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An Optimal Adaptive Finite Element Method
for an Obstacle Problem
Abstract: This paper provides a re�ned a posteriori error control for the obstacle problem with an a�ne ob-
stacle which allows for a proof of optimal complexity of an adaptive algorithm. This is the �rst adaptivemesh-
re�ning �nite element method known to be of optimal complexity for some variational inequality. The result
holds for �rst-order conforming �nite element methods in any spacial dimension based on shape-regular
triangulation into simplices for an a�ne obstacle. The key contribution is the discrete reliability of the a pos-
teriori error estimator from [6] in an edge-oriented modi�cation which circumvents the di�culties caused by
the non-existence of a positive second-order approximation [18].
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1 Introduction
The obstacle throughout this paper is an a�ne function χ on the bounded, polygonal or polyhedral domain
Ω inℝn for n = 2, 3 with χ ≤ 0 on the boundary ∂Ω. This allows to de�ne the non-empty, closed, convex set

K := {v ∈ V | χ ≤ v a.e. in Ω}

in the Hilbert space V := H1
0(Ω) (in standard notation for Sobolev spaces) endowed with the energy scalar

product
a(v, w) := ∫

Ω

∇v ⋅ ∇w dx for all v, w ∈ V

and its induced norm |||⋅||| := a(⋅, ⋅)1/2. Given any f ∈ L2(Ω) and the L2 scale product

(f, ⋅)L2(Ω) =: F ∈ V∗ ≡ H−1(Ω)

in the dual of V, the weak form of the obstacle problem allows for a unique solution u ∈ K of [14]

F(v − u) ≤ a(u, v − u) for all v ∈ K. (1.1)

The lowest-order conforming �nite element approximation replaces K by the set K(Tℓ) := K ∩ P1(Tℓ) of some
piecewise a�ne functionswith respect to some shape-regular, simplicial triangulationTℓ ofΩ and its P1 �nite
element space Vℓ = V(Tℓ) := P1(Tℓ) ∩ V. The unique discrete solution uℓ ∈ K(Tℓ) on the level ℓ ∈ ℕ0 solves
[11]

F(vℓ − uℓ) ≤ a(uℓ, vℓ − uℓ) for all vℓ ∈ Kℓ. (1.2)

The a priori and a posteriori error controls of the error u − uℓ in the energy normhave a long history [1, 3, 5, 6,
8, 12, 13, 16, 17, 23]. The adaptivemesh-re�ning algorithm successively re�nes the triangulationswithin the
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steps Solve, Estimate, Mark, Re�ne. We refer to the seminal contributions [7, 9, 15, 21] for the corresponding
variational equality and the �rst convergence result [6] for variational inequalities. The optimality analysis
of this paper has to overcome severe di�culties related to the fact that the Scott–Zhang quasi-interpolation
operator is not positive and even worse, any positive approximation operator is not of second order [18]. The
remedy is a re�nedaposteriori error analysiswhich involves contributions even from theLagrangemultipliers
from the discrete compatibility conditions which are usually just estimated by their upper bound zero. Based
on this re�ned analysis, any quasi-interpolation operator can be employed as long as it allows for the local
�rst-order approximation property and the local projection property (see below for details on those notions).

The resulting discrete reliability states for two discrete solutions uℓ and uℓ+m based on two admissible
triangulations Tℓ and its re�nement Tℓ+m that for their respective sets of sides Eℓ and Eℓ+m, there exists some
set Mℓ,ℓ+m ⊂ Eℓ of sides with cardinality |Mℓ,ℓ+m| controlled by the number |Tℓ \ Tℓ+m| of re�ned simplices
such that

E(uℓ) − E(uℓ+m) + |||uℓ+m − uℓ|||2 ≤ CdRelη2ℓ (Mℓ,ℓ+m). (1.3)

The energy di�erence in (1.3) is de�ned by

E(v) := 1/2 a(v, v) − F(v) for all v ∈ V. (1.4)

It is well known that the solution u ∈ K of (1.1) minimizes E in K (see [14]) and uℓ minimizes E in Kℓ; since
K(Tℓ) ⊂ K(Tℓ+m), the di�erence E(uℓ) − E(uℓ+m) is non-negative. Notice that (1.3) implies the reliability of the
re�ned estimator from [3, 6] in the limit (1.3) as m → ∞ (with assumed red-re�nements).

A side-oriented adaptive �nite element method [19] is based on Dör�er marking [9] with the local contri-
bution like

η2ℓ (E) := |ω(ℓ)
E |1/n‖[∇uℓ]E ⋅ νE‖2L2(E) + osc2(f, ω(ℓ)

E ) for E ∈ Eℓ(Ω) (1.5)

for the jump [∇uℓ]E of the piecewise constant gradients ∇uℓ of the discrete solution uℓ across the interior
side E with normal unit vector νE and patch ω(ℓ)

E of volume |ω(ℓ)
E |, and the oscillation osc(f, ω(ℓ)

E ) de�ned in
Section 3.1 below.

The side E ∈ Eℓ(∂Ω) is called a full contact boundary side, written E ∈ FCBS(Eℓ, ∂Ω, χ), if χ|E ≡ 0. (Details
on the notation ofEℓ andEℓ(∂Ω) follow in Section 3 below.) Some vaguely related concept of full contact node
is introduced in [10] for the discrete solution. The oscillation for some boundary side reads

Osc(f, ω(ℓ)
E ) :=

{
{
{

osc(f, ω(ℓ)
E ) for any E ∈ FCBS(Eℓ, ∂Ω, χ),

|ω(ℓ)
E |1/n‖f‖L2(ω(ℓ)

E ) for any E ∈ Eℓ(∂Ω) \ FCBS(Eℓ, ∂Ω, χ),

and its square equals the error estimator contribution

η2ℓ (E) := Osc2(f, ω(ℓ)
E ) for all E ∈ Eℓ(∂Ω).

All those terms form the side-oriented error estimator

η2ℓ := ∑
E∈Eℓ η2ℓ (E) (1.6)

which is a re�ned version of that in [3, 6] and so improves those of [8, 23, 25]. Given0 < s < ∞, the non-linear
approximation classAs for the energy plus data approximation consists of pairs (u, f) ∈ K × L2(Ω) with

|(u, f)|2As
:= sup

N∈ℕ
N2s inf

T∈T(T0 ,N)
min

vT∈K(T)
(E(vT) − E(u) + Osc2T) < ∞. (1.7)

Here and throughout this paper, T(T0, N) denotes the set of admissible triangulations T of an initial regular
triangulation T0 with |T| ≤ |T0| + N by newest-vertex bisections [4, 21] associated to the data oscillation Osc2T
as the counterpart of Osc2ℓ (see (3.1) below for the de�nition of the oscillation).

The adaptive algorithm of Section 2.1 is quasi-optimal in the sense that (1.7) implies

E(uℓ) − E(u) + Osc2ℓ ≲ |(u, f)|2As
(|Tℓ| − |T0|)−2s for all ℓ = 0, 1, 2, . . . . (1.8)
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The remaining parts of this paper are organized as follows. Section 2 presents the adaptive algorithm
based on the residual-type a posteriori error estimator and a bulk criterion for the side-oriented contributions
for re�nement. Section 3 proves the discrete reliability (1.3). Section 4 presents the optimality analysis.

Note that optimality of the adaptive algorithm in practice is illustrated in the numerical examples in [19]
where a slightly di�erent a posteriori error control was used. That paper proves some contraction property
but excludes the optimality analysis.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces is adopted and an inequality
A ≤ C B with some mesh-size independent generic constant 0 ≤ C < ∞ is abbreviated as A ≲ B while A ≈ B
reads A ≲ B ≲ A. All hidden generic factors depend on T0 and hence do neither depend on data nor onmesh-
sizes nor levels nor number of simplices nor sides etc.

2 Algorithm and Main Results
This section is devoted to the adaptive algorithmand its notation aswell as the statements of themain results.

