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1 Introduction

Initial-boundary value problems for parabolic equations describe various physical phenomena such as heat
conduction, di�usion, chemical reactions, biological processes, and transient electromagnetical �elds. The
numerical simulation of these phenomena is usually based on time-integrationmethods together with a suit-
able space discretization, see, e.g., the well-known monograph [33] and references therein. In many prac-
tically interesting cases, for instance, in electromagnetics and chemistry, the processes are time-periodic,
see, e.g., [1]. In this case, the initial condition must be replaced by the time-periodicity condition. Standard
time-integrationmethodsmay be less e�cient thanmethods based on approximations in terms of Fourier se-
ries. This paper deals with this type of approximations. In fact, it is devoted to the a posteriori error analysis
of parabolic time-periodic boundary value problems in connection with their multiharmonic �nite element
discretization. More precisely, all functions are expanded into Fourier series, approximations are presented
by truncated series and the Fourier coe�cients are approximated by the �nite element method (FEM). This
so-called multiharmonic FEM (MhFEM) or harmonic-balanced FEM is a promising alternative to the exist-
ing temporal discretization schemes combined with the FEM, and is more on the lines of combining Laplace
transformation tools with the FEM as used by Thomée and his collaborators for linear parabolic problems in
(0,∞), see, e.g., [29, 30].

The MhFEM was successfully used for the simulation of electromagnetic devices described by nonlinear
eddy current problems with harmonic excitations, see, e.g., [2, 3, 7, 35] and references therein. Later, this
discretization technique has been applied to linear time-periodic parabolic boundary value and optimal con-
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trol problems [12, 13, 19, 22, 34] and to linear time-periodic eddy current problems and the corresponding
optimal control problems [14–16]. In this framework, we deduce a posteriori error estimates which provide
guaranteed and fully computable upper bounds (majorants) of the respective errors. To the best of our knowl-
edge these estimates are new. Our approach is based on the works of Repin, see, e.g., the papers on parabolic
problems [10, 25] aswell as on optimal control problems [8, 9], the books [23, 26], and the references therein.
In particular, our a posteriori error analysis uses the techniques close to the one suggested in [25], but the
analysis contains essential changes. In the MhFEM setting, we are able to establish inf-sup and sup-sup con-
ditions fromwhich we deduce existence and uniqueness of solutions to parabolic time-periodic problems by
applying the Babuška–Aziz theorem. Then, we deduce the a posteriori estimates, which are very well adapted
to the nature of the multiharmonic solution because they can judge on the quality of approximation for any
particular harmonic. This is important for linear time-periodic parabolic problems, where the computations
of the Fourier coe�cients corresponding to every single mode k = 0, 1, . . . are decoupled. Hence, we can use
di�erent meshes independently generated by adaptive �nite element approximations to the Fourier coe�-
cients for di�erent modes.

Let usmention here that themajorant suggests a clear way how to improve the reconstruction of the �ux,
which is important for parabolic time-periodic problems as well. First, we can detect the situation where the
improvement is indeed necessary because there the norm of the error in the equilibrium equation dominates
the majorant, and second, we have di�erent e�cient minimization procedures able to e�ciently minimize
this term and improve the balance with the other terms. Procedures of such a type are well studied for elliptic
partial di�erential equations, see, e.g., [23], and can be used for multiharmonic approximations with min-
imal modi�cations. Moreover, it is well veri�ed that under certain (non-restrictive) assumptions for elliptic
problems the term of themajorant corresponding to the error in the constitutive relations is a good and robust
indicator of local errors, see [27], and that this term tends to the exact error if a minimizing sequence of the
majorant is provided, see [26]. All the same holds for the spatial parts of the multiharmonic approximations
of the �ux. This is the reason why we indeed have good error indicators for possible mesh adaptations. In
order to �nally realize the adaptivity in time, we then �lter out the Fourier coe�cients, which aremost impor-
tant for the numerical solution of the problem, by prescribing certain bounds. Altogether, such an adaptive
multiharmonic �nite element method (AMhFEM) yields complete adaptivity in space and time. This work is a
starting point for the construction of AMhFEM, which utilizes the above principles. However, in this work we
are not focused onmesh adaptation issues. This will be the subject of a separate paper. Our goal is to provide
a detailed a posteriori error analysis of a parabolic time-periodic boundary value problem in the context of
the MhFEM leading to guaranteed, computable upper bounds with e�ciency indices close to one.

The paper is organized as follows. In Section 2, we discuss a space-time variational formulation for
parabolic time-periodic boundary value problems that forms the basis of theMhFEM considered in Section 3.
Section 4 is devoted to the derivation of functional type a posteriori error estimates adapted to problems in
question. Finally, in Section 5, we discuss some implementation issues and present �rst numerical results.

2 A Parabolic Time-Periodic Boundary Value Problem

Let QT := Ω × (0, T) denote the space-time cylinder and ΣT := Γ × (0, T) its mantle boundary, where Ω ⊂ ℝd,
d ∈ {1, 2, 3} is a bounded Lipschitz domain with the boundary Γ, and (0, T) is a given time interval. The
following parabolic time-periodic boundary value problem is considered: Find u such that

σ(x) ∂tu(x, t) − div(ν(x) ∇u(x, t)) = f(x, t), (x, t) ∈ QT , (2.1)
u(x, t) = 0, (x, t) ∈ ΣT , (2.2)

u(x, 0) = u(x, T), x ∈ Ω, (2.3)

where f(x, t) is a given function in L2(QT), and σ(⋅) and ν(⋅) satisfy the assumptions

0 < σ ≤ σ(x) ≤ σ, 0 < ν ≤ ν(x) ≤ ν, x ∈ Ω. (2.4)
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In order to study the parabolic time-periodic boundary value problem (2.1)–(2.3), we will derive a space-
time variational formulation in spaces of functions de�ned in the space-time cylinder QT using the approach
similar to the one used by Ladyzhenskaya et al. [20, 21]. Let the Sobolev spaces

H1,0(QT) = {u ∈ L2(QT) : ∇u ∈ [L2(QT)]d},
H1,1(QT) = {u ∈ L2(QT) : ∇u ∈ [L2(QT)]d , ∂tu ∈ L2(QT)}

be equipped with the norms

‖u‖H1,0(QT ) := ( ∫
QT

(u(x, t)2 + |∇u(x, t)|2) dx dt)
1/2
,

‖u‖H1,1(QT ) := ( ∫
QT

(u(x, t)2 + |∇u(x, t)|2 + |∂tu(x, t)|2) dx dt)
1/2
,

respectively, where ∇ = ∇x and ∂t denote the generalized derivatives with respect to x and t. The space

H0,1(QT) = {u ∈ L2(QT) : ∂tu ∈ L2(QT)}

is de�ned analogously. Furthermore, the boundary and time-periodicity conditions are included by de�ning
the spaces

H1,0
0 (QT) = {u ∈ H1,0(QT) : u = 0 on ΣT},

H1,1
0 (QT) = {u ∈ H1,1(QT) : u = 0 on ΣT},

H0,1
per (QT) = {u ∈ H0,1(QT) : u(x, 0) = u(x, T) for almost all x ∈ Ω},

H1,1
per (QT) = {u ∈ H1,1(QT) : u(x, 0) = u(x, T) for almost all x ∈ Ω},

H1,1
0,per(QT) = {u ∈ H1,1

0 (QT) : u(x, 0) = u(x, T) for almost all x ∈ Ω}.

For ease of notation, all inner products and norms in L2 are denoted by (⋅, ⋅) and ‖⋅‖, if they are related to
the whole space-time domain QT . If they are associated with the spatial domain Ω, then we write (⋅, ⋅)Ω and
‖⋅‖Ω, which denote the standard inner products and norms of the space L2(Ω). The symbols (⋅, ⋅)1,Ω and ‖⋅‖1,Ω
denote the standard inner products and norms of H1(Ω).

