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1 Introduction
Physical phenomena are described bymathematical models that link input and output quantities. An impor-
tant task in engineering is to �nd optimal values of the input so that a target output is minimized. In shape
optimization the target output depends on the shape Ω of an object. This dependence is modeled via a shape
functional J.

In several relevant applications the shape functional J depends, additionally, on the solution of a bound-
ary value problem (BVP) stated on Ω. In this case we speak of PDE constrained shape optimization. These
optimization problems are highly non-linear and can rarely be solved analytically. Usually, one has to con-
tent oneself with approximate optimal shapes obtainedwith iterative optimization algorithms combinedwith
approximate solutions of the underlying BVP. Clearly, the quality of the approximate optimal shapes heavily
depends on the choice of the numerical method used to retrieve them.

An accurate method to solve PDE constrained optimization problems has been developed relying on
boundary element method solutions of the underlying BVP [16, 17]. However, the bulk of literature con-
siders discretizations by means of the �nite element method (FEM) [2, 6–8, 18, 25–28, 30]. In this case we
can distinguish between moving-mesh and �xed-mesh methods.

The former discretize an initial guess Ω0 with a mesh and then optimize the coordinates of the mesh
nodes [2, 28, 30]. This is a very delicate task because the mesh might get distorted or self-intersect as the
optimization routine proceeds [3, 4].

Among the �xed-mesh methods, the two most popular approaches are level-set methods and free-form
deformation methods. In the level-set approach, the boundary of the optimal domain is represented as the
zero-level of a function [5]. The optimization is then carried out by updating this function. Again, this is a
delicate process because, to identify the boundary of the optimized domain, the level set function should
have steep slope at the zero-level. However, as the optimization proceeds, it is observed that level functions
tend to become �at [29].
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On the other hand, free-form deformation methods [7, 26] recast the shape optimization problem as an
optimal control problem. Shapes are parametrized by applying a transformation to the initial guess Ω0. This
transformation is constructed with (piecewise) polynomials de�ned on a lattice of control points, and opti-
mization is carried out on their coordinates. This approach allows to preserve the approximation properties
of FEM. However, the in�nite dimensional shape optimization problem is replaced with a counterpart with a
�xed small number of control parameters, and the dependence of the quality of the discrete solution on the
number of control parameters is not clear.

We present an algorithm developed to preserve and exploit the approximation properties of FEM, and
that allows for arbitrarily high resolution of shapes. Similar to the free-form deformation approach, we re-
cast the shape optimization problem as an optimal control problem. Shapes are parametrized by letting a
di�eomorphism act on an initial shape Ω0. Pursuing a Ritz approach, we discretize the di�eomorphism with
conforming basis functions based on cubic B-splines. We show that, under reasonable assumptions, the se-
quence of optimal discrete solutions converges to the global minimum as the dimension of the trial space
tends to in�nity. We also investigate the impact of FEM approximations in the context of elliptic PDE con-
strained shape optimization and formulate a descent method that enjoys superconvergence in the approxi-
mation of the Fréchet derivative.We test the performance of the proposedmethod both on awell-posedmodel
problem stemming from the class of exterior Bernoulli free boundary problems andon aprototypical ill-posed
inverse problem.

2 Shape Optimization in Parametric Form
Let D ⊂ ℝd be bounded and convex domain (hold-all domain), and let Ω0 be a compact subset of D with
Lipschitz boundary. We �x ε > 0 and de�ne the set of admissible shapes as

Uad(Ω0) := {TV(Ω0); TV := I + V, ‖V‖C1(D;ℝd) ≤ 1 − ε}. (2.1)

Note that the map TV := I + V is a di�eomorphism whenever ‖V‖C1(D;ℝd) < 1 (see [2, Lemma 6.13]). Let J be
a real-valued functional de�ned on Uad(Ω0), and let ̃J be de�ned by

̃J : B11−ε → ℝ, V Ü→ J(TV(Ω0)),

where Bk1−ε denotes the closed ball in Ck(D;ℝd) of radius 1 − ε centered in 0. The shape optimization problem

inf
Ω∈Uad(Ω0) J(Ω)

can be recast as
inf

V∈B11−ε ̃J(V). (2.2)

Theorem 2.1. Let ̃J be continuouswith respect to the C1(D;ℝd)- norm and restrict the shape optimization prob-
lem (2.2) to

inf
V∈B21−ε ̃J(V). (2.3)

Then, there exists a vector �eld V∗ ∈ C1(D;ℝd) so that

̃J(V∗) = inf
V∈B21−ε ̃J(V).

Proof. We follow closely [2, Theorem 5.12]. The main ingredient is the compact embedding

C2(D;ℝd) c
í→ C1(D;ℝd),

which holds for D convex or, more generally, if “every pair of points x, y ∈ D can be joined with a recti�able
arc in D having length not exceeding some �xed multiple of |x − y|” [1, Theorem 1.34].
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A minimizing sequence of (2.3) is bounded (by de�nition of the optimization problem). Thus, by com-
pactness, we can extract a subsequence that converges to a limit function V̂ in the C1(D;ℝd)-norm. Finally,
the continuity assumption on ̃J implies V̂ = V∗.
Remark 2.2. The continuity assumption on ̃J in Theorem 2.1 is ful�lled by most of the shape functionals
considered in literature. For instance, this is the case for the volume and the surface area shape functionals.

