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Abstract: Enantiomers are chiral objects which di�er by their orientation and are thus referred to as left-
handed and right-handed enantiomers. In applications they mostly occur as so-called racemic compounds
consisting of approximately the same amount of left- and right-handed species which may have completely
di�erent properties. Hence, the separation of left- from right-handed enantiomers is an important issue. Con-
ventional technologies are based on gas or high pressure liquid chromatography, capillary electrophoresis,
or nuclear magnetic resonance, but typically they are slow and require costly chiral media. A new idea for
separation of chiral objects is based on introducing them in certain vorticity patterns, which has been shown
towork in theory for an extremely simpli�ed setting by Kostur et al. [14]. In this paper, we investigatewhether
these ideas can be successfully adapted to a more realistic setup which can be implemented experimentally.
For this purpose, we simulate transport of rigid chiral particles in a �uidic environment by an application
of the �ctitious domain Lagrange multiplier method due to Glowinski et al. [11] which has been designed
to study the motion of rigid particles in carrier �uids. Numerical results are presented which illustrate the
feasibility of enantiomer separation in �ow �elds consisting of pairwise counter-rotating vortices. Moreover,
a �rst experimental setup based on surface acoustic wave generated vorticity patterns on the surface of a
carrier �uid is devised which re�ects the idealized numerical model and gives promising results with respect
to properties of particle propagation. These �ndingsmay lead to a new technology for enantiomer separation
which is both fast and cost-e�ective.
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1 Introduction
Enantiomers are chiral geometric objects where an object is said to be chiral, if it is not identical to its mirror
image. Since theword chiral stems from the Greek ‘χειρ’ whichmeans ‘hand’, one distinguishes enantiomers
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Figure 1. Sketch of the anticipated separation process of L-shaped enantiomers by pairwise counter-rotating vortices (left) and
employed vorticity pattern (right).

by their handedness (right- resp. left-handedness). In chemistry, chirality refers to a molecule which is not
superposable on its mirror image. Compounds consisting of molecules of the same handedness are called
enantiopure or unichiral, whereas compounds consisting of the same amount of right- and left-handed enan-
tiomers are referred to as racemic. The discovery of anorganic molecular chirality goes back to the physicists
Biot and Gay-Lussac as well as the chemist and microbiologist Pasteur, whereas organic molecular chirality
has been discovered by van’t Ho� and LeBel. First models for chiral molecules based on electronic theories
have been developed by Born, Condon, and Hund, whereas more recent models rely on parity violation in
electro-weak quantum chemistry (cf. [20] and the references therein). Since the chemical synthesis of enan-
tiomers usually gives rise to racemic compounds, enantiomer separation plays a signi�cant role in agrochem-
ical, electronic, and pharmaceutical as well as food, �avor and fragrance industries (cf., e.g., [3, 7–9, 15]).
Traditional separation technologies are based on gas or high pressure liquid chromatography [5, 25], capil-
lary electrophoresis [21], or nuclear magnetic resonance [26], but most of them are slow and require costly
chiral media.

A di�erent approach uses the fact that enantiomers drift in micro�ows with a direction depending on
their chirality [5, 16, 18]. In particular, enantiomer separation using a quadrupolar force �eldwas previously
predicted in [14] from a theoretical point of view for simple idealized chiral objects.

This paper is devoted to applying these ideas to a setup which can be developed experimentally and
to testing this setup both numerically and experimentally. The idea is to use a quadrupolar force �eld to
create a two-dimensional �uid �ow (at the surface of a bulk �uid) in which �oating shallow enantiomers are
separated using pairwise counter-rotating vortices. The general separationmechanism is sketched in Figure 1
(left) while the used �ow �eld (without enantiomers) is shown in Figure 1 (right).

The numerical simulation of this separation process at the (two-dimensional) �uid surface is performed
by an adaption of the �ctitious domain Lagrange multiplier method (FDLM) which has been developed by
Glowinski et al. [11] and successfully applied to the sedimentation of rigid bodies in �uid containers [19]
and the numerical simulation of the rheology of red blood cells in microvessels [24]. Using this method, we
perform �uid–structure interaction simulations using L-shaped objects, rigid enantiomers, in a �uid envi-
ronment. In particular, we identify the separation mechanism.

