component), the energy-norm of the velocity
and the L?-norm of the pressure converge with order (k + 1), while the L?-norm of the
velocity (super-)converges with order (k + 2). The latter property is not shared by other
methods based on a similar choice of unknowns. The theoretical results are numerically
validated in two space dimensions on both standard and polygonal meshes.

Keywords Stokes, general meshes, mixed high-order methods, hybridization

1 Introduction

Approximation methods on general polygonal or polyhedral meshes are an active field of
research. The interest in handling general meshes can be prompted, e.g., by the desire to
adapt the element shape to the qualitative features of the solution (elongated hexahedral
elements in boundary layers combined with tetrahedra in the interior of the domain) and by
nonconforming or agglomerative mesh adaptation, cf., e.g., Bassi et al. [4] . A wide range
of low-order numerical methods have been proposed over the last years that handle general
polygonal or polyhedral discretizations; cf., e.g., [23, 24] for a review. More recently, higher-
order methods have also been considered. High-order MFD schemes have been studied by
Beirao da Veiga, Lipnikov, and Manzini [9]; see also [34] for recent developments. We cite here
also the Virtual Element Method (VEM) introduced by Beirao da Veiga, Brezzi, and Marini [6]
(cf. also [5]). In [19] and [21], different approaches are considered inspired by classical mixed
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(Raviart-Thomas) and non-conforming (Crouzeix—Raviart) finite elements, leading to so-
called Mixed High-Order (MHO) and Hybrid High-Order (HHO) methods, respectively. We
refer here also to [20] for an application to linear elasticity and to the work of Vohralik and
Wohlmuth [37] for another perspective on mixed methods on general meshes. Very recently,
H (div; 2)-conforming VEM have been proposed [7] which are suitable for devising mixed
discretizations on general meshes, and which seem to share some features with MHO.

For a scalar diffusion problem, Hybrid High-Order methods (and, as we will see in Section 3.3,
MHO methods after hybridization) use as intermediate unknowns polynomials of degree k at
elements, and lead to a problem where the only globally coupled unknowns are polynomials
of degree k at mesh faces. Also the Hybridizable Discontinuous Galerkin (HDG) methods of
Cockburn, Gopalakrishnan, and Lazarov [15] can be written with a similar choice of unknowns
by locally eliminating the flux variable, thereby obtaining, after hybridization, a global prob-
lem with the same number of unknowns and stencil, cf. also [26]. In this case, convergence
with order (k+ 1) is observed for the L?-norms of both the flux and of the potential on general
meshes (cf. the analysis in Castillo, Cockburn, Perugia, and Schotzau [12], which extends to
HDG). On the other hand, for an analogous choice of unknowns, MHO/HHO methods con-
verge with order (k 4+ 1) in the (discrete) energy norm and (k + 2) in the L? potential norm.
This means that superconvergence (or, more appropriately, supercloseness) of the potential
holds. In the context of HDG methods, similar convergence results can be obtained using as
element unknowns polynomials of degree (k+1) instead of k, and tweaking the stabilization as
proposed by Lehrenfeld [33, Remark 1.2.4]. It is useful to stress that the announced orders of
convergence for MHO/HHO are obtained for general meshes and arbitrary polynomial degree
k. This is achieved by (i) introducing a reconstruction of the flux for MHO (cf. (21) below)
and of the gradient for HHO (cf. (46) below) of order (k + 1) obtained by solving a local
Neumann problem inside each element and (ii) designing the penalty term in a careful way
so as to preserve the order of the reconstruction. An in-depth study of the relation between
MHO/HHO and HDG methods can be found in [14].

This paper presents two novel contributions:

(i) we hybridize the MHO method of [19] in the spirit of [2] and clarify its link with the
HHO method of [21]. This section contains an interesting novel result bridging MHO
and HHO methods, and clarifying the analogies and differences (essentially related to
the choice of the stabilization term);

(ii) based on the hybrized MHO method, we design and analyze a novel arbitrary-order,
inf-sup stable method for the Stokes equations. A full convergence analysis is performed
including both energy- and L?-norm estimates.

After static condensation of the element unknowns for the velocity, the unknowns for the
Stokes problem are vector-valued polynomials of degree & > 0 at faces for the velocity and
polynomials of degree k at elements for the pressure. The choice of polynomials of degree
k for the pressure justifies itself observing that the method relies in fact on a polynomial
velocity reconstruction of degree (k + 1). The key features of the method can be summarized
as follows:

(i) it supports general polyhedral meshes and arbitrary approximation order (including
k = 0, which is not usually the case for discontinuous Galerkin methods);



(ii) when polynomials of degree k are used as velocity unknowns, the order of convergence
is (k + 1) for both the energy-norm of the velocity and the L?-norm of the pressure and
(k + 2) for the L2-norm of the velocity;

(iii) it has reduced computational cost. After locally condensing the element unknowns for
the velocity, the lowest-order version of the method in dimension d only requires d
unknowns per face for the velocity and one unknown per element for the pressure.

It is also worth mentioning that, for £ > 1, partial static condensation can also be applied for
the pressure variable, leaving only one pressure unknown per element globally coupled (this
unknown represents the average value of the pressure on the element).

To conclude, we briefly review some methods for the Stokes problem based on hybrid spaces
for the velocity. A HDG method for Stokes flows is proposed by Nguyen, Peraire, and Cock-
burn [35]. In this case, polynomials of degree k are used for the flux, velocity, and pressure
variables, and an order of convergence of (k+ 1) is experimentally obtained for the L?-norm of
the error in each variable (we recall that, in our case, the L?-norm of the error on the velocity
converges with order (k 4 2), cf. Theorem 9). Similar considerations apply for the methods
presented in [16]. In [32], Labeur and Wells present a HDG methods where the velocity un-
knowns are polynomials of degree k at elements and faces. Also in this case, the L?-errors
on both the velocity and the pressure approximations converge with order (k + 1). In [27],
on the other hand, Egger and Waluga consider a method where polynomials of degree k and
(k—1) are used for the velocity and the pressure, respectively, and a hp-convergence analysis
is carried out. In this case, both the norm of the velocity gradient and the L?-norm of the
pressure converge with order k. Other work on the discretization of the Stokes equations that
deserves being mentioned here include the hp-discontinuous Galerkin method of Toselli [36],
the domain decomposition method of Girault, Riviere, and Wheeler [29], and the hybridized
globally divergence free LDG method of Carrero, Cockburn, and Schétzau [11].

The paper is structured as follows. In Section 2, we briefly recall the main assumptions
on the mesh in the spirit of [18] as well as some basic results on broken functional spaces
used in the analysis. In Section 3, we carry out hybridization for the MHO method of [19]
and show that the resulting hybridized MHO method differs from the HHO method of [21]
only by the choice of the stabilization term. In Section 4, we derive a novel method for the
Stokes problem, perform a full convergence analysis in the energy- and L?-norms, and provide
numerical validation of the estimates on both standard and general polygonal meshes. Finally,
implementation aspects are thoroughly discussed in Section 5.

2 Setting

In this section we briefly recall the notion of admissible mesh sequences introduced in [18,
Chapter 1] as well as some basic results for broken functional spaces.

2.1 Admissible mesh sequences

Throughout the rest of the paper, {2 denotes an open, connected, bounded polygonal or
polyhedral domain in R? d > 1. For any open, connected subset X — € with non-zero



Lebesgue measure, the standard inner product and norm of the Lebesgue space L%(X) are
denoted by (-,-)x and ||x, respectively, with the convention that the index is omitted if
X =Q.

Denoting by H < R} a countable set of meshsizes having 0 as its unique accumulation point,
we consider mesh sequences (7p,)ney where, for all h € H, T, = {T'} is a finite collection of
nonempty disjoint open polyhedra T' (called elements or cells) such that Q = Urer, T and
h = maxreT, hr (hr stands for the diameter of T).