2.1 Adaptive Algorithm

The adaptive �nite element method consists of successive loops of a cycle involving the steps ‘Solve’,
‘Estimate’, ‘Mark’, and ‘Re�ne’ as in [19] as some realization of [6].

Input. Bulk parameter 0 < θ < 1 plus a regular triangulation T0 of the bounded Lipschitz domain Ω ⊂ ℝn

into simplices for n = 2, 3 plus re�nement edges to allow for admissible re�nements by the newest-vertex
bisection as in [4, 22].

Loop. For all levels ℓ = 0, 1, 2, . . . (until termination) do

Solve. Given triangulation Tℓ with set of sides Eℓ with the subset of internal sides Eℓ(Ω) and Kℓ := K(Tℓ) for
the piecewise a�ne P1(Tℓ), compute solution uℓ of discrete problem (1.2).

Estimate. Compute side contributions (1.5) and error estimator (1.6).

Mark. Compute some setMℓ of sides in Eℓ of (almost) minimal cardinality |Mℓ| such that

θη2ℓ ≤ η2ℓ (Mℓ) := ∑
E∈Mℓ η2ℓ (E). (2.1)

Re�ne. Bisect all marked sides at least once and add further re�nements in some newest vertex bisection to
generate the admissible re�nement Tℓ+1 (see [4, 22]). end do

Output. Sequences of �nite element approximations (uℓ), the nested conforming sets (Kℓ) and error estima-
tors (ηℓ) based on triangulations (Tℓ).

2.2 Main Results

The main results of the paper are concerned with the following discrete reliability of the estimator and the
quasi-optimal convergence of the aforementioned adaptive algorithm.

Theorem 2.1. The respective solutions uℓ and uℓ+m to the discrete problem (1.2) with respect to the triangula-
tion Tℓ and its re�nement Tℓ+m satisfy (1.3) for some subsetMℓ,ℓ+m of Eℓ with |Mℓ,ℓ+m| ≲ |Tℓ \ Tℓ+m|.

The full details of the proof of Theorem 2.1 will be given in Section 3. De�ne the energy di�erence by

δℓ := E(uℓ) − E(u).
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The following Theorem 2.2 implies the quasi-optimality (1.8). The proof will be given in Section 4.

Theorem 2.2. Suppose (u, f) ∈ As for some s > 0 and θ < cE�/(CdRel + 1). Then the output (Tℓ, Vℓ, uℓ)ℓ∈ℕ of
the adaptive algorithm of Section 2.1 satis�es

δℓ + ãη2ℓ ≲ |(u, f)|2As
(|Tℓ| − |T0|)−2s for all ℓ = 1, 2, . . . .

3 Proof of Discrete Reliability
This section presents the proof of Theorem 2.1 for two discrete solutions uℓ+m and uℓ of (1.2) with respect
to some admissible re�nement Tℓ+m of the shape-regular triangulation Tℓ. The proof is divided into several
steps: Sections 3.1–3.7 give a general setting while Sections 3.8–3.11 concern three di�erent cases for some
neighborhood of totally or unre�ned patches.

3.1 Notation on Triangulations

Given the regular triangulation Tℓ of the domain into closed triangles/tetrahedrons, let Eℓ denote the set of
all sides of Tℓ, Eℓ(Ω) the set of all interior sides, Eℓ(∂Ω) the set of all boundary sides, and Eℓ(T) the set of
sides of a simplex T ∈ Tℓ. Let Nℓ denote the set of all nodes in Tℓ, Nℓ(Ω) the set of all internal nodes, Nℓ(T)
the set of nodes of T ∈ Tℓ, and Nℓ(E) the set of nodes of E ∈ Eℓ. For any z ∈ Nℓ, let Eℓ(z) denote the set of
sides in Eℓ and Tℓ(z) the set of simplices in Tℓ that share the vertex z. Let the patch ω(ℓ)

z := ⋃T∈Tℓ(z) int(T) and
let |||⋅|||ω(ℓ)

z
denote the restriction of the energy norm over the patch ω(ℓ)

z . For interior side E, [⋅]E := ⋅|T+ − ⋅|T−
denotes the jump across the side E = T+ ∩ T− shared by the two elements T+ and T−, andω(ℓ)

E := int(T+ ∪ T−).
If E ∈ Eℓ(∂Ω), thenω(ℓ)

E := int(T+)where T+ is the unique element that has E as one side. For any node z ∈ Nℓ,
the nodal basis function φ(ℓ)

z of the conforming P1 �nite element space Vℓ satis�es φ(ℓ)
z (z) = 1 and φ(ℓ)

z (y) = 0
for any node y ∈ Nℓ other than z. Let hℓ denote the piecewise constant mesh-size in Tℓ. Given ω ⊂ Ω, the
oscillation of f ∈ L2(Ω) over it is de�ned by

osc(f, ω) := |ω|1/n‖f − fω‖L2(ω) with the average fω := ∫
ω

fdx/|ω|.

Given any internal side E ∈ Eℓ(Ω), the associated oscillation is de�ned by

Osc2(f, ω(ℓ)
E ) := osc2(f, ω(ℓ)

E ).

For any set of sides Sℓ ⊂ Eℓ, de�ne the oscillation

Osc2(Sℓ) := ∑
E∈Sℓ Osc2(f, ω

(ℓ)
E ) and set Osc2ℓ := Osc2(Eℓ). (3.1)

3.2 Overall Notation for the Proof

Throughout this section, let
LHS := E(uℓ) − E(uℓ+m) + 1/2|||uℓ+m − uℓ|||2

abbreviate amodi�ed left-hand side of (1.3) and let e := uℓ+m − uℓ ∈ V denote the di�erencewith some resid-
ual

ϱz := F(φ(ℓ)
z ) − a(uℓ, φ(ℓ)

z ) ≤ 0 ≤ uℓ(z) − χ(z) for any z ∈ Nℓ(Ω).

These de�nitions imply the following discrete consistency conditions: either ϱz = 0 or uℓ(z) = χ(z) for all
z ∈ Nℓ(Ω).
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The setNℓ(Ω) of interior nodes is usually split into the contact nodes

Cℓ := {z ∈ Nℓ(Ω) : uℓ(z) = χ(z)}

and its complement. Notice that ϱz = 0 for any interior node z outside Cℓ.

3.3 Reformulation of LHS

Some elementary algebra reveals that the de�nition of the energy implies

LHS = F(e) − a(uℓ, e).

With the abbreviations ez := 0 for any boundary node z ∈ Nℓ(∂Ω) and ez := eℓ(z) := Jℓ(e)(z) for any interior
node z ∈ Nℓ(Ω), the quasi-interpolation eℓ ∈ Vℓ of e ≡ uℓ+m − uℓ reads

eℓ = ∑
z∈Nℓ ezφ

(ℓ)
z .

It is emphasized that the particular choice of this quasi-interpolation Jℓ is rather general. This seems to be in
contradiction to the analysis in [8] or [3] where some particular design of the quasi-interpolation is seen as
the reason for the success of their analysis.

The re�ned error analysis of this paper merely requires locality in the sense that, for any free node
z ∈ Nℓ(Ω), the value Jℓ(w)(z) := Jℓ,z(w) exclusively depends on the values w|ω(ℓ)

z
of the test function w on the

patch ω(ℓ)
z in a linear way plus �rst-order approximation properties in the sense that

‖w − Jℓ,z(w)‖L2(ω(ℓ)
z ) ≲ hz ‖∇w‖L2(ω(ℓ)

z ) for all w ∈ H1(ω(ℓ)
z )

with the diameter hz := diam(ω(ℓ)
z ) of the patch and exactness for discrete functions in the sense that

Jℓ,z(wℓ) = wℓ(z) for all wℓ ∈ P1(Tℓ(z)) ∩ C(ω(ℓ)
z ).

In particular, the Scott–Zhang quasi-interpolation operator [20] enjoys all those properties, but there is no
need for any positivity like in [8] or extra orthogonality like in [3]. Throughout this paper, Jℓ will be selected
as the Scott–Zhang quasi-interpolation operator.

