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1 Introduction

Let Q be an open bounded domain in R9 (d = 2, 3) with Lipschitz boundary I'. The inequality

) Jo p divwdx

inf sup “—t"—"—2>¢c0>0 (1.1)
pel2(Q) wevo@  IPIIVWI

p#0 w0

is one of the keystone relations in mathematical analysis of incompressible media problems. It is often called
the LBB (Ladyzhenskaya-Babuska—Brezzi) or inf-sup condition. Here V(Q) is a subspace of H!(Q, RY) con-
taining vector-valued functions vanishing on I and

(@ = {g ¢ 2@ | igha =l [ qdx o},
Q

where |Q| denotes the Lebesgue measure of Q.

Another form of this result is known as Babuska—Aziz or Ladyzhenskaya—Solonnikov theorem. For the
case d = 2 it was established in [3] and for d = 3 in [19], where this result was used in order to prove existence
of a generalized solution to the Stokes problem [18].
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Theorem 1. For any f € L2(Q), there exists a function wy € Wy*(Q, R%) such that
divwg =f and |Vwy| < Cqollfl, (1.2)
where Cq, is a positive constant depending on Q.

Theorem 1 states that inversion of the divergence operator is stable (with respect to the norm generated by
V). It is easy to see that (1.2) implies (1.1) with cq = ((351. Henceforth, we will call Cq and cq the “stability™
and “inf-sup” constants, respectively.

Another equivalent way, which leads to (1.1) and other similar conditions, comes from the saddle point
theory where boundary value problems are considered as saddle point problems for a certain Lagrangians.
This theory forms the basis of mixed methods for boundary value problems (see [2, 6] and a profoundly elab-
orated theory in the book [7]). Conditions analogous to (1.1) for various pairs of finite-dimensional spaces are
often used for proving stability and convergence of numerical methods developed for viscous incompressible
fluids (see, e.g., [15, 20, 35]).

Also (1.1) can be viewed as a form of the Necas inequality [23] (for domains with Lipschitz boundaries a
simple proof of this inequality can be found in [4]).

Theorem 1 has a principal meaning in the theory of viscous incompressible fluids and other problems
related to incompressible media. Existence of a positive constant cq and estimates of its values for various
domains is of the same importance as estimates of the constant Kq in the Korn’s inequality for elasticity
problems. Moreover, in [16] it was shown that for simply connected domains in d = 2 the constants are joined
by the relation 2Cq = Kq = 2(1 + Lg), where L, is the constant in the Friedrichs inequality [11]

lull® < Lallvi?, (1.3)

which holds for an analytic function u + iv provided that {u}q = 0.
Theorem 1 can be extended to LY spaces for 1 < y < +co (see [5, 14, 26, 27]).

Theorem 2. Let f € LY(Q). If {f}q = O, then there exists vy € Wé’y(Q, RY) such that
divvy =f and |Vvfla,y < Cayldivela,y, (1.4)
where Cq,y (Cq,> = Cq) is a positive constant, which depends only on Q.

It is worth noting that for y = 1 and y = +oo similar results may be not true (see [8, 9]).

Finding sharp estimates of Cq,, is necessary if we wish to obtain computable estimates of the distance
to the set of divergence-free fields (see Lemma 1). It is not difficult to see that the inf-sup constant cq in (1.1)
is nonnegative and cannot exceed 1 (so that Cq > 1). Also, it is known that cq > O for any bounded Lipschitz
domain and, therefore, C, is bounded. Thus, for Lipschitz domains one has 1 < Cq < +0o. For domains with
caspidal tips, cq may be equal to zero (a systematic analysis of these cases can be found in [1]).

First quantitative estimates of cq and Cq were obtained in [10, 24, 25, 34]. It is known that cq = 1/Vd
for a ball in R (i.e., Cq = Vd) and for an ellipse (2—2 + Z—z < 1,wherea < b) cé = #zbz (see[8, 17]).

Estimates are also known for Lipschitz domains in R?, which are star-shaped with respect to a ball with
center xo. Let r be the ray from xo crossing I' at x. For almost all x € T, there exists the unique tangent line,
which forms a positive angle § < 7 with the ray . The quantity ©q := infyer 6(x) generates the estimate [16]

. Og
Cq = SIn 7.