Remark 2.3. Acounterpart of Theorem2.1 still holds if the function spaces C1(D;ℝd), C2(D;ℝd) are replaced
byW1,∞(ℝd;ℝd),W2,∞(ℝd;ℝd), respectively. However, having approximations bymeans of the Ritzmethod
in mind, we restrict our framework to separable spaces.

Remark 2.4. There is little hope for uniqueness in this framework. Let V∗ be an optimal solution. If there is
a vector �eld Ṽ ̸= 0 so that (I + Ṽ)(∂Ω0) = ∂Ω0 (from the set point of view), then the composition V∗ ∘ (I + Ṽ)
is an optimal solution, too.

Approximate solutions can be obtained easily with a Ritz approach.

Theorem 2.5. Let {VN}N∈ℕ be a nested sequence of C2(D;ℝd)-conforming trial spaces that satis�es

⋃
N∈ℕ VN C2(D;ℝd) = C2(D;ℝd).

Let {V∗
N}N∈ℕ be the sequence of discrete solutions de�ned by

V∗
N ∈ argmin

VN∈VN∩B21−ε ̃J(VN). (2.4)

Then, under the assumptions of Theorem 2.1, {V∗
N}N∈ℕ is a minimizing sequence of ̃J.

Proof. We follow closely the proof of the classic result on the convergence of Ritz methods given in [20, Sec-
tion 40.1]. Let µ ∈ ℝ be the in�mum of (2.3). Note that µ > −∞. Let a > 0, and let V ∈ B21−ε satisfy

̃J(V) < µ + a.

By continuity of ̃J, the vector �eld V can be rescaled so that

‖V‖C2(D;ℝd) < 1 − ε and ̃J(V) < µ + 2a.

Let b > 0, and let N = N(b) ∈ ℕ be su�ciently large. Then, there exists a VN ∈ VN ∩ B21−ε that satis�es
‖V − VN‖C2(D;ℝd) < b.

Furthermore, for b = b(a) small enough, it holds

̃J(VN) < µ + 3a.

Let V∗
N be de�ned as in (2.4). It holds

µ ≤ ̃J(V∗
N) ≤ ̃J(VN) ≤ µ + 3a.

Since a is arbitrary, it follows
lim
N→∞ ̃J(V∗

N) = µ.

Remark 2.6. Re�ned convergence theories can be found in [17, 18, 25]. These articles rely on a parametriza-
tion of the boundary, and consider as admissible shapes those that can be reached via a normal perturbation
of the boundary ∂Ω0. In this case, the parametrization of shapes is unique, and a priori convergence rates
can be proved.
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3 PDE Constrained Shape Optimization
In PDE constrained shape optimization, the goal is to �nd the domain Ω thatminimizes the functional J(Ω, u)
subject to a PDE constraintAu = f in Ω. Here,A : X(Ω) → X(Ω)∗ denotes a second order X(Ω)-elliptic opera-
tor between the Hilbert space X(Ω) and its dual X(Ω)∗, which are function spaces on the domain Ω. Similarly
as in (2.2), the shape optimization problem can be recast in a parametric form relying on the characterization
of admissible domains (2.1), that is,

inf
V∈B11−ε ̃J(V, u) subject to ÃVu = ̃fV in Ω0. (3.1)

Both the elliptic operator ÃV : X(Ω0) → X(Ω0)∗ and the linear functional ̃fV ∈ X(Ω0)∗ depend on the
vector �eld V and are created in a way so that u ∈ X(Ω0) is the solution to ÃVu = ̃fV in Ω0 if and only if
û := u ∘ T−1

V ∈ X(Ω) is the solution toAû = f in Ω.
The idea of transforming both the shape functional and the PDE constraint on a reference domain is

not new to shape optimization. It has already been used, for instance, in [8, 18, 27, 28], and is, de facto,
the standard approach for shape optimization based on free-form deformations; see [7, 26] and references
therein.

Example 3.1. The parametric form of the shape optimization problem

inf
Ω∈Uad(Ω0) J(Ω, û) subject to {

−∆û = f in Ω,

û = 0 on ∂Ω,
(3.2)

with J(Ω, û) := ∫Ω j(û)dx, j ∈ C
1(ℝ), and f ∈ H−1(Ω), reads

inf
V∈B11−ε ̃J(V, u) subject to {

−div(MV grad u) = (detDTV)T∗
V(f) in Ω0,

u = 0 on ∂Ω0,
(3.3)

where the pullback T∗
V is de�ned as the composition T∗

V(f) := f ∘ TV,

̃J(V, u) := ∫
Ω0

j(u)(detDTV)dx and MV := (detDTV)DT−1
V DT−T

V .