In the experiment, the counter-rotating vortices are actuated by surface acoustic waves (SAWs). More pre-
cisely, the setup consists of a �uid-�lled container put on top of a plate partially coated with a piezoelectric
material and an Inter-Digital Transducer (IDT) appropriately placed in the middle of the bottom of the con-
tainer. Applying a high-frequency signal to the IDT, due to the piezoelectric e�ect surface acoustic waves
(SAWs) are generated that enter the container and create a vorticity pattern consisting of pairwise counter-
rotating vortices. As test enantiomers, we use photoresist made, L-shaped, rigid particles �oating on the sur-
face of the �uid. The experimental results validate the numerical model in terms of transport characteristics.
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The paper is organized as follows: In Section 2, we present the adaption of the FDLM to the separation
of the enantiomers on the surface of the �uid, whereas Section 3 is devoted to the numerical realization of
the FDLM. Section 4 contains a description of the experimental setup and a comparison of the numerical
simulations with experimental data. In Section 5, we provide a documentation of numerical simulations for
the enantiomer separation revealing the separation mechanism. Conclusions are given in Section 6.

2 The Numerical Model Based on the Fictitious Domain Lagrange
Multiplier Method (FDLM)

Based on the work of Kostur et al. [14], we want to investigate whether separation of rigid chiral particles can
be achieved by introducing them into a two-dimensional �ow �eld which is driven by a quadrupolar force
�eld. In view of the experimental setup devised in Section 4, we think of this two-dimensional domain as the
surface of a �uid volume, at which the particles �oat.

For the numerical simulation of the enantiomer separation on the surface Γs of the �uid, the advantage of
the�ctitiousdomainLagrangemultiplier approach is that the computations canbeperformedona�xedmesh
of the spatial domain Γs by imposing distributed Lagrange multipliers to the �uid on the domains occupied
by the enantiomers.

We assume that N moving rigid, L-shaped enantiomers have been injected onto the surface Γs of the
�uid occupying subdomains Bj(t) ⊂ Γs, 1 ≤ j ≤ N, with Bj(t) ∩ Bk(t) = 0, 1 ≤ j ̸= k ≤ N, t ∈ (0, T). We refer to
ρj, Mj, Cj, Θj, vj, and ωj , j ∈ {1, . . . , N}, as the density, mass, center of mass, angle, velocity of the center of
mass, and the angular velocity of the j-th enantiomer. Moreover, Ij , FHj , F

r
j , T

H
j stand for the inertia tensor, the

resultant of the hydrodynamic forces, the arti�cial repulsive forces, and the torque at Cj of the hydrodynamic
forces acting on the j-th enantiomer. In particular, the repulsive forces Frj , 1 ≤ j ≤ N, are given by

Frj = ∑
k ̸=j

FPjk + F∂Γsj ,

where FPjk is the repulsive force between the j-th enantiomer and the other enantiomers and F∂Γsj is the repul-
sive force between the j-th enantiomer and the wall of the �uid container according to

F∂Γsj := ∑
pi∈Pj

∑
pl∈P∂Γs

Fr(pi , pl), (1a)

FPjk := ∑
pi∈Pj

∑
pl∈Pk

Fr(pi , pl), (1b)

Fr(pi , pl) :=
{
{
{

0 if dil > r,
ε−1(pi − pl)/dil(r − dil)2 if dil < r.

(1c)

Here, r > 0 is some distance, called the repulsion length, usually chosen discretization dependent as one
half of the mesh width of the �nite element mesh for the discretization of the Navier–Stokes equations. More-
over, Pj and P∂Γs denote the sets of vertices belonging to the j-th particle and ∂Γs, respectively. In addition
to this, ε is used as a scaling factor and dil := dist(pi , pl) denotes the distance between two points. Setting
Γs(t) := Γs \ ⋃N

j=1 Bj(t), the velocity v and pressure p of the �uid is modeled by the incompressible Navier–
Stokes equations

ρf
∂v
∂t + ρf (v ⋅ ∇)v − η∇2v − ∇p = f , x ∈ Γs(t), t ∈ (0, T), (2a)