However, these lower bounds of cq (and respective upper bounds of Cq) may be rather coarse.
A significant improvement of the estimates was obtained in [8] for domains in IR?, which are contained
in a ball of radius R and are star-shaped with respect to a concentric ball of radius p. It was shown that

cq > %(1+ Vl—K2>_1/2, (1.5)

where x = }%. This formula allows us to obtain guaranteed upper bounds of Cg, for simplexes, quadrilaterals,
and other polygonal domains. In particular, it implies a simple upper bound Cq < %
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To the best of our knowledge, for d = 3, estimates of cq are known only for domains with sufficiently reg-
ular boundaries (e.g., for an ellipsoid [17]). In [25], it was shown that for star-shaped domains in R> with C!
boundary described by the relation r = ro(¢, 1) (where (1, ¢, 1) denote coordinates of the spherical system)
the value of (sz is bounded from above by the quantity

.3
1 + max —2(3 +3Q+Q?),
T a

where 0 < a < min rg and "
1 /0r 02 1 or 02
Q= %"(g(w) ¥ @(w) )

Attempts to find Cq,y numerically are faced with serious difficulties because the respective minimizers
may expose highly singular behavior. This question was deeply studied in [17], where approximate values of
cq were computed for various domains (e.g., ring, cardoid, limacon, square, cube, cylinder). However, so far
we do not have an efficient method able to compute guaranteed and realistic bounds of these constants for
arbitrary Lipschitz domains in R3 or, at least, for arbitrary nondegenerate polyhedral domains.

From the viewpoint of numerical analysis, the constant Cgq is important to know by different reasons. In
particular, it controls the distance to the set SL¥(Q, RY) of divergence-free fields (e.g., see Lemma 1). There-
fore, the question arises how to circumvent difficulties related to the fact that in general the constant Cq, (or
Caq,y for y # 2) is unknown and to obtain easily computable estimates of the distance to S Ly(Q, RY) based on
constants associated with a limited amount of simple basic domains.

Below we discuss a way to answer this question, which is based on the following idea:

Estimates of the distance between v € W1¥(Q, R9) and the set S7(Q, R?) are easier to obtain if v
satisfies “weak solenoidality conditions” globally (i.e., {div v}q = 0) or locally ({div v}q, = O for a col-
lection of subdomains Q;). Estimates of the distance between v and the set of weakly solenoidal fields
can be deduced without stability constants Cq,y. Jointly, these two estimates yield estimates of the
distance to SY(Q, RY) with computable constants.

For y = 2 this idea was earlier suggested and used in [30-33].

The outline of the paper is as follows. In Section 2, we deduce estimates of the distance to the set of
divergence-free fields for functions vanishing on a part Iy of the boundary and show that regardless of the
particular form of T'y the corresponding estimate holds with the same constant as for I'y = I' provided that
the function has zero mean divergence (this result generalizes [30, Lemma 6.2.1]). After that, a more sophis-
ticated estimate is derived, which provides an upper bound of the distance to the set of divergence-free fields
with the same constant but without zero mean conditions. Section 3 presents estimates based on domain
decomposition. They can be useful for polygonal domains decomposed into simplicial and polyhedral cells
Q;. If the constants Cq,,,, for these cells are known, then Lemmas 5 and 6 (derived for non-overlapping and
overlapping decompositions, respectively) suggest a simple estimate of the distance to the set of divergence-
free fields. Finally, in Section 4 we discuss applications of these results to a posteriori estimates for problems
in the theory of viscous incompressible fluids.

2 Estimates of the Distance to the Set S;’Y

Theorems 1 and 2 imply estimates of the distance between a vector-valued function v € Wé’y(Q, RY) and
the subspace S(l)’y(Q, RY) ¢ Wé’y(Q, RY) containing solenoidal (divergence-free) functions. The distance is
measured in terms of the quantity

1, .
v, SpT(Q,RY) = inf V(v -vo)la,y.
voeSy T (Q,RY)
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Lemma 1. Foranyv € Wé’y(Q, RY),
dv, S, RY) < Cq yldiv v,y 2.1)
This result directly follows from Theorem 2 if we set f = divv. Since

Jdiv vdx = j n-vds=0, (2.2)
Q r

there exists a function vy € Wé’y(Q, R9) such that (1.4) holds. We set vo := v — vr € S(l)’y(Q) and obtain

IV(v = vo)lla,y = IVvrlla,y < Caylldivvia,y.