Assuming continuity of the map V Ü→ ̃J(V, u) on C1(D;ℝd), an approximate solution of (3.1) can be obtained
as in Theorem 2.5 by computing

V∗
N ∈ argmin

VN∈VN∩B21−ε ̃J(VN , u) subject to ÃVN u = ̃fVN in Ω0 (3.4)

for N large enough. Note that the approximate optimal solution V∗
N must satisfy the variational inequality

[22, Theorem 1.48]
d ̃J(V∗

N , u;WN − V∗
N) ≥ 0 for allWN ∈ VN ∩ B21−ε , (3.5)

where d ̃J denotes the Fréchet derivative of ̃J.

Remark 3.2. In Example 3.1, a minimizing sequence {V∗
N}N∈ℕ that satis�es (3.4) contains a subsequence

{V∗
Ni }i∈ℕ that converges strongly in C1(D;ℝd) to a V̂ ∈ B11−ε. Therefore, the ellipticity constants of {ÃVNi

}i∈ℕ
are bounded from below by a constant c > 0. This implies that

‖uV̂ − uNi‖H1(Ω0) → 0 as i → ∞,

where uNi is the solution to ÃVNi
u = ̃fVNi

and uV̂ is the solution to ÃV̂u = ̃fV̂, see [2, Lemma 5.3]. With this
result it is easy to show C1(D;ℝd)-continuity of the constraint functional (3.3).
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4 Algorithm
We focus on the optimization problem (3.4). Let Ω0 ⊂ D be an initial guess. As trial space VN , we choose the
space spanned by multivariate B-splines of degree 3 on a regular grid that covers the hold-all domain D; see
[24, Section 7.3]. Note that the hold-all domain D can be chosen to have a simple shape, e.g., a tensor product
domain. More precisely, vector �elds belonging to Vn can be written as

VN(x) =
N
∑
i=1( d

∑
j=1 cjiej)Bi(x), cji ∈ ℝ, (4.1)

where Bi denotes the i-th multivariate B-spline of degree 3, and ej, j = 1, . . . , d, are basis vectors ofℝd.
The trial space VN ful�lls the assumptions of Theorem 2.5: it contains tensorized polynomials by

Marsden’s identity [24, Section 4.3], and it is C2(D;ℝd)-conforming because multivariate B-splines of de-
gree 3 are twice continuously di�erentiable by construction. Moreover, B-splines have compact support and
are polynomial in each grid cell. These two properties are crucial for an e�cient implementation of the algo-
rithm. Finally, using B-splines de�ned on a regular grid greatly simpli�es the implementation, because every
B-spline Bi is obtained by translating a single “mother” function [24, Section 7.3].

An approximation of the discrete optimal solution V∗
N can be retrieved with descent methods, which

rely on the Fréchet derivative d ̃J of ̃J and are guaranteed to converge to (local) minima by the compactness
of VN ∩ B21−ε. Formulas for the Fréchet derivative of ̃J can easily be derived with the Lagrangian approach
described in [22, Section 1.6.4]. Note that this approach is simpler than the Lagrangian approach for deriving
theEulerianderivative of J(Ω, u)described in [14]; indeed, in theparametric approachdescribed in Section3,
the function space to which u belongs is independent of the control parameter V.

Remark 4.1. The Fréchet derivative of ̃J(⋅, u) atV evaluated in the directionW is equal to the Eulerian deriva-
tive of J(TV(Ω), u) in the directionW ∘ (T−1

V ), because TV+W = TW∘T−1
V

∘ TV.

Example 4.2. The Fréchet derivative of ̃J from (3.3) reads

d ̃J(V, u;W) = ∫
Ω0

(j(u) − fp)∂W(detDTV) − grad f ⋅Wp detDTV + grad p ⋅ ∂WMV grad u dx,

where

∂WMV := det(DTV)(tr(DT−1
V DW)DT−1

V DT−T
V − DT−1

V (DT−T
V DWT + DWDT−1

V )DT−T
V ),

∂W(detDTV) := det(DTV)tr(DT−1
V DW),

and where p ∈ H1
0(Ω0) is the solution to the adjoint problem

{
−div(MV grad p) = −j�(u)(detDTV) in Ω0,

p = 0 on ∂Ω0.

As Example 4.2 clearly illustrates, the Fréchet derivative of PDE constrained functionals depends on the so-
lution u of the state problem and, possibly, on the solution p of the adjoint problem. As explicit analytic so-
lutions of these boundary value problems are usually not available, one can replace them with approximate
solutions, at the cost of introducing a perturbation error when solving the �rst order optimality condition
(3.5). In particular, this perturbation error a�ects the quality of the descent directions.