For the Scott–Zhang quasi-interpolation, the selection of some proper face allows for the immediate ful-
�lment of those boundary condition as it is nowadays standard in the proofs of discrete reliability [7, 21].

Since the nodal basis functions φ(ℓ)
z form a partition of unity, it follows

LHS = ∑
z∈Nℓ F((e − ez)φ

(ℓ)
z ) + ∑

z∈Nℓ(Ω) ezϱz − a(uℓ, e − eℓ).

3.4 Side Contributions

The �rst-order approximation property of the quasi-interpolation plus some standard piecewise integration
by parts imply

−a(uℓ, e − eℓ) ≲ ηℓ(Eℓ \ Eℓ+m)|||e|||.

Since this analysis is verbatim as in the case of variational equalities as in [1, 2, 24], we omit further details.

3.5 Contact on Entire Patch of Interior Node

This subsection concerns the control of the contributions F((e − ez)φ(ℓ)
z ) + ezϱz in case z ∈ Cℓ with uℓ ≡ χ on

ω(ℓ)
z . Since uℓ ≡ χ ∈ P1(ω(ℓ)

z ), we have

a(uℓ, φ(ℓ)
z ) = a(χ, φ(ℓ)

z ) = 0.
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This and the discrete compatibility conditions imply

F((e − ez)φ(ℓ)
z ) + ezϱz = F(eφ(ℓ)

z ) and ϱz = F(φ(ℓ)
z ) ≤ 0.

Since 0 ≤ uℓ+m − χ = uℓ+m − uℓ = e on ω(ℓ)
z , it follows

e :=
∫ω(ℓ)

z
φ(ℓ)
z e dx

∫ω(ℓ)
z
φ(ℓ)
z dx

≥ 0.

The average f ∈ P0(ω(ℓ)
z ) of f satis�es that

F(eφ(ℓ)
z ) ≤ F((e − e)φ(ℓ)

z ) = ∫

ω(ℓ)
z

(f − f )(e − e)φ(ℓ)
z dx.

The Poincaré inequality leads to

F((e − ez)φ(ℓ)
z ) + ezϱz = F(eφ(ℓ)

z ) ≲ osc(f, ω(ℓ)
z )|||e|||ω(ℓ)

z
.

Remark 3.1. Some re�ned a posteriori error estimate may exclude the oscillations of the set of the discrete
full contact edges

DFCEℓ := {E ∈ Eℓ, uℓ|ω(ℓ)
z

≡ χ and f|ω(ℓ)
z

≤ 0, z ∈ Nℓ(E)}

and so de�nes the reliable a posteriori error estimator

η2ℓ := ∑
E∈Eℓ |ω

(ℓ)
E |1/n‖[∇uℓ]E ⋅ νE‖2L2(E) + ∑

E∈Eℓ\DFCEℓ Osc2(f, ω
(ℓ)
E ). (3.2)

However, since possibly DFCEℓ ̸⊇ DFCEℓ+1, we experienced di�culty in the proof of the contraction property
of a related adaptive mesh-re�ning algorithm based on re�nement indication via (3.2).

In a second scenario assume that ω∗
z is some part of ω(ℓ)

z with |ω(ℓ)
z | ≲ |ω∗

z | and ez ≥ 0. Then it holds that

(f, φ(ℓ)
z (e − ez))L2(ω∗

z ) + ezϱz ≲ osc(f, ω(ℓ)
z )|||e|||ω(ℓ)

z
. (3.3)

Recall that (3.3) holds for the �rst scenario where ω∗
z := ω

(ℓ)
z without any sign condition of ez. The proof of

(3.3) in the second scenario follows from the aforementioned arguments and adapts withω�
z := ω

(ℓ)
z \ ω∗

z and
the averages

e∗z :=
∫ω∗

z
φ(ℓ)
z edx

∫ω∗
z
φ(ℓ)
z dx

and f∗z :=
∫ω∗

z
fdx

|ω∗
z |

.

The remainingpart of this subsection shall present somedetails of the proof of (3.3). Direct calculations prove

(f, φ(ℓ)
z (e − ez))L2(ω∗

z ) + ezϱz = (f − f∗z , φ
(ℓ)
z (e − e∗z ))L2(ω∗

z ) + e
∗
z (f, φ

(ℓ)
z )L2(ω∗

z ) + ez(f, φ
(ℓ)
z )L2(ω�

z).

The last two terms on the right-hand side of the above equation allow for the two following identities:

M := e∗z (f, φ
(ℓ)
z )L2(ω∗

z ) + ez(f, φ
(ℓ)
z )L2(ω�

z)

= (e∗z − ez)(f, φ
(ℓ)
z )L2(ω∗

z ) + ezϱz
= (ez − e∗z )(f, φ

(ℓ)
z )L2(ω�

z) + e
∗
z ϱz .

Since ϱz ≤ 0 ≤ ez , e∗z , we have

M ≤ min{(e∗z − ez)(f, φ
(ℓ)
z )L2(ω∗

z ), (ez − e
∗
z )(f, φ

(ℓ)
z )L2(ω�

z)}.

Since min{(e∗z − ez) ̄f , (ez − e∗z ) ̄f } ≤ 0, we have

M ≤ |ez − e∗z |‖f − ̄f ‖L2(ω(ℓ)
z )‖φ

(ℓ)
z ‖L2(ω(ℓ)

z ).
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Some elementary analysis and the very de�nition of e∗z show that

|ω∗
z ||ez − e∗z |2 ≈ 1/2 ∫

ω∗
z

φ(ℓ)
z (ez − e∗z )2dx

≤ ∫
ω∗
z

φ(ℓ)
z (ez − e)2dx + ∫

ω∗
z

φ(ℓ)
z (e − e∗z )2dx

≤ ∫

ω(ℓ)
z

φ(ℓ)
z (ez − e)2dx + ∫

ω∗
z

φ(ℓ)
z (e − ē)2dx

≤ ‖Jℓ,z(e) − e‖2L2(ω(ℓ)
z )

+ ‖e − ē‖2
L2(ω(ℓ)

z )
.

The �rst order approximation property of the local quasi-interpolation Jℓ,z plus the Poincaré inequality prove
the previous upper bounds ≲ h2z |||e|||2ω(ℓ)

z
. This and the aforementioned bound ofM conclude the proof of (3.3).

3.6 Boundary Contribution I:Nℓ(∂Ω) ∩ {χ < 0}
The Friedrichs inequality for patches on the boundary ∂Ω allows for the proof of

F((e − ez)φ(ℓ)
z ) = F(eφ(ℓ)

z ) ≲ ‖hℓ f‖L2(ω(ℓ)
z )|||e|||ω(ℓ)

z

for each z ∈ Nℓ(∂Ω) ∩ {χ < 0}with patch ω(ℓ)
z in the triangulation Tℓ. Given T ∈ Tℓ(z), some elementary anal-

ysis proves
‖hℓ f‖L2(ω(ℓ)

z ) ≈ ‖hℓ f‖L2(T) + osc(f, ω(ℓ)
z ). (3.4)

In fact, the triangle inequality gives for the integral mean f of f over the patch ω(ℓ)
z

‖hℓ f‖L2(ω(ℓ)
z ) ≲ ‖hℓ (f − f )‖L2(ω(ℓ)

z ) + ‖hℓ f ‖L2(T)

≲ ‖hℓ (f − f )‖L2(ω(ℓ)
z ) + ‖hℓ (f − f )‖L2(T) + ‖hℓ f‖L2(T)

≲ ‖hℓ (f − f )‖L2(ω(ℓ)
z ) + ‖hℓ f‖L2(T).

The estimate of (3.4) can be employed to reduce ‖hℓ f‖L2(ω(ℓ)
z ) to some simplex at the boundary plus some

patch oscillations. The combination of the aforementioned estimates shows

∑
z∈Nℓ(∂Ω)∩{χ<0} F((e − ez)φ

(ℓ)
z ) ≲ Oscℓ |||e|||.