Remark 1. Lemma 1 implies an estimate that can be useful for error analysis of problems with nonhomoge-
neous boundary conditions. Consider v € W¥(Q, R) such that v = g on T, where g is a given function in
WLY(Q, R?) satisfying the condition divg = 0. Let Sé’y(Q, R?) + g denote the set of solenoidal fields satisfy-
ing the same boundary condition, i.e.,

Sé’y(Q, RY) + g := {v=wo+g, woe€ Sé’Y(Q, IRd)}.
Since v - g € Wy''(Q, RY), we obtain
1Ly d . —
dv, 5,7 (Q,RY) +g) := inf  [[V(v-W)la,y

WeSyY(Q,R)+g

= inf |V(v-g-wo)la,y < Cayldivvig,. (2.3)
vo€Sy T (Q,RY)

We see that the distance to the set of divergence-free fields is easy to estimate from above provided that the
constant Cq,y (or a suitable upper bound of it) is known. However, this simple argumentation cannot be
directly applied if v vanishes only on a part of I' what happens if the boundary conditions are different on
different parts of the boundary. Let Ty be a part of I' such that measy_; I'o > 0. We consider functions in the
set

Wyt (Q,RY) = {v e W(Q,R%) | v = 0 on To}

and wish to estimate the distance between v € Wé:}'O(Q, R9) and S(l):}r)o (Q, RY), where
1, 1, .
So b, (@, RY) = {v e Wyl (Q,RY) | divv = 0}.

Moreover, our goal is to deduce an estimate with the same constant Cq  as in (1.3).
It is easy to see that the condition (2.2) may not hold and, therefore, we cannot directly use Theorem 2.
However, if v satisfies (2.2), then estimate (2.1) holds with the same constant Cq,;.

Lemma 2. Let
ve Wh(Q,RY) := {w e WY(Q, RY) | {divw}g = 0}.

Then, there exists a function vy € S2(Q, R?) satisfying the condition vo = v on T such that
V(v =vo)la,y < Cayldivvig,y-

Now our goal is to obtain similar estimates, which are valid for any function v € Wé:ro (Q, R?) vanishing on
I'op c T. First, we consider the most interesting case y = 2 and find the distance

(v, Wor, (QRY) :=_inf V@ -)l.
R9)

VW, (@,
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Lemma3. Letv e Wé:?o((), RY). Then

— 1
(v, W2 (Q, RY)) = —U div vdx|, (2.4)
0.To 2(Vuy|l
Q

where u; minimizes the functional

Jw) := |[Vw|? + J div wdx

Q

on the set Wé,’%o(Q, RY).
Proof. Let wy, be a function in Wé:?o (Q, RY) such that

{divw,lg = {divvlg = Iyﬁl (2.5)

Then,
{div(w, -V)la=0 and V=v-w,e W7 (Q,RY.

The relation v = v — w), states an isomorphism between Wé’?o(Q, R9) and the subset of Wé’%o (Q, R?) contain-
ing the functions subject to (2.5). Therefore,

a*(v, W't (RY) = inf  [Vw,|?. (2.6)

wyeWyT (Q,RY)

{divw,lo=4

Due to standard theorems of convex analysis, the variational problem in the right-hand side of (2.6) possesses
a unique solution.
It has a minimax form

inf supL(A, w) where L(A, w) = [Vw|® + )l( J divwdx - y).
weW,t (QRY) AeR a

Since inf sup > sup inf, we conclude that

d2(v, Wyt (Q,RY)) > sup inf LA, w).
e AeR weW,h (Q,RY)

This dual setting generates the functional

WEWO’I.O s

G = inf d){||vW||2 ) j div wdx} " 2.7)
Q

The variational problem in the right-hand side of (2.7) is well posed and the respective minimizer u, satisfies
the integral identity

JVu,\ : Vwdx + % J n-wds=0 forallw e Wé,’?o(Q, RY).
Q I'\To

It is easy to see that uy = Au; and

1
IVuill® + 5 jdiv updx = 0. (2.8)
Q

Now, we obtain an explicit form of the dual functional

GO = 2[Vus | + A(/l j div ug dx y) - 2V | - A
Q
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sup, G(A) is attained at A = A, := —p/(2||Vuy||?). Since u; solves the problem with nonhomogeneous Neu-
mann boundary condition, |Vu;| # 0 and, therefore, A, is a finite real number. Hence, we conclude that
1 pu?

2 71,2 d
Q,RY)) > A)=GA,) =~ . 2.
@5 Woig, (0, RD) = 5up G = 6(A) = 71— (2.9)

In view of (2.8), A. fQ div u;dx = . Hence, we set wy, = A, u; and obtain

2

u

— 1
d2(v, W2 ) < 2|vuq |2 = = . 2.10
(v, Wo'r,)) < ALlVuq 4 Vi ( )
Now (2.4) follows from (2.9) and (2.10). O
Theorem 3. Letv € Wé:%o(ﬂ, RY). Then,
d(v, S52 (0, RY) < Caldivv] + c1” divvx|, 2.11)
Q
where 1 div
1V Uuq
Cy= ((CQ +1>
LT 2V I\ V|
and u, is defined in Lemma 3.
Proof. WesetV =v — A,uq and find that
1i2nf V(v = vo)ll < V(v = V)|l + 1i2nf IV(V = vo)l
vo€Sy 7, (O,RY) Vo€t (O,RY)
1
< Cqlldivv — A, divuq || + —U divvdx’
2V
Q
1
< Co(Idiv vl + AL Idiv us ) + —Udivvdx‘
( AT
Q
. div uq | 1 .
= Cqldiv V| +(1+(CQ ) Udlvvdx|. O
Vusll 7 2[Vuyll
Q
Remark 2. It is not difficult to see that
= 1
Ci<Cii=——(1 dCq ).
15 o= gy (1 Vdco)