∇ ⋅ v = 0, x ∈ Γs(t), t ∈ (0, T), (2b)

with �uid density ρf , dynamic viscosity η, boundary conditions

v(x, t) =
{
{
{

v̂ if x ∈ ∂Γs , t ∈ (0, T),
vj(t) + ωj(t) ×

ÚÚÚÚ→
Cj(t)x if x ∈ ∂Bj(t), t ∈ (0, T),

(2c)
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and initial condition
v(x, 0) = v̂, x ∈ Γs(0). (2d)

Note that
ÚÚÚÚ→
Cj(t)x in (2c) refers to the vector joining Cj(t) and x, and f in (2a) stands for an external force

density.
The motion of the N enantiomers is described by the Newton–Euler equations

Mj
dvj
dt = FHj + Frj ,

dCj
dt = vj(t),

dΘj
dt = ωj , 1 ≤ j ≤ N, (3a)

Ij
dωj

dt = THj +
ÚÚ→
Cjx × Frj , 1 ≤ j ≤ N, (3b)

with initial conditions
vj(0) = v0j , ωj(0) = ω0

j , Cj(0) = C0j , 1 ≤ j ≤ N. (3c)

Rigid bodymotions are imposed to the �uid in Bj(t), 1 ≤ j ≤ N, which is taken care of by distributed Lagrange
multipliers λj(t) ∈ Λj(t) := H1(Bj(t)), 1 ≤ j ≤ N, where here and in the sequel we use standard notation from
Lebesgue and Sobolev space theory [22].

The numerical model based on the FDLM method above therefore amounts to the computation of
v(t) ∈ V := {H1(Γs) | v|∂Γs = v̂}, p(t) ∈ L20(Γs), vj(t), Cj(t) ∈ ℝ2, ωj(t) ∈ ℝ, λj(t) ∈ Λj(t), 1 ≤ j ≤ N, such that
for allw ∈ H1

0(Γs), q ∈ L20(Γs), Y ∈ ℝ2, τ ∈ ℝ, µj ∈ Λj(t), 1 ≤ j ≤ N, there holds

ρf ∫
Γs

(
∂v
∂t + (v ⋅ ∇)v) ⋅w dx − ∫

Γs

p∇ ⋅w dx + η ∫
Γs

∇v : ∇w dx +
N
∑
j=1

(1 −
ρf
ρj

)(Mj
dvj
dt ⋅ Y + Ij

dωj

dt ⋅ τ)

=
N
∑
j=1

∫
Bj(t)

(λj ⋅ (w − Y − τ ×
ÚÚ→
Cjx)) + ρf ∫

Γs

f ⋅w dx +
N
∑
j=1

((FHj + Frj ) ⋅ Y + (THj + Frj ×
ÚÚ→
Cjx) ⋅ τ), (4a)

∫
Γs

q ∇ ⋅ v dx = 0, (4b)

∫
Bj(t)

(µj ⋅ (v − vj − ωj ×
ÚÚ→
Cjx)) dx = 0, 1 ≤ j ≤ N, (4c)

with initial conditions

v(x, 0) =
{
{
{

v̂ if x ∈ Γs(0) \ Bj(0),

v0j + ω
0
j ×

ÚÚ→
C0j x if x ∈ Bj(0),

(4d)

vj(0) = v0j , Cj(0) = C0j , ωj(0) = ω0
j , Bj(0) = B0j , 1 ≤ j ≤ N. (4e)

3 Discretization and Numerical Solution
In this section, we describe the discretization of (2) and (4) in space and time. For the spatial discretization
of the incompressible Navier–Stokes equations (2) we use Taylor–Hood P2/P1 elements [4] with respect to a
quasiuniform simplicial triangulation Th(Γs) of the computational domain Γs. For K ∈ Th(Γs), we denote by
|K| the area of K, by hK the diameter of K, and we set h := max{hK | K ∈ Th(Γs)}. Further, Pk(K), k ∈ ℕ, refers
to the set of polynomials of degree ≤ k on K. The �nite element trial spaces Vh for the velocity and Qh for the
pressure read