3.7 Volume Contributions and Their Oscillations for Interior Nodes

Since the other case is already discussed in Section 3.5, it remains the case that uℓ ̸≡ χ on ω(ℓ)
z for z ∈ Nℓ(Ω).

This case is discussed below where the volume contribution ‖hℓf‖ω(ℓ)
z

arises which is indeed controlled by
oscillations in the sense that

‖hℓf‖2L2(ω(ℓ)
z )

≲ ∑
y∈Nℓ(ω(ℓ)

z )

(Osc2(f, ω(ℓ)
y ) + η2ℓ (Eℓ(y))). (3.5)

Notice that y ∈ Nℓ(ω(ℓ)
z ) means that y is some neighboring node of z or equal to z. Here and throughout,

Osc2(f, ω(ℓ)
y ) equals the oscillation osc2(f, ω(ℓ)

y ) over the patch ω(ℓ)
y for an interior node y while it equals

‖hℓf‖2L2(ω(ℓ)
y )

for a boundary node y ∈ Nℓ(∂Ω) ∩ {χ < 0}.
The remaining part of this subsection is devoted to the proof of (3.5) in two cases.
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In the �rst case that z ∈ Nℓ(Ω) \ Cℓ, recall that ̄f denotes the integral mean of the right-hand side f over
ω(ℓ)
z of diameter hz. Then

‖hℓf‖2L2(ω(ℓ)
z )

/h2z ≈ ‖f‖2
L2(ω(ℓ)

z )
= ‖f − ̄f ‖2

L2(ω(ℓ)
z )

+ ̄f 2|ω(ℓ)
z |.

Since
̄f |ω(ℓ)

z | ≈ ∫

ω(ℓ)
z

̄f φ(ℓ)
z dx = F(φ(ℓ)

z ) − ∫

ω(ℓ)
z

(f − ̄f )φ(ℓ)
z dx,

this implies
‖hℓf‖L2(ω(ℓ)

z ) ≲ osc(f, ω(ℓ)
z ) + |f |hz|ω(ℓ)

z |1/2 ≲ osc(f, ω(ℓ)
z ) + h1−n/2z |F(φ(ℓ)

z )|.

Since z ∈ Nℓ(Ω) \ Cℓ, we have ϱz = 0 and some piecewise integration by parts shows

F(φ(ℓ)
z ) = a(uℓ, φ(ℓ)

z ) = ∑
E∈Eℓ(z)∫E φ

(ℓ)
z [∂uℓ/∂νE]Eds.

The sidewise Cauchy inequality (with |E| ≈ hn−1z ) and the Cauchy inequality inℝm for m = |Eℓ(z)| ≈ 1 lead to

h2−nz |F(φ(ℓ)
z )|2 ≤ ∑

E∈Eℓ(z) η2ℓ (E) =: η2ℓ (Eℓ(z)).

The combination of the aforementioned estimates leads to (3.5).
In the second case z ∈ Cℓ, the present hypothesis uℓ ̸≡ χ on ω(ℓ)

z guarantees the existence of some node
y ∈ Nℓ, which is a neighbor of z in the sense that the convex hull conv{z, y} is some edge in the triangulation
Tℓ with χ(y) < uℓ(y).

In case that y ∈ Nℓ(∂Ω) belongs to the boundary, the very de�nition of {χ = 0} plus the homogeneous
boundary condition of uℓ imply y ∈ {χ < 0}. Then, the arguments of Section 3.6 show

‖hℓf‖2L2(ω(ℓ)
z )

≲ ‖hℓf‖2L2(ω(ℓ)
y )

+ osc2(f, ω(ℓ)
z ).

This implies (3.5). In the remaining case, the interior node y ∈ Nℓ(Ω) \ Cℓ is analyzed as z in the �rst case.
This leads to

‖hℓf‖2L2(ω(ℓ)
y )

≲ osc2(f, ω(ℓ)
y ) + η2ℓ (Eℓ(y)).

The argument of Section 3.6 on some element domain T ∈ Tℓ(z) ∩ Tℓ(y) can be employed to verify

‖hℓf‖2L2(ω(ℓ)
z )

≲ ‖hℓf‖2L2(T) + osc2(f, ω(ℓ)
z ) + osc2(f, ω(ℓ)

y ).

The combination of the previous two estimates implies (3.5) in the �nal case as well and concludes the proof.

3.8 Boundary Contribution II:Nℓ(∂Ω) ∩ {χ = 0}
In the �rst case assume the existence of some interior node y ∈ Nℓ(Ω), which is a neighbor of z ∈ Nℓ(∂Ω) ∩
{χ = 0} in the sense that the convex hull conv{z, y} is some interior edge in the triangulation Tℓ with
χ(y) < uℓ(y). A similar argument to that of Section 3.7 proves

F((e − ez)φ(ℓ)
z ) = F(eφ(ℓ)

z ) ≲ ‖hℓ f‖L2(ω(ℓ)
z )|||e|||ω(ℓ)

z

≲ (osc(f, ω(ℓ)
y ) + osc(f, ω(ℓ)

z ) + ∑
E∈Eℓ(y) |ω

(ℓ)
E |1/2n‖[∇uℓ]E ⋅ νE‖L2(E))|||e|||ω(ℓ)

z
.

A second case will assume that uℓ ≡ χ on ω(ℓ)
z and ̄f := ∫ω(ℓ)

z
fdx/|ω(ℓ)

z | ≤ 0. Hence e ≥ 0 on ω(ℓ)
z , which leads

to
F((e − ez)φ(ℓ)

z ) = ∫

ω(ℓ)
z

efφ(ℓ)
z dx ≤ ∫

ω(ℓ)
z

e(f − ̄f )φ(ℓ)
z dx ≲ osc(f, ω(ℓ)

z )|||e|||ω(ℓ)
z
.
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A third casewill suppose again uℓ ≡ χ on ω(ℓ)
z but ̄f > 0. Without loss of generality, wemay assume that there

exists an interior neighbor node y of z such that uℓ|ω(ℓ)
y

≡ χ|ω(ℓ)
y
; otherwise, the �rst case applies to some further

circle of interior neighboring nodes of z. This, in particular, leads to

F(φ(ℓ)
y ) := ∫

ω(ℓ)
y

fφ(ℓ)
y dx ≤ 0.

The standard bubble-function technique [24] yields

‖ ̄f ‖2
L2(ω(ℓ)

z )
≈ | ̄f |2 ∫

ω(ℓ)
y

φ(ℓ)
y dx ≤ ̄f ∫

ω(ℓ)
y

( ̄f − f)φ(ℓ)
y dx ≲ ‖ ̄f ‖L2(ω(ℓ)

z )‖f − ̄f ‖L2(ω(ℓ)
y ).

Recall that ̄f ≡ ∫ω(ℓ)
z
fdx/|ω(ℓ)

z | and set f̃ := ∫ω(ℓ)
y
fdx/|ω(ℓ)

y | so that

‖ ̄f ‖L2(ω(ℓ)
z ) ≤ ‖f − ̄f ‖L2(ω(ℓ)

y ) ≲ ‖f − f̃ ‖L2(ω(ℓ)
y ) + |f̃ − ̄f | |ω(ℓ)

y ∩ ω(ℓ)
z |1/2

≤ ‖f − ̄f ‖L2(ω(ℓ)
z ) + ‖f − f̃ ‖L2(ω(ℓ)

y ).

This implies

|ω(ℓ)
z |2/n‖f‖2

L2(ω(ℓ)
z )

= |ω(ℓ)
z |2/n‖f − ̄f ‖2

L2(ω(ℓ)
z )

+ |ω(ℓ)
z |2/n‖ ̄f ‖2

L2(ω(ℓ)
z )

≲ osc2(f, ω(ℓ)
z ) + osc2(f, ω(ℓ)

y ).

Together with the preceding results, this leads to

F((e − ez)φ(ℓ)
z ) ≲ (osc(f, ω(ℓ)

z ) + osc(f, ω(ℓ)
y ))|||e|||ω(ℓ)

z
.