From the practical point of view, it is preferable to replace u; (exact solution of a boundary value problem)
by a solution of some finite-dimensional problem. This can be done as follows. Let Vg r, € Wé’?o be a finite-
dimensional space and Vg I be the subset of functions with zero mean values. Instead of (2.6), we use the
estimate

v, Wor)< inf VWi, (2.12)

wheVg o

{divwlilo=5

By repeating above arguments, we arrive at the finite-dimensional problem: find u; , € Vg,ro such that

J(uyp) = ing J(wn). (2.13)

W},EVO’I.0

Instead of (2.8), we have

1
j(Vul,h :Vwy + 5 divwh)dx =0 forallwy e Vg,ro
Q
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and select A" = —/(2[Vuy x|?). Then,
/\Q Jdiv up pdx =,
Q

and 7" = v — Ay, j, satisfies the condition {div7"}q = 0. Therefore,

. 1 .
inf [V = w)ll < AR [Vapll = —U div vdxl.
wely?, 2[Vuy nll :
Then, instead of Lemma 2 we have the following result.
Lemma4. Letv e Wé’?O(Q, RY). Then
d(v. wk2 ) < ;Udivvdx
00T 2 Vg | ’
Q
where uy j, is a minimizer of (2.12).
Lemma 4 shows that estimate (2.11) holds with the constant
1 div uyq,pll - 1
Cin= ((CQ —— + 1) <Cipi==——(1+ Vdcg).
2[[Vuy ll Vi, nl 2[[Vuy ll ( )

It is easy to see that

inf {||VW||2 + Jdiv wdx} = [Vug|? + Jdiv updx = —[Vuy |2
weWyt (Q,RY) 3 3

< inf {IIVWhII2 + Jdivwhdx}

h
wreVy -
L0 Q

= IVl + jdivul,hdx = Vural.

Q

Thus, [[Vu; || > [[Vu x|l and, therefore, the constant in (2.4) is smaller than in (2.14).

(2.14)

Fory e (1, +00), we deduce similar estimates by the same method. Let u; be the minimizer of the problem

1
inf {||VW||)(/2 + — J div de},

1,y Y y
weW, 7 (@) a

which meets the integral identity

1
I(qully_zVu1 :Vw + = div w)dx =0 forallwe Wé”r’O(Q).
Q Y ’

Then,
1
IVl + = jdivuldx - o.
Y y
Q

Setv, = v - A,ui, where
IQ divvdx jQ divvdx

Jodivurdx — yIvull

Since
J divv.dx = J divvdx - A, J divuidx =0,
Q Q Q
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we conclude that v, belongs to Wé:}’o (Q, RY). Then,

gnf V(v -vo)la,y < inf |IV(v. —vo)llay + 4. Vuilla,y
voeSy T, (A RY) voeSy T, (Q,RY)
< Coyldivy = A, divus g,y + Udivvdxl
s ’ y-1
viVuallg ,'a

< Co,yldivvig,y + Cl”’lj div vdx|,
Q

where

1 divu
c1y ( l illa,y . 1)

= 1 ny
IVl yIVuila,y

Remark 3. By the same argumentation as in Lemma 4 we can show that an upper bound of C;,,, can be com-
puted by means of a finite-dimensional problem analogous to (2.13).

Problems with divergence-free conditions are often associated with evolutionary equations in the space-time

cylinder Q7 := Q x (0, T). At the end of this section we briefly consider this case and show that the above

presented estimates yield estimates of the distance to the set of divergence-free fields defined in Qr. Consider

incremental approximations where the interval (0, T) is split to m time subintervals (ty, tx+1) (fo = 0 and

tm = T). Consider the simplest piecewise affine approximation

ti1 — t
dy

where vy are some functions of spatial variables. Since the spatial divergence of v satisfies the relation

vx, t) = A(OVi(x) + (1 = AO)Vier,  AE) = s dic1 =t — ti (2.15)

divv(x, t) = div(Vi + Vie1) = A() div Ve 1,

the function v(x, t) belongs to S:2(Q, RY) for almost all ¢ if Vi(x) € S¥2(Q, RY) fork=0,1,2,...,m.
Let{divvy}q = 0fork =0, 1, 2, ..., m.Inview of the above presented results, there exist divergence-free
functions Vg i such that vy = Vo x on I and