Vh := {vh ∈ C(Γ̄s) | vh|K ∈ P2(K)2, K ∈ Th(Γs), vh|∂Γs = v̂h},

Qh := {wh ∈ C(Γ̄s) | wh|K ∈ P1(K), K ∈ Th(Γs), ∫
Γs

wh dx = 0},
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where v̂h is the L2-projection of v̂ onto the space of piecewise polynomials of degree 2 on ∂Γs. We further
refer to

Vh,0 := {vh ∈ C(Γ̄s) | vh|K ∈ P2(K)2, K ∈ Th(Γs), vh|∂Γs = 0}

as the associated �nite element test space for the velocity.
We avoid an additional triangulation Th(Bj(t)), 1 ≤ j ≤ N, of the domains occupied by the enantiomers.

Instead, we use the domains Bh,j(t) ⊂ Th consisting of all K ∈ Th with K ⊂ Bj(t). The �nite element spaces
Λh,j(t) for the distributed Lagrange multipliers are chosen according to

Λh,j(t) := {λh ∈ C(Bj(t)) | λh|K ∈ P2(K)2}, 1 ≤ j ≤ N.

The algorithm requires the computationofvh(t) ∈ Vh, ph(t) ∈ Qh,vj(t), Cj(t) ∈ ℝ2,ωj(t) ∈ ℝ, λh,j(t) ∈ Λh,j(t),
1 ≤ j ≤ N, such that for allwh ∈ Vh,0, qh ∈ Qh, Y ∈ ℝ2, τ ∈ ℝ, µh,j ∈ Λh,j(t), 1 ≤ j ≤ N, it holds

ρf ∫
Γs

(
∂vh
∂t + (vh ⋅ ∇)vh) ⋅wh dx − ∫

Γs

ph∇ ⋅wh dx + η ∫
Γs

∇vh : ∇wh dx +
N
∑
j=1

(1 −
ρf
ρj

)(Mj
dvj
dt ⋅ Y + Ij

dωj

dt ⋅ τ)

=
N
∑
j=1

∫
Bh,j(t)

(λh,j ⋅ (wh − Y − τ ×
ÚÚ→
Cjx)) dx + ρf ∫

Γs

f ⋅wh dx +
N
∑
j=1

((FHj + Frj ) ⋅ Y + (THj + Frj ×
ÚÚ→
Cjx) ⋅ τ), (5a)

∫
Γs

qh ∇ ⋅ vh dx = 0, (5b)

∫
Bh,j(t)

(µh,j ⋅ (vh − vj − ωj ×
ÚÚ→
Cjx)) dx = 0, 1 ≤ j ≤ N, (5c)

with initial conditions

vh(x, 0) =
{
{
{

v̂h if x ∈ Γs(0) \ Bj(0),

v0j + ω
0
j ×

ÚÚ→
C0j x if x ∈ Bj(0),

(5d)

vj(0) = v0j , Cj(0) = C0j , ωj(0) = ω0
j , Bj(0) = B0j , 1 ≤ j ≤ N, (5e)

where v̂h is the L2-projection of v̂ onto Vh.
For the discretization in time we use the Yanenko–Marchuk fractional step method [17] which gives

rise to the solution of elliptic subproblems that are taken care of by the conjugate gradient method. We as-
sume a partition {0 := t0 < t1 < ⋅ ⋅ ⋅ < tN := T} of the time interval [0, T] into subintervals [tn−1, tn] of length
∆tn := tn − tn−1 and denote by xn an approximation of the variable x at time tn. In order to propagate from
time tn−1 to tn, we proceed in three major steps similar to [11]. First, we solve the �uid motion part of (5a)
by using the splitting method proposed by Chorin and Temam [6, 23]. This means we compute a tentative
velocity ṽh ∈ Vh such that for allwh ∈ Vh,0 there holds

ρf ∫
Γs

((ṽh − vn−1h )/∆tn) ⋅wh dx + ρf ∫
Γs

(∇vn−1h ⋅ vn−1h ,wh) dx + η ∫
Γs

∇vn−1h ⋅ ∇wh dx = ρf ∫
Γs

f ⋅wh dx.