A hyperplanar closed connected subset F of € is called a face if it has positive (d—1)-
dimensional measure and (i) either there exist 71,75 € T, such that F < 0Ty n T (and
F is an interface) or (ii) there exists T € Tj, such that F' < 0T n 02 (and F is a boundary
face). The set of interfaces is denoted by ]-'}L, the set of boundary faces by .7:,5’, and we let
Fp = ]:}l U .7:,'?. The diameter of a face F' € Fy, is denoted by hg

For all T € Ty, we let Fp:= {F € Fj, | F < 0T} denote the set of faces lying on the boundary
of T. Symmetrically, for all F' € Fy, Tp :={T € Ty | F < 0T} is the set of the one (if F' is a
boundary face) or two (if F' is an interface) elements sharing F.

For all F' € Fp, we denote by npp the normal to F pointing out of T'. For every interface
F < 011 n 0T, we adopt the following convention: an orientation is fixed once and for all
by means of a unit normal vector ng, and the elements 77 and 75 are numbered so that
ng=nnr.

We assume throughout the rest of this work that the mesh sequence (73,) is admissible in the
sense of [18, Chapter 1], i.e., for all h € H, T;, admits a matching simplicial submesh ¥}, and
the following properties hold for all A € H with mesh regularity parameter ¢ > 0 independent
of h: (i) for all simplex S € T, of diameter hg and inradius rg, ohg < rg and (ii) for all
TeTy and all Se Tp:={Se%,|S T}, ohyr < hg. For an admissible mesh sequence,
it is known from [18, Lemma 1.41] that the number of faces of one element can be bounded
uniformly in h, i.e., it holds that

VheH, max { Ny := card(Fr)} < Ny, (1)
TeT),

for an integer (d + 1) < 9y < +0o0 independent of h. Furthermore, for all h € H, T € Tj, and

F e Fr, hr is comparable to hr in the following sense (cf. [18, Lemma 1.42]): p?hr < hp <
hr.

2.2 Basic results on broken functional spaces

We next state some basic results that hold for broken functional spaces on admissible mesh
sequences (7Tp)nen-

Let an integer k > 0 be fixed. For all T € 7;, and all v € P5(T) (P%(T) is spanned by the
restriction to T of d-variate polynomial functions of total degree < k), the following trace and
inverse inequalities hold:

Cubp || VFe Fr, (2)
Cinvhr' vl 3)



with real numbers Ci, and Cj,y that are independent of h € H, cf. [18, Lemmata 1.44 and 1.46].

Using [18, Lemma 1.40] together with the results of [25], one can prove the existence of a real
number Cypp independent of A such that, for all T" € Tp, the L?-orthogonal projector 7Té€~ on

PX(T) satisfies: For all s € {0,...,k + 1}, and all ve H*(T),
v — W§U|Hm(T) < Capphy "V 5 (1) Vm e {0,...,s}. (4)

This will be our reference convergence rate for the approximation of the solutions to (isotropic)
diffusion problems. In what follows, we also need the L?-orthogonal operator ﬁﬁ on the broken
polynomial space

Ph(Th) := {ve L*(Q) | vp e PH(T) VT €T} (5)

Clearly, for all v € L?(2), and all T € T, it holds that w%vr = (wfv)r, and optimal

approximation properties for Wﬁ follow from (4). Finally, we also introduce the notation
HYTy) := {ve L2(Q) | v € HY(T)} for broken Sobolev spaces.

For the sake of conciseness, in what follows we often abbreviate by a < b the inequality a < Cb
with generic constant C' > 0 independent of h but possibly depending on the mesh regularity
parameter ¢ and on the polynomial degree k.

3 A hybridized arbitrary-order discretization for diffusion terms

As a preliminary step to design the discretization of viscous terms in the Stokes equations
(cf. Section 4), we consider here the Laplace equation (f € L?(Q2) denotes the forcing term),

—Au=f in{, u=0 on . (6)

Letting
> = H(div;Q), U :=L*(Q), (7)

the mixed variational formulation of problem (6) reads: Find (s,u) € 3 x U such that

(s,t) + (u, V-t) = 0 Vte s,

—(V-s,v) = (f,v)  VYoel. (8)

The unknowns s and u will be henceforth referred to as the flur and potential, respectively. At
the continuous level, a primal formulation where the potential u appears as the sole unknown
can be obtained by eliminating the flux s. A discrete counterpart of this procedure (the
so-called hybridization) is studied here for the MHO method of [19]. An important result of
this section is that we establish a link between the resulting coercive problem and the Hybrid
High-Order method of [21], which corresponds to a different (but equivalent in a sense that
will be made precise) choice of the penalty term.

3.1 A Mixed High-Order discretization of diffusion

In this section, we recall the MHO discretization of diffusive terms from [19] as well as a few
results that will be useful for the subsequent discussion.



3.1.1 Degrees of freedom

Given any fixed integer k = 0, the generalized flux degrees of freedom (DOFs) for the mixed
method are defined as

Th = VP (T) VI eT,  Fh:i=Pt (F) VFeF, (9)

where for [ = 0, [Pil’o(T ) is spanned by scalar-valued polynomial functions of total degree <[
with zero average on T'. Note that, in the lowest-order case k = 0, TT% has dimension zero,
which reflects the fact that cell DOF's are unnecessary. The local and global DOF spaces for
the flux approximation in MHO are, respectively,

>k
sk =Tk x{ X F’;} VI'eT, and X,:= X Xk (10)
FeFrp TeTh

ok
We also introduce the following patched version of 3j,:

<k .
b= {1 = (r0, (op)pere)ren € Sy | Sper e =0 VEeF ). (1)

The local space 2? is equipped with the following norm:

vreSi, Tl = lrrlz + ), helrrelE (12)
FeFr

=k
For all T' € T, we denote by R’% TN, = E’% the restriction operator which realizes the

<k
mapping between global and local flux DOFs, and we equip 3, with the norm

~k
VrneX,, Il = D) IR r7all7- (13)
TeTr

Let, for a fixed s > 2, B%(T) := {t € L*(T)? | V-t € L*(T)}. The regularity in X7 (T) is

required to ensure that the L?-orthogonal projector ﬂ'é’% over [F’} = [P’C“Z(F ) is well-defined for

all F e Fr, cf. e.g., [28, Section 1.2.7]. We define the local interpolator Ilf:,T X HT) - Xk
such that, for all t € X7(T), Ith = (77, (7rF)Fer,) with

TT = w?t, TTF = W%(t-’nTF) VF e fT, (14)

where k. denotes the L%-orthogonal projector on T (in fact, an elliptic projector on [PZ’O(T))
such that
(wljcwt, w)T = (t, w)T Yw € -l]—l%'

~k

The global interpolator 1§, : % — 3, with =% := {t € L*()? | tjp € TH(T), VT € Ty} is
such that, for all te =T,

Ry pIg it =I5 rtr VT EeT, (15)

Remark 1 (Restriction of Igh to X1 n H(div;Q)). An important remark is that functions
in 31 n H(div; Q) are mapped by I];J,h to elements of the patched space Eﬁ, cf. (11).
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The local and global DOF spaces for the potential are given by, respectively,

Uk.=PXT) VT'eT, and UF:= X Uk (16)
TeTy

In the following, we identify when needed the space Uf’f with the broken polynomial space
PX(7%) defined by (5). Both Uk and UF are naturally endowed with the L?norm topology.

