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Abstract: The paper is concerned with computable estimates of the distance between a vector-valued func-
tion in the Sobolev space W1,ã(Ω,ℝd) (where ã ∈ (1, +∞) and Ω is a bounded Lipschitz domain in ℝd) and
the subspace S1,ã(Ω,ℝd) containing all divergence-free (solenoidal) vector functions. Derivation of these es-
timates is closely related to the stability theorem that establishes existence of a bounded operator inverse
to the operator div. The constant in the respective stability inequality arises in the estimates of the distance
to the set S1,ã(Ω,ℝd). In general, it is di�cult to �nd a guaranteed and realistic upper bound of this global
constant. We suggest a way to circumvent this di�culty by using weak (integral mean) solenoidality condi-
tions and localized versions of the stability theorem. They are derived for the case where Ω is represented as
a union of simple subdomains (overlapping or non-overlapping), for which estimates of the corresponding
stability constants are known. These new versions of the stability theorem imply estimates of the distance to
S1,ã(Ω,ℝd) that involve only local constants associated with subdomains. Finally, the estimates are used for
deriving fully computable a posteriori estimates for problems in the theory of incompressible viscous �uids.
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1 Introduction

Let Ω be an open bounded domain inℝd (d = 2, 3) with Lipschitz boundary Γ. The inequality

inf
p∈L̃2(Ω)
p ̸=0

sup
w∈V0(Ω)
w ̸=0

∫Ω p divwdx
‖p‖‖∇w‖

≥ cΩ > 0 (1.1)

is one of the keystone relations inmathematical analysis of incompressible media problems. It is often called
the LBB (Ladyzhenskaya–Babuska–Brezzi) or inf-sup condition. Here V0(Ω) is a subspace of H1(Ω,ℝd) con-
taining vector-valued functions vanishing on Γ and

L̃2(Ω) := {q ∈ L2(Ω) | {q}Ω := |Ω|−1 ∫
Ω

qdx = 0},

where |Ω| denotes the Lebesgue measure of Ω.
Another form of this result is known as Babuska–Aziz or Ladyzhenskaya–Solonnikov theorem. For the

case d = 2 it was established in [3] and for d = 3 in [19], where this result was used in order to prove existence
of a generalized solution to the Stokes problem [18].
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Theorem 1. For any f ∈ L̃2(Ω), there exists a function wf ∈ W1,2
0 (Ω,ℝd) such that

divwf = f and ‖∇wf ‖ ≤ ℂΩ‖f‖, (1.2)

where ℂΩ is a positive constant depending on Ω.

Theorem 1 states that inversion of the divergence operator is stable (with respect to the norm generated by
∇). It is easy to see that (1.2) implies (1.1) with cΩ = ℂ−1Ω . Henceforth, we will call ℂΩ and cΩ the “stability”
and “inf-sup” constants, respectively.

Another equivalent way, which leads to (1.1) and other similar conditions, comes from the saddle point
theory where boundary value problems are considered as saddle point problems for a certain Lagrangians.
This theory forms the basis of mixedmethods for boundary value problems (see [2, 6] and a profoundly elab-
orated theory in the book [7]). Conditions analogous to (1.1) for various pairs of �nite-dimensional spaces are
often used for proving stability and convergence of numerical methods developed for viscous incompressible
�uids (see, e.g., [15, 20, 35]).

Also (1.1) can be viewed as a form of the Nečas inequality [23] (for domains with Lipschitz boundaries a
simple proof of this inequality can be found in [4]).

Theorem 1 has a principal meaning in the theory of viscous incompressible �uids and other problems
related to incompressible media. Existence of a positive constant cΩ and estimates of its values for various
domains is of the same importance as estimates of the constant KΩ in the Korn’s inequality for elasticity
problems.Moreover, in [16] it was shown that for simply connected domains in d = 2 the constants are joined
by the relation 2ℂΩ = KΩ = 2(1 + LΩ), where LΩ is the constant in the Friedrichs inequality [11]

‖u‖2 ≤ LΩ‖v‖2, (1.3)

which holds for an analytic function u + iv provided that {u}Ω = 0.
Theorem 1 can be extended to Lã spaces for 1 < ã < +∞ (see [5, 14, 26, 27]).