The functions used in our analysis will typically be presented as Fourier series, i.e.,

v(x, t) = vc0(x) +
∞

∑
k=1

(vck(x) cos(kωt) + v
s
k(x) sin(kωt)) (2.5)

with the Fourier coe�cients

vc0(x) =
1
T

T

∫
0

v(x, t) dt, vck(x) =
2
T

T

∫
0

v(x, t) cos(kωt) dt, vsk(x) =
2
T

T

∫
0

v(x, t) sin(kωt) dt,

where T and ω = 2π/T denote the periodicity and the frequency, respectively. Moreover, we de�ne additional
spaces of functions, see [22], in order to derive a symmetric variational formulation of problem (2.1)–(2.3).
The function spaces H0,1/2

per (QT), H1,1/2
per (QT) and H1,1/2

0,per (QT) are de�ned by

H0,1/2
per (QT) = {u ∈ L2(QT) : ‖∂1/2t u‖ < ∞},

H1,1/2
per (QT) = {u ∈ H1,0(QT) : ‖∂1/2t u‖ < ∞},

H1,1/2
0,per (QT) = {u ∈ H1,1/2

per (QT) : u = 0 on ΣT},

respectively, where ‖∂1/2t u‖ is de�ned in the Fourier space by the relation

‖∂1/2t u‖2 := |u|2H0,1/2(QT ) := T
2

∞

∑
k=1

kω‖uk‖2Ω , (2.6)
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where uk := (uck , u
s
k)
T for all k ∈ ℕ. These spaces are equipped with the scalar products

(∂1/2t u, ∂1/2t v) := T
2

∞

∑
k=1

kω(uk , vk)Ω , (σ∂1/2t u, ∂1/2t v) := T
2

∞

∑
k=1

kω(σuk , vk)Ω . (2.7)

The seminorm and the norm of the space H1,1/2
per (QT) are de�ned by the relations

|u|2H1,1/2(QT ) := ‖∇u‖2 + ‖∂1/2t u‖2 = T ‖∇uc0‖
2
Ω +

T
2

∞

∑
k=1

(kω‖uk‖2Ω + ‖∇uk‖2Ω),

‖u‖2H1,1/2(QT ) := ‖u‖2 + |u|2H1,1/2(QT ) = T (‖uc0‖
2
Ω + ‖∇uc0‖

2
Ω) +

T
2

∞

∑
k=1

((1 + kω)‖uk‖2Ω + ‖∇uk‖2Ω),

respectively. Furthermore, we de�ne

v⊥(x, t) :=
∞

∑
k=1

(−vck(x) sin(kωt) + v
s
k(x) cos(kωt)) =

∞

∑
k=1

(vsk(x), −v
c
k(x))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=:(−v⊥k )T ⋅(
cos(kωt)
sin(kωt)

) . (2.8)

Note that the relation ‖u⊥k ‖
2
Ω = ‖uk‖2Ω is valid.

Lemma 2.1. The identities

(σ∂1/2t u, ∂1/2t v) = (σ∂tu, v⊥) and (σ∂1/2t u, ∂1/2t v⊥) = (σ∂tu, v) (2.9)

are valid for all u ∈ H0,1
per (QT) and v ∈ H

0,1/2
per (QT).

Proof. Using the de�nition of the σ-weighted scalar product in (2.7) and inserting the Fourier expansions of

∂tu(x, t) :=
∞

∑
k=1

(kω usk(x) cos(kωt) − kω u
c
k(x) sin(kωt))

as well as (2.8) into the inner products, we obtain

(σ∂1/2t u, ∂1/2t v) = T
2

∞

∑
k=1

kω(σuk , vk)Ω =
T
2

∞

∑
k=1

kω(σu⊥k , v
⊥
k )Ω =

T
2

∞

∑
k=1

kω(σ(−u⊥k ), (−v
⊥
k ))Ω = (σ∂tu, v⊥)

with u⊥k = (−usk , u
c
k)
T for all k ∈ ℕ, and

(σ∂1/2t u, ∂1/2t v⊥) = T
2

∞

∑
k=1

kω(σuk , v⊥k )Ω =
T
2

∞

∑
k=1

kω(σ(−u⊥k ), vk)Ω = (σ∂tu, v).

Hence, the following orthogonality relations hold:

{
{
{

(σ∂tu, u) = 0 and (σu⊥, u) = 0 for all u ∈ H0,1
per (QT),

(σ∂1/2t u, ∂1/2t u⊥) = 0 and (ν∇u, ∇u⊥) = 0 for all u ∈ H1,1/2
per (QT),

(2.10)

where, e.g.,

(ν∇u, ∇u⊥) =
∞

∑
k=1

(ν∇uk , ∇u⊥k )Ω = 0 for all u ∈ H1,1/2
per (QT)

with ∇uk := ((∇uck)
T , (∇usk)

T)T and ∇u⊥k := (−(∇usk)
T , (∇uck)

T)T for all k ∈ ℕ. The identity

T

∫
0

ξ ∂1/2t v⊥ dt = −
T

∫
0

∂1/2t ξ⊥ v dt for all ξ, v ∈ H0,1/2
per (QT)

is also de�ned in the Fourier space yielding the de�nitions

(ξ, ∂1/2t v) := T
2

∞

∑
k=1

(kω)1/2(ξ k , vk)Ω
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as well as
∂1/2t ξ(x, t) :=

∞

∑
k=1

(kω)1/2(ξ ck (x) cos(kωt) + ξ
s
k(x) sin(kωt))

and
∂1/2t ξ⊥(x, t) :=

∞

∑
k=1

(kω)1/2(−ξ sk(x) cos(kωt) + ξ
c
k (x) sin(kωt)).

Hence,

(ξ, ∂1/2t v⊥) = T
2

∞

∑
k=1

(kω)1/2(ξ k , v⊥k )Ω = −(∂1/2t ξ, v⊥),

(ξ, ∂1/2t v⊥) = T
2

∞

∑
k=1

(kω)1/2(ξ k , v⊥k )Ω =
T
2

∞

∑
k=1

(kω)1/2(−ξ⊥k , vk)Ω

= −
T
2

∞

∑
k=1

(kω)1/2(ξ⊥k , vk)Ω = −(∂1/2t ξ⊥, v)

and all these identities coincide with the identities (2.9) in Lemma 2.1.
We note that for functions presented in terms of Fourier series the standard Friedrichs inequality holds

in the form

‖∇u‖2 = ∫
QT

|∇u|2 dx dt = T ‖∇uc0‖
2
Ω +

T
2

∞

∑
k=1

‖∇uk‖2Ω ≥
1
C2F

(T ‖uc0‖
2
Ω +

T
2

∞

∑
k=1

‖uk‖2Ω) =
1
C2F

‖u‖2. (2.11)

In order to derive the space-time variational formulation of the parabolic time-periodic problem (2.1)–
(2.3), the parabolic partial di�erential equation (2.1) is multiplied by a test function v ∈ H1,1/2

0,per (QT), inte-
grated over the space-time cylinder QT , and after integration by parts with respect to the space and time vari-
ables, the following “symmetric” space-time variational formulation of the parabolic time-periodic boundary
value problem (2.1)–(2.3) is obtained: Given f ∈ L2(QT), �nd u ∈ H1,1/2

0,per (QT) such that

a(u, v) = ∫
QT

f(x, t) v(x, t) dx dt for all v ∈ H1,1/2
0,per (QT) (2.12)

with the space-time bilinear form

a(u, v) = ∫
QT

(σ(x)∂1/2t u(x, t) ∂1/2t v⊥(x, t) + ν(x)∇u(x, t) ⋅ ∇v(x, t)) dx dt, (2.13)

where all functions are given in their Fourier series expansion in time, i.e., everything has to be understood in
the sense of (2.6) and (2.7). In particular, this Fourier series approachmakes sense due to the time-periodicity
condition (for u and v).