The remaining case is χ ̸≡ 0 on ∂ω(ℓ)
z ∩ ∂Ω and there does not exist an interior neighboring node y ∈ Nℓ(Ω)

with uℓ(y) > χ(y). This case can be analyzed as in Section 3.6, whichwill yield some volume terms associated
to some boundary side E ∈ Eℓ(∂Ω) with χ|E ̸≡ 0.

3.9 Three Sets of Interior Nodes and Their Reduced Patches

The re�ned analysis of the discrete reliability is concerned with the decomposition

Nℓ(Ω) = Uℓ ∪ Iℓ ∪ Rℓ

into the three pairwise disjoint (possibly empty) sets of interior nodes

Uℓ := {z ∈ Nℓ(Ω) : Tℓ(z) = Tℓ+m(z)} (neighborhood unre�ned),
Iℓ := Nℓ(Ω) \ (Uℓ ∪ Rℓ) (intermediate re�nement),
Rℓ := {z ∈ Nℓ(Ω) : Tℓ(z) ⊂ Tℓ \ Tℓ+m} (neighborhood totally re�ned).

The boundary conditions on ∂Ω and on Tℓ+m ∩ Tℓ for the quasi-interpolation eℓ are arranged so that it holds
ez := eℓ(z) = e(z) for any node z ∈ Uℓ ∪ Iℓ. In case z ∈ Cℓ, we have ez = uℓ+m(z) − χ(z) ≥ 0while ϱz = 0 other-
wise. Altogether,

ezϱz ≤ 0 for all z ∈ Uℓ ∪ Iℓ. (3.6)

The quasi-interpolation error vanishes on any simplex that belongs to either re�nement,

e = eℓ on any T ∈ Tℓ+m ∩ Tℓ. (3.7)

We therefore may neglect all volume contributions from the union

Ω� := ⋃
z∈Uℓ ω

(ℓ)
z
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of all patches of Uℓ (which includes Tℓ+m ∩ Tℓ) and de�ne the reduced patches

ω∗
z := ω

(ℓ)
z \ Ω� for all z ∈ Nℓ.

This reduced patch vanishes, ω∗
z = 0, for any node z ∈ Uℓ and is unchanged, ω∗

z = ω(ℓ)
z , for any z ∈ Rℓ. In the

intermediate case z ∈ Iℓ, some simplices in ω(ℓ)
z are re�ned and some are unre�ned. Hence ω∗

z contains at
least one simplex so that the shape regularity implies

|ω∗
z | ≈ |ω(ℓ)

z | for all z ∈ Iℓ ∪ Rℓ.

(Notice that ω∗
z = ω(ℓ)

z is not excluded in case z ∈ Iℓ. The de�nition of ω∗
z applies to boundary nodes as well.)

3.10 Auxiliary Result for Interior Patch in Contact

The estimate of ezϱz for some interior node z ∈ Rℓ ∩ Cℓ in the subsequent subsection requires some elemen-
tary result which is stated for some interior patch ω(ℓ)

z and any non-negative continuous piecewise a�ne
function vℓ ∈ P1(Tℓ(z)) ∩ C(ω(ℓ)

z ) with vℓ(z) = 0 and 0 ≤ vℓ on ω(ℓ)
z as

min
g∈P1(ω(ℓ)

z )
‖vℓ − g‖L2(ω(ℓ)

z ) ≈ ‖vℓ‖L2(ω(ℓ)
z ). (3.8)

This equivalence is certainly known to the experts but key to the analysis of the entire proof. Since the analysis
in the related [3, Lemma 7] utilizes an equivalence of norms in ℝJ but leaves the interaction with the non-
negativity of the coe�cients a1, . . . , aJ rather unclear, this section investigates the equivalence constants in
some detail in an explicit hard analysis proof.

The left-hand side of (3.8) is clearly smaller than or equal to its right-hand side. The point is the converse
estimate with the focus on the generic multiplicative positive constant C ≈ 1 in

‖vℓ‖L2(ω(ℓ)
z ) ≤ C min

g∈P1(ω(ℓ)
z )

‖vℓ − g‖L2(ω(ℓ)
z ). (3.9)

This constant C does not depend on vℓ but may depend on the shape of the patch in the following sense. Let
0 < r ≤ r denote the radii of the inclusion circle and the circumcircle in the sense that r (resp. r) is maximal
(resp. minimal) with

B(z, r) ⊂ ω(ℓ)
z ⊂ B(z, r).

The ratio 0 < κ := r/r ≤ 1 exclusively depends on the interior angles of the triangulation and satis�es κ ≈ 1.
The remaining part of this subsection is devoted to some elementary proof of (3.9) and the dependence of

C on the shape regularity and on κ. The patch geometry is depicted in Figure 1with vertices P1, . . . , PJ around
the interior node z and edges Ej := conv{z, Pj} for j = 1, . . . , J. Recall that vℓ(z) = 0 and aj := vℓ(Pj) ≥ 0 for
all j = 1, . . . , J. Some elementary calculations with mass matrices show that, for any g ∈ P1(ω(ℓ)

z ), it su�ces
to prove

κ2

4J(J + 1)

J
∑
j=1
a2j ≤ M := min

g∈P1(ω(ℓ)
z )
(g(z)2 +

J
∑
j=1

(aj − g(Pj))2). (3.10)

(The remaining contributions to C in (3.9) depend on the dimension n and the number J of simplices in ω(ℓ)
z .)

The optimal a�ne function g depends on n + 1 real parameters α, β1, . . . , βn, e.g.,

g(x) := α + (β1, . . . , βn) ⋅ (x − z) for all x ∈ ω(ℓ)
z ⊂ ℝn .

The partial derivatives of the left-hand side

α2 +
J
∑
j=1

(aj − g(Pj))2 = α2 +
J
∑
j=1

(aj − α − (β1, . . . , βn) ⋅ (Pj − z))2
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z
P1

P2
Q1

Q2

PJ

TJ

T1
T2

TJ−1

Q

|E1||Q − z|

Figure 1. Geometry of a patch ω(ℓ)
z ⊆ ℝ2 for k = 1 in

Section 3.10 to illustrate the convex coe�cient µ in
z = µP1 + (1 − µ)Q for n = 2.

with respect to α, β1, . . . , βn vanish for their optimal values. With (the Euclidian scalar product ⋅ and) the
abbreviation

bj := aj − (β1, . . . , βn) ⋅ (Pj − z) for j = 1, . . . , J,

the �rst optimality condition reads α = (b1 + ⋅ ⋅ ⋅ + bJ)/(J + 1) and

M = α2 +
J
∑
j=1

(bj − α)2 = (J + 1)α2 − 2α
J
∑
j=1
bj +

J
∑
k=1

b2k =
J
∑
k=1

b2k − (
J
∑
k=1

bk)
2
/(J + 1).

The Cauchy inequality (∑J
k=1 bk)

2 ≤ J∑J
k=1 b

2
k proves that the previous expression is greater than or equal to

∑J
k=1 b

2
k/(J + 1). Thus

b21 + ⋅ ⋅ ⋅ + b2J ≤ (J + 1)M. (3.11)

Recall that a1, . . . , aJ are non-negative and �x an index k = 1, . . . , J with ak = max{a1, . . . , aJ}. The typical
geometry on the patch ω(ℓ)

z is depicted in Figure 1 for k = 1 in n = 2 dimensions. The node Pk lies inside the
ball B(z, r), whence the length |Ek| of the edge Ek = conv{z, Pk} is |Ek| ≤ r. The straight line S through Pk and
z hits twice the boundary of the interior ball

B(z, r) ⊂ ω(ℓ)
z

and twice the boundary ∂ω(ℓ)
z of the interior patchω(ℓ)

z outside B(z, r). The intersection point Q of S and ∂ω(ℓ)
z

opposite Ek satis�es
Q ∈ conv{Q1, . . . , Qn} and r ≤ |z − Q| ≤ r

for some vertices Q1, . . . , Qn ∈ {P1, . . . , PJ} \ {Pk} di�erent from Pk. In other words, the n + 1 pairwise di�er-
ent vertices Pk, Q1, . . . , Qn of ∂ω(ℓ)

z satisfy

z = µPk + (1 − µ)Q and µ = |z − Q|/|Q − Pk| ≥ r/(r + r) = κ/(1 + κ).