3.1.2 Divergence and flux reconstructions

Let T € T,,. We define the local discrete divergence operator D% : 2% — [PZ(T ) such that, for
all 7 = (TT, (TTF)FEJ-'T) € El%,

(Dir,v)r = —(770, Vo)r + Y. (trpv)p, Yo e PR(T). (17)
FeFr

The operator D% is designed so as to satisfy the following commuting diagram property:

Dy(I§ ot) = 75(Vt)  Vte S7(T). (18)

Its global counterpart DY : i: — P(Ty) is such that, for all 7, € ii and all T' € Tp,
Dy7hr = DERS 774 (19)

Using the definition (15) of the global interpolator Igh together with the commuting prop-
erty (18) for the local divergence operator, the following global commuting property follows
(V- denotes here the broken divergence operator on 7p,):

Dy(I§ t) = 75 (Vpt),  Vte Xt (20)

We next introduce the flux reconstruction operator €% : »k V[PZH(T) such that, for all
T = (77, (TrF) FeFy) € 4 and, for all w e PATH(T),

(&7, Vw)p = —(Dir,w)r + Y. (7re,w)p (21a)
FeFr
= (77, Vabw)r + Z (77, Thw — W) g, (21b)
FEJ—'T

where we have used D% 7 € P%(T) together with (17) to pass to the second line. Computing y €
[PZH(T) such that €% 7 = Vy and (21) holds requires to solve a well-posed Neumann problem
for which the usual compatibility condition on the right-hand side is verified. The following
polynomial consistency property for €% is an immediate consequence of (21a) recalling (17)
and (14):

CHIE  Vw =V,  YwePEY(T). (22)

Recalling [19, Lemma 3] and using the fact that |D&7|r < Chy'||7||r, we have continuity
and partial stability in the following sense: For all T = (77, (7rF)rer,) € 2%,

k
Irrlr < |€prlr < lI7llzr (23)



3.1.3 Mixed formulation

<k ok
We let H denote a global bilinear form on 3, x 3, assembled element-wise from local con-

tributions, i.e., such that, for all oy, 7 € f]h,

H(op,Th) = Z HT(R’%,TUthg,TTh)v
TeTh

where, for all T' € T}, the bilinear form Hp on E% X 2% is such that, for all o, 7 € E%,
HT(O-a T) = (Q:I%O-a Q:]%T)T + JT(U’ T)a (24)

with local stabilization bilinear form J; matching the following assumptions:

(H1) Nonnegativity and polynomial consistency. Jp is symmetric, positive semi-definite, and
it satisfies the following polynomial consistency condition:

Ywe PKNT),  Jp(I&,Vw,T)=0 VreXj. (25)

(H2) Stability and continuity. There exists a real number 1 > 0 independent of 7" and of h
such that Hp is coercive on ker(Dr_’}) and continuous on 2?:

nllT3 < Hr(r,7) V7 e ker(DF), (26a)

Hr(r,7)<n '|7|}  vreZh. (26b)

Remark 2 (Condition (26b)). In view of (24) and of the second inequality in (23), and since
Jr is symmetric and positive semi-definite owing to (H1), condition (26b) holds if and only
if there is a real number C > 0 independent of h such that, for all T € Ty,

Jr(r,7) < Cllllz  vreZh. (27)

An example for a stabilization bilinear form satisfying assumptions (H1)—-(H2) is

JT(O', 'T) = 2 hp(@l}o'-nTF —O0TF, CI%T“I’LTF — TTF)F- (28)
FeFr

<k &k
For further use, we also define the global stabilization bilinear form J on X, x X such that

J(Oh, Th) = Z Jr (RS pon, RS ). (29)
TeT

Letting f}, := 7T}I§f, the mixed discrete problem reads: Find (o, up) € Eﬁ X U}]f such that

H(op,h) + (up, Dﬁ'rh) =0 V1), € Efw (30a)
—(Dﬁah, Uh) = (fh,vh) Vvh € U;]f (30b)

The well-posedness of problem (30) is a classical consequence of the coercivity (26a) of Hrp
in the kernel of D:kF together with the commuting property (20).



3.2 Mixed hybrid formulation

=k
In this section we hybridize (30) in the spirit of [2] by using the unpatched space 3, defined
by (10) in place of the subspace ¥ defined by (11), and we enforce the single-valuedness of
flux DOFs located at interfaces via Lagrange multipliers. Let

Pk (F) if FeF,

{0} if FeFP, (3

AF = X AE with A% ::{
FeFy

and define the following local and global hybrid DOF spaces (U} and U,If are given by (16)):

Wk = Uj’ix{ X A’;} VI eT, and  W§:=UF x A} (32)
FE]:T

~ k ~ k
We introduce the bilinear form B on X, x W} such that, for all (75, 2;) € ), x W} with
zp = (vp, up), recalling (17) and (19) to infer the second equality,

B(Th,zn) i= (vn, DyTn) = D Y, (wr,7rr)F (33a)
TeTy, FeFr
= Z {—(VUTN'T)T + Z (vr —MFJTF)F}- (33b)
T€7—h FeFr

Problem (30) reformulates as follows: Find &7}, € f): and Wy, := (Up, A\p) € W} such that,

H(en, 1) + B(Th,wh) =0 v e Sy, (34a)
—~B@h,zn) = (frvn)  Ven = (vn, ) € Wi (34b)

The following result justifies the choice of the space (31) by showing that problem (34) is
well-posed, and establishes a link between the solutions of (30) and (34).

Lemma 3 (Relation between (30) and (34)). The following inf-sup condition holds with C' > 0
independent of h

Clznllon < sup B(th, z1), (35)
TheSh, Tl =1
where, for all 5, = (vn ) € WE, Lznl2,, = lonl? + Spep Sy bl — vrl3. Addi-

tionally, problem (34) has a unique solution (&, (Up, Ap)) € i]: x WF. Finally, denoting by
(oh,up) € TF x UF the unique solution to problem (30), it holds (&, up) = (oh, up). In view
of this result, we drop the bar in what follows.

Proof. Let 2z, = (vn,pn) € WF. Following [10], there is ¢, € 7 n H(div;{2) such that
V-t, = vp. Letting 7,1 := Ightv € 22 (recall Remark 1), using the continuity of Igh and of

vp, — ty, it holds |74 < [tu]ls+ < |va| and, owing to the commuting property (20), [vp||> =
(vh, D¥T11) = B(Th1, 21) since et 2rer, (1F, TTR1)F = 0 again as a consequence of hav-

<k
ing 74,1 € Eﬁ. Moreover, letting 7, o € 3, be such that 772 = 0 and 772 = h;l (vp—pp) for
all T € Ty and F € Fr, one has, recalling (33b), B(Ts,2,2h) = Direr, 2irer, het|wr — vr|%.
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Additionally, it clearly holds that |72l < |2n]o,n- As a result, using the linearity of B in
its first argument, one has, denoting by $ the supremum in the right-hand side of (35),

l2ul5.n = B(Tha + Thas 2n) < SllTha + Thzll < $l2nllo

and (35) follows. The well-posedness of problem (34) is a consequence of (35) together with
the coercivity of the bilinear form H in the kernel of D, cf. (26a), see [10]. To prove the last

part of the statement, we observe that the (o, (up,0)) € f]l;; x WF is clearly a solution to
problem (34) since (34a) with A;, = 0 and (34b) with z;, = (vp, 0) follow from (30a) and (30b),
respectively, while (34b) with 2;, = (0, us), which enforces, >y orr = 0 for all F' € Fi
holds true if &, = o, € F, cf. (11). On the other hand, since problem (34) is well-posed, it
must hold that (&, ay) = (op,up), which concludes the proof. O

3.3 Primal hybrid formulation

In this section, we reformulate the mixed hybrid problem (34) as a coercive primal hybrid
problem after locally eliminating the flux DOFs, and we establish a link with HHO methods.