Theorem 2. Let f ∈ Lã(Ω). If {f}Ω = 0, then there exists vf ∈ W
1,ã
0 (Ω,ℝd) such that

div vf = f and ‖∇vf ‖Ω,ã ≤ ℂΩ,ã‖div vf ‖Ω,ã, (1.4)

where ℂΩ,ã (ℂΩ,2 = ℂΩ) is a positive constant, which depends only on Ω.

It is worth noting that for ã = 1 and ã = +∞ similar results may be not true (see [8, 9]).
Finding sharp estimates of ℂΩ,ã is necessary if we wish to obtain computable estimates of the distance

to the set of divergence-free �elds (see Lemma 1). It is not di�cult to see that the inf-sup constant cΩ in (1.1)
is nonnegative and cannot exceed 1 (so thatℂΩ ≥ 1). Also, it is known that cΩ > 0 for any bounded Lipschitz
domain and, therefore,ℂΩ is bounded. Thus, for Lipschitz domains one has 1 ≤ ℂΩ < +∞. For domains with
caspidal tips, cΩ may be equal to zero (a systematic analysis of these cases can be found in [1]).

First quantitative estimates of cΩ and ℂΩ were obtained in [10, 24, 25, 34]. It is known that cΩ = 1/√d
for a ball inℝd (i.e., ℂΩ = √d) and for an ellipse ( x2a2 +

y2
b2 < 1, where a < b) c2Ω =

a2
a2+b2 (see [8, 17]).

Estimates are also known for Lipschitz domains in ℝ2, which are star-shaped with respect to a ball with
center x0. Let r be the ray from x0 crossing Γ at x. For almost all x ∈ Γ, there exists the unique tangent line,
which forms a positive angle θ ≤ π2 with the ray r. The quantity ΘΩ := infx∈Γ θ(x) generates the estimate [16]

cΩ ≥ sin
ΘΩ
2 .

However, these lower bounds of cΩ (and respective upper bounds of ℂΩ) may be rather coarse.
A signi�cant improvement of the estimates was obtained in [8] for domains in ℝ2, which are contained

in a ball of radius R and are star-shaped with respect to a concentric ball of radius ρ. It was shown that

cΩ ≥
κ
√2

(1 +√1 − κ2)
−1/2

, (1.5)

where κ = ρ
R . This formula allows us to obtain guaranteed upper bounds ofℂΩ for simplexes, quadrilaterals,

and other polygonal domains. In particular, it implies a simple upper bound ℂΩ ≤ 2
κ .
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To the best of our knowledge, for d = 3, estimates of cΩ are known only for domains with su�ciently reg-
ular boundaries (e.g., for an ellipsoid [17]). In [25], it was shown that for star-shaped domains inℝ3 with C1
boundary described by the relation r = r0(ϕ, ψ) (where (r, ϕ, ψ) denote coordinates of the spherical system)
the value of ℂ2Ω is bounded from above by the quantity

1 +max
Γ

r30
a3

(3 + 3Q + Q2),

where 0 < a < min r0 and

Q = max
ϕ,ψ

(
1
r20

(
∂r0
∂ψ )

2
+

1
sin2 ψ

(
∂r0
∂ϕ )

2
)
1/2
.

Attempts to �nd ℂΩ,ã numerically are faced with serious di�culties because the respective minimizers
may expose highly singular behavior. This question was deeply studied in [17], where approximate values of
cΩ were computed for various domains (e.g., ring, cardoid, limacon, square, cube, cylinder). However, so far
we do not have an e�cient method able to compute guaranteed and realistic bounds of these constants for
arbitrary Lipschitz domains inℝ3 or, at least, for arbitrary nondegenerate polyhedral domains.

From the viewpoint of numerical analysis, the constantℂΩ is important to know by di�erent reasons. In
particular, it controls the distance to the set S1,ã(Ω,ℝd) of divergence-free �elds (e.g., see Lemma 1). There-
fore, the question arises how to circumvent di�culties related to the fact that in general the constant ℂΩ (or
ℂΩ,ã for ã ̸= 2) is unknown and to obtain easily computable estimates of the distance to S1,ã(Ω,ℝd) based on
constants associated with a limited amount of simple basic domains.