We consider here approximations by means of the �nite element method. When stated as a volume in-
tegral, the map u Ü→ d ̃J(V, u;W) is usually continuous with respect to the energy norm of u. Therefore, re-
lying on standard duality techniques, one can expect to observe superconvergence in the approximation of
the operator ̃J(V, u; ⋅) when the solution u is replaced by its �nite element counterpart uh. The same holds
for evaluating the shape functional ̃J(V, u). In particular, we consider linear Lagrangian �nite elements on
quasi-uniform triangular meshes. In this case, it can be shown that [23, Theorem 3.1]

|d ̃J(V, u;W) − d ̃J(V, uh;W)| = C(V)h2‖W‖W2,4(ℝd;ℝd), (4.2)
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Algorithm 1. Projected gradient method with Armijo rule
1: Select initial design Ω0, optimization step δ, and parameters ε,ã ∈ (0, 1)
2: Initialize VN = 0 and V

temp
N = 0

3: Precompute all Bi’s on quadrature nodes
4: for ii = 1, . . . ,MAXITER do
5: Assemble �nite element sti�ness matrix ÃV

temp
N

and load vector ̃fVtemp
N

6: Compute �nite element solution uh of ÃV
temp
N
u = ̃fVtemp

N
in Ω0

7: Compute ̃Jnew := ̃J(Vtemp
N , uh)

8: if ii > 1 and ̃Jnew − ̃Jold > ãδd ̃J(VN , uh;Vnew
N ) then

9: Update δ ← δ/2
10: else
11: Update δ ← 2δ
12: Update VN ← V

temp
N , ̃Jold ← ̃Jnew

13: Compute Vnew
N = argminWN∈VN ,‖WN‖H1(D)=1 d ̃J(VN , uh;WN)

14: end if
15: Set Vtemp

N := VN + δVnew
N

16: whilemin(detDTVtemp
N

) < ε do
17: Update δ ← δ/2 and set Vtemp

N := VN + δVnew
N

18: end while
19: end for

where h denotes thewidth of the �nite elementmesh and C(V) is a constant that depends onV and Ω0. On the
other hand, we do not observe superconvergence in (4.2) when d ̃J is recast as an integration on the boundary
∂Ω0. We refer to [23] for more details.

The approximate optimal solution V∗
N can be computed iteratively by adopting the “simulation-based

optimization policy”: the routines to compute the solution of the state problem and the Fréchet derivative
are “embedded into an optimization loop” [21, Section 1.1]. In this work we consider a descent method with
Armijo rule [22, Section 2.2.1.1] as illustrated in Algorithm 1. The optimization algorithm is kept simple on
purpose to allow for benchmarking. The next paragraphs give a detailed description of the algorithm’s steps.

In line 13 we compute the descent direction. Since the Fréchet derivative d ̃J(V, u; ⋅) belongs to the dual
space of C2(D;ℝd), its descent direction is usually de�ned as the solution of

inf‖W‖C2(D;ℝd )=1 d ̃J(V, u;W),

see [22, p. 103]. However, such a descent directionmay not exist because the space C2(D;ℝd) is not re�exive.
Employing knowledge on the shapeHessian is also not straightforward, because the secondorder Fréchet

derivative d2 ̃J cannot be expected to be coercive in the C2(D;ℝd)-norm. Indeed, for any vector �eld W tan-
gential to Ω0 as well as for vector �elds with a compact support that does not intersect ∂Ω0, it holds

d ̃J(V, u;W) = 0 and d2 ̃J(V, u;W,W) = 0.

However, in several situations, the shape Hessian is a positive bilinear form when evaluated on vector
�elds with non-zero normal component on ∂Ω0. For instance, this is the case for the shape functional de�ned
in (3.2), see [15]. Moreover, the shape Hessian can be expected to be a continuous bilinear form with respect
to the Hs(∂Ω0)-norm of the normal component of the vector �elds. The regularity s of the “energy space”
Hs(∂Ω0) depends on the problem under consideration; cf. [16]. In the seminal works [13, 16] it has been
shown that shape optimization problems admit strict localminima, also called stableminimizers, if the shape
Hessian is also coercive with respect to the Hs(∂Ω0)-norm of the normal component of the vector �elds, that
is,

d2 ̃J(V, u;W,W) ≥ C‖W ⋅ n‖Hs(∂Ω0), (4.3)
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where n is the normal vector �eld on ∂Ω0 and C > 0 is a constant independent of W. Thus, coercivity in
the Hs(∂Ω0)-norm can be used as a criterion to distinguish between well- and ill-posed shape optimization
problems [16]. Therefore, from a theoretical point of view, it is natural to consider the Hs(∂Ω0) representative
of the Fréchet derivative, which is unique up to extensions into the domain D of its values on ∂Ω0 in the
normal direction n. Note that for ill-posed shape optimization problems this choice provides a regularization
in the spirit of regularized sequential quadratic programming [11].

We consider here descent directions given as H1
0(D;ℝd)-representatives of the Fréchet derivative, that is,

solutions to
min‖W‖H1(D;ℝd )=1 d ̃J(V, u;W). (4.4)

Up to a scaling factor, this amounts to solving the linear variational problem

(Vnew
N ,WN)H1(D;ℝd) = d ̃J(V, u;WN) for allWN ∈ VN , (4.5)

which is equivalent to solving a discrete Laplacian with homogeneous Dirichlet boundary conditions on ∂D
and a spline based Galerkin discretization.