We need, in what follows, a H&—like discrete norm as well as an interpolator on the space of
hybrid DOFs, cf (32). For all T' € T}, denote by RIEVT : W}]f — W:,’f the restriction operator
that maps global to local DOFs. We equip W,’f with the norm such that, for all z, € W,’f,

. k
th\lih = E ”RW,TZhH%,Tv (36)
TeT,

with local norm such that, for all 2z = (vr, (ur)per,) € WE,

2130 = IVerlif + 35 hgtlur —vrlf YT €T (37)
FG.FT

One can easily prove that the map defined by (36) is a norm on W}]f using the fact that
Lagrange multipliers are zero at boundary faces, cf. (31). Let

W(T) := {ve H(T) | vjornon = 0}. (38)
We introduce the local interpolator I{fKT :W(T) — lef such that, for all v e W(T),
I{fV’TU = (vr, (UF)Fery) with vr = Thw and pr =mhv YE e Fr.  (39)

The corresponding global interpolator is I]I;:V,h W - W,’f (recall that W := H}(€2)) such that,
forallve W,

I{fuhv = ((vr)reT,, (UF)Fer,) with vp = 7'["761’0 VI'eT, and pup= 7[";7'0 VF e F,.
(40)
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3.3.1 Potential lifting operator

A first step consists in defining local and global operators which allow, given a set of potential
DOFs, to identify the corresponding flux DOFs. We need from this point on a stronger
assumption than (26a), namely:

w7 < Hr(r,7)  ¥re3f, (H27)

so that Hp (resp. H) is actually an inner-product on X% (resp. ;_V/Ji), defining a norm
|| (resp. |-|m) equivalent to |||z (resp. ||-]|). Let us check that the stabilization
bilinear form Jr defined by (28) satisfies (H27T). Recalling the first inequality in (23) to infer
|77 < |€57|r, and introducing the quantity €57 n7p in the second term in the right-hand
side of (12), one has, for all T € Xk,

I77 < €577+ 3, hrl€hT nep —rrelh + ) hel€hr - nre|k
FE.FT FE]'—T

S HQ:’%TH% + JT(T7T) = HT<T7T)7
where we have used the definition (28) of Jr together with the discrete trace inequality (2)

and the bound (1) on N7 to pass from the first to the second line, plus the definition (24) of
the bilinear form Hrp to conclude.

For all T € Ty, a local potential lifting operator c% : lei — E? can be naturally defined such
that, for all z = (vr, (LF)FeF,) € WE, it holds, for all T € X,

Hr(¢5z,7) = —(vr, Dfr)r + Z (kp,TTF)F (41a)
FE]‘—T
= (Vup,Tr)r + Z (bF — V1, TTF)F, (41b)
FE]:T

insofar as this yields a well-posed problem for ¢%z in view of (H2%) (we have used the
definition (17) of Déﬁ to pass to the second line). We also define the global lifting operator

<k
cfb : W,’f — 33, such that, for all 2, € W}’f,
RY pSizn = SiRYypzn VT € Th.
An important remark is that, as a consequence of (41a), gﬁzh satisfies
=k
Ve, e WE,  H(sFzn,mh) = —B(Th,zn) Ve X, (42)

with bilinear form B defined by (33a).
Lemma 4 (Stability and continuity for ¢%). For all T € T;, and all z € W, it holds, denoting
by |-z the norm defined by Hy on X%,

"zl < Ishzlmr <0z (43)

<k
Thus, for all z, € W,’f, we have, with |-|g denoting the norm defined by H on X,

1 < [ SEenlle < 07V zn - (44)

"% 2]
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Proof. Let z = (vr, (ur)rery) € WE. Letting T, = (V(vr—73vr), (hp' (up—vr)) pery) €
so that ||7.]|z = |2]17, one has, using (41b) with 7 = 7, followed by (26b), Hp(skz,7.) =
||z||%T = |lT:llzl 2l = 02| 72] zr7]2 )17 Hence, to prove the first inequality in (43), observe

L Hr(skz,T)
that 0"z < SUP- s\ (0} ~Tr s

the other hand, it holds for all 7 € X%, bounding the right-hand side of (41b) with the
Cauchy-Schwarz inequality, and recalling the definitions (37) of the |-||; r-norm and (12) of
the ||-|l7-norm, Hr(skz,7) < |z|1r|7llr < n~Y?|2|1.7|7| o7, where we have used (H27F)
to conclude. The second inequality in (43) then follows from the previous bound observing
that |¢%.z a1 = sup,sr {Hr(sh2,7)/|7|ur} . Finally, (44) can be proved squaring (43)
and summing over 1" € Tp,. O

= Hg%z” T, since Hr defines an inner-product. On

3.3.2 Discrete gradient and potential reconstruction operators

Let us next define the consistent gradient reconstruction operator
G% = Q:lfp o g[fp, (45)

with €% and ¢k defined by (21) and (41), respectively. The consistent gradient satisfies the
following remarkable property: For all z = (vr, (ur)per,) € WE,

(Ghz, Vw)r = (Vor, Vw)r + Y (pp —vr, Vu-nrp)p Ywe PET(T).  (46)
FeFr

To prove (46), let w € IPZH(T) be fixed, make 7 := IgTVfw in (41b), and use the fact that
¢kr = Vw owing to (22) and that €hckz = Ghz and Jr(shz, 7) = Jr(chz, I& . Vw) =0
owing to (45) and (25), respectively, to infer from the definition (24) of Hy that

Hr(Shz,7) = (€pshz, &r) + Jr(Shz, 7) = (Ghz, Vu)r.

We remark at this point an important result: equation (46) shows that the discrete gradient
operator defined by (45) is in fact analogous to the one defined in [21, eq. (11)] in the frame-
work of HHO methods provided the Lagrange multipliers are interpreted as trace unknowns.
In what follows we recall some important consequences without proof.

(i) For any function ¢ € W (T'), the following orthogonality property holds:
(GiIfyre — Vo, Vw)p =0 Vwe PEHY(T). (47)
(ii) For all z € W, it holds, denoting by (¢%2)r € T the cell DOFs for ¢kz € B4,

ur <n Plehr Ve Wi (48)

l(Sho)rlr < |Gzl < 55|

(iii) Defining, for all T' € Ty, the local potential reconstruction operator réﬁ : Wj’f — IPZH(T)
such that, for all z = (vr, (ur)per,) € WE,

Vrkz = Ghz, JT ke = jT vy, (49)

12



there exists a real number C' > 0, independent of hp such that, for all v € W(T') n
Hk+2 (T),

he |V (v = Il o)l + i [V (v = Iy ) | or
_ ok gk h1/2 _ kg < OhE+2 50
+ o = relyypolr + by o = rply pollor < Chp™ o] grezry. (50)

We close this section by defining global gradient and potential reconstructions as follows: For
all zp, € W}’f, we let

Gﬁzhu« = G%R%,Tzh and r,]szh@ = r?R‘lﬁV’Tzh VT € Tp. (51)

3.3.3 Primal hybrid formulation

Denoting by (o, wp) € f]: x WF the solution to problem (34) (we have removed the bar from
o}, as a result of Lemma 3), it is readily inferred from (42) and (34a) that
oh = Shwp. (52)
Then, using (52), equation (34b) can be rewritten for all zj, = (vp, us) € WF as
—B(shwn, zn) = (fa, vn)-
Define the bilinear form A on W}’f X W,’f such that, for all wy, zp, € W,’f ,
Alwn, zn) = H(shwn, s2n) = (GRwn, Ghzn) + j(wh, 2n), (53)
where we have introduced the bilinear form j on W} x W} such that (J is defined by (29)),
G(wn, zn) += J(Skwn, Shzn)- (54)

The equality in (53) is a straightforward consequence of (24) together with (41b). Then,
recalling (42) and using the symmetry of the bilinear form H, it is inferred, for all zj, € W,’f )

—B(Cﬁwh, Zh) = H(Cﬁwh, szh) = A(wh, Zh),

and we conclude that problem (34) can be reformulated as follows: Find wy, = (up, Ap) € W,’f
such that,