Below we discuss a way to answer this question, which is based on the following idea:

Estimates of the distance between v ∈ W1,ã(Ω,ℝd) and the set S1,ã(Ω,ℝd) are easier to obtain if v
satis�es “weak solenoidality conditions” globally (i.e., {div v}Ω = 0) or locally ({div v}Ωi = 0 for a col-
lection of subdomainsΩi). Estimates of the distance between v and the set ofweakly solenoidal �elds
can be deduced without stability constants ℂΩ,ã. Jointly, these two estimates yield estimates of the
distance to S1,ã(Ω,ℝd) with computable constants.

For ã = 2 this idea was earlier suggested and used in [30–33].
The outline of the paper is as follows. In Section 2, we deduce estimates of the distance to the set of

divergence-free �elds for functions vanishing on a part Γ0 of the boundary and show that regardless of the
particular form of Γ0 the corresponding estimate holds with the same constant as for Γ0 = Γ provided that
the function has zero mean divergence (this result generalizes [30, Lemma 6.2.1]). After that, a more sophis-
ticated estimate is derived, which provides an upper bound of the distance to the set of divergence-free �elds
with the same constant but without zero mean conditions. Section 3 presents estimates based on domain
decomposition. They can be useful for polygonal domains decomposed into simplicial and polyhedral cells
Ωi. If the constants ℂΩi ,ã for these cells are known, then Lemmas 5 and 6 (derived for non-overlapping and
overlapping decompositions, respectively) suggest a simple estimate of the distance to the set of divergence-
free �elds. Finally, in Section 4 we discuss applications of these results to a posteriori estimates for problems
in the theory of viscous incompressible �uids.

2 Estimates of the Distance to the Set S1,γ
0

Theorems 1 and 2 imply estimates of the distance between a vector-valued function v ∈ W1,ã
0 (Ω,ℝd) and

the subspace S1,ã0 (Ω,ℝd) ⊂ W1,ã
0 (Ω,ℝd) containing solenoidal (divergence-free) functions. The distance is

measured in terms of the quantity

d(v, S1,ã0 (Ω,ℝd)) := inf
v0∈S

1,ã
0 (Ω,ℝd)

‖∇(v − v0)‖Ω,ã.
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Lemma 1. For any v ∈ W1,ã
0 (Ω,ℝd),

d(v, S1,ã0 (Ω,ℝd)) ≤ ℂΩ,ã‖div v‖Ω,ã. (2.1)

This result directly follows from Theorem 2 if we set f = div v. Since

∫
Ω

div vdx = ∫
Γ

n ⋅ vds = 0, (2.2)

there exists a function vf ∈ W
1,ã
0 (Ω,ℝd) such that (1.4) holds. We set v0 := v − vf ∈ S

1,ã
0 (Ω) and obtain

‖∇(v − v0)‖Ω,ã = ‖∇vf ‖Ω,ã ≤ ℂΩ,ã‖div v‖Ω,ã.

Remark 1. Lemma 1 implies an estimate that can be useful for error analysis of problems with nonhomoge-
neous boundary conditions. Consider v ∈ W1,ã(Ω,ℝd) such that v = g on Γ, where g is a given function in
W1,ã(Ω,ℝd) satisfying the condition div g = 0. Let S1,ã0 (Ω,ℝd) + g denote the set of solenoidal �elds satisfy-
ing the same boundary condition, i.e.,

S1,ã0 (Ω,ℝd) + g := {v = w0 + g, w0 ∈ S
1,ã
0 (Ω,ℝd)}.

Since v − g ∈ W1,ã
0 (Ω,ℝd), we obtain

d(v, S1,ã0 (Ω,ℝd) + g) := inf
w̃∈S1,ã0 (Ω,ℝd)+g

‖∇(v − w̃)‖Ω,ã

= inf
v0∈S

1,ã
0 (Ω,ℝd)

‖∇(v − g − w0)‖Ω,ã ≤ ℂΩ,ã‖div v‖Ω,ã. (2.3)

We see that the distance to the set of divergence-free �elds is easy to estimate from above provided that the
constant ℂΩ,ã (or a suitable upper bound of it) is known. However, this simple argumentation cannot be
directly applied if v vanishes only on a part of Γ what happens if the boundary conditions are di�erent on
di�erent parts of the boundary. Let Γ0 be a part of Γ such that measd−1 Γ0 > 0. We consider functions in the
set

W1,ã
0,Γ0 (Ω,ℝ

d) := {v ∈ W1,ã(Ω,ℝd) | v = 0 on Γ0}

and wish to estimate the distance between v ∈ W1,ã
0,Γ0 (Ω,ℝ

d) and S1,ã0,Γ0 (Ω,ℝ
d), where

S1,ã0,Γ0 (Ω,ℝ
d) = {v ∈ W1,ã

0,Γ0 (Ω,ℝ
d) | div v = 0}.