Some remaining non-negative coe�cients λ1, . . . , λn satisfy

µPk + λ1Q1 + ⋅ ⋅ ⋅ + λnQn = z and µ + λ1 + ⋅ ⋅ ⋅ + λn = 1.

This implies that
0 = µ(Pk − z) + λ1(Q1 − z) + ⋅ ⋅ ⋅ + λn(Qn − z).

The scalar product of this with (β1, . . . , βn) leads to terms of the form

aj − bj = (β1, . . . , βn) ⋅ (Pj − z) = (β1, . . . , βn) ⋅ (Qm − z)
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with appropriate indices j andm for Qm =: Pj. With the abbreviations ãm := aj and b̃m := bj form = 1, . . . , n
and j ∈ {1, . . . , J} \ {k} with Qm = Pj, this reads

µak + λ1ã1 + ⋅ ⋅ ⋅ + λn ãn = µbk + λ1b̃1 + ⋅ ⋅ ⋅ + λn b̃n .

This, the non-negativity of a1, . . . , aJ, plus the above bound κ/2 ≤ µ show

κ2 a2k/4 ≤ (µak)2 ≤ (µak + λ1ã1 + ⋅ ⋅ ⋅ + λn ãn)2

= (µbk + λ1b̃1 + ⋅ ⋅ ⋅ + λn b̃n)2

≤ µb2k + λ1b̃
2
1 + ⋅ ⋅ ⋅ + λn b̃2n .

Since (bk , b̃1, . . . , b̃n) is somepermutation of some sub-list of (b1, b2, . . . , bJ) of length n + 1 andwith (3.11)
in the end, we deduce

κ2 a2k/4 ≤ µb2k + λ1b̃
2
1 + ⋅ ⋅ ⋅ + λn b̃2n ≤ b21 + ⋅ ⋅ ⋅ + b2J ≤ (J + 1)M.

Since ak is maximal, we have
a21 + ⋅ ⋅ ⋅ + a2J ≤ Ja

2
k ≤ 4J(J + 1)/κ2M.

This concludes the proof of (3.10).

3.11 Completely Re�ned Interior Patch in Contact

This subsection is devoted to an upper bound of ezϱz for some interior node z ∈ Rℓ ∩ Cℓ. Since the other case
is already discussed in Section 3.5, it remains the case that

uℓ ̸≡ χ on ω(ℓ)
z while uℓ(z) = χ(z). (3.12)

Since the patch is completely re�ned, the quasi-interpolation eℓ of e := uℓ+m − uℓ computes

ez ≡ eℓ(z) = Jℓ,z(e|ω(ℓ)
z
)

via some linear function Jℓ,z with the �rst-order approximation property and the exactness for discrete func-
tions. Since uℓ and χ belong to P1(Tℓ(z)) ∩ C(ω(ℓ)

z ), the di�erence w := uℓ+m − χ satis�es

ez = Jℓ,z(uℓ+m|ω(ℓ)
z
) − uℓ(z) = Jℓ,z(uℓ+m|ω(ℓ)

z
) − χ(z) = Jℓ,z(w|ω(ℓ)

z
).

Since w ≥ 0, the constant average value w := ∫ω(ℓ)
z
w dx/|ω(ℓ)

z | ≥ 0 satis�es

−ez = Jℓ,z(w − w) − w ≤ Jℓ,z(w − w).

The Poincaré inequality on the patch ω(ℓ)
z of diameter hz := diam(ω(ℓ)

z ) reads

‖w − w‖L2(ω(ℓ)
z ) ≲ hz ‖∇w‖L2(ω(ℓ)

z ).

The combination with the local �rst-order approximation property implies that the constant Jℓ,z(w − w) =
w − Jℓ,z(w) satis�es

‖Jℓ,z(w − w)‖L2(ω(ℓ)
z ) ≤ ‖w − Jℓ,z(w)‖L2(ω(ℓ)

z ) + ‖w − w‖L2(ω(ℓ)
z )

≲ hz ‖∇w‖L2(ω(ℓ)
z ).

In other words,
Jℓ,z(w − w) ≲ h1−n/2z ‖∇w‖L2(ω(ℓ)

z ).

Since ϱz ≤ 0, the combination of the previous estimates shows

ezϱz ≲ h1−n/2z |ϱz| ‖∇w‖L2(ω(ℓ)
z ). (3.13)
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Since uℓ ≥ χ and χ is an a�ne function, the piecewise a�ne function vℓ := uℓ − χ ∈ P1(Tℓ(z)) ∩ C(ω(ℓ)
z ) is non-

negative and vanishes at the interior node z. Hence (3.9) is applicable. This and some inverse estimate show

hz‖∇vℓ‖L2(ω(ℓ)
z ) ≤ ‖vℓ‖L2(ω(ℓ)

z ) ≲ min
g∈P1(ω(ℓ)

z )
‖vℓ − g‖L2(ω(ℓ)

z ),

which, together with the Poincaré inequality, leads to

‖∇vℓ‖L2(ω(ℓ)
z ) ≲ min

q∈ℝn
‖∇vℓ − q‖L2(ω(ℓ)

z ).

Some equivalence of norms on the �nite-dimensional vector space P1(Tℓ(z)) ∩ C(ω(ℓ)
z ) plus a scaling argu-

ment establish the estimate

min
q∈ℝn

‖∇vℓ − q‖2L2(ω(ℓ)
z )

≲ ∑
E∈Eℓ(z) |ω

(ℓ)
E |1/n ‖[∂vℓ/∂νE]E‖2L2(E).

Recall vℓ = uℓ − χ and hence

∑
E∈Eℓ(z) |ω

(ℓ)
E |1/n ‖[∂vℓ/∂νE]E‖2L2(E) = η

2
ℓ (Eℓ(z)).

Altogether,
‖∇vℓ‖L2(ω(ℓ)

z ) ≲ ηℓ(Eℓ(z)).

This and the triangle inequality,

‖∇w‖L2(ω(ℓ)
z ) ≤ ‖∇e‖L2(ω(ℓ)

z ) + ‖∇(uℓ − χ)‖L2(ω(ℓ)
z ),

lead in (3.13) to
hn/2−1z ezϱz ≲ ‖∇w‖L2(ω(ℓ)

z )|ϱz| ≤ (‖∇e‖L2(ω(ℓ)
z ) + ηℓ(Eℓ(z)))|ϱz|.

The Cauchy inequality for the volume term F(φ(ℓ)
z ) plus some integration by parts argument from Section 3.7

for the side contributions from a(uℓ, φ(ℓ)
z ) lead to

|ϱz| ≤ |F(φ(ℓ)
z )| + |a(uℓ, φ(ℓ)

z )| ≲ (‖hℓf‖L2(ω(ℓ)
z ) + ηℓ(Eℓ(z)))hn/2−1z .

The volume control of (3.5) (recall (3.12)) shows

h2−nz |ϱz|2 ≲ η2ℓ (Eℓ(z)) + ∑
y∈Nℓ(ω(ℓ)

z )

Osc2(f, ω(ℓ)
y ).