A(wh, Zh) = (f, Uh) Vzh = (Uh,/,l,h) € W]f, (55)

and (52) holds. It follows from (44) that, for all z;, € W}, observing that A(zp, z1,) = ||§§Zh“%{,:r
as a consequence of (53),

Th (56)

As a result, the bilinear form A is coercive, and the well-posedness of the new problem (55)
follows directly from the Lax—Milgram lemma.

nlznlin < Az, 2n) = |2l <07 an

From a practical viewpoint, the symmetric positive definite linear system associated to prob-
lem (55) can be solved more efficiently than the saddle-point system associated to prob-
lem (30). The discrete flux o, can then be recovered according to (52) by an element-by-
element post-processing.
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3.3.4 Link with the HHO method

In [21], the authors study a HHO method based on the following bilinear form on W x WF,
which only differs from A (cf. (55)) in the choice of the stabilization term:

Anno(wn, 21) = (GFwy, G zp) + jano(wn, 2),

where, in comparison with (54), no link with a mixed hybrid method is used, but

K k (ks phk
juno (wnyzn) == >, Y (TE(FRiyrwn — Ar), 75 (V- Riypzn — pr))Fs
TeT, FeFr

and, for all T € T, the potential reconstructlon operator &, : WE — [PkH(T) is such that,
for all z = (vr, (ur)rery) € W, thz = (rhz — ah(rk2)) + vr and 7% is defined by (49).
The stabilization bilinear forms j (cf. (54)) and juno are equivalent in that both of them

(i) are polynomially consistent, i.e., they vanish when their argument is Iéwlw with w €
[Pg“(’ﬁb) N HY () and (ii) yield stability and continuity for A in the form (56).

4 Application to the Stokes problem

In this section, we discuss a novel inf-sup stable discretization of the Stokes problem based
on the hybridized MHO method. The continuous problem consists in seeking a velocity field
u: Q — R? and a pressure field p : Q — R such that

—Au+Vp=Ff in €, (57a)
—-Vau=0 in €, (57b)
u=0 on 092, (57¢)
(p, 1) =0, (57d)
where f = (fi)1<i<a € L*(Q)? denotes the volumetric body force. Letting
W= H} Q)¢  P:=L3(Q), (58)

(LZ(Q) denotes the space of square-integrable functions with zero mean on 2), the weak
formulation of (57) reads: Find (u,p) € W x P such that

(Vu,Vv) — (p,V-v) = (f,v) Vve W, (59a)
(Vu,q) =0 VYq € P. (59Db)

The key idea is here to (i) discretize the diffusive term in the momentum conservation equa-
tion (59a) using the bilinear form A defined by (53) for each component of the discrete velocity
field (in view of the results in Section 3.3.4, one could alternatively use the bilinear form Appo
defined by (3.3.4)); (ii) realize the velocity-pressure coupling by means of a discrete divergence
operator D,’i designed in the same spirit as D,’j (cf. (19)) and relying on the interpretation of
the Lagrange multipliers as traces of the potential.

14



4.1 Degrees of freedom

Recalling the definition (32) of Wﬁ, we define, for all T' € Ty, the local DOF space for the
velocity as
Wi = (Wi,

while we seek the pressure in [Pfl(T ). Correspondingly, the global DOF spaces for the velocity
and pressure are given by

Wi = (W54, Pri=Pi(Th) 0 L§(Q). (60)

We also define the local and global velocity interpolators I"fva and I‘ljv,h obtained applying
component-wise the interpolators I {fuT and T {fV ,, defined by (39) and (40), respectively. Finally,

for all T € Ty, we denote by R"“,VT : Wﬁ — W’% the restriction operator that realizes the
mapping between global and local velocity DOFs.

4.2 Velocity-pressure coupling

The velocity-pressure coupling is based on the local discrete divergence operator Déﬁ : Wl} —
Pk(T) such that, for all z = (vr, (1Fi) Fery)1<i<d € Wh,

d
(Dhz.qyr = Y { ~(rpdgrt Y (uF,mTF,mF} Vee PE(T),  (61)
i=1 FeFr

where 0; denotes the partial derivative with respect to the ith space variable. In the context
of lowest-order methods for the Stokes problem, this formula for the divergence has been used,
e.g., in [8, 22]. In the higher-order case, it is essentially analogous (up to the choice of the
discretization space for the velocity) to the one of [27, Section 4]. We record the following
equivalence obtained integrating by parts the first term in (61):

d
(Dhz,q)r = ). {(@'vm‘, Or+ Y, (Lri — vra)nre, Q)F} Vg e P4(T).  (62)
i=1 FE]'-T

We also define the global discrete divergence operator D,’j : Wﬁ - P,’f such that, for all
zZp € W’ﬂ
(Dfzn,an) = D, (DiRy rzn,an)r  Vau € PF. (63)
TeTh

The operator Dﬁ defined by (63) can be regarded as the discrete counterpart of the divergence
operator defined from W to P, cf. (58), as opposed to the operator D¥ defined by (19), which
discretizes the divergence operator from ¥ to U, cf. (7).

The following commuting property can be proved as the corresponding counterpart (20) for
D,’j and is key to stability.

Proposition 5 (Commuting property for Dﬁ) The following commuting diagrams hold with
W(T) := W(T)? and W(T) defined by (38):
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W(T) — L*(T) w P
la| | .
Df; D,
Wi — P(T) Wi —— P,

4.3 Discrete problem

The discretization of the viscous term in (59a) hinges on the bilinear form A on W¥ x W¥
such that, for all wy, = (whi)1<i<d and zp = (24,i)1<i<d 0 Wﬁ,

A(wp, zp) A(wp iy 2hi) (64)

HM&

with bilinear form A defined by (53). The coercivity and continuity of the bilinear form A
follow from the corresponding properties (56) of the bilinear form A:

(65)

nlzal?n < Alzn, z) o= |zal% <

where ||z]? = 4 defined by (36).
The source term in (59a) is discretized by means of the linear form L on W¥ such that, for
all zp = (Vn, fn,i)1<i<ds

d
Z firvna). (66)
The discretization of problem (59) reads: Find (wp, p) € WF x PF such that
A(wp, z1) — (pr, Dyzn) = L(z)  Vz, € W), (67a)
(Dhwh, qn) = 0 Vai € Py. (67b)

The following result is a classical consequence of the commuting diagram property in Propo-
sition 5 together with the surjectivity of the continuous divergence operator from W to P,
cf. [10].

Lemma 6 (Well-posedness). There ezists f > 0 independent of h such that, for all g € 77,’1“,
the following inf-sup condition holds:

(Dllﬁi'zhv Qh)

Bllgn| < sup (68)

zp€W\{0}

Additionally, problem (67) is well-posed.

4.4 Energy-norm convergence estimate

Lemma 7 (Basic error estimate). Let (u,p) € W x P denote the unique solution to (59),
and let (W, pp) = (I{“Mhu, 7kp). Then, denoting by (wp, pp) € Wﬁ x PF the unique solution
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o (67), the following holds with |-| a-norm defined by (65):
1/2

2

~ A En(2n)
Ipn = Pl Jwn — @ila) < sup

max < ,
z,eWk\{0} |1znl.4

where the consistency error is such that En(zp) = L(zp) + (ﬁh,Dﬁzh) — A(wp, zp).

Proof. We denote by $ the supremum in the right-hand side of (69). Observe that Dfw), =
Dﬁ{bh = 0 as a consequence of (67b) and the right commuting diagram in Proposition 5
together with (57b), respectively. As a result, making z;, = wyj, — wy, in (67a), and recalling
the definition of the consistency error &, one has

|wp, — W[4 <8 (70)

Let us now estimate the error on the pressure. Using (67a) together with the definition of
the consistency error yields, for all zj € Wﬁ,

(ph — P> Dfzn) = (pn, Diz1) — (Pn Dizn) = A(wy, — Wi, 21) — Enl2n).