3 Multiharmonic Finite Element Approximation

Inserting the Fourier series ansatz (2.5) into (2.12) and exploiting the orthogonality of the functions cos(kωt)
and sin(kωt) with respect to the inner product (⋅, ⋅)L2(0,T), we arrive at the following variational formulation
corresponding to every single mode k ∈ ℕ: Given f k ∈ (L2(Ω))2, �nd uk ∈ V := V × V = (H1

0(Ω))2 such that

∫
Ω

(ν(x)∇uk(x) ⋅ ∇vk(x) + kω σ(x)uk(x) ⋅ v⊥k (x)) dx = ∫
Ω

f k(x) ⋅ vk(x) dx (3.1)

for all vk ∈ V. In the case k = 0, we obtain the following variational formulation: Given f c0 ∈ L2(Ω), �nd
uc0 ∈ V = H1

0(Ω) such that
∫
Ω

ν(x)∇uc0(x) ⋅ ∇v
c
0(x) dx = ∫

Ω

f c0 (x) v
c
0(x) dx (3.2)
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for all vc0 ∈ V. The variational problems (3.1) and (3.2) have a unique solution due to the Babuška–Aziz
theorem, see [34]. In order to solve these problems numerically, the Fourier series are truncated at a
�nite index N and the unknown Fourier coe�cients uk = (uck , u

s
k)
T ∈ V are approximated by �nite el-

ement functions ukh = (uckh , u
s
kh)

T ∈ Vh = Vh × Vh ⊂ V. Here, Vh = span{φ1, . . . , φn} with the standard
nodal basis {φi(x) = φih(x) : i = 1, 2, . . . , nh}, and h denotes the usual discretization parameter such that
n = nh = dimVh = O(h−d). We use continuous, piecewise linear functions on the �nite elements on a regular
triangulation Th to construct the �nite element subspace Vh and its basis, see, e.g., [4, 6, 11, 32]. However,
the analysis can also be applied to more general higher-order �nite elements, see, for instance, [36] and the
monographs [6, 17, 31]. Under the assumptions (2.4), we then obtain the following saddle point system by
using continuous, piecewise linear �nite elements:

(
kωMh,σ −Kh,ν
−Kh,ν −kωMh,σ

)(
usk
uck

) = (
−f ck
−f sk

) . (3.3)

Equation (3.3) must be solved with respect to the nodal parameter vectors usk = (usk,i)i=1,...,n ∈ ℝn and
uck = (uck,i)i=1,...,n ∈ ℝn of the corresponding �nite element approximations. The matrices Kh,ν and Mh,σ
correspond to the weighted sti�ness and mass matrices, respectively, whereas f ck and f

s
k are the load vectors.

In the case k = 0, the system of linear simultaneous equations

Kh,ν uc0 = f c0 (3.4)

follows from the variational problem (3.2). Fast and robust solvers well adapted to systems (3.3) and (3.4)
can be found in [13, 18, 22, 34]. We use these solvers in order to obtain the multiharmonic �nite element
approximation

uNh(x, t) = uc0h(x) +
N
∑
k=1

(uckh(x) cos(kωt) + u
s
kh(x) sin(kωt))

of the exact solution u(x, t). Computable a posteriori estimates of the di�erence between uNh and u are
obtained in the next section.

4 Functional A Posteriori Error Estimates

First, we present inf-sup and sup-sup conditions for the bilinear form (2.13).

Lemma 4.1. The space-time bilinear form a(⋅, ⋅) de�ned by (2.13) satis�es the following inf-sup and sup-sup
conditions:

µ1‖u‖H1,1/2(QT ) ≤ sup
0 ̸=v∈H1,1/2

0,per (QT )

a(u, v)
‖v‖H1,1/2(QT ) ≤ µ2‖u‖H1,1/2(QT ) (4.1)

for all u ∈ H1,1/2
0,per (QT) with positive constants

µ1 =
1
√2

min{
ν

C2F + 1
, σ} and µ2 = max{σ, ν},

where CF is the constant coming from the Friedrichs inequality.

Proof. Using the triangle and Cauchy–Schwarz inequalities, we obtain the estimate

|a(u, v)| =
!!!!!!!
∫
QT

(σ(x)∂1/2t u(x, t) ∂1/2t v⊥(x, t) + ν(x)∇u(x, t) ⋅ ∇v(x, t)) dx dt
!!!!!!!

≤ σ ‖∂1/2t u‖‖∂1/2t v‖ + ν ‖∇u‖‖∇v‖
≤ max{σ, ν} |u|H1,1/2(QT )|v|H1,1/2(QT )
≤ µ2 ‖u‖H1,1/2(QT )‖v‖H1,1/2(QT )

with the constant µ2 = max{σ, ν}, which justi�es the second inequality in (4.1).
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In order to prove the �rst inequality in (4.1), we select the test function v = u − u⊥ and estimate the supre-
mum from below. Using the σ- and ν-weighted orthogonality relations (2.10) and the Friedrichs inequality
(2.11), we �nd that

a(u, u) = ∫
QT

(σ(x)∂1/2t u(x, t) ∂1/2t u⊥(x, t) + ν(x)∇u(x, t) ⋅ ∇u(x, t)) dx dt

= ∫
QT

ν(x)∇u(x, t) ⋅ ∇u(x, t) dx dt ≥ ν ∫
QT

|∇u|2 dx dt ≥ ν
c2F + 1

‖u‖2H1,0(QT )

and

a(u, −u⊥) = ∫
QT

(σ(x)∂1/2t u(x, t) ∂1/2t u(x, t) − ν(x)∇u(x, t) ⋅ ∇u⊥(x, t)) dx dt

= ∫
QT

σ(x)∂1/2t u(x, t) ∂1/2t u(x, t) dx dt ≥ σ ‖∂1/2t u‖2.

Combining these estimates, we have

sup
0 ̸=v∈H1,1/2

0,per (QT )

a(u, v)
‖v‖H1,1/2(QT ) ≥

a(u, u − u⊥)
‖u − u⊥‖H1,1/2(QT )

≥

ν
c2F+1

‖u‖2H1,0(QT ) + σ ‖∂
1/2
t u‖2

‖u − u⊥‖H1,1/2(QT )
≥

min{ ν
c2F+1

, σ}‖u‖2H1,1/2(QT )
√2‖u‖H1,1/2(QT ) = µ1 ‖u‖H1,1/2(QT ),

with the constant µ1 = 1
√2 min{ ν

c2F+1
, σ}.

Remark 4.2. Since the condition u = 0 is imposed on thewhole boundary, we can easily �nd an upper bound
of CF . Indeed, CF(Ω) ≤ CF(Ω̂) if Ω̂ ⊃ Ω. Since for such domains as rectangles or balls the Friedrichs constants
are known, we can easily obtain an upper bound of CF for any Lipschitz domain.

Corollary 4.3. Since the norm |⋅|H1,1/2(QT ) is equivalent to the norm ‖⋅‖H1,1/2(QT ) due to the Friedrichs inequality,
the estimate (4.1) implies

µ̃1|u|H1,1/2(QT ) ≤ sup
0 ̸=v∈H1,1/2

0,per (QT )

a(u, v)
|v|H1,1/2(QT ) ≤ µ̃2|u|H1,1/2(QT ) (4.2)

for all u ∈ H1,1/2
0,per (QT) with positive constants µ̃1 = 1

√2 min{ν, σ} and µ̃2 = µ2 = max{σ, ν}.

We nowmove on to themain part of this section related to a posteriori error estimation. Let a function η be an
approximation of u. First, we assume that η is a bit more regular than u. More precisely, we set η ∈ H1,1

0,per(QT).
This is of course true for the multiharmonic �nite element approximation uNh, which will later play the role
of η. Now, the ultimate goal is to deduce a computable upper bound of the error e := u − η inH1,1/2

0,per (QT). First,
we notice that (2.12) implies the integral identity

∫
QT

(σ(x)∂1/2t (u − η) ∂1/2t v⊥ + ν(x)∇(u − η) ⋅ ∇v) dx dt

= ∫
QT

(f v − σ(x)∂1/2t η ∂1/2t v⊥ − ν(x)∇η ⋅ ∇v) dx dt, (4.3)

which is valid for all v ∈ H1,1/2
0,per (QT). Here, the linear functional

Fη(v) := ∫
QT

(f v − σ(x)∂1/2t η ∂1/2t v⊥ − ν(x)∇η ⋅ ∇v) dx dt
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is de�ned on v ∈ H1,1/2
0,per (QT). Now, identity (4.3) can be rewritten in the form

a(e, v) = Fη(v).

Hence, getting an upper bound of the error is reduced to �nding the quantities

sup
0 ̸=v∈H1,1/2

0,per (QT )

Fη(v)
‖v‖H1,1/2(QT ) or sup

0 ̸=v∈H1,1/2
0,per (QT )

Fη(v)
|v|H1,1/2(QT ) .