Moreover, our goal is to deduce an estimate with the same constant ℂΩ,ã as in (1.3).
It is easy to see that the condition (2.2) may not hold and, therefore, we cannot directly use Theorem 2.

However, if v satis�es (2.2), then estimate (2.1) holds with the same constant ℂΩ,ã.

Lemma 2. Let
v ∈ W̃1,ã(Ω,ℝd) := {w ∈ W1,ã(Ω,ℝd) | {divw}Ω = 0}.

Then, there exists a function v0 ∈ S1,2(Ω,ℝd) satisfying the condition v0 = v on Γ such that

‖∇(v − v0)‖Ω,ã ≤ ℂΩ,ã‖div v‖Ω,ã.

Now our goal is to obtain similar estimates, which are valid for any function v ∈ W1,ã
0,Γ0 (Ω,ℝ

d) vanishing on
Γ0 ⊂ Γ. First, we consider the most interesting case ã = 2 and �nd the distance

d(v, W̃1,2
0,Γ0 (Ω,ℝ

d)) := inf
ṽ∈W̃1,2

0,Γ0
(Ω,ℝd)

‖∇(ṽ − v)‖.
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Lemma 3. Let v ∈ W1,2
0,Γ0 (Ω,ℝ

d). Then

d(v, W̃1,2
0,Γ0 (Ω,ℝ

d)) =
1

2‖∇u1‖
!!!!!!!
∫
Ω

div vdx
!!!!!!!
, (2.4)

where u1 minimizes the functional
J(w) := ‖∇w‖2 + ∫

Ω

divwdx

on the setW1,2
0,Γ0 (Ω,ℝ

d).

Proof. Let wµ be a function inW1,2
0,Γ0 (Ω,ℝ

d) such that

{divwµ}Ω = {div v}Ω =
µ
|Ω| . (2.5)

Then,
{div(wµ − v)}Ω = 0 and ṽ = v − wµ ∈ W̃1,2

0,Γ0 (Ω,ℝ
d).

The relation ṽ = v − wµ states an isomorphism between W̃1,2
0,Γ0 (Ω,ℝ

d) and the subset ofW1,2
0,Γ0 (Ω,ℝ

d) contain-
ing the functions subject to (2.5). Therefore,

d2(v, W̃1,2
0,Γ0 (Ω,ℝ

d)) = inf
wµ∈W1,2

0,Γ0
(Ω,ℝd)

{divwµ}Ω= µΩ

‖∇wµ‖2. (2.6)

Due to standard theorems of convex analysis, the variational problem in the right-hand side of (2.6) possesses
a unique solution.

It has a minimax form

inf
w∈W1,2

0,Γ0
(Ω,ℝd)

sup
λ∈ℝ

L(λ, w) where L(λ, w) = ‖∇w‖2 + λ(∫
Ω

divwdx − µ).

Since inf sup ≥ sup inf, we conclude that

d2(v, W̃1,2
0,Γ0 (Ω,ℝ

d)) ≥ sup
λ∈ℝ

inf
w∈W1,2

0,Γ0
(Ω,ℝd)

L(λ, w).

This dual setting generates the functional

G(λ) := inf
w∈W1,2

0,Γ0
(Ω,ℝd)

{‖∇w‖2 + λ∫
Ω

divwdx} − λµ. (2.7)

The variational problem in the right-hand side of (2.7) is well posed and the respective minimizer uλ satis�es
the integral identity

∫
Ω

∇uλ : ∇wdx +
λ
2 ∫
Γ\Γ0

n ⋅ wds = 0 for all w ∈ W1,2
0,Γ0 (Ω,ℝ

d).