Using the inf-sup condition (68) for ¢, = pp — pp together with (70), the Cauchy—Schwarz
inequality, and the second inequality in (65), it is inferred that

(ph — Pn, DFzp)

B pn —pul < sup < llwn — @nlla+$ < 28. (71)
zpewi\{oy 7 |zn]1,n
The estimate (69) is an immediate consequence of (70)—(71). O

Theorem 8 (Convergence rate for the energy-norm of the error). Under the assumptions
of Lemma 7, and assuming the additional reqularity w € H**2(T;)¢ and p € H*1(T},), the
following holds:

1/2
2
with C' > 0 independent of h.

max ( lpn — P lls |wn — ﬁihllA) < ChFH! (Hu||Hk+2(Th)d + HPHHHl(Th)> ;o (72)

Proof. For a given zj = ((UT,i)TeTh, (,up,i)pe]:h)lgigd € Wﬁ, we introduce the vector-valued
polynomial functions vy := (v7;)i<i<a for all T € T, and pp := (ppi)i<i<d for all F € F,.
We also introduce @, = (Up;)i1<i<a Where, for all 1 < i < d, Uy, = r?ﬁ)hyi and réﬁ is the
potential reconstruction operator defined by (49). Using the fact that f = —Au + Vp a.e.
in , recalling the definitions (64) of the bilinear form .4 and (53) of the bilinear form A
together with (62), and performing an element-by-element integration by parts on the linear
form L defined by (66), we decompose the consistency error as follows:

Sh(zh) = 2 {(V(u — ’l\lh), V’UT)T + Z (V(u — ﬁh‘T)nTF, M — 'UT)F}
TeTh FeFr

d
+ ) {(ﬁh —p,Vur)r+ . (n—p. (kp — UT)‘”TF)F} + > 3 (@i 2n4),
TeTh FeFr i=1

(73)
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where we have used continuity of the normal momentum flux across interfaces as well as
the fact that the homogeneous Dirichlet boundary condition is embedded in W¥ (cf. (60)

and (32)) to introduce the term Y 7.7 > pez, (Vu — pla)nre, pp)r.

Denote by T;, To, and T3 the terms in the right-hand side of (73). Multiple uses of the
Cauchy—Schwarz inequality followed by the approximation properties (50) of 7% and (4) of
the L2-orthogonal projector yield

k
1] + 5ol < W5 (Julpprsarye + Dl ) I2nln

- (74)
< W4 (lulgesegryye + [Pl ny ) L2nla,

where to conclude we have used the first inequality in (44). Let us now turn to the estimate of
the stabilization term T3. Recall that w, = (Wh;)1<i<d With Wy ; = ((ﬂT,i)TeTh, ()\F,i)pe]:h)
for all 1 < i < d. Using the definitions (64) of A and (53) of A, and letting 7,,; = s} 25 for
all 1 <17 < d, it is inferred

A
w
I
D=

~
Il
—

{H(Cﬁlﬁh,u Thi) — (G, Glﬁzh,i)}

I
M=~

> {(Vam, Tr)r+ Y, (A — A, mrmi) e — (Viir, €§R’§;,TTh,i)T}
TeTh FeFr

-
I
—_

[
.M&

T
S
m
A

{(V(ﬁm — ), T T + Z (Api — Ttz — Uy + ©htir, TTF,z‘)F}
FE]'—T

I
=

0
!
m
A

{(VW:I?(W —tra), e+ Y, (T (i — ) + (i — w), TTF,z‘)F} ,
FE]:T

where we have used (53) and (41b) together with GKRE, .@y,; = Vg, for all 1 < i < d
to pass to the second line, (21b) to pass to the third, and (40) to conclude. Using the
Cauchy-Schwarz, discrete inverse (3) and trace (2) inequalities for the terms involving 7%,
and recalling that, by definition, 74, ; = czzm for all 1 <1 < d, it is inferred,
1/
|

(75)
where we have concluded using the fact that 71'52 and ﬂfp are bounded operators as projectors,
the approximation properties (50) of the potential reconstruction, and recalling (65) after
observing that Z’Ll |zn:|4 = |lzn|?%. Finally, to prove the estimate (72), use (74)-(75) to
bound the right-hand side of (73) and plug the resulting bound into (69). O

1/2 d
REIRS { > [hEzﬂg(U —ar)|F+ Y, hp Ik (u - ﬂT)H%]} X {Z ll<kizn
=1

TeTh FeFr

< W ] sz o i) Z0 ) 4,

4.5 [L?*-norm convergence estimate for the velocity

The estimate for the L?-norm of the velocity can be refined assuming further regularity for
problem (57). We assume in this section that Cattabriga’s regularity holds (cf. Cattabriga [13]
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and also Amrouche and Girault [1]) in the following form: There is Ccat, only depending on
Q such that, for all g € L?(2)¢, denoting by (z,7) € W x P the unique solution to

(Vz,Vv) — (r,V-w) = (g,v) Vve W, (76a)
(V-z,q) =0 Vg e P, (76b)

it holds that
|2l 2 (e + Il 1) < Ccatllgl- (77)

The following result shows that supercloseness holds for the velocity element DOF's, which
converge with order (k + 2) to the L?-orthogonal projection of the velocity on the broken
polynomial space [P';(ﬁl)d.

Theorem 9 (Convergence rate for the L?-norm of the error on the velocity). Under the
assumptions of Theorem 8, and assuming that Cattabriga’s reqularity (77) holds, there ezists
a real number C > 0 independent of h such that, if k > 1,

Jun — @]l < CHF*2 (Jwlgrsa e + Dol ) (78)
and, for k =0, further assuming that f € H*(Q)?,
lwn — @nl < CB?| 1 (e (79)
where wp, @y, € PX(T;)? are obtained from element unknowns setting, for all T € Ty,
Up|T = (uri)1<i<ds ﬁh|T = (Ur,)1<i<d-

Proof. Let z solve (76) with g = up — up, set zp, = I’;V %, and define the error on the
velocity

ey = Wy — wp, = ((GT,i)TeThv (PF,i)Fefh)lgisd € W];L

We also introduce the following vector-valued quantities obtained from the element and face
DOFs of ey, respectively:

€ET = (GT,z')lgisd VT € 7;1 and Pr = (pF,i)léisd VF € -7:h-

Using the fact that —Az + Vr = 4y, — up, = €, a.e. in Q, it holds for all T € 7T}, integrating
by parts and exploiting the flux continuity and the fact that pp = 0 for all F' e .7-"}3 to insert

the term 0 = ZTeTh ZFG.FT(pF’ (Vz —rla)nrr)r,

lun = )7 = (Ver,Vz—rI)r+ Y, > ((pr — €r), (Vz = rly)nrp)p.
TeT, FeFr

Adding to the above expression the quantity (cf. (67a))

0 = A(wn, 21) — (pn, DZn) — Y, (F,752)r = A(@n, 21) — Alen, 25) — Y (f, 752)r,

TeTy, TeTh
where we have used Proposition 5 together with (76b) to infer Df2), = 7 (V-2) = 0, we have

|up, — Gn)? = F1 + Tz + Ts, (80)
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with

Tpi= ) {(VeT,Vz)T + > (pr— GT,VznTF)F} — Alen, Zn),
TeT;, FeFr
Ty 1= — Z {(V-eT,r)T + Z ((or — GT)'nTF,T)F} 7
TeTh FeFr
Ty = AW, 20) — Y. (f,7h2)r.