For proper iterative solutions vn−1/2h ∈ Vh and pnh ∈ Qh we have to project the tentative velocity ṽh onto the
space of divergence free vector �elds. Therefore, we solve the following equations:

∆tn ∫
Γs

∇pnh ⋅ ∇qh dx = −∫
Γs

(∇ ⋅ ṽ qh),

∫
Γs

vn−1/2h wh dx = ∫
Γs

ṽh ⋅wh dx − ∆tn ∫
Γs

∇pnh ⋅wh dx,

which have to be satis�ed for allwh ∈ Vh,0 and qh ∈ Qh. In the next step, we take care of the �uid-particle in-
teractionwhich can bewritten as a subproblemof (5) such that for allwh ∈ Vh,0,Y ∈ ℝ2, τ ∈ ℝ, µh,j ∈ Λh,j(t),
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1 ≤ j ≤ N, it holds

ρf ∫
Γs

∂vh
∂t dx +

N
∑
j=1

(1 −
ρf
ρj

)(Mj
dvj
dt ⋅ Y + Ij

dωj

dt ⋅ τ) =
N
∑
j=1

∫
Bh,j(t)

(λh,j ⋅ (wh − Y − τ ×
ÚÚ→
Cjx)) dx,

∫
Bh,j(t)

(µh,j ⋅ (vh − vj − ωj ×
ÚÚ→
Cjx)) dx = 0, 1 ≤ j ≤ N,

Following [11] we use the conjugate gradient algorithm for solving this problem. The initialization step s = 0
is:

ρf ∫
Γs

vinith − vn−1/2h
∆t ⋅wh dx =

N
∑
j=1

∫
Bn−1h,j

λn−1h,j ⋅wh dx, (6a)

(1 −
ρf
ρj

)Mj
vinitj − vn−1j

∆t ⋅ Y = − ∫
Bn−1h,j

λn−1h,j ⋅ Y dx, 1 ≤ j ≤ N, (6b)

(1 −
ρf
ρj

)Ij
ωinit
j − ωn−1

j

∆t ⋅ τ = − ∫
Bn−1h,j

λn−1h,j ⋅ τ ×
ÚÚ→
Cjx dx, 1 ≤ j ≤ N. (6c)

Then, for 1 ≤ j ≤ N we compute

∫
Bn−1h,j

µh,j ⋅ ginit
h,j dx = ∫

Bn−1h,j

(µh,j ⋅ (vinith − vinitj − ωinit
j ×

ÚÚ→
Cjx)) dx = 0, (6d)

and set zinith,j = ginit
h,j . For the following steps s > 0,we assume λs−1h,j , v

s−1
h , vs−1j ,ωs−1

j , zs−1h,j and gs−1h,j to be known.
In order to obtain λsh,j, v

s
h, v

s
j , ω

s
j , z

s
h,j and g

s
h,j by a descent step, we need to solve

ρf ∫
Γs

vdesch
∆t ⋅wh dx =

N
∑
j=1

∫
Bn−1h,j

zs−1h,j ⋅wh dx, (7a)

(1 −
ρf
ρj

)Mj
vdescj

∆t ⋅ Y = − ∫
Bn−1h,j

zs−1h,j ⋅ Y dx, 1 ≤ j ≤ N, (7b)

(1 −
ρf
ρj

)Ij
ωdesc
j

∆t ⋅ τ = − ∫
Bn−1h,j

zs−1h,j ⋅ τ ×
ÚÚ→
Cjx dx, 1 ≤ j ≤ N, (7c)

and then
∫
Bn−1h,j

µh,j ⋅ gdesc
h,j dx = ∫

Bn−1h,j

(µh,j ⋅ (vdesch − vdescj − ωdesc
j ×

ÚÚ→
Cjx)) dx = 0, 1 ≤ j ≤ N, (7d)