In order to �nd them, we reconstruct the functional Fη(v) using the identity

(σ∂1/2t η, ∂1/2t v⊥) = (σ∂tη, v) for all η ∈ H1,1
0,per(QT), v ∈ H

1,1/2
0,per (QT),

which follows from (2.9) and the identity

∫
Ω

div τ v dx = −∫
Ω

τ ⋅ ∇v dx,

which is valid for any v ∈ H1
0(Ω) and any

τ ∈ H(divx , QT) := {τ ∈ [L2(QT)]d : divx τ(⋅, t) ∈ L2(Ω) for a.e. t ∈ (0, T)}.

For ease of notation, the index x in divx will be henceforth omitted, i.e., div = divx denotes the generalized
spatial divergence. Using the Cauchy–Schwarz inequality leads to

Fη(v) = ∫
QT

(f v − σ(x)∂tη v + div τ v + (τ − ν(x)∇η) ⋅ ∇v) dx dt

≤ ‖R1(η, τ)‖‖v‖ + ‖R2(η, τ)‖‖∇v‖,

where
R1(η, τ) := σ∂tη − div τ − f and R2(η, τ) := τ − ν∇η. (4.4)

In view of (2.11), we have

Fη(v) ≤ ‖R1(η, τ)‖‖v‖ + ‖R2(η, τ)‖‖∇v‖
≤ ‖R1(η, τ)‖CF ‖∇v‖ + ‖R2(η, τ)‖‖∇v‖ = (CF ‖R1(η, τ)‖ + ‖R2(η, τ)‖)‖∇v‖.

Hence, we obtain

sup
0 ̸=v∈H1,1/2

0,per (QT )

Fη(v)
|v|H1,1/2(QT ) ≤ sup

0 ̸=v∈H1,1/2
0,per (QT )

(CF ‖R1(η, τ)‖ + ‖R2(η, τ)‖)‖∇v‖
|v|H1,1/2(QT )

= sup
0 ̸=v∈H1,1/2

0,per (QT )

(CF ‖R1(η, τ)‖ + ‖R2(η, τ)‖)‖∇v‖
(‖∇v‖2 + ‖∂1/2t v‖2)1/2

≤ CF ‖R1(η, τ)‖ + ‖R2(η, τ)‖.

We use (4.2), i.e.,

|u − η|H1,1/2(QT ) ≤ 1
µ̃1

sup
0 ̸=v∈H1,1/2

0,per (QT )

a(u − η, v)
|v|H1,1/2(QT ) =

1
µ̃1

sup
0 ̸=v∈H1,1/2

0,per (QT )

Fη(v)
|v|H1,1/2(QT ) ,

and arrive at the following result:

Theorem 4.4. Let η ∈ H1,1
0,per(QT) and the bilinear form a(⋅, ⋅) satisfy (4.2). Then,

|u − η|H1,1/2(QT ) ≤ 1
µ̃1

(CF ‖R1(η, τ)‖ + ‖R2(η, τ)‖) =: M⊕|⋅|(η, τ),

where µ̃1 = 1
√2 min{ν, σ} and τ ∈ H(div, QT).



U. Langer, S. Repin and M. Wolfmayr, Parabolic Time-Periodic Boundary Value Problems | 361

We can also deduce an upper bound of the full H1,1/2-norm. Indeed,

Fη(v) ≤ ‖R1(η, τ)‖‖v‖ + ‖R2(η, τ)‖‖∇v‖

≤ (‖R1(η, τ)‖2 + ‖R2(η, τ)‖2)1/2(‖v‖2 + ‖∇v‖2)1/2.

In view of (4.1), we obtain

sup
0 ̸=v∈H1,1/2

0,per (QT )

Fη(v)
‖v‖H1,1/2(QT ) ≤ sup

0 ̸=v∈H1,1/2
0,per (QT )

(‖R1(η, τ)‖2 + ‖R2(η, τ)‖2)1/2(‖v‖2 + ‖∇v‖2)1/2

‖v‖H1,1/2(QT )
≤ (‖R1(η, τ)‖2 + ‖R2(η, τ)‖2)1/2.

Altogether, we deduce a similar estimate for ‖e‖H1,1/2(QT ).
Theorem 4.5. Let η ∈ H1,1

0,per(QT) and the bilinear form a(⋅, ⋅) satisfy (4.1). Then,

‖u − η‖H1,1/2(QT ) ≤ 1
µ1

(‖R1(η, τ)‖2 + ‖R2(η, τ)‖2)1/2 =: M⊕‖⋅‖(η, τ),

where τ ∈ H(div, QT) and now µ1 = 1
√2 min{ ν

C2F+1
, σ}.

The functionals M⊕|⋅|(η, τ) and M⊕‖⋅‖(η, τ) present guaranteed and computable upper bounds (majorants) of
the error with respect to the H1,1/2-norm.

Remark 4.6. It is easy to see that themajorants are nonnegative functionals vanishing if and only if η = u and
τ = ν∇u. Indeed, if R1(η, τ) = 0 and R2(η, τ) = 0, then σ∂tη − div τ = f and τ = ν∇η. Since η ∈ H1,1

0,per(QT)
is a periodic function and satis�es the Dirichlet condition on ΣT , it is the solution. On the other hand,
Ri(u, ν∇u) = 0, i = 1, 2.

The Multiharmonic Approximation

Since f ∈ L2(QT), it can be expanded into a Fourier series. Moreover, we choose our approximation η of the
solution u as well as the vector-valued function τ to be truncated Fourier series, i.e.,

{{{{{{
{{{{{{
{

η(x, t) = ηc0(x) +
N
∑
k=1

(ηck(x) cos(kωt) + η
s
k(x) sin(kωt)),

τ(x, t) = τc0(x) +
N
∑
k=1

(τck(x) cos(kωt) + τ
s
k(x) sin(kωt)),

(4.5)

where all Fourier coe�cients are from the space L2(Ω) and are de�ned by the relations

ηc0(x) =
1
T

T

∫
0

η(x, t) dt, τc0(x) =
1
T

T

∫
0

τ(x, t) dt,

ηck(x) =
2
T

T

∫
0

η(x, t) cos(kωt) dt, τck(x) =
2
T

T

∫
0

τ(x, t) cos(kωt) dt,

ηsk(x) =
2
T

T

∫
0

η(x, t) sin(kωt) dt, τsk(x) =
2
T

T

∫
0

τ(x, t) sin(kωt) dt.

Hence, we get

∂tη(x, t) =
N
∑
k=1

(kω ηsk(x) cos(kωt) − kω η
c
k(x) sin(kωt)),

∇η(x, t) = ∇ηc0(x) +
N
∑
k=1

(∇ηck(x) cos(kωt) + ∇ηsk(x) sin(kωt)),
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and

div τ(x, t) = div τc0(x) +
N
∑
k=1

(div τck(x) cos(kωt) + div τsk(x) sin(kωt)).

The L2(QT)-norms of the functions R1(η, τ) and R2(η, τ) presented in (4.4) can easily be computed. Thus,
we arrive at

‖R1(η, τ)‖2 = T‖div τc0 + f
c
0‖

2
Ω +

T
2

N
∑
k=1

(‖−kω σηsk + div τck + f
c
k ‖

2
Ω + ‖kω σηck + div τsk + f

s
k ‖

2
Ω)

+
T
2

∞

∑
k=N+1

(‖f ck ‖
2
Ω + ‖f sk ‖

2
Ω)

= T‖div τc0 + f
c
0‖

2
Ω +

T
2

N
∑
k=1

‖kω ση⊥k + div τk + f k‖2Ω +
T
2

∞

∑
k=N+1

‖f k‖2Ω ,

where η⊥k = (−ηsk , η
c
k)
T , div τk = (div τck , div τ

s
k)
T , and

‖R2(η, τ)‖2 = T‖τc0 − ν∇η
c
0‖

2
Ω +

T
2

N
∑
k=1

(‖τck − ν∇η
c
k‖

2
Ω + ‖τsk − ν∇η

s
k‖

2
Ω)

= T‖τc0 − ν∇η
c
0‖

2
Ω +

T
2

N
∑
k=1

‖τk − ν∇ηk‖2Ω

with τk = ((τck)
T , (τsk)

T)T .