It is easy to see that uλ = λu1 and
‖∇u1‖2 +

1
2 ∫
Ω

div u1dx = 0. (2.8)

Now, we obtain an explicit form of the dual functional

G(λ) = λ2‖∇u1‖2 + λ(λ∫
Ω

div u1dx − µ) = −λ2‖∇u1‖2 − λµ.
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supλ G(λ) is attained at λ = λ∗ := −µ/(2‖∇u1‖2). Since u1 solves the problem with nonhomogeneous Neu-
mann boundary condition, ‖∇u1‖ ̸= 0 and, therefore, λ∗ is a �nite real number. Hence, we conclude that

d2(v, W̃1,2
0,Γ0 (Ω,ℝ

d)) ≥ sup
λ
G(λ) = G(λ∗) =

1
4

µ2

‖∇u1‖2
. (2.9)

In view of (2.8), λ∗ ∫Ω div u1dx = µ. Hence, we set wµ = λ∗u1 and obtain

d2(v, W̃1,2
0,Γ0 ) ≤ λ

2
∗‖∇u1‖2 =

1
4

µ2

‖∇u1‖2
. (2.10)

Now (2.4) follows from (2.9) and (2.10).

Theorem 3. Let v ∈ W1,2
0,Γ0 (Ω,ℝ

d). Then,

d(v, S1,20,Γ0 (Ω,ℝ
d)) ≤ ℂΩ‖div v‖ + C1

!!!!!!!
∫
Ω

div vdx
!!!!!!!
, (2.11)

where
C1 =

1
2‖∇u1‖

(ℂΩ
‖div u1‖
‖∇u1‖

+ 1)

and u1 is de�ned in Lemma 3.

Proof. We set ṽ = v − λ∗u1 and �nd that

inf
v0∈S1,20,Γ0

(Ω,ℝd)
‖∇(v − v0)‖ ≤ ‖∇(v − ṽ)‖ + inf

v0∈S1,20,Γ0
(Ω,ℝd)

‖∇(ṽ − v0)‖

≤ ℂΩ‖div v − λ∗ div u1‖ +
1

2‖∇u1‖
!!!!!!!
∫
Ω

div vdx
!!!!!!!

≤ ℂΩ(‖div v‖ + |λ∗|‖div u1‖) +
1

2‖∇u1‖
!!!!!!!
∫
Ω

div vdx
!!!!!!!

= ℂΩ‖div v‖ + (1 + ℂΩ
‖div u1‖
‖∇u1‖

)
1

2‖∇u1‖
!!!!!!!
∫
Ω

div vdx
!!!!!!!
.

Remark 2. It is not di�cult to see that

C1 ≤ Ĉ1 :=
1

2‖∇u1‖
(1 +√dℂΩ).

From the practical point of view, it is preferable to replace u1 (exact solution of a boundary value problem)
by a solution of some �nite-dimensional problem. This can be done as follows. Let Vh0,Γ0 ⊂ W

1,2
0,Γ0 be a �nite-

dimensional space and Ṽh0,Γ0 be the subset of functions with zero mean values. Instead of (2.6), we use the
estimate

d2(v, W̃1,2
0,Γ0 ) ≤ inf

whµ∈Vh0,Γ0
{divwhµ}Ω=

µ
Ω

‖∇whµ‖2. (2.12)

By repeating above arguments, we arrive at the �nite-dimensional problem: �nd u1,h ∈ Vh0,Γ0 such that

J(u1,h) = inf
wh∈Vh0,Γ0

J(wh). (2.13)

Instead of (2.8), we have

∫
Ω

(∇u1,h : ∇wh +
1
2 divwh)dx = 0 for all wh ∈ Vh0,Γ0
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and select λh∗ = −µ/(2‖∇u1,h‖2). Then,
λh∗ ∫

Ω

div u1,hdx = µ,

and ṽh = v − λh∗u1,h satis�es the condition {div ṽh}Ω = 0. Therefore,

inf
w∈W̃1,2

0,Γ0

‖∇(v − wh)‖ ≤ λh∗‖∇u1,h‖ =
1

2‖∇u1,h‖
!!!!!!!
∫
Ω

div vdx
!!!!!!!
.

Then, instead of Lemma 2 we have the following result.