Finally, we update our variables by computing

ρs−1j =
∫Bn−1h,j

gs−1h,j ⋅ gs−1h,j dx

∫Bn−1h,j
(zs−1h,j ⋅ (vdesch − vdescj − ωdesc

j ×
ÚÚ→
Cjx)) dx

, 1 ≤ j ≤ N, (7e)

and setting

λsh,j = λ
s−1
h,j − ρs−1j zs−1h,j ,

vsh = vs−1h − ρs−1j vdesch ,

vsj = vs−1j − ρs−1j vdescj ,

ωs
j = ω

s−1
j − ρs−1j ωdesc

j ,

gsh,j = gs−1j − ρs−1j gdesc
j .
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The last step of the conjugate gradient algorithm is to test convergence and to construct a new descent direc-
tion. To this end, if

∫Bn−1h,j
gsh,j , g

s
h,j dx

∫Bn−1h,j
ginit
h,j , g

init
h,j dx

≤ ϵtol , 1 ≤ j ≤ N, (7f)

we choose vnh = vsh and λ
n
h,j = λ

s
h,j, v

n−1/2
j = vsj , ω

n−1/2
j = ωs

j for 1 ≤ j ≤ N. Otherwise, we compute

ãs−1j =
∫Bn−1h,j

gsh,j , g
s
h,j dx

∫Bn−1h,j
gs−1h,j , g

s−1
h,j dx

, 1 ≤ j ≤ N, (7g)

and set
zsh,j = gs−1j − ãs−1j zs−1j .

Finally, we set s ⇝ s + 1 and go back to the initialization step.
The last step of the splitting method is to update the particle. This is done by

Cnj = Cn−1j + ∆t vnj , (8a)

Θnj = Θn−1j + ∆tωn
j , (8b)

vnj = vn−1/2j + ∆t M−1j (FHj + Frj ), (8c)

ωn
j = ωn−1/2

j + ∆t I−1j (THj + (
ÚÚ→
Cnj x × Frj )). (8d)

4 Experimental Setup and Model Validation
The experimental setup consists of a �uid-�lled container with an immersed SAW microchip at the ground.
The SAW microchip is coated with a piezoelectric material such as lithium niobate (LiNbO3) and features an
Inter-Digital Transducer (IDT) placed at the center of the bottom of the container with its aperture pointing
upwards (cf. Figure 2). Applying a high-frequency signal to the IDT, acoustic waves are generated that enter
the �uid in the container and create a steady-state �ow pattern at the �uid surface consisting of four counter-
rotating vortices (cf. Figure 3). We note that the modeling, simulation, and optimization of piezoelectrically
agitated acoustic streaming has been considered in [1, 2, 10, 13].

4.1 Generation of Pairwise Counter-Rotating Vortices

For the IDT, as piezoelectric material we have used 128∘ rotated YX lithium niobate (LiNbO3). The operating
frequency f of the IDT has been chosen according to fIDT = 1.42 ⋅ 102 MHz resulting in a maximum velocity
vmax = 2.0 ⋅ 10−3 m/s on top of thewater bulkwith height 6.0 ⋅ 10−4 m. The resulting SAWgenerated vorticity
patterns consist of four pairwise counter-rotating vortices at the surface of the �uid, see Figure 3.

4.2 Production of L-shaped Enantiomers

For the production of the photoresist L-shaped enantiomers we have followed the protocol described by [12]
with somemodi�cations. Thewhole process ofmanufacturing is shown in Figure 4 and thenumbers in paren-
thesis in the following text also refer to that �gure.

First a sacri�cial layer of omnicoat is spincoated on a silicon wafer (2). In a second spin coating process
SU8-2 photoresist laden with 0.5 mg/ml Nile Red is spun onto the omnicoat layer at 3000 rounds per second
achieving a �lm thickness of about 1.5 µm (3). After soft baking the photoresist it is exposed using a mask
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Figure 2. Side-view of the experimental setting (shown
without water). The setup is mounted on a circuit board
consisting of the fluid container and the IDT with sub-
strate layer in the middle on the bottom of the water
bulk.

Figure 3. Left: Two-dimensional SAW generated surface streaming pro�le. The optical path is slightly tilted to gain a larger �eld
of view. Hydrophobic coated beads of 1 µm diameter were used as tracer particles to visualize the fluid flow on the surface. The
image is a superposition of micrographs and shows parts of the four quadrant flows induced by the chip. Right: Micrograph
showing two of the counter-rotating vortices. Diagonally opposing vortices always have the same direction of rotation.