Remark 4.7. We note that the remainder term

EN := T
2

∞

∑
k=N+1

‖f k‖2Ω =
T
2

∞

∑
k=N+1

(‖f ck ‖
2
Ω + ‖f sk ‖

2
Ω) (4.6)

is always computable, due to the knowledge on the given data f . In some cases, the computation of EN is very
easy, for example, if f is multiharmonic. However, even in the most complicated cases, in which f = f(x, t)
andwe do not refer to special (e.g., extra regularity) properties, the term EN can be precomputed as ‖f − fN‖2,
where fN is the truncated Fourier series of f .

In fact, the L2-norms ofR1 andR2 corresponding to every singlemode k are decoupled. Altogether, it follows
that

‖R1(η, τ)‖2 = T‖R1
c
0(τ

c
0)‖

2
Ω +

T
2

N
∑
k=1

(‖R1
c
k(η

s
k , τ

c
k)‖

2
Ω + ‖R1

s
k(η

c
k , τ

s
k)‖

2
Ω) + EN ,

‖R2(η, τ)‖2 = T‖R2
c
0(η

c
0, τ

c
0)‖

2
Ω +

T
2

N
∑
k=1

(‖R2
c
k(η

c
k , τ

c
k)‖

2
Ω + ‖R2

s
k(η

s
k , τ

s
k)‖

2
Ω),

where
R1

c
0(τ

c
0) := div τc0 + f

c
0 , R2

c
0(η

c
0, τ

c
0) := τ

c
0 − ν∇η

c
0,

and, for k = 1, . . . , N, we have

{
R1

c
k(η

s
k , τ

c
k) := −kω σηsk + div τck + f

c
k , R2

c
k(η

c
k , τ

c
k) := τ

c
k − ν∇η

c
k ,

R1
s
k(η

c
k , τ

s
k) := kω ση

c
k + div τsk + f

s
k , R2

s
k(η

s
k , τ

s
k) := τ

s
k − ν∇η

s
k .

(4.7)

Corollary 4.8. The error majorantsM⊕|⋅|(η, τ) andM⊕‖⋅‖(η, τ) can be presented in the forms

M⊕|⋅|(η, τ) =
1
µ̃1

(CF ‖R1(η, τ)‖ + ‖R2(η, τ)‖)

=
1
µ̃1

(CF (T‖R1
c
0(τ

c
0)‖

2
Ω +

T
2

N
∑
k=1

(‖R1
c
k(η

s
k , τ

c
k)‖

2
Ω + ‖R1

s
k(η

c
k , τ

s
k)‖

2
Ω) + EN)

1/2

+ (T‖R2
c
0(η

c
0, τ

c
0)‖

2
Ω +

T
2

N
∑
k=1

(‖R2
c
k(η

c
k , τ

c
k)‖

2
Ω + ‖R2

s
k(η

s
k , τ

s
k)‖

2
Ω))

1/2
) (4.8)
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and

M⊕‖⋅‖(η, τ) =
1
µ1

(‖R1(η, τ)‖2 + ‖R2(η, τ)‖2)1/2

=
1
µ1

(T(‖R1
c
0(τ

c
0)‖

2
Ω + ‖R2

c
0(η

c
0, τ

c
0)‖

2
Ω)

+
T
2

N
∑
k=1

(‖R1
c
k(η

s
k , τ

c
k)‖

2
Ω + ‖R1

s
k(η

c
k , τ

s
k)‖

2
Ω + ‖R2

c
k(η

c
k , τ

c
k)‖

2
Ω + ‖R2

s
k(η

s
k , τ

s
k)‖

2
Ω) + EN)

1/2
,

where µ̃1 = 1
√2 min{ν, σ} and µ1 = 1

√2 min{ ν
C2F+1

, σ}.

Remark 4.9. Since the error (with respect to the truncation index N) between the exact solution u and its
multiharmonic approximation η decreaseswithO(N−1), see [22, 34], the contributions in themajorants com-
ing from the functionals R1

c
k and R1

s
k cannot blow up.

We see that the majorants consist of computable quantities related to each harmonic. Therefore, they not
only evaluate the overall error, but also provide an information on errors associated with a certain harmonic.
Moreover, since the respective quantities are integrals over Ω, their integrands serve as indicators of spatial
errors. Thus, themajorants contain a rich amount of information to beutilized in various adaptive procedures.

Remark 4.10. Let f have a multiharmonic representation, i.e.,

f(x, t) = f c0 (x) +
Nf
∑
k=1

(f ck (x) cos(kωt) + f
s
k (x) sin(kωt)),

where Nf ∈ ℕ is de�ned by f . If N ≥ Nf , then η is the exact solution of problem (2.12) and τ is the exact �ux
if and only if the error majorants vanish, i.e.,

R1
c
k = 0 and R2

c
k = 0 for all k = 0, 1, . . . , Nf ,

R1
s
k = 0 and R2

s
k = 0 for all k = 1, 2, . . . , Nf .

Indeed, let the error majorants vanish. Then, we deduce that −div τc0 = f c0 and τc0 = ν∇ηc0, and furthermore
we have, for all k = 1, . . . , Nf ,

kω σηsk − div τck = f
c
k , −kω σηck − div τsk = f

s
k , τck = ν∇η

c
k , τsk = ν∇η

s
k

Therefore, collecting the harmonics, we �nd that

τ(x, t) = τc0(x) +
Nf
∑
k=1

(τck(x) cos(kωt) + τ
s
k(x) sin(kωt)),

η(x, t) = ηc0(x) +
Nf
∑
k=1

(ηck(x) cos(kωt) + η
s
k(x) sin(kωt))

and
σ∂tη − div τ = f, τ = ν∇η.

Since η satis�es the boundary conditions and the equation, we conclude that η = u.

Another approach to derive a majorant is to insert the Fourier series ansatz directly into the bilinear form
a(u − η, v) and into the functional Fη(v) as de�ned in (4.3). Then, we obtain the following integral identities
associated with every mode:

∫
Ω

(ν(x)∇(uk(x) − ηk(x)) ⋅ ∇vk(x) + kω σ(x)(uk(x) − ηk(x)) ⋅ v⊥k (x)) dx

= ∫
Ω

(f k(x) ⋅ vk(x) − ν(x)∇ηk(x) ⋅ ∇vk(x) − kω σ(x)ηk(x) ⋅ v⊥k (x)) dx, (4.9)
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which are valid for all vk ∈ (H1
0(Ω))2. In the case k = 0, the integral identity

∫
Ω

ν(x)∇(uc0(x) − η
c
0(x)) ⋅ ∇v

c
0(x) dx = ∫

Ω

(f c0 (x) v
c
0(x) − ν(x)∇η

c
0(x) ⋅ ∇v

c
0(x)) dx (4.10)

is valid for all vc0 ∈ H1
0(Ω). We de�ne the left-hand sides of (4.9) and (4.10) by

ak(uk − ηk , vk) and a0(uc0 − η
c
0, v

c
0),

and the right-hand sides by
Fηk (vk) and Fηc0 (v

c
0),

respectively. Let us start with the case k = 1, . . . , N. Hence, an upper bound for the errors ek := uk − ηk in
(H1

0(Ω))2 has to be computed. The bilinear form ak(⋅, ⋅)meets the inf-sup condition

sup
0 ̸=vk∈(H1

0(Ω))2

ak(uk − ηk , vk)
‖vk‖1,Ω

≥ ck ‖uk − ηk‖1,Ω (4.11)

with the inf-sup constant ck = min{ν, kω σ}/√2. By the samemethod as before, we reform the error function-
als and obtain estimates for

sup
0 ̸=vk∈(H1

0(Ω))2

Fηk (vk)
‖vk‖1,Ω

.

We introduce a collection of vector-valued functions

τk = (τck , τ
s
k)
T , τck , τ

s
k ∈ H(div, Ω) := {τ ∈ [L2(Ω)]d : div τ ∈ L2(Ω)},

and use the integral relations

∫
Ω

div τ v dx = −∫
Ω

τ ⋅ ∇v dx for all v ∈ H1
0(Ω).