"V(Vk - ?O,k)” < (CQ"le?k", k= 0,1,2,...,m. (2-16)

By Vo, we construct a divergence-free function vo(x, t) in the form (2.15). It is easy to see that v, satisfies the
same boundary conditions as v and

m tis1

90,0 vox, 013, = Y. [ A9k~ T0.0ll + (1 = DIVTaen = Toe1)la) e
k=0 f
2 0 2kt g o 02 e 02
<Cj )y 3 (1div il + div 7 1), (2.17)
k=0

where 5
Vi={—
{ ox i }j=1
is the spatial gradient. Hence the distance d(v, S2(Qr, RY)) is estimated from above by the right-hand side

of (2.17).
In addition to (2.16), error majorants of the distance to exact solutions of evolutionary problems associ-

ated with incompressible media require upper bounds of || @ lo,. Note that
o(v —vp) 1, _
TO = d_k((vk+1 —Vo,k+1) — (Vk = Vo).

We apply (2.16) and the Friedrichs inequality and obtain
2 s 1o L 3
0 S CrCq Y. z(lldkall + | div Viep111)°.

H o(v —vp)
ot T k=0 %k
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3 Estimates Based on the Decomposition of Q

3.1 Non-Overlapping Subdomains

Let Q be divided into a collection of non-overlapping Lipschitz subdomains Q;,i =1, 2,..., N.
Theorem 4. Iff € LY(Q) satisfies the condition
{fla,=0, i=1,2,...,N, (3.1

then there exists vy € Wé’y(Q, RY) such that

divvy=f and ||va||Qy_Z<c JAG, s (3.2)

where Cq,,y are positive constants associated with subdomains Q;.
Proof. Inview of (3.1) and Theorem 2, for any i there exists vy,; € Wé Y(Q;, RY) such that
divvg; =finQ; and IVveilla,y < CQ,-,}/”ﬂlQ,yi-

Set vp(x) = vi(x) if x € Q;. Then, vy € Wé’y(Q, RY), div v =f,and

n

n
Vel = Y Ivsilg,y, Z C, I, m
i=1

Theorem 4 implies an estimate of the distance between v € W¥(Q, RY) and the set of functions in S*¥(Q, R%)
satisfying the same boundary condition as v (for the case y = 2 a simple estimate of this type has been estab-
lished in [31]). Assume that v satisfies the conditions

{divvig, =0, i=1,2,...,N. (3.3)

It is worth noting that these additional integral type relations imposed on v do not imply essential technical
difficulties (if N is not very large). Indeed, if an approximation v does not satisfy (3.3), then we need to fix
it by changing values of v- non I';; = Q; n Q;j and I'y N Q;. Respective procedures (changing N parameters in
the representation of v) can be easily constructed for approximations of a particular type.

Lemma 5. Let v e W"¥(Q, RY) satisfy (3.3) and divv € L%(Q, RY), where §; > y,i= 1,2, ..., N. Then, there
exists vo € SYY(Q, RY) such that v = vo on T and

N 1/y
IV(v = vo)la,y < ( Y ¢, o odivvil, 5{) . (3.4)
i=1

Proof. We set f = divv and use Theorem 4. There exists vy € W(l)’y(Qi, R?) satisfying (3.2). The function
Vo = v — vy is divergence free, it satisfies the same boundary condition as v, and

IV = vo)ll,, = IVvrllg, < Z Chp, ldiv Vi, . (3.5)

Now (3.4) follows due to the Holder inequality. O

Remark 4. If divv is bounded almost everywhere (what is typical for piecewise polynomial approximations)
then fQ. |div v|Ydx < |Q;|(ess supg,|divv|)? and (3.5) yields the estimate

Z

IV = vo)llp,, Z o, lelesstupldlvvl)V (3.6)
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In particular, if all Q; are simplexes and divv € P1(Q;), then
esssup|divy| = ma}xldiv v(Nit)I,
i N;

where Nf ,t=1,2,...,d+ 1 arenodal points of Q;. The same relation can be used if Q; are convex polygons
in R9.