Figure 4. Schematic representation of fabrication of the photoresist par-
ticles. 1) Clean silicon wafer. 2) A sacri�cial layer of omnicoat is applied.
3) SU8-2 is applied. 4) Photoresist is partially exposed. 5) Unexposed
SU8-2 is developed. 6) Surface is treated with silane. 7) Lift-o�. After-
wards particles are transferred onto the water surface and float stably in
a well de�ned orientation.

aligner and then baked a second time (4). After the substrate has cooled to room temperature the unexposed
photoresist is developed using MR-DEV300 leaving the desired particles attached to the sacri�cial layer of
omnicoat (5). In order to render the particles hydrophobic on one side a layer of Trichloro(octadecyl)silane
(OTS) is applied by spin coating (6). To this end 10 µl OTS are dissolved in 3ml n-hexane and spun onto the
particles at 1000 rpm for 10 seconds. The OTS solution has to be applied after the spin coater has reached
its maximum rate of revolution since n-hexane evaporates very quickly thus leaving the OTS scattered on the
surface inhomogeneously distributed if the spinning rate is too low. The layer of OTS renders the particles
highly hydrophobic on the top side. After these steps the particles are still �rmly attached to the substrate
and can be stored in a dark ambient until use to prevent bleaching of the �uorescent dye. To remove the
particles from the wafer, a lift-o� procedure is performed using omnicoat developer. The wafer is immersed
in the solution until the omnicoat layer has been su�ciently dissolvedwhich takes approximately 30 seconds
depending on the geometry of the sample. The wafer is then transferred to the experimental setup and the
detached particles can be washed o� using pure water. Due to the top side of the particles being considerably
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Category/Name Symbol Unit Value

Domain and Discretization
Length lΓs m 8.4 ⋅ 10−3

Grid Size h m 2.1 ⋅ 10−5

Time Step Size ∆ t s 1.0 ⋅ 10−2

Fluid (Water 25∘C)
Density ρ kg/m3 1.0 ⋅ 10+3

Dynamic Viscosity η Pa ⋅ s 1.0 ⋅ 10−3

Maximum Velocity vmax m/s 2.0 ⋅ 10−3

Square Particle
Length lS m 1.0 ⋅ 10−4

Density ρS kg/m3 2.0 ⋅ 10+3

Center of Mass CS m (8.6, 2.8)T ⋅ 10−4

Velocity vS m/s (−1.8, −3.5)T ⋅ 10−4

Angle of Rotation ΘS rad 2.0
Angular Velocity ωS rad/s 0.0

L-Shaped Particle
Length lL m 2.3 ⋅ 10−4

Density ρL kg/m3 2.0 ⋅ 10+3

Center of Mass CL m (4.0, 2.3)T ⋅ 10−4

Velocity vL m/s (−1.3, −4.4)T ⋅ 10−4

Angle of Rotation ΘL rad 5.3
Angular Velocity ωL rad/s 0.0

Table 1. Domain, discretization, fluid and particle related constants and parameters for simulations validating the quadrupolar
force density.

more hydrophobic than the bottom side the orientation of the particles is conserved during the lift o� process
in most cases and the particles �oat stably on the surface of the �uid.

4.3 Model Validation: Comparison with Experimental Measurements

In this section, we perform numerical simulations using the previously described �ctitious domain Lagrange
multiplier method. Here, we work with a quadrupolar force density as generating source of the �uid vorticity
pattern consisting of pairwise counter-rotating vortices. Following [14], this source is given by

f := −η∆v̂, v̂ = (v̂1, v̂2)T , v̂1 = ∂Ψ/∂x1, v̂2 = −∂Ψ/∂x2 (9)

in terms of the stream function

Ψ(x1, x2) = vmax
lΓs√3
π

sin(πx1/lΓs ) sin(πx2/lΓs )
(2 − cos(πx1/lΓs )) (2 − cos(πx2/lΓs ))