It is easy to see that

Fηk (vk) = ∫
Ω

(f k ⋅ vk − kω σ(x)ηk ⋅ v⊥k + div τk ⋅ vk + τk ⋅ ∇vk − ν(x)∇ηk ⋅ ∇vk) dx

= ∫
Ω

((f k + kω σ(x)η⊥k + div τk) ⋅ vk + (τk − ν(x)∇ηk) ⋅ ∇vk) dx

≤ ‖R1k(ηk , τk)‖Ω‖vk‖Ω + ‖R2k(ηk , τk)‖Ω‖∇vk‖Ω
≤ (‖R1k(ηk , τk)‖2Ω + ‖R2k(ηk , τk)‖2Ω)

1/2‖vk‖1,Ω , (4.12)

where

R1k(ηk , τk) = kω ση⊥k + div τk + f k
= (−kω σηsk + div τck + f

c
k , kω ση

c
k + div τsk + f

s
k )
T

= (R1
c
k(η

s
k , τ

c
k),R1

s
k(η

c
k , τ

s
k))

T ,
R2k(ηk , τk) = τk − ν∇ηk

= (τck − ν∇η
c
k , τ

s
k − ν∇η

s
k)
T

= (R2
c
k(η

c
k , τ

c
k),R2

s
k(η

s
k , τ

s
k))

T .

Hence, we have derived the same results as in (4.7) for every mode k = 1, . . . , N. Using the estimate (4.12)
together with the inf-sup condition (4.11), we �nally arrive at the following upper bounds for every single
mode k = 1, . . . , N:
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Theorem 4.11. Let ηk ∈ (H1
0(Ω))2 and the bilinear form ak(⋅, ⋅) satisfy (4.11). Then,

‖uk − ηk‖1,Ω ≤
1
ck

(‖R1k(ηk , τk)‖2Ω + ‖R2k(ηk , τk)‖2Ω)
1/2 =: M⊕k‖⋅‖(ηk , τk),

where ck = 1
√2 min{ν, kω σ} and τk = (τck , τ

s
k)
T with τck , τ

s
k ∈ H(div, Ω).

Using the inf-sup condition

sup
0 ̸=vk∈(H1

0(Ω))2

ak(uk , vk)
|vk|1,Ω

= sup
0 ̸=vk∈(H1

0(Ω))2

(ν∇uk , ∇vk)Ω + kω(σuk , v⊥k )Ω
|vk|1,Ω

≥
(ν∇uk , ∇(uk − u⊥k ))Ω + kω(σuk , (uk − u⊥k )

⊥)Ω
|uk − u⊥k |1,Ω

=
(ν∇uk , ∇uk)Ω + kω(σuk , uk)Ω

√2 |uk|1,Ω
≥
ν‖∇uk‖2Ω + kω σ‖uk‖2Ω

√2 |uk|1,Ω

≥
min{ν, kω σ}‖uk‖21,Ω

√2 |uk|1,Ω
≥

min{ν, kω σ}
√2

|uk|1,Ω (4.13)

together with the estimate

Fηk (vk) ≤ ‖R1k(ηk , τk)‖Ω‖vk‖Ω + ‖R2k(ηk , τk)‖Ω‖∇vk‖Ω
≤ (CF‖R1k(ηk , τk)‖Ω + ‖R2k(ηk , τk)‖Ω)|vk|1,Ω

yields the following error majorant for |⋅|1,Ω with the same inf-sup constant ck:

Theorem 4.12. Let ηk ∈ (H1
0(Ω))2 and the bilinear form ak(⋅, ⋅) satisfy (4.13). Then,

|uk − ηk|1,Ω ≤
1
ck

(CF‖R1k(ηk , τk)‖Ω + ‖R2k(ηk , τk)‖Ω) =: M
⊕k
|⋅| (ηk , τk), (4.14)

where ck = 1
√2 min{ν, kω σ} and τk = (τck , τ

s
k)
T with τck , τ

s
k ∈ H(div, Ω).

Now, we consider the case k = 0. Here, an upper bound for the error ec0 := u
c
0 − η

c
0 in H1

0(Ω) has to be com-
puted. The inf-sup condition

sup
0 ̸=vc0∈H

1
0(Ω)

a0(uc0 − η
c
0, v

c
0)

‖vc0‖1,Ω
≥ c0‖⋅‖ ‖u

c
0 − η

c
0‖1,Ω

with the inf-sup constant c0‖⋅‖ = ν/(C
2
F + 1) can be proved quite analogously to (4.11).Moreover, one can easily

show that
sup

0 ̸=vc0∈H
1
0(Ω)

a0(uc0 − η
c
0, v

c
0)

|vc0|1,Ω
≥
a0(uc0 − η

c
0, u

c
0 − η

c
0)

|uc0 − η
c
0|1,Ω

≥ c0|⋅| |u
c
0 − η

c
0|1,Ω

with c0|⋅| = ν, since ν satis�es the assumptions (2.4). By arguments similar to those used above for themodes k,
we deduce the following estimates:

‖uc0 − η
c
0‖1,Ω ≤

1
c0‖⋅‖

(‖R1
c
0(τ

c
0)‖

2
Ω + ‖R2

c
0(η

c
0, τ

c
0)‖

2
Ω)

1/2 =: M⊕0‖⋅‖(η
c
0, τ

c
0)

and
|uc0 − η

c
0|1,Ω ≤

1
c0|⋅|

(CF‖R1
c
0(τ

c
0)‖Ω + ‖R2

c
0(η

c
0, τ

c
0)‖Ω) =: M

⊕0
|⋅| (η

c
0, τ

c
0), (4.15)

where
τc0 ∈ H(div, Ω), R1

c
0(τ

c
0) = f

c
0 + div τc0, R2

c
0(η

c
0, τ

c
0) = τ

c
0 − ν∇η

c
0.
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5 Numerical Results

In this section, we present and discuss results of numerical experiments on computing functional a poste-
riori error estimates in the context of parabolic time-periodic boundary value problems discretized by the
MhFEM. First, we present a numerical example with a given time-harmonic source term. In the second ex-
ample, we consider a given time-periodic, but not time-harmonic source term. The computational domain
Ω = (0, 1) × (0, 1) is uniformly decomposed into triangles, and standard continuous, piecewise linear �nite
elements are used for the discretization in space. In this case, the Friedrichs constant is CF = 1/(√2π). In
these two numerical experiments, we choose σ = ν = 1.

The construction of η and τ is an important issue in order to obtain sharp guaranteed bounds from the
majorantsM⊕‖⋅‖ orM

⊕
|⋅|. As it has been already discussed in Section 4, we can choosemultiharmonic �nite ele-

ment approximations (4.5) for η and τ. However, since the Fourier coe�cients of η are constructed by contin-
uous, piecewise linear approximations, their gradients are only piecewise constant. Then,∇ηck , ∇η

s
k ∈ L

2(Ω),
but ∇ηck , ∇η

s
k ̸∈ H(div, Ω), k = 1, . . . , N. Hence, a �ux reconstruction is needed in order to obtain a suitable

�ux τ ∈ H(div, QT). A good reconstruction of the �ux is an important and nontrivial topic. We can regular-
ize τ by a post-processing operator which maps the L2-functions into H(div, QT), see [26]. There are various
techniques for realizing these post-processing steps such as local post-processing by an elementwise averag-
ing procedure or by using Raviart–Thomas elements, see [23, 26] and references therein. In our numerical
experiments, we use Raviart–Thomas elements of the lowest order, see, e.g., [5, 24, 28]. First, we de�ne the
normal �uxes on interior edges Emn by

(τck ⋅ nEmn )|Emn = (λmn(∇ηck)|Tm + (1 − λmn)(∇ηck)|Tn ) ⋅ nEmn ,
(τsk ⋅ nEmn )|Emn = (λmn(∇ηsk)|Tm + (1 − λmn)(∇ηsk)|Tn ) ⋅ nEmn ,

for all k = 1, . . . , N, with λmn = 1/2 due to uniform discretization. Here, (∇ηck)|Tm , (∇η
s
k)|Tm , (∇η

c
k)|Tn and

(∇ηsk)|Tn are constant vectors on two arbitrary, neighboring elements Tm and Tn. On boundary edges, the only
one existing �ux is used. Hence, three normal �uxes are de�ned on the three sides of each element. Inside,
we reconstruct the �uxes τk = (τck , τ

s
k)
T by the standard lowest-order Raviart–Thomas (RT0-) extension of

normal �uxes with

RT0(Th) := {τ ∈ (L2(T))2 : ∀ T ∈ Th ∃ a, b, c ∈ ℝ ∀ x ∈ T : τ(x) = (a, b)T + c x
and [τ]E ⋅ nE = 0 for all interior edges E},

where [τ]E denotes the jump of τ across the edge E shared by two neighboring elements on a triangulation
Th. Altogether, it follows an averaged �ux from H(div, Ω), i.e.,

τck = GRT(∇ηck), τsk = GRT(∇ηsk), GRT : L2(Ω) → H(div, Ω).