3.2 Subdomains With Overlappings

Let Q be decomposed into a collection of overlapping Lipschitz subdomains Dy, k = 1, 2, ..., K. By Cp, , we
denote the respective constants. Subdomains Dy may overlap, so that they generate a decomposition of Q
into a set of non-overlapping subdomains Q;, k=1, 2, ..., N (see Figure 1). In other words,

K
Q= Dr={)Qi QinQj=0fori#+j, (3.7)

and Dy n Dy is either empty or consists of one or several subdomains Q;. For any Q; there exists at least one
Dy such that Q; ¢ Di. We have the following localized version of Theorem 2.

Theorem 5. Let f satisfy the same conditions as in Theorem 4. Then, there exists a function vy € Wé’y(Q, RY)
such thatdivvy = f in Q and

N
IVvela < ) Gillfla;,
i=1

where
(CDk,y Zle C Dka

' (3.8)
----- +00 if Qi ¢ Dg.

Proof. Define
fifx e Q;,
filx) = , ’
0 ifxe Q.

There exists at least one Dy such that Q; c Dy. If there are several D; containing Q;, then we select k such
that Cp,,y is minimal (see (3.8)). Since {f;}p, = 0, and Dy is a Lipschitz domain, we can find vy, € Wé’y(Dk, RY)
such that
divvs =fi inDy (3.9)
and
IVvglly,p, < Cilfilly,n, = Cillflla;,y-
We extend vy, by zero to Q \ Di and find that (3.9) holds in Q. Moreover,

IVvella,y < Cilfla,y- (3.10)

Setvp=YN, vy € Wé’y(Q, RY). Then div v = f, and by (3.10) we obtain

N N
IVvellay < Y IVvillay < Y Cilfilla,.y- O
i=1 i=1

Theorem 5 implies another estimate of the distance to the set of divergence-free fields.

Lemma 6. Assume that v € WHY(Q, R?) satisfies (3.3) and divv € L9(Q), where § > y. Then, there exists
Vo € WHY(Q, RY) such that divvg = 0, vo = von T, and
N

i1
V(v = vo)lla,y < Z CilQi|Y ?|divviq;,s, (3.11)
i=1

where the constants C; are defined by (3.8).
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3.3 Decomposition-Based Estimates in Abstract Form

It is clear that the same method can be applied to other operators with closed ranges. Below we shortly

discuss formalities that yield decomposition-based estimates. Let V(Q) be a reflexive Banach space and

Vo(Q) denote the subspace of V containing functions vanishing on I'. We consider a bounded linear operator

B : Vo(Q) — H(Q), where H(Q) is another reflexive Banach space. We assume that Im B ¢ H is closed in H.
By the closed range lemma (see, e.g., [37]), we have the following result.

Lemma 7. For any g € Im B there exists vg € Vg such that

Bvg=g and |vglv) < Calgluw),
where Cq > 0 does not depend on v.

Let Q be divided into a collection of non-overlapping Lipschitz subdomains Q;, the spaces V(Q;) are gener-
ated by the same norm as V and contain functions vanishing on 0Q;.

Assume that any function v(x) defined by the relation v(x) = vi(x) in Q; and v(x) = 0 in Q \ Q; belongs
to Vo(Q) provided that v; € Vp(Q;). Also, we assume that all the operators B; : Vo(Q;) — H(Q;) (which are

generated by restrictions of the operator B) are such that the sets Im B; are closed in H(Q;) fori =1, 2, ..., N.
Letg=g;inQ;and g; e ImB;,i=1,2,...,N.Inview of Lemma 7, there exists v, such that
Bvg, =gi and |vglva) < Co,lgilla@), (3.12)

where Cgq, > 0 depends on Q;. We extend all vg to Q\ Q; by zero and set vg = Zfil Vg, € Vo(Q). Since
vgl < Z£1 v llvias), we use (3.12) and conclude that

N
Bvg=g and |vgllw) < Z Co,lgilla@)- (3.13)
i1

If a collection of subdomains satisfies (3.7), then similar arguments yield an analogue of Theorem 5. In
this case, there exists vg € Vo (Q) such that

N
Bvg=g and |vgllvi < ) Cillgillaay, (3.14)
i=1
where C; are defined by (3.8).
Remark 5. If V(Q) is a Hilbert space and ||v||%,(0) = (v, V)v), then
N
WVI5q) = Y. VIS,
i=1
and in addition to (3.13) we have the better estimate
N
WVell3q) < Y. €3 IgillZq,)- (3.15)
i-1

Estimates (3.13)—(3.15) yield estimates of the distance to the set
Wo(Q) := {v € Vo(Q) | Bv = 0}.

In particular, (3.15) yields the estimate

N
d(v, Wo(Q)) < Z Cf),.”BV"%{(Qi)’
i=1

where d(v, Wo(Q)) = infy ew, ) lv — wollv).
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Figure 1. Domains composed of overlapping subdomains D4, D,, and Ds.