TeT,

To bound ¥; we recall the definitions (64) of A and (53) of A, and observe that, with
Or = (zir = riLyva2ir) 1 <ica

Ti= )] {(VeT,VdT)T + ), (pr - €T7V5TnTF)F} +J(en Zn),
TeT, FeFr

where, for the sake of brevity, we have introduced the bilinear form J (wy,, vp,) := Z?zl J(wh s Vh)-
Hence, we infer

1/2
1 ~ ~
1T1| < {lenlin + T(en.en)} " x { > 18707 + 6737 + j(zh,zh)}

TeTh
k
< W (Il sy + Dl ) Bl2legaye

k ~
< W4 (lulgesagryye + [Pl ey ) ion =l

where we have used the Cauchy—Schwarz inequality followed by the energy estimate (72) for
the first factor, while, for the second factor, we have estimated dr using (50), J(Zn, 21) as
the term T3 in the proof of Theorem 8, and we have used Cattabriga’s regularity (77) for z
to conclude.

To estimate %o, we observe that D}";eh = Dﬁﬁ)h — Dﬁwh = 0 owing to Proposition 5 together
with (59b) and (67b), hence, letting ry, := 7¥r and using (62) with z = R’{“}V’Teh and ¢ = rp,
we infer

0= (Dﬁeh,rh) = Z {(V'GT,TT)T + Z ((pr — GT)'nTF,TT)F} :

TeT, FeFr

Subtracting the above expression from %9, and using the Cauchy—Schwarz inequality together
with the bound (1) on Ny, it is inferred

|Ta| < en

1/2
M{Z[Wﬂﬂ%w—w%ﬁ < W4 (lul gesoryyatIpless iy ) Il o,
TeTh
(82)
where we have used the first inequality in (65) together with the energy estimate (72) for the
first factor and the approximation properties (4) of Wﬁ for the second.

Let us now estimate T3. For all T € Ty, we have (f,7h2)r = (75 f, z)r. Moreover, since
(fvz) = (VU’ —pId,Vz) and, owing to (63)7 (ﬂﬁpa D;i/z\h> = (pa Wﬁ(vz)) = (WZP,V'Z), we
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infer
T3 = (f —mif,2)
d
- {Z [(Vui, Vzi)r — (G Iy, Gl}I{EKTzi)] — (p—7fp, V-z)} + T (W, Zn).
TeT, \i=1

Denote by %31, %32,%33 the addends in the right-hand side. If k > 1, we can write

(f =75 f,2) = (f — 7} f 2 —7}2),

hence
EERTRS hkHfHHk(Q)dh2HZHH2(Q)d S hk+2“fHHk(Q)dHah — U 2()a-

On the other hand, for k = 0, we write (f — 7r2f, z— 7r2z) so that

T31] S Al Fl el 2l m e S B2l @yalltn — wal.

To estimate T3 2 we use the orthogonality property (47) to infer

d
T390 = Z Z [(Vuz — G’%I{fvjuz‘, Vz — G’f«]{fvyTzi)] ,
TeTy i=1

hence, recalling (50) and using Cattabriga’s regularity (77) for z, it is inferred |T3o| <
hk+2HuHHk+2(Q)dHah — uyl|. Finally, using the Cauchy—Schwarz inequality, proceeding as for
the estimate of T3 in the proof of Theorem 8, and recalling again (77), it is inferred

[Tasl < T (@, @n) T (2, 20)" < W ul s yabll 2l m2aye < B2 ul s gyl — ).

When k£ = 0, using Cattabriga’s regularity for u leads to the estimate |T32| 4+ |T33] <
W2 f | 1.y [ — un|. Collecting the above estimates, it is finally inferred that

T3] < W2l grseoyall Bn — wal,

which, used in conjunction with (81) and (82) (and Cattabriga’s regularity for (u,p) when
k = 0) to bound the right-hand side of (80) gives the desired result. O

To close this section, we exhibit a discrete velocity reconstruction that converges with order
(k +2) to the exact velocity u. Let, for all T € Ty, v : W — PAT1(T)? denote the velocity
reconstruction operator such that, for all w € W’%,

rl}w = (rilﬁwi)lgisd

with 7% defined by (49), and define its global counterpart rf : W — [PZH(E)d such that,
for all vy, € W]fl,
T]fL’Uh|T = r?RléKth, VT €Ty,

Corollary 10 (Convergence of r’flwh). Using the notation of Theorem 8, and under the
assumptions of Theorem 9, there is a real number C independent of h such that

k k
Ju = rhwnl < CH2 (Jul gesegryo + Iplen ) -

21



Figure 1: Triangular (Tria), Cartesian (Cart) and hexagonal (Hex) mesh families for the
numerical example of Section 4.6

Proof. Recalling that wj, = I"}V »W, and using the triangular inequality, one has
Ju— v < Ju—rf@n] + [rf (@ —wi)] = T1 + Ta.

As a result of (50) it is readily inferred |T1| < h*+2|ul fr+2(;,)e- Additionally, one has,

k pk ~ k pk ~ =~
To = 3 Irh Ry r(ion —wi)lF € Y {WHIVr Ry 2@ — wa) f + |7 (@7 - ur)lr} -
TeT, TeT,

Estimating the first term between braces using (50), observing, for the second, that it holds
|79 (tr — ur)|r < |tr — wr|r since 7% is bounded as a projector, and recalling (78), we

infer |To| < hF+2 (H’U/”Hk+2(7‘h)d + HpHHk+1(7'h)). The desired result follows. O

4.6 Numerical example

We solve the Stokes problem (57) on the unit square 2 = (0,1)? with f = 0 and Dirichlet
boundary conditions inferred from the following exact solution:

u(w,y) = (—exp(z)(ycosy +siny),exp(z)(ysiny)),  p = 2exp(x)sin(y) — po,

where pg € R is chosen so as to ensure SQ p = 0. We consider the three mesh families depicted
in Figure 1. The triangular and Cartesian mesh families correspond, respectively, to the mesh
families 1 and 2 of the FVCAS5 benchmark [30], whereas the (predominantly) hexagonal mesh
family was first introduced in [22].

Figure 2 displays convergence results for the different meshes and polynomial degrees up to 3.
Following (69), we display the ||-| 4-norm of the error in the velocity as well as the L?-norm
of the error both in the velocity and in the pressure. In all the cases, the numerical results
match the order estimates predicted by the theory (in some cases, a slight superconvergence
is observed for the pressure at the lowest orders).

Local computations are based on the linear algebra facilities provided by the boost uBLAS
library [31]. The local linear systems for the computation of the operators D%, Q% and
the local contributions to the bilinear form A are solved using the Cholesky factorization
available in uBLAS; cf. equations (86), (87), and (90) below. The global system (involving
face unknowns only) is solved using SuperLU [17] through the PETSc 3.4 interface [3]. The
tests have been run sequentially on a laptop computer powered by an Intel Core i7-3520 CPU
clocked at 2.90 GHz and equipped with 8 Gb of RAM.
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(i) Hex, ||pn — pn| vs. h

Figure 2: Convergence results for the numerical example of Section 4.6 on the mesh families
of Figure 1. The notation is the same as in Theorems 8 and 9



5 Implementation

In this section we discuss the practical implementation of the primal hybrid method (55) for
the Poisson problem. The implementation of the method (67) for the Stokes equations follows
similar principles and is not detailed here for the sake of brevity.

An essential point consists in selecting appropriate bases for the polynomial spaces on elements
and faces. Particular care is required to make sure that the resulting local problems are well-
conditioned, since the accuracy of the local computations may affect the overall quality of
the approximation. For a given polynomial degree [ € {k, k + 1}, one possibility leading to a
hierarchical basis for [Pfi(T), T € Ty, is to choose the following family of monomial functions:

d
{or=TI& | eri="32 vi<i<d, aeN', |aln<if,  (83)
=1

where @7 denotes the barycenter of T'. The idea is here (i) to express basis functions with
respect to a reference frame local to one element, which ensures that the basis does not depend
on the position of the element and (ii) to scale with respect to a local length scale. Choosing
this length scale equal to hr ensures that the basis functions take values in the interval [—1, 1].
For anisotropic elements, a better option would be to use the inertial frame of reference and,
possibly, to perform orthonormalization, cf. [4]. Similarly, a hierarchical monomial basis can
be defined for the spaces [P'j(F), F € Fj, using the face barycenter xz and the face diameter
hp.