In order to solve the saddle point systems (3.3) for k = 1, . . . , N, we use the AMLI preconditioner pro-
posed by Kraus and Wolfmayr in [18] with a proper 3-re�nement of the mesh as presented in [18] for an
inexact realization of the block-diagonal preconditioner

P = (
kωMh,σ + Kh,ν 0

0 kωMh,σ + Kh,ν
) (5.1)

in the MINRES method. The preconditioner (5.1) was presented and discussed in [34]. Here, we want to em-
phasize that the AMLI preconditioned MINRES solver is robust and of optimal complexity, see [18, 34]. This
can be also observed in the numerical results of this paper.Wemention that, in all tableswhere the number of
MINRES iterations niterMINRES or of AMLI iterations niterAMLI is presented, the iteration was stopped after reducing
the initial residual by a factor of 10−6. In each MINRES iteration step, we have used the AMLI preconditioner
according to [18] with 8 inner iterations. The presented CPU times in seconds tsec include the computational
times for computing the majorants, which are very small in comparison to the computational times of the
solver. All computations were performed on a PC with Intel(R) Xeon(R) CPUW3680 @ 3.33GHz.
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Grid niter
MINRES tsec ‖R1‖Ω ‖R2‖Ω M⊕|⋅| Ie�

9 × 9 14 0.00 1.657e-01 4.604e-03 5.926e-02 1.976
27 × 27 14 0.03 6.381e-02 8.313e-05 2.043e-02 1.583
81 × 81 12 0.24 2.186e-02 7.545e-06 6.968e-03 1.530

243 × 243 12 2.43 7.334e-03 5.155e-07 2.335e-03 1.504
729 × 729 12 22.25 2.449e-03 3.298e-08 7.797e-04 1.498

Table 1.Majorant and its parts (Example 5.1).

Example 5.1. In the �rst example, we consider a given time-harmonic source term

f(x, t) = 2(x1(1 − x1) + x2(1 − x2)) cos(t) + x1(1 − x1)x2(x2 − 1) sin(t),

where T = 2π/ω with ω = 1. Hence, the Fourier coe�cients of f are simply given by

f c(x) = 2(x1(1 − x1) + x2(1 − x2)), f s(x) = x1(1 − x1)x2(x2 − 1),

and we have to consider only one single mode k = 1. For simplicity, we omit the index k in this example. The
exact solution is given by

u(x, t) = x1(x1 − 1)x2(x2 − 1) cos(t).

Table 1 presents the number of MINRES iterations niterMINRES, the CPU times in seconds tsec, the norms of R1
and R2, i.e.,

‖R1‖2Ω = ‖Rc1(η
s , τc)‖2Ω + ‖Rs1(η

c , τs)‖2Ω = ‖−ηs + div τc + f c‖2Ω + ‖ηc + div τs + f s‖2Ω ,
‖R2‖2Ω = ‖Rc2(η

s , τc)‖2Ω + ‖Rs2(η
c , τs)‖2Ω = ‖τc − ∇ηc‖2Ω + ‖τs − ∇ηs‖2Ω ,

as well as the majorants
M⊕|⋅| =

1
µ̃1

(CF‖R1‖Ω + ‖R2‖Ω),

where µ̃1 = 1
√2 , and the corresponding e�ciency indices

Ie� =
M⊕|⋅|

|u − η|1,Ω
,

obtained on grids of di�erent mesh sizes. Here, u = u(x) = (uc(x), us(x))T denotes the vector of the exact
solution’s Fourier coe�cients uc(x) = x1(x1 − 1)x2(x2 − 1) and us(x) = 0.

In Table 1, we observe the robustness and optimality of the AMLI preconditioned MINRES method as
presented in [18, 34]. More precisely, the computational times increase with a factor of nine that exactly
reveals the optimal computational complexity of the method according to the 3-re�nement of the mesh. One
can see that the norms of R1 reduce by a factor of three and the norms of R2 even better than by a factor of
nine. Hence, the applied �ux reconstruction is e�cient. Altogether, the majorant reduces as a factor of three
by trisection of the mesh size and is of the same order of convergence as of the exact error measured in the
H1(Ω)-seminorm. This is also observed in the e�ciency index that is already quite small on the 27 × 27-mesh
and decreases up to a value of 1.498 on the (�nest) 729 × 729-mesh.

Example 5.2. In the second example, we consider a given time-analytic, but not time-harmonic source term

f(x, t) = et sin2(t) sin(x1π) sin(x2π)((1 + 2π2) sin(t) + 3 cos(t)),

where T = 2π/ω with ω = 1. The exact solution is given by

u(x, t) = et sin3(t) sin(x1π) sin(x2π).

The Fourier coe�cients of the Fourier series expansion of the source term f in time can be computed analyti-
cally. We truncate the Fourier series and approximate the Fourier coe�cients by �nite element functions as it
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was presented before. Then,we solve the systems (3.3) and (3.4) for all k ∈ {0, . . . , N}withN = 8, reconstruct
the �uxes by an RT0-extension and then compute the correspondingmajorants. Table 2 presents the number
of AMLI iterations niterAMLI, the CPU times in seconds tsec, the norms of R1

c
0 and R2

c
0, i.e.,

‖R1
c
0‖

2
Ω = ‖div τc0 + f

c
0‖

2
Ω , ‖R2

c
0‖

2
Ω = ‖τc0 − ∇ηc0‖

2
Ω ,

as well as themajorantsM⊕0|⋅| as presented in (4.15) with c0|⋅| = ν = 1, and the corresponding e�ciency indices

I0e� =
M
⊕0
|⋅|

|uc0 − η
c
0|1,Ω

,

obtained on grids of di�erent mesh sizes.
For k = 0, one has to solve the system (3.4).We observe in Table 2 that theAMLI solver presented byKraus

and Wolfmayr in [18] is of optimal computational complexity and the e�ciency decreases up to a value of
1.002. Moreover, Tables 3 – 10 present the number of MINRES iterations niterMINRES, the CPU times in seconds
tsec, the norms of R1k and R2k, i.e.,

‖R1k‖2Ω = ‖R1
c
k(η

s
k , τ

c
k)‖

2
Ω + ‖R1

s
k(η

c
k , τ

s
k)‖

2
Ω = ‖−kω ηsk + div τck + f

c
k ‖

2
Ω + ‖kω ηck + div τsk + f

s
k ‖

2
Ω ,

‖R2k‖2Ω = ‖R2
c
k(η

s
k , τ

c
k)‖

2
Ω + ‖R2

s
k(η

c
k , τ

s
k)‖

2
Ω = ‖τck − ∇ηck‖

2
Ω + ‖τsk − ∇ηsk‖

2
Ω ,

as well as the majorants M⊕k|⋅| as presented in (4.14) with ck = 1
√2 min{ν, kω σ} = 1

√2 for k ∈ {1, . . . , 8}, and,
�nally, the corresponding e�ciency indices

Ike� =
M
⊕k
|⋅|

|uk − ηk|1,Ω
,

obtained on grids of di�erent mesh sizes.
The results of Tables 3–10 regarding the number of MINRES iterations niterMINRES and the computational

times are all similar and can be compared to our Example 5.1. Moreover, the reduction factors of ‖R1k‖Ω,
‖R2k‖Ω and M

⊕k
|⋅| as well as the values of the e�ciency indices Ike� are approximately the same. This demon-

strates the robustness of the method with respect to the modes k and the accurateness of the majorantsM⊕k|⋅| .
Moreover, the values of ‖R1k‖Ω, ‖R2k‖Ω andM

⊕k
|⋅| decrease for increasing k. This is also illustrated in Table 11.