3.4 Examples

Consider two simple examples related to the case where Q = D; UD, U D3 (the respective domains are de-
picted in Figure 1).
In the first example, D; are rectangles with sides a; and d;, D> = Q, U Q4, and D3 = Q3 U Qs.
Let v € V(Q) be such that
{divvlg, =0, i=1,2,3,4,5. (3.16)

From (1.5) it follows that for a rectangular domain 0,5 := (0, @) x (0, b) (a, b > 0, a > b), the stability

constant meets the estimate 1
Cg,, < E\/Zd(a+d), (3.17)

where d = Va2 + b? is the length of the diagonal. In particular, for the unit square, estimate (3.17) gives
Cp,, < 2.6131 which is in good correspondence with [17], where by accurate computations it was found that
2.347 < Cg,, < 2.611.

In view of Lemma 6, there exists a divergence-free field vg such that vo = von I and

IV(v = vo)ll < Cp, Idivvllg, + Cp,(ldivviig, +Idivvia,) + Cp,(Idivvig, + lldivvie;),

1
Cp, = b—k"Zdi +2ard, k=1,2,3.

Hence, the distance between v and the set of divergence-free fields is estimated from above by the expression
in the right-hand side.
Another example is related to the domain depicted in Figure 1 (right). Here D1 and D3 are isosceles tri-
angles and D, is a circle. Let
Q> =Dy NDy, §1+52=El, §2+§3+54=Ez (meas Q4 > 0),

Q4=D3nD,, 54 +55 = 53 (meas Qs > 0),

where

and v satisfy (3.16). In view of Lemma 6 (for y = 6 = 2), there exists v such that divvy =0, v = vo on T and
V(v = vo)ll < Cp, Idivvlq, + Cp,lldivvig, + Cp,(lldivvia, + [divvig, + [divviga,).

Since Cp, = V2, it remains to find estimates of Cp, and Cp,. Note that for a simplex Agpc with sides
a>b>c>0,wehave

_ _ _ _ )2
”- \/(s AG-D6-0 4 g2, @rh-0
S 4
where s is the semiperimeter. By (1.5) we find that
a+b-c\1/2

T) . (3.18)
If a=b=c=1, then Cp,,, <3.8637 (compare this result with [17], where 3.401 < Cp,,, < 3.861 was
found). Hence, we can set Cp, = Cp, = Cp,,,. By (3.18) it is not difficult to find stability constants if Dy
and D5 are arbitrary nondegenerate triangles. We note that the upper bound in (3.18) is minimal for equilat-
eral triangles. For other triangles the estimate generates larger bounds, which tend to infinity if b + ¢ tends
toa.

Cage < Ig(z +
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4 Applications to A Posteriori Estimates

Guaranteed bounds of the distance to the exact solution of a boundary value problem usually contain con-
stants in functional inequalities (e.g., Poincaré, Friedrichs, Korn, trace inequalities). Such bounds are often
called a posteriori estimates of functional type (or deviation estimates). The reader can find a systematic ex-
position of the respective theory and many references in [30]. Computational aspects related to efficient use of
these estimates for various problems are discussed in [21] (see also [36]). Here, we briefly recall results related
to the Stokes problem, which is the basic model in the theory of incompressible viscous fluids and show how
the constant Cq enters these estimates. The problem is to find u (velocity vector function), o (stress tensor
function), and p (pressure field) satisfying the system

-Divo=f-Vp in Q,

o=vVu in Q,

(4.1)
divu=0 in Q,
u=g onT.

Here v is a positive constant (viscosity), f € L?(Q, RY), and g € H}(Q, RY) is a given vector function, which
must be selected such that the compatibility condition

Jg-nds:O
r

holds. Guaranteed and computable bounds of the distance between any (energy admissible) approximation
v and the exact solution u were firstly derived in [28] (see also [12, 13, 22, 29, 31]). It was shown that if
v e S2(Q, RY) + g, then the following error identity holds:

j(VlV(u “WP +v Yo - t2)dx = 2(0v) - I* (7)), (4.2)
Q
where J(v) := IQ(%|VV|2 - f-v)dx is the energy functional of the Stokes problem, I*(t) := —%IITHZ is the dual

energy functional, ¢ = vVu, and
T € Qy :={r € L*(Q, M) | Divt + f = 0}.