Let, for a given polynomial degree I > 0 and a number of variables n > 0, N} := dim(P,).

For any element T' € T, we assume for the sake of simplicity that a hierarchical basis Béﬁ“ =

{£l}gse k1 (nOt necessarily given by (83)) has been selected for IPZH(T) so that Y is the
= d

constant function on 7" and (p%, )7 = 0 for all 1 <i < N(’;H. While this latter condition
is not verified for general element shapes by the choice (83), one can obtain also in that
case a well-posed local problem (21) for the computation of @fp by removing gp?p, since the
remaining functions vanish at xp. For more general choices, the zero-average condition can
be enforced by a Lagrange multiplier constant over the element. Having assumed that B?’l
is hierarchical, a basis for [Pf;(T) is readily obtained by selecting the first N 5 basis functions.
Additionally, for any face F' € Fj, we denote by B := {‘Pzﬁ}ogkN(’; L a basis for P¥(F) (not

necessarily hierarchical in this case).
The definition of the discrete spaces (10) relies on a generalized notion of DOFs. Solving the

primal hybrid problem (55) amounts to computing the coefficients (u})ogi <Nk for all T € Ty,

and (\%) for all F' € F}, of the following expansions for the local potential unknown
1

o<i<NE_

ur € Ué? and the local Lagrange multiplier Ar € A’fw, respectively:

up = . uheh,  Ap= ). Newh. (84)

N Nk
0<i<Ny O<i<N;_,;

For all T € Ty, we also introduce as intermediate unknowns the algebraic flux DOFs (0%.), <i<N%

and (Jl;p 7)o<i< NE_ s F € Fr, corresponding to the coefficients of the following expansions for
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the components of the local flux unknown (o1, (07F)Fer,) € Sh:

F? SoT = Z U%VsDiT [F]fv S0rTF = Z U%FF‘P% VF e Fr, (85)

I<i<N% 0<i<Nk |

where we have used the fact that (Ve ); ., w18 a basis for the DOF space T% defined by (9)

(the sum starts from 1 to accomodate the zero-average constraint in the definition of T%.).
Clearly, the total number of local flux DOFs in 4. (cf. (10)) is

Ng g = (Nj = 1) + NNy,

with M7 defined in (1).

For a given element T € Ty, the discrete operators DE, Cl%, c’% act on and take values in finite
dimensional spaces, hence they can be represented by matrices once the choice of the bases
for the DOF spaces has been made. Their action on a vector of DOFs then results from right
matrix-vector multiplication. In what follows, we show how to carry out the computation of
such matrices in detail and how to use them to infer the local contribution to the bilinear
form A stemming from the element 7.

5.1 Discrete divergence operator

The discrete divergence operator D% acting on Z[} with values in IP(’;(T) can be represented
by the matrix D of size Nclf X NST with block-structure [DT (DF)FEJ-'T:l induced by the

geometric items to which flux DOFs in X% are associated. According to the definition (17)
of D:kp, the matrix D can be computed as the solution of the following linear system of size
NC’f with NQT right-hand sides:

MpD = Rp, (86)
with block form
Nt NE_1 Nk, Nj_, Nf—1 Nk, Nj_,
N {IMp|| Dy iDg -1 Dry. |=| RpriRom |-+ Rpra,
NE Ng 7

where the system matrix is Mp := [(gpiT, ijf)T] while the right-hand side is such that

0<i,j<Nk’
Rpr = [(VSOZT’V‘P%“)T]o<i<N§,1<j<N5 Rp,r = [((PZT7w%)F]O<i<N§,O<j<N§71 VI € Fr.

When considering orthonormal bases such as, e.g., the ones introduced in [4], the matrix Mp
is unit diagonal and numerical resolution is unnecessary.

25



5.2 Consistent flux reconstruction operator

The consistent flux reconstruction operator €% acting on =¥ with values in V[PSH’O(T)
can be represented by the matrix C of size (N CIZ'H —1) x NQT with the block-structure

[CT (Cr)re ]:T] induced by the geometric items to which flux DOFs in E’% are associated.

According to definition (21a), this requires to solve a linear system of size (Nf“—l) with
N’g’T right-hand sides,
McC = QeD + Re = Re. (87)

The linear system (87) has the following block form:

NE_1 Nk, Nk, NF  Nir  NE-1 Nj, Ni
N1 Mo | | Cpi Caid Crnp | = Qe || D | +] 01 Rem i i Repm,
Nitt N§ 7 Ne.r

with system matrix Mg 1= [(Vapéa, chjT)]KiKNkH and the matrix blocks appearing in the
<i,j<Nj
right-hand side in addition to the matrix D obtained solving (86) are given by

Q¢ = [—(805“7SOJT)T]KKNgH,ogKNgv Rer = [(‘P%“aSD%)F]KKNQ“,OSKN(‘;_I VE € Fr.

5.3 Bilinear form Hr

We are now ready to compute the matrix H of size NQ’T X NQ’T representing the local bilinear
form Hr defined by (26) as R
H=C'R¢ +J, (88)

where the factors appearing in the first term are defined in (87), while the matrix J repre-
senting the stabilization term Jr defined by (28) is given by (the block partitioning is the one
induced by the geometric entity to which flux DOFs are attached):

J= Z C'Qy1,rC— [0 (C'Quz2,F)FeF ] - [0 (C'Qu2,F)Fer ]t +hp O ”””” O
o S | " : | = ’ 0idiag(Mp)rer; |’

where C is defined by (87) while, for all F' € Fr, we have defined the auxiliary matrices

Qu,r = hp[(Vopnre, VSO{F'"TF)F] 1<i,j<NK+1

- i J
QJ,Q,F = hF[(VQOT nrr, SOF)F]lSZ’<N§+1,0<j<N§717

and face mass matrices ) ]
Mp = (P o) Flocijans - (89)

26



5.4 Hybridization

The first step to perform hybridization is to construct the matrix B representing the bilinear
form B defined by (33a), which has the following block form corresponding to the geometric
items to which DOFs in 2% (rows) and W} (columns) are associated:

Nd N(]icfl Nc]l€71
0 -0 |bNkr
C Mp, 1
B=| R bt 0 ;
. ‘ ‘ NpNk [T
A e
| L Ma
Nz

with matrix Rp as in (86), My defined by (89), and
NT]jV,T = Nj + NNy,

corresponding to the number of DOF's in lei

The condition on the Lagrange multipliers in A’fL on boundary faces F' € F;, (cf. (31)) is
enforced via Lagrange multipliers in [Pz_l(F). This choice is reflected by the fact that we
include boundary faces in the definition of the matrix B.

The local contribution to the bilinear form A defined by (53) is finally given by
A = B'H™!B, (90)

which requires the solution of a linear system involving the matrix H defined by (88). Observe
that H1B is in fact the matrix representation of the lifting operator % defined by (41a).

The matrix A has the following block structure induced by the geometric items to which
DOFs in le‘i are attached:

N(;C mTNd 1

AT i Arp | Nk
A= L--—-- A

A%F 3 Arr mTN(IfA

Observing that cell DOF's for a given element T are only linked to the face DOF's (Lagrange
multipliers) attached to the faces in Fr, one can finally obtain a problem in the sole Lagrange
multipliers by computing the Schur complement of App. This requires the numerical inversion
of the symmetric positive-definite matrix App of size N é“ x N (5
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