In this table, we �nally compare the results from Tables 3–10 that were computed on the 729 × 729-mesh.
Hence, the results computed on the 729 × 729-mesh are again presented for all k ∈ {0, . . . , 8}, and, then,
for the overall functional error estimates. Here, the error majorant is given by (4.8) with µ̃1 = 1

√2 , and the
remainder term (4.6) has to be computed in order to get ‖R1‖. Remember that the remainder term EN can be
precomputed exactly as ‖f − fN‖, since f is the given data and fN its truncated Fourier series. For N = 8, it is
given by 1.197e-02. Altogether, we obtain a global e�ciency index of 1.404 on the 729 × 729-mesh.
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Grid niter
AMLI tsec ‖R1

c
0‖Ω ‖R2

c
0‖Ω M

⊕0|⋅| I0e�
9 × 9 21 0.00 6.317e+01 1.773e+00 1.599e+01 1.315

27 × 27 23 0.00 2.349e+01 3.796e-02 5.325e+00 1.064
81 × 81 23 0.03 7.927e+00 2.865e-03 1.787e+00 1.020

243 × 243 22 0.27 2.646e+00 1.886e-04 5.957e-01 1.006
729 × 729 22 2.45 8.821e-01 1.183e-05 1.986e-01 1.002

Table 2.MajorantM⊕0|⋅| and its parts (Example 5.2).

Grid niter
MINRES tsec ‖R11‖Ω ‖R21‖Ω M

⊕1|⋅| I1e�
9 × 9 14 0.00 1.238e+02 3.444e+00 4.426e+01 1.908

27 × 27 12 0.02 4.566e+01 7.376e-02 1.464e+01 1.550
81 × 81 10 0.21 1.540e+01 5.560e-03 4.910e+00 1.485

243 × 243 10 2.08 5.140e+00 3.659e-04 1.637e+00 1.466
729 × 729 8 15.84 1.714e+00 2.295e-05 5.455e-01 1.460

Table 3.MajorantM⊕1|⋅| and its parts (Example 5.2).

Grid niter
MINRES tsec ‖R12‖Ω ‖R22‖Ω M

⊕2|⋅| I2e�
9 × 9 9 0.00 7.953e+01 2.209e+00 2.844e+01 1.880

27 × 27 9 0.02 2.930e+01 4.737e-02 9.394e+00 1.523
81 × 81 9 0.19 9.883e+00 3.555e-03 3.151e+00 1.460

243 × 243 8 1.73 3.299e+00 2.339e-04 1.050e+00 1.441
729 × 729 8 15.64 1.100e+00 1.467e-05 3.501e-01 1.435

Table 4.MajorantM⊕2|⋅| and its parts (Example 5.2).

Grid niter
MINRES tsec ‖R13‖Ω ‖R23‖Ω M

⊕3|⋅| I3e�
9 × 9 8 0.00 4.613e+01 1.277e+00 1.649e+01 1.905

27 × 27 8 0.02 1.696e+01 2.745e-02 5.437e+00 1.541
81 × 81 7 0.15 5.719e+00 2.046e-03 1.823e+00 1.477

243 × 243 7 1.56 1.909e+00 1.345e-04 6.079e-01 1.457
729 × 729 6 12.34 6.364e-01 8.436e-06 2.026e-01 1.451

Table 5.MajorantM⊕3|⋅| and its parts (Example 5.2).

Grid niter
MINRES tsec ‖R14‖Ω ‖R24‖Ω M

⊕4|⋅| I4e�
9 × 9 10 0.00 1.624e+01 4.474e-01 5.801e+00 1.958

27 × 27 9 0.02 5.950e+00 9.645e-03 1.908e+00 1.582
81 × 81 9 0.19 2.007e+00 7.120e-04 6.398e-01 1.516

243 × 243 9 1.90 6.698e-01 4.680e-05 2.133e-01 1.496
729 × 729 8 15.88 2.233e-01 2.934e-06 7.108e-02 1.490

Table 6.MajorantM⊕4|⋅| and its parts (Example 5.2).
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Grid niter
MINRES tsec ‖R15‖Ω ‖R25‖Ω M

⊕5|⋅| I5e�
9 × 9 9 0.00 5.878e+00 1.611e-01 2.099e+00 1.970

27 × 27 9 0.02 2.146e+00 3.485e-03 6.880e-01 1.586
81 × 81 7 0.15 7.236e-01 2.542e-04 2.307e-01 1.520

243 × 243 7 1.54 2.415e-01 1.669e-05 7.690e-02 1.500
729 × 729 7 14.17 8.052e-02 1.046e-06 2.563e-02 1.493

Table 7. MajorantM⊕5|⋅| and its parts (Example 5.2).

Grid niter
MINRES tsec ‖R16‖Ω ‖R26‖Ω M

⊕6|⋅| I6e�
9 × 9 11 0.00 2.621e+00 7.132e-02 9.351e-01 1.991

27 × 27 10 0.02 9.522e-01 1.550e-03 3.053e-01 1.597
81 × 81 9 0.19 3.211e-01 1.114e-04 1.024e-01 1.529

243 × 243 8 1.73 1.072e-01 7.312e-06 3.412e-02 1.509
729 × 729 8 15.81 3.573e-02 4.583e-07 1.137e-02 1.503

Table 8. MajorantM⊕6|⋅| and its parts (Example 5.2).

Grid niter
MINRES tsec ‖R17‖Ω ‖R27‖Ω M

⊕7|⋅| I7e�
9 × 9 12 0.00 1.359e+00 3.670e-02 4.846e-01 2.023

27 × 27 11 0.02 4.913e-01 8.015e-04 1.575e-01 1.615
81 × 81 9 0.19 1.656e-01 5.669e-05 5.280e-02 1.546

243 × 243 9 1.89 5.528e-02 3.716e-06 1.760e-02 1.526
729 × 729 8 15.88 1.843e-02 2.329e-07 5.867e-03 1.520

Table 9. MajorantM⊕7|⋅| and its parts (Example 5.2).

Grid niter
MINRES tsec ‖R18‖Ω ‖R28‖Ω M

⊕8|⋅| I8e�
9 × 9 12 0.00 7.839e-01 2.098e-02 2.792e-01 2.064

27 × 27 11 0.02 2.816e-01 4.606e-04 9.028e-02 1.638
81 × 81 11 0.23 9.492e-02 3.200e-05 3.026e-02 1.569

243 × 243 10 2.05 3.168e-02 2.095e-06 1.009e-02 1.548
729 × 729 10 19.27 1.056e-02 1.312e-07 3.362e-03 1.542

Table 10. MajorantM⊕8|⋅| and its parts (Example 5.2).

niter
MINRES tsec ‖R1‖ ‖R2‖ M⊕|⋅| Ie�

k = 0 — — 8.821e-01 1.183e-05 1.986e-01 1.002
k = 1 8 15.84 1.714e+00 2.295e-05 5.455e-01 1.460
k = 2 8 15.64 1.100e+00 1.467e-05 3.501e-01 1.435
k = 3 6 12.34 6.364e-01 8.436e-06 2.026e-01 1.451
k = 4 8 15.88 2.233e-01 2.934e-06 7.108e-02 1.490
k = 5 7 14.17 8.052e-02 1.046e-06 2.563e-02 1.493
k = 6 8 15.81 3.573e-02 4.583e-07 1.137e-02 1.503
k = 7 8 15.88 1.843e-02 2.329e-07 5.867e-03 1.520
k = 8 10 19.27 1.056e-02 1.312e-07 3.362e-03 1.542

overall — — 4.403e+00 5.886e-05 1.402e+00 1.404

Table 11. The overall majorantM⊕|⋅| and its parts computed on a 729 × 729-mesh (Example 5.2).
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