,

where vmax denotes the maximum velocity of the vector �eld.
A qualitative comparison shows that the SAW generated velocity �eld is close to the velocity �eld pro-

duced by the quadrupolar force �eld, see Figure 5. For model validation and veri�cation of the numerical
simulations, we have compared the trajectories of an L-shaped and a square shaped particle in the upper
right quadrant of the surface of the �uid (counter-clockwise rotating vortex) obtained in an experiment and
by numerical simulation. The corresponding numerical parameters are shown in Table 1. Figure 6 (left) dis-
plays the trajectories of the square shaped particle (red line) and the L-shaped particle (yellow line) in the
experiment, whereas Figure 6 (right) shows the corresponding trajectories computed by the application of
the FDLM using the data of the experimental set up. For a more quantitative comparison, we refer to Figure 7
which shows almost perfect agreement between experimental measurement and numerical simulation of the
angle of rotation of the square shaped particle as a function of time.
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Figure 5. Left: Experimental SAW generated surface streaming pro�le with operating frequency fIDT = 1.42 ⋅ 102 MHz of the IDT.
Right: Simulated vorticity pattern generated by a quadrupolar force �eld with vmax(fIDT) = 2.0 ⋅ 10−3 m/s.

Figure 6. Left: Experimentally measured trajectories of a square shaped particle (red line) and an L-shaped particle (yellow
line). Right: Computed trajectories based on the data of the experimental set up.

Figure 7. Angle of rotation of the particles as a function of time
from Figure 6 (experiment: red dots, simulation: green line).

5 Numerical Simulation of Enantiomer Separation
Using the quadrupolar force density (9) we were able to reveal two qualitatively distinct cases of enantiomer
separation in simulation. First, in Figure 8 we see the motion of a right-handed and a left-handed L-shaped
enantiomer initially placed slightly left of themiddle between two counter-rotating vortices in the lower quad-
rants of the surface of the �uid. As can be seen in Figure 8 (left), the right-handed enantiomer gets attracted
by the counter-clockwise rotating vortex in the lower left quadrant. On the other hand, as shown in Figure 8
(right), the left-handed enantiomer follows a trajectory that leads to a path around the center of the clockwise
rotating vortex in the upper left quadrant.

Likewise, Figure 9 shows that a right-handed (left-handed) enantiomer initially placed in the middle be-
tween the two counter-rotating vortices gets attracted by the counter-clockwise (clockwise) rotating vortex
in the upper right (upper left) quadrant. In summary, right-handed (left-handed) enantiomers are attracted
by counter-clockwise (clockwise) rotating vortices such that a perfect separation occurs provided the enan-
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Figure 8. Enantiomer separation of a right-handed (left) and left-handed (right) L-shaped enantiomer at the outgoing veloc-
ity streamlines. The right-handed L-shaped particle follows the vortex rotating counter-clockwise in the lower left quadrant
whereas the left-handed L-shaped particle follows the vortex rotating clockwise in the upper left quadrant.

Figure 9. Enantiomer separation of a right-handed (left) and left-handed (right) L-shaped enantiomer at the central streamlines.
The right-handed L-shaped particle follows the vortex rotating counter-clockwise in the upper right quadrant whereas the left-
handed L-shaped particle follows the vortex rotating clockwise in the upper left quadrant.

tiomers are placed approximately in the middle between counter-rotating vortices. This general behavior is
in accordance with the predictions for the highly idealized setting investigated in [14].

6 Conclusions
We have considered the numerical simulation of surface acoustic wave actuated separation of rigid enan-
tiomers by the �ctitious domain Lagrange multiplier method. The surface acoustic waves are generated by
an Inter-Digital Transducer and create a �ow pattern at the surface of the �uidwhich consists of four pairwise
counter-rotating vortices. Enantiomers that are injectedonto the surface approximately in themiddlebetween
two counter-rotating vortices are separated according to their handedness. As amathematicalmodel,wehave
used a coupled system in two space dimensions consisting of the incompressibleNavier-Stokes equations and
the rigid body equations of the immersed particleswhich are enforced by appropriately chosen Lagrangemul-
tipliers. Amodel validation has been performed by comparing experimental data and the results of numerical
simulations. The separationmechanism is such that left-handed (right-handed) enantiomers are attracted by
clockwise rotating (counter-clockwise rotating) vortices.
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