A summary concludes that

ezϱz ≲ (ηℓ(Eℓ(z)) + ∑
y∈Nℓ(ω(ℓ)

z )

Osc(f, ω(ℓ)
y ))(|||e|||ω(ℓ)

z
+ ηℓ(Eℓ(z))). (3.14)

3.12 Reduction of LHS

The reduced patches, (3.6), (3.7), and the fact that ezϱz ≤ 0 for z ∈ Uz result in the estimate

LHS ≤ ∑
z∈Nℓ ∫ω∗

z

f(e − ez)φ(ℓ)
z dx + ∑

z∈(Rℓ∪Iℓ)∩Cℓ ezϱz − a(uℓ, e − eℓ).
The arguments of Sections 3.6 and 3.8 apply to the reduced patches as well and yield

∑
z∈Nℓ(∂Ω) ∫ω∗

z

f(e − ez)φ(ℓ)
z dx ≲ Oscℓ (Eℓ\Eℓ+m) |||e|||.
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This, Section 3.4, and the empty reduced patches of z ∈ Uℓ show that

LHS ≲ ηℓ(Eℓ \ Eℓ+m) |||e||| + ∑
z∈Rℓ∪Iℓ ∫ω∗

z

f(e − ez)φ(ℓ)
z dx + ∑

z∈(Rℓ∪Iℓ)∩Cℓ ezϱz .
The �rst case where z ̸∈ Cℓ has already been analyzed in Section 3.7, which reads

∫
ω∗
z

f(e − ez)φ(ℓ)
z dx ≲ (osc(f, ω(ℓ)

z ) + ηℓ(Eℓ(z)))|||e|||ω(ℓ)
z
.

The second case, where z ∈ (Rℓ ∪ Iℓ) ∩ Cℓ such that uℓ ≡ χ on ω(ℓ)
z (note that 0 ≤ ez for z ∈ Iℓ ∩ Cℓ), has been

considered in Section 3.5, namely,

∫
ω∗
z

fφ(ℓ)
z (e − ez)dx + ezϱz ≲ osc(f, ω(ℓ)

z )|||e|||ω(ℓ)
z
.

Since ϱz ≤ 0 ≤ ez for the case where z ∈ Iℓ ∩ Cℓ such that uℓ ̸≡ χ on ω(ℓ)
z , it follows from the estimate of

Section 3.7 that

∫
ω∗
z

fφ(ℓ)
z (e − ez)dx + ezϱz ≤ ∫

ω∗
z

fφ(ℓ)
z (e − ez)dx ≲ ∑

y∈Nℓ(ω(ℓ)
z )

(Osc(f, ω(ℓ)
y ) + ηℓ(Eℓ(y)))|||e|||ω(ℓ)

z
.

The last case, where z ∈ Rℓ ∩ Cℓ such that uℓ ̸≡ χ on ω(ℓ)
z , can be bounded by the combination of Section 3.7

and the estimate (3.14), which leads to

∫
ω∗
z

fφ(ℓ)
z (e − ez)dx + ezϱz ≲ ∑

y∈Nℓ(ω(ℓ)
z )

(Osc(f, ω(ℓ)
y ) + ηℓ(Eℓ(y)))(|||e|||ω(ℓ)

z
+ ∑
y∈Nℓ(ω(ℓ)

z )

ηℓ(Eℓ(y))).

In conclusion, the set

Mℓ,ℓ+m := {E ∈ Eℓ(Ω) : ∃ F ∈ Eℓ ∃G ∈ Eℓ \ Eℓ+m such that E ∩ F ̸= 0 ̸= F ∩ G} (3.15)

contains the above sides as well as those from ηℓ(Eℓ \ Eℓ+m) and satis�es

LHS ≲ (ηℓ(Mℓ,ℓ+m) + Oscℓ(Mℓ,ℓ+m))(|||e||| + ηℓ(Mℓ,ℓ+m)). (3.16)

It is not hard to prove that the number |Mℓ,ℓ+m| of sides in Mℓ,ℓ+m is controlled by the number |Tℓ \ Tℓ+m| of
re�ned simplices Tℓ \ Tℓ+m in the sense that

|Mℓ,ℓ+m| ≲ |Tℓ \ Tℓ+m|.

3.13 Finish of the Proof

The error term |||e|||2 ≤ LHS can be absorbed and (3.16) proves

LHS ≲ η2ℓ (Mℓ,ℓ+m) + Osc2ℓ (Mℓ,ℓ+m).

4 Optimal Convergence Rates

4.1 E�ciency of the Error Estimator

The e�ciency of the error estimator will be stated in terms of the energy functional E from (1.4), and not in
terms of the energy norm |||⋅|||. In this way we circumvent the lack of Galerkin orthogonality and focus on the
energy di�erence

0 ≤ δℓ := E(uℓ) − E(u).
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Figure 2. Reference triangle T (left) with reference edge marked,
and bisec5(T) (right) in Section 4.1.

Lemma 4.1 (E�ciency). There exists some cE� ≈ 1 with

cE�η2ℓ ≤ δℓ + Osc2ℓ .

Proof. We only show the result for the two-dimensional case based on the discrete e�ciency from [6] and
claim that similar arguments prove it for the three-dimensional case as well. The discrete solution ûℓ of (1.2)
with respect to the re�ned mesh T̂ℓ := bisec5(Tℓ) in Figure 2 satis�es [6, Theorem 2]

∑
E∈Eℓ(Ω) |ω

(ℓ)
E |1/n‖[∇uℓ]E ⋅ νE‖2L2(E) ≲ ∑

E∈Eℓ(Ω)(‖∇(uℓ − ûℓ)‖2L2(ω(ℓ)
E )

+ osc2(f, ω(ℓ)
E ))

≲ |||uℓ − ûℓ|||2 + Osc2ℓ .

Since 0 ≤ δ̂ℓ := E(ûℓ) − E(u), it follows

1/2|||uℓ − ûℓ|||2 ≤ E(uℓ) − E(ûℓ) = δℓ − δ̂ℓ ≤ δℓ.

The combination of the aforementioned inequalities completes the proof.

4.2 Contraction Property

This subsection analyzes the convergence of the adaptive algorithm of Section 2.1.

Theorem 4.2. There exist constants ã > 0 and 0 < q < 1 such that

δℓ+1 + ãη2ℓ+1 ≤ q(δℓ + ãη2ℓ ) for all ℓ = 0, 1, 2, . . . . (4.1)

Proof. The proof is based on two observations. This �rst observation reads

∑
E∈Eℓ+1(Ω) |ω

(ℓ+1)
E |1/n‖[∇uℓ]E ⋅ νE‖2L2(E)

≤ ∑
E∈Eℓ(Ω)\Mℓ |ω

(ℓ)
E |1/n‖[∇uℓ]E ⋅ νE‖2L2(E) + (1/2)1/n ∑

E∈Eℓ(Ω)∩Mℓ |ω
(ℓ)
E |1/n‖[∇uℓ]E ⋅ νE‖2L2(E).

The second observation is that

Osc2ℓ+1 ≤ Osc2ℓ −ρ1 ∑
E∈Eℓ\Eℓ+1 Osc2(f, ω

(ℓ)
E ) for some 0 < ρ1 < 1.

These two estimates are proved in [19] as for the linear Poisson model problem [7]. Whence, with some con-
stants 0 < ρ2 < 1 and Λ > 0, the triangle inequality plus the bulk criterion lead to

η2ℓ+1 ≤ ρ2η2ℓ + Λ|||uℓ+1 − uℓ|||2.

Since
δℓ+1 ≤ δℓ − 1/2|||uℓ+1 − uℓ|||2

andusing the combination of the previous two inequalities plusã = 1
2Λ , the contraction property (4.1) follows

from the reliability of the estimator ηℓ with 0 < ρ2 < q < 1; see [19] for more details in two dimensions.
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This subsection concludes with an application of the aforementioned discrete reliability which indicates that
the bulk criterion is in some sense a necessary condition for the reduction of the energy norm between two
levels.

Lemma 4.3. Let Tℓ+m be some re�nement of Tℓ with

δℓ+m + Osc2ℓ+m ≤ q(δℓ + Osc2ℓ ) (4.2)

for some 0 < q < 1. Then it holds

cE�(1 − q)η2ℓ ≤ (1 + CdRel)η2ℓ (Mℓ,ℓ+m). (4.3)

Proof. The e�ciency of Lemma 4.1 proves that

cE�η2ℓ ≤ δℓ + Osc2ℓ .

The discrete reliability of Section 3 leads to

δℓ − δℓ+1 ≤ CdRelη2ℓ (Mℓ,ℓ+m).