By the continuity of the normal Dirichlet trace operator

H1
0(D;ℝ

d) → H1/2(∂Ω0), W Ü→ W ⋅ n|∂Ω0 ,

the H1
0(D;ℝd)-representative of the Fréchet derivative is the unique H1

0(D;ℝd)-extension of the normal val-
ues of the H1/2(∂Ω0)-representative. Note that this is the proper “energy space” for the shape optimization
problems considered in Section 6; cf. [15, 16].

In line 16ofAlgorithm1wecheck that the transformation TV is indeed adi�eomorphism.As suggested in
[7], we verify that the value of detDTV is bigger than a threshold value¹. This relaxes the restrictive C2(D;ℝd)-
norm condition in (2.4) but still guarantees that the algorithm is well-de�ned. If min(detDTV) is too small,
we reduce the optimization stepsize until TV de�nes a feasible transformation. Note that the while loop ter-
minates due to the continuity of the determinant.

Remark 4.3. It might nevertheless happen that the (continuous) optimal solution V∗ lies on the boundary
of B11−ε, and that, however, the value of ̃J(V∗) is not yet satisfactory for convergence purposes. For instance,
this might be the case when the initial guess Ω0 is poorly chosen. In this situation a remedy is to select the
retrieved shape as initial guess, and to restart the algorithm. Practically, this can be done by either creating
a newmesh of TV∗ (Ω0) or by replacing the transformation TV with the composition TV ∘ TV∗ (exploiting the
fact that the composition of di�eomorphisms is again a di�eomorphism). This latter approach can be made
computationally a�ordable by simply re-evaluating all Bi’s on the mapped quadrature nodes; see the next
paragraph on the computational complexity of Algorithm 1. Note also that Theorems 2.1 and 2.5 still hold
as long as a �nite number of compositions is considered.

Finally, in line 9 we guarantee the admissibility of the optimization step δ according to the Armijo rule [22,
Section 2.2.1.1].

5 Implementation in Matlab
We give details for an e�cient implementation of Algorithm 1 inMatlab for a two-dimensional problem. The
state problem is solved by piecewise linear Lagrangian �nite elements on triangles. The code can easily be
extended to higher order polynomials by updating the routines accordingly. Our implementation follows the
lines of [19, Section 3].

1 In practice, this condition can be tested only on a �nite number of points. In our implementation we evaluate detDTV on the
FE quadrature points.
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Firstly, we note that for each iteration the computational cost of Algorithm 1 is mainly due to:
∙ assembling the linear system in line 5,
∙ solving the linear system in line 6,
∙ evaluating the shape functional in line 7,
∙ computing the descent direction in line 13 (see (4.5)),
∙ testing the feasibility of the new descent direction in line 16.

Except for solving the linear system, these steps require the evaluation of DVN , and thus of all partial
derivatives of the B-splines, in each quadrature point on the �nite element mesh. Since function calls are
generally expensive, we pre-evaluate all these partial derivatives in all quadrature points in line 3, and as-
semble two sparse matrices VdX and VdY of size (nQP ⋅ nElements)× nBsplines, where nQP is the number
of quadrature points for triangle, nElements is the number of triangles, and nBsplines is the number of
B-splines Bi (which corresponds to N in (4.1)). In these twomatrices we store the values of the partial deriva-
tives ∂xBi and ∂yBi, respectively. Then, the entries of the Jacobian DVN can be obtained by multiplying the
matrices VdX and VdYwith the vectors cX and cY, whose entries are the coe�cients c1i and c

2
i of the expansion

ofVN given in (4.1), respectively. This yields an e�ective speed-up of the computations at the cost of memory.
Note that the number of non-zero entries of VdX and VdY is signi�cantly less than nQP ⋅ nElements ⋅ nBsplines
because B-splines have compact support.

With the matrices VdX and VdY at our disposal, it is very simple to test the feasibility of the new descent
direction in line 16. We conclude this section by discussing the assembly of the sti�ness matrix in line 5, the
computation of the solution of the related linear system, the evaluation of the shape functional in line 7, and
the computation of the descent direction in line 13.

The weak formulation of the state constraint of (3.3) suggests that

(u, v) Ü→ ∫
Ω0

∇u ⋅M∇v dx

is a good representative bilinear form for the state constraint in line 6. By and large,M is a non-constant pos-
itive de�ned di�usion matrix. However, as the gradient of piecewise linear functions is piecewise constant,
the matrix function M can be replaced by its mean values in each triangle. Then, a fully vectorized matrix
assembly of the sti�ness matrix can easily be implemented based on the details given in [19, Section 3.4],
where Funken et al. describe the assembly of the sti�ness matrix arising from the bilinear form

(u, v) Ü→ ∫
Ω0

∇u ⋅ ∇v dx.

The following step is to solve the linear system to retrieve the �nite element solution uh. In [6], Antonietti
et al. show that multigrid strategies can be successfully applied in the context of shape optimization with
moving meshes. We believe that similar ideas can be employed in our strategy. However, not to introduce
additional error terms, we rely on the Matlab function mldivide, which implements a direct solver.