Moreover, in [28] it was shown that (4.2) can be extended to classes of functions which are much wider than
v e SH2(Q,RY) + g and Qr (what is important from the practical point of view). The respective results are
presented by the estimates

VIIV(u - v)|| € 2vR1(v) + R2(v, T) + CrqR3(1, q) =: My(q, T), (4.3)

1
Ellp —qll < VR1(v) + Ra(v, T) + 2CrqR3(7, q) =: My(v, 7), (4.4)
It - ol < VR1(v) + Ra(v, T) + CraR3(1, @) = M (v, q), (4.5)

where (cf. (2.3))
Ry(v) := d(v, Sy + g) < Caldivvl,
Ro(v, 7) = |lT - vV,
R3(v,q) == Divt + f - Vql,
v is any function in the set
V+g:{v=wo+g, woe Vo := H}(Q, R}

satisfying the last equation in (4.1), 7 is any function in H(Q, Div), q is any function in L?(Q), and Crq is the
constant in the Friedrichs inequality for the functions in V.
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By setting 7 =1 + gl (where n € H(Q, Div)), we obtain a slightly different form of (4.3)-(4.5) where
R, (v, T) and R3(7, q) are replaced by

Ro(v,n,q) :=In-vVv+ql| and Rs3(n):=|Divt +f],

respectively. It is easy to show that combined norms containing errors in the left-hand sides of (4.3)-(4.5)
are bounded from below by weighted sums analogous to the majorants M, (g, T) or M;(v, q). Therefore, the
majorants indeed present adequate separate measures of errors in terms of velocity, pressure, and stress, and
also a measure of the combined error containing all of them. Since

inf  My(q, 7) = My(p, 0) = V[V(u - V)|,

qel?(Q)
TeH(Q,Div)

inf M:(q,7) = M:(p,u) = |lo-1,
qel?(Q)
veVo+g

inf  M,(q,n) = M:(p,u) = Vd|p -ql,
yerit L Ma(q, 1) = Mr(p, u) Vdip - gl
veVo+g
the majorants always provide realistic error bounds if approximate solutions are close to the exact ones.
Estimates (4.3) and (4.5) involve the constant Cq, which appears if the distance to the set of divergence-
free fields is measured by Lemma 1. If v satisfies condition (3.3) for a non-overlapping collection of sub-

domains Q;, then we use Lemma 5 and obtain a somewhat different error majorant for the Stokes problem:
N 1/2
VIV - )] < zv( y (Céindivvuéi) 10 + gL - vV + CrolDivy + fl. (4.6)
i=1

Here, the functions n € H(Q, Div) and g € L2(Q) can be viewed as approximations of the stress and pressure
functions, respectively. If divv has higher regularity divv € L5(Q), § > 2, then the sum in round brackets
(which reflects the distance to divergence-free fields) could be replaced with the help of estimates (3.4) or
(3.6). If Q; are formed by intersecting subdomains, then this term should be replaced by the right-hand side
of (3.11) with y = 2.

Remark 6. Estimates (4.3)—(4.5) could be helpful in selecting suitable weights if approximate solutions to
the Stokes problem are computed by the least squares finite element method. For example, if our analy-
sis is focused on the velocity field, then (4.3) shows that the weights of R%, R3, and R3 should be close to
4v2(Cf), 1, and Cf,, respectively. Analogously, estimate (4.6) suggests a “decomposed” version of the least
square complex

N
Y 4v2CE Idivvlig, + R*(v, 1, @) + CEoR*(n),
i=1

where the weights are presented by local stability constants Cg;.

If we have an overlapping collection of subdomains Dy and the corresponding set of Q; satisfying (3.7), then
Lemma 6 yields another estimate:

N
VIV(u-v)| < 2v Z Cilldivvlg, + In + gl — vVv| + CrqllDivny + fl, (4.7)
i-1

where the constants C; are defined in (3.8). Similar estimates (based on decomposition of Q) for other prob-
lems related to incompressible fluids can be found in [31, 32].

Remark 7. There is an obvious way to obtain computable estimates of the distance to divergence-free
fields without the condition (3.3). For this purpose, we need to construct a suitable correction function
we Wcl,’y(Q, RY) such that

Jdivwdx =6 := J’divvdx fori=1,2,...,N.
Q; Q;
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Then using (4.5), we conclude that there exists a solenoidal vector-valued function vo such thatv=voonT
and

N y y \MY
VO - vollay < (Y, Ch v - witl, )+ IVwla,y.
i=1

This estimate provides an upper bound of the distance to the set of divergence-free fields for any w ¢
WS’Y(Q, R?). Certainly the quality of this estimate depends on the choice of w, which should be selected
such that [[Vwl|q,,y is small and div v does not differ much from div w. In certain cases, finding such w may
generate a special and not an easy task. We believe that conceptually it is more logical to view (3.3) as a
natural condition for any “good” (physically suitable) approximation and use (4.6) or (4.7).
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