Note, for any E ∈ Eℓ ∩ Eℓ+m with ω(ℓ)
E = ω(ℓ+m)

E , that

Osc(f, ω(ℓ)
E ) = Osc(f, ω(ℓ+m)

E ).

Since Eℓ \ Eℓ+m ⊆ Mℓ,ℓ+m (from the de�nition (3.15) ofMℓ,ℓ+m), we have

Osc2ℓ −Osc2ℓ+m ≤ ∑
E∈Mℓ,ℓ+m Osc2(f, ω

(ℓ)
E ) ≤ η2ℓ (Mℓ,ℓ+m).

This implies (4.3).

4.3 Optimality

With the discrete admissible set K(T) := K ∩ P1(T) with respect to the triangulation T and the solution u
of (1.1), recall the de�nition (1.7) of the seminorm, and de�ne

E(T0, N; u, f) := inf
T∈T(T0 ,N)

min
vT∈K(T)

(E(vT) − E(u) + Osc2T).

Lemma 4.4. Suppose that (u, f) ∈ K × L2(Ω) satis�es |(u, f)|As < ∞ for some 0 < s < ∞ and suppose that
0 < θ < cE�/(CdRel + 1) from Lemma 4.3. Then,

|Mℓ|2 ≲ |(u, f)|2/sAs
(δℓ + Osc2ℓ )

−1/s for all ℓ = 0, 1, 2, . . . . (4.4)

Proof. Given any ℓ ∈ ℕ, set

q := min{1 −
θ(CdRel + 1)

cE�
, E(T0, N0 + 1; u, f)

2(δℓ + Osc2ℓ )
} < 1.

To prove q−1/s ≲ 1, notice that

1 ≈
E(T0, N0 + 1; u, f)

δ0 + Osc20
≲
E(T0, N0 + 1; u, f)

2(δℓ + Osc2ℓ )

implies that 1 ≲ q is uniformly bounded away from zero.
Since E(T0, N; u, f) → 0 as N → ∞, the number

L := min{N ∈ {N0 + 1, N0 + 2, . . .} | E(T0, N; u, f) ≤ q(δℓ + Osc2ℓ )}
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is well-de�ned. Since q(δℓ + Osc2ℓ ) < E(T0, N0 + 1; u, f), it follows L ≥ N0 + 2. Hence

E(T0, L; u, f) ≤ q(δℓ + Osc2ℓ ) < E(T0, L − 1; u, f). (4.5)

The de�nition of |(u, f)|As in (1.7) and the estimate (4.5) yield

(L − 1)2 ≤ |(u, f)|2/sAs
E(T0, L − 1; u, f)−1/s

≤ q−1/s|(u, f)|2/sAs
(δℓ + Osc2ℓ )

−1/s

≲ |(u, f)|2/sAs
(δℓ + Osc2ℓ )

−1/s .

The remaining part of the proof shows that |Mℓ| ≲ L. Let Tε be some optimal re�nement by newest-vertex
bisection of T0 with |Tε| ≤ L + |T0| such that

E(T0, L; u, f) = E(uε) − E(u) + Osc2ε ≤ q(δℓ + Osc2ℓ ).

Let Tℓ+ε be the overlay of the triangulations Tℓ and Tε (which is the smallest common re�nement of Tℓ and
Tε obtained by newest-vertex bisections). Since

E(uℓ+ε) − E(u) ≤ E(uε) − E(u) and Osc2ℓ+ε ≤ Osc2ε ,

it follows
E(uℓ+ε) − E(u) + Osc2ℓ+ε ≤ q(δℓ + Osc2ℓ ).

This is (4.2) and Lemma 4.3 implies
(1 − q)cE�
1 + CdRel

ηℓ(uℓ, Tℓ) ≤ ηℓ(uℓ,Mℓ,ℓ+ε).

The de�nition of q shows θ(1 + CdRel)/cE� ≤ 1 − q and so

θηℓ(uℓ, Tℓ) ≤ ηℓ(uℓ,Mℓ,ℓ+ε).

Hence, the setMℓ,ℓ+ε thus satis�es the bulk criterion (2.1). Therefore

|Mℓ| ≤ |Mℓ,ℓ+ε| ≲ |Tℓ+ε \ Tℓ| ≤ |Tℓ+ε| − |Tℓ|.

It is well known [7, Lemma 3.7] that the overlay satis�es

|Tℓ+ε| − |Tℓ| ≤ |Tε| − |T0| ≤ L − 1.

Proof of Theorem 2.2. Given the marked elementsM0,M1, . . ., the articles [4, 21, 22] imply

|Tℓ| − |T0| ≲
ℓ−1
∑
k=0

|Mk| for all ℓ ∈ ℕ.

This and (4.4) show

|Tℓ| − |T0| ≲ |(u, f)|1/sAs

ℓ−1
∑
k=0

(δk + Osc2k)
−1/2s ≤ |(u, f)|1/sAs

max(1, 1/ã)−1/s
ℓ−1
∑
k=0

(δk + ãη2k)
−1/2s .

The contraction of Theorem 4.2 yields a constant 0 < q < 1 such that, for all k = 1, . . . , ℓ,

δℓ + ãη2ℓ ≤ qℓ−k(δk + ãη2k).

The combination of the previous two estimates leads to

|Tℓ| − |T0| ≲ |(u, f)|1/sAs
(δℓ + ãη2ℓ )−1/2s

ℓ
∑
k=1

qk/(2s).

Since the geometrical sum
ℓ
∑
k=1

qk/(2s) ≤ 1
1 − q1/(2s)

≲ 1

is bounded for all ℓ ∈ ℕ, we deduce

|Tℓ| − |T0| ≲ |(u, f)|1/sAs
(δℓ + ãη2ℓ )−1/2s .
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4.4 Comments on the Boundary Layer Volume Contribution

Some comments are in order for the volume terms involved in the oscillation Oscℓ. The aim of the subsection
is to prove that Oscℓ can be bounded by the usual side-oriented oscillation up to a higher order term. De�ne

Fℓ(∂Ω) := {T ∈ Tℓ, ∃ E ∈ Eℓ(∂Ω) ∩ Eℓ(T) such that 0|E ≡ u|E ̸≡ χ|E},
Zℓ(∂Ω) := Fℓ(∂Ω) \ {T ∈ Tℓ, ∃ S ⊂ T such that χ|S < u|S and |T| ≲ |S|}.

Theorem 4.5. It holds that

Osc2ℓ ≲ ∑
E∈Eℓ osc2(f, ω

(ℓ)
E ) + ∑

T∈Zℓ(∂Ω) |T|2/n‖f‖2L2(T) + |||u − uℓ|||2. (4.6)

Remark 4.6. Since the obstacle χ is a�ne and since u = 0 ≥ χ on the boundary ∂Ω, there are only several
elements in the set Zℓ(∂Ω). Hence the second term on the right-hand side of (4.6) is of higher order.

Proof. Since there exists a unique T ∈ Tℓ with ω(ℓ)
E = T and 0 ≡ u|E ̸≡ χ|E for E ∈ Eℓ(∂Ω) \ FCBS(Eℓ, ∂Ω, χ),

we have
{ω(ℓ)

E , E ∈ Eℓ(∂Ω) \ FCBS(Eℓ, ∂Ω, χ)} = Fℓ(∂Ω).

For
T ∈ Fℓ(∂Ω) ∩ {T ∈ Tℓ, ∃ S ⊂ T such that u|S > χ|S and |T| ≲ |S|},

the bubble technique [24] proves the e�ciency of the volume term in the sense that

|ω(ℓ)
E |2/n‖f‖2

L2(ω(ℓ)
E )

≲ osc2(f, ω(ℓ)
E ) + |||u − uℓ|||2ω(ℓ)

E
.

Since the other terms of the oscillation Osc2ℓ except those for sides E ∈ Eℓ(∂Ω) \ FCBS(Eℓ, ∂Ω, χ) are the usual
side-based oscillations, this completes the proof.
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