Let uref ∈ H1(ℝd). We consider

J := ∫
Ω

∇(u − uref) ⋅ ∇(u − uref) + (u − uref)2 dx,

as a representative for general shape functionals. The corresponding functional in parametric form reads

̃J := ∫
Ω0

∇(u − ũref) ⋅MVN∇(u − ũref) + (u − ũref)2 det(DTVN )dx,

where ũref := uref ∘ TVN . The contribution of the �rst integrand can be evaluated e�ciently employing the
sti�ness matrix assembled in line 6. The second integrand is a scalar function, and does not represent any
computational challenge, because the term det(DTVN ) can be computed e�ciently with the matrices VdX
and VdY.
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The formulas of shape gradients of PDE constraint shape functionals strongly depend both on the shape
functional itself and on the PDE constraint. Therefore, it is not possible to give a detailed description of its
e�cient implementation. We simply remark that, to compute the descent direction in line 13, the shape gra-
dient has to be evaluated on all basis vector �elds Biej. By and large, the evaluation of the shape gradient on
a �xed direction corresponds to an integration in volume, when the solution of the state problem is approx-
imated with FEM [23]. Thus, 2 ⋅ nBsplines integrals have to be computed. Employing Matlab’s pointwise
arithmetics [19], these integrations can be performed simultaneously with a fully vectorized implementa-
tion. However, we stress that this step requires large amount of memory. We strongly recommend to exploit
sparsity to reduce the active memory requirements. We �nally recall that, in Matlab, function input vari-
ables are not copied as long as they are not modi�ed within the body of the function. We refer to the Matlab
documentation for further details.

6 Numerical Experiments
Let Ω0 be an annular domainwith internal boundary ∂Ωin and external boundary ∂Ωout. The set of admissible
domains is rede�ned to comprise domains obtained by perturbing only the external boundary ∂Ωout, i.e.,

Uad(Ω0) := {TV(Ω0); TV = I + V, ‖V‖C2(D;ℝd) ≤ 1 − ε, suppV ∩ ∂Ωin = 0}.

We consider the shape optimization problem

inf
Ω∈Uad(Ω0)∫

Ω

(∇u)2 + g2 dx subject to
{{{
{{{
{

−∆u = 0 in Ω,

u = 0 on ∂Ωout,

u = 1 on ∂Ωin,

(6.1)

where g is a constant.
Such an optimization problem belongs to the class of Bernoulli exterior free boundary problems, which

are used as a benchmark in shape optimization because they admit stable minimizers. This is due to the
H1/2(∂Ω0)-coercivity (see (4.3)) of its Hessian in the optimal shape [16].

The parametric form of (6.1) reads

inf
V∈B21−ε ∫Ω0

∇u ⋅MV∇u + g2 detDTV dx subject to
{{{
{{{
{

−divMV grad u = 0 in Ω0,

u = 0 on ∂Ωout
0 ,

u = 1 on ∂Ωin
0 ,

(6.2)

whereMV := (detDTV)DT−1
V DT−T

V . The Fréchet derivative of the shape functional in (6.2) reads

d ̃J(V, u;W) = ∫
Ω0

∇u ⋅ (∂WMV)∇u + g2(∂W detDTV)dx. (6.3)

Note that, in contrast to Example 4.2, formula (6.3) does not involve the solution of an adjoint problem [17].
Henceforth, ∂Ωin

0 is a circle of radius 0.5 centered in the origin.We set g = (1.2 log(2.4))−1, so that the ex-
ternal boundary of the optimal solution is a circle of radius 1.2 centered in the origin. By rotational symmetry
of the optimal solution, the minimal value of (6.1) is given by

̃Jmin = 2π(g2 1.2
2 − 0.52

2
−

1
log(0.5/1.2)

).

In all the experiments, we consider �nite element solutions computed with linear Lagrangian �nite el-
ements on quasi-uniform triangular meshes. Integrals in the domain are computed by a 3-point quadrature
rule of order 3 in each triangle. The boundary of the computational domain is approximated by a polygon,
which will not a�ect the convergence of linear �nite elements [10, Section 10.2]. The optimization step δ is
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Figure 1. The initial guess Ω0 is covered with a regular grid used to generate cubic B-splines. Dots indicate the lower left corner
of the support of the active B-splines. The square in the top right corner indicates the support of a cubic B-spline. A triangular
grid is generated on Ω0 to compute the �nite element solution uh.

initially set to δ = 0.3 and the parameter ε to ε = 0.05. Finally, we replace the Armijo rule condition

̃Jnew − ̃Jold ≤ ãδd ̃J(VN , uh;Vnew
N )

with
| ̃Jnew − ̃Jmin| − | ̃Jold − ̃Jmin| ≤ ãδd ̃J(VN , uh;Vnew

N ),

so that the algorithm does not get stuck if, due to numerical error, ̃Jnew becomes smaller than the minimal
value ̃Jmin. The parameter ã is set to ã = 0.1.

To show that the algorithm proposed in Section 4 is feasible, we select ∂Ωout
0 to be an ellipse with major

semi-axis of length 1.5 and minor semi-axis of length 1.3; see Figure 1 (left). The domain Ω0 is covered with
a regular grid of width 0.255 over which the trial space VN is constructed. The �nite element solution uh is
computed on themesh displayed in Figure 1 (left). Despite the coarseness of themesh and the low resolution
of the B-spline grid, after twelve optimization steps we already recover a satisfactory approximation of the
target boundary; see Figure 2 (top left). The quality of the recovered solution improves if the �nite element
solution uh is computed on a �ner the mesh. The results obtained after three uniform re�nements² of the
mesh are displayed in Figure 2 (bottom left).

The experiment is repeated for a di�erent initial design: a square with edges of length 2.06; see Figure 1
(right). Again, after twelve steps we recover a satisfactory approximation of the target boundary; see Figure 2
(top right). Although corners can not be smoothed with a di�eomorphism, the quality of the approximate
solution improves by computing the �nite element solution uh on a �ner mesh; see Figure 2 (bottom right).

Next, we investigate the impact of the �nite element approximation on the retrieved approximate optimal
solution. We keep the trial space of B-splines VN �xed (with width 0.255), and we generate seven additional
meshes through uniform re�nement of the one displayed in Figure 1 (left). Let

err(i) := | ̃J(V(i)
N , uh) − ̃Jmin|
̃J(I, uh)

(6.4)

be the scaled absolute error obtained after i steps of Algorithm 1. In Figure 3 (left) we plot the evolution
of err(i) for each mesh. In Figure 3 (right) we plot err(100) for each mesh versus its mesh width. We observe
an algebraic convergence with rate 1.7. We remark that ̃J(V, uh) itself converges quadratically in the mesh
width h (uniformly in V ∈ C2(D;ℝd)).

2 During all mesh re�nements the boundary nodes are projected onto ∂Ω0.
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Figure 2. Approximate optimal boundary retrieved after twelve iterations of Algorithm 1. Light gray lines indicate the boundary
of the initial guess Ω0. Results in the �rst row are obtained using the meshes displayed in Figure 1. Despite the coarseness
of the mesh and the low resolution of the B-spline grid, we recover a decent approximation (dark gray line) of the optimum
(exterior boundary of the annulus in the middle). The results can be improved by computing on �ner meshes (second row).
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Figure 3. Left: Evolution of the scaled absolute error (6.4) on 8 nested meshes obtained with uniform re�nement.
Right: Value of scaled absolute error versus meshwidth at 100th iteration. We observe algebraic convergence with rate 1.7
(superconvergence).
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Figure 4. Evolution of the scaled absolute error (6.4) for a coarse
( ) and a �ner ( ) trial space VN . Switching to a �ner
space after 10 iterations, it is possible to start with a coarse
trial space and still retrieve an approximate solution with good
quality ( ).
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Then, we investigate the impact of the resolution provided by VN on the approximate optimal solution.
We perform the experiment on the �fth mesh of the previous experiment. In Figure 4 we show the evolution
of err(i) for VN constructed on a regular grid of width 0.51 ( ) and 0.255 ( ). The former trial space
comprises 54 active³ B-splines, whilst the latter has 152 active B-splines. We see that the resolution of VN
a�ects the quality of the retrieved approximate optimal solution.

In real applications the exact optimal solution is usually not known a priori, and the minimum of the
constrained shape functional might be bigger than zero. To investigate whether the algorithm has fully con-
verged, we suggest to pursue an adaptive strategy by starting with a relatively coarse resolution and, when
the iteration stagnates, to embed the so far computed discrete vector �eld on a nested space spanned by basis
functions generated on a grid with half the meshwidth [24, Section 7.6]. Then, new descent directions are
computed by taking into account only the new basis functions that intersect the boundary, whilst the ones
that do not intersect the boundary are kept to provide a smoother decay of the vector �eld. The evolution of
err(i) for this strategy is displayed in Figure 4 ( ). We see that we are able to improve the quality of the
approximate optimal solution by switching to a �ner space after ten iterations.

Finally, we test our algorithm on a prototypical ill-posed inverse problem. Let B be a �xed subdomain of
a domain Ω and let ut ∈ L2(B) be a given target function. The goal is to �nd the optimal domain that contains
B, so that the shape functional

J(Ω) := ∫
B

(u − ut)2 dx subject to {
−∆u = 1 in Ω,

u = 0 on ∂Ω
(6.5)

attains its minimum.
As explained in [12], elliptic regularity theory implies that the solution u of the state problem is in H2(Ω)

as soon as Ω is of class C2. Therefore, the range of the operator V Ü→ u|B is at most a dense subset of L2(Ω)
[9, Theorem 7.2]. Thus, the shape optimization problem (6.5) is ill-posed. An alternative explanation of the
ill-posedness of (6.5) from a shape optimization point of view can be found in [15].

Similar to Example 4.2, the shape derivative of the shape optimization problem (6.5) recast in parametric
form reads

d ̃J(V, u;W) = ∫
Ω0

grad p ⋅ ∂WMV grad u − p ∂W(detDTV)dx,

where u and p are the solutions in H1
0(Ω0) of the weak form of

−div(MV grad u) = detDTV, −div(MV grad p) = −χB2(u − ut).

Note that here the set of admissible shapes reads

Uad(Ω0) := {TV(Ω0); TV = I + V, ‖V‖C2(D;ℝd) ≤ 1 − ε, suppV ∩ B = 0}.

In particular, we consider only vector �elds that vanish on B because the latter denotes the region of interest
and is assumed to be �xed.

The goal of this experiment is to asses the relevance of the regularization provided by the choice of
H1
0(D;ℝd)-representatives of the Fréchet derivative; see (4.4). We set ut(x) := (1.2)2/4 − x ⋅ x/4, so that an

optimal domain is the disc centered in 0 with radius 1.2. The region of interest B is a disc centered in 0 with
radius 0.5whilst the initial domain Ω0 is a disc centered in 0with radius 1.3.We decide to start with Ω0 close
to the optimum because we construct the B-splines on a very �ne grid in order to exclude regularization by
discretization. To be precise, we set the gridwidth to 0.051, which corresponds to 729 active B-splines, and
thus to 1458 basis vector �elds; see (4.1). The �nite element mesh has 126465 nodes and 251904 triangles.

In Figure 5 we display the evolution of the shape functional J ( ), the minimal value of detDTV on
the quadrature points ( ), the optimization step δ ( ). The graph on the left refers to the H1

0(D;ℝd)-

3 We just consider B-splines whose support intersects ∂Ωout.
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Figure 5. Evolution for the ill-posed shape optimization problem (6.5) of the shape functional J ( ), the minimal value of
det(DTV) on the quadrature points ( ), and of the optimization step δ ( ) for descent directions computed with respect
to the H1

0(D;ℝd)- (left) and the L2(D;ℝd)-metric (right). Due to the ill-posed nature of the shape optimization problem, the
optimization step δ has to decrease rapidly to make the transformations TV feasible in absence of regularization.

representative whilst the one on the right to the L2(D;ℝd)-representative. For a better comparison, we nor-
malize the descent directions with respect to the mean normal displacement

∫∂Ω0
V ⋅ ndS

∫∂Ω0
dS

.

When the H1(D;ℝd)-metric is employed, we clearly see that the algorithm succeeds in reconstructing
the target shape (small values of J) and that the descent directions give rise to feasible transformations
(min(detDTV) is bigger than the threshold ε = 0.05) without making the optimization step δ decay rapidly
to 0. Updates on δ occur only to ful�ll the Armijo condition. On the other hand, the optimization step δ
has to decrease rapidly to make the transformations TV feasible when the algorithm relies on L2(D;ℝd)-
representatives of the Fréchet derivative. This is due to a steeper decay in the radial component of the re-
trieved vector �eld; see Figure 6. We also observe that descent directions computed in the L2(D;ℝd)-metric
are more oscillatory; see Figure 7. These facts drastically slow down the reconstruction of the optimal shape,
and corroborate the regularizing properties provided by the use of the H1(D;ℝd)-metric.

7 Conclusions
We presented a method to compute approximate optimal solutions of elliptic PDE constrained shape opti-
mization problems. Shapes are identi�edwith di�eomorphisms and the shape optimization problem is recast
as an optimal control problem. The latter is then stated on a �nite dimensional trial space based on cubic
B-splines pursuing a Ritz approach. Under reasonable assumptions, the solution of the �nite dimensional
problem converges to the solution of the original problem.

To solve the �nite dimensional problem we rely on descent methods. We employ H1
0(D;ℝd)-representa-

tives of the Fréchet derivative. For the well-posed shape optimization problem (6.1), this choice is consistent
with the coercivity estimate (4.3) ful�lled by the shape Hessian. For the ill-posed problem (6.5), it provides a
regularization in the spirit of regularized sequential quadratic programming.

Superconvergence in the approximationof theFréchet derivative canbe achieved relyingonFEdiscretiza-
tions of the underlying BVP. Numerical experiments show that accuracy in the approximation of the Fréchet
derivative directly a�ects the quality of the retrieved approximate optimal solution.
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Figure 6. Radial component of the descent direction δVnew
N

(with δ = 0.025) computed in the �rst optimization step in the
H1(D;ℝd)- (dark gray) and the L2(D;ℝd)-metric (light gray) on
the path from (−1.3, 0) to (−1, 0). The descent direction com-
puted in the L2(D;ℝd)-metric su�ers from a steeper decay in
the radial component.

Figure 7. Shapes TV(Ω0) obtained using the descent direction δVnew
N (with δ = 0.025) computed in the �rst optimization step

in the H1(D;ℝd)- (left) and the L2(D;ℝd)-metric (right). In the latter case we observe high-frequency oscillations.

Finally, we discussed an adaptive strategy based on nested trial spaces to balance discretization errors
due to B-splines approximation of shapes and FE approximations of the solution of the PDE constraint.
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