Lemma 4. Let v ∈ W1,2
0,Γ0 (Ω,ℝ

d). Then

d(v, W̃1,2
0,Γ0 ) ≤

1
2‖∇u1,h‖

!!!!!!!
∫
Ω

div vdx
!!!!!!!
, (2.14)

where u1,h is a minimizer of (2.12).

Lemma 4 shows that estimate (2.11) holds with the constant

C1,h =
1

2‖∇u1,h‖
(ℂΩ

‖div u1,h‖
‖∇u1,h‖

+ 1) ≤ Ĉ1,h :=
1

2‖∇u1,h‖
(1 +√dℂΩ).

It is easy to see that

inf
w∈W1,2

0,Γ0
(Ω,ℝd)

{‖∇w‖2 + ∫
Ω

divwdx} = ‖∇u1‖2 + ∫
Ω

div u1dx = −‖∇u1‖2

≤ inf
wh∈Vh0,Γ0

{‖∇wh‖2 + ∫
Ω

divwhdx}

= ‖∇u1,h‖2 + ∫
Ω

div u1,hdx = −‖∇u1,h‖2.

Thus, ‖∇u1‖ ≥ ‖∇u1,h‖ and, therefore, the constant in (2.4) is smaller than in (2.14).
For ã ∈ (1, +∞), we deduce similar estimates by the samemethod. Let u1 be theminimizer of the problem

inf
w∈W1,ã

0,Γ0
(Ω)

{‖∇w‖ãΩ,ã +
1
ã
∫
Ω

divwdx},

which meets the integral identity

∫
Ω

(|∇u1|ã−2∇u1 : ∇w +
1
ã

divw)dx = 0 for all w ∈ W1,ã
0,Γ0 (Ω).

Then,
‖∇u1‖
ã
Ω,ã +

1
ã
∫
Ω

div u1dx = 0.

Set v∗ = v − λ∗u1, where

λ∗ =
∫Ω div vdx
∫Ω div u1dx

= −
∫Ω div vdx

ã‖∇u1‖
ã
Ω,ã
.

Since
∫
Ω

div v∗dx = ∫
Ω

div vdx − λ∗ ∫
Ω

div u1dx = 0,
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we conclude that v∗ belongs to W̃
1,ã
0,Γ0 (Ω,ℝ

d). Then,

inf
v0∈S

1,ã
0,Γ0
(Ω,ℝd)

‖∇(v − v0)‖Ω,ã ≤ inf
v0∈S

1,ã
0,Γ0
(Ω,ℝd)

‖∇(v∗ − v0)‖Ω,ã + ‖λ∗∇u1‖Ω,ã

≤ ℂΩ,ã‖div v − λ∗ div u1‖Ω,ã +
1

ã‖∇u1‖
ã−1
Ω,ã

!!!!!!!
∫
Ω

div vdx
!!!!!!!

≤ ℂΩ,ã‖div v‖Ω,ã + C1,ã
!!!!!!!
∫
Ω

div vdx
!!!!!!!
,

where
C1,ã =

1
‖∇u1‖
ã−1
Ω,ã

(ℂΩ,ã
‖div u1‖Ω,ã
ã‖∇u1‖Ω,ã

+ 1).

Remark 3. By the same argumentation as in Lemma 4 we can show that an upper bound of C1,ã can be com-
puted by means of a �nite-dimensional problem analogous to (2.13).

Problems with divergence-free conditions are often associated with evolutionary equations in the space-time
cylinder QT := Ω × (0, T). At the end of this section we brie�y consider this case and show that the above
presented estimates yield estimates of the distance to the set of divergence-free �elds de�ned in QT . Consider
incremental approximations where the interval (0, T) is split to m time subintervals (tk , tk+1) (t0 = 0 and
tm = T). Consider the simplest piecewise a�ne approximation

v(x, t) = λ(t)v̂k(x) + (1 − λ(t))v̂k+1, λ(t) = tk+1 − t
dk

, dk+1 = tk+1 − tk , (2.15)

where v̂k are some functions of spatial variables. Since the spatial divergence of v satis�es the relation

d̂ivv(x, t) = div(v̂k + vk+1) − λ(t)div v̂k+1,

the function v(x, t) belongs to S1,2(Ω,ℝd) for almost all t if v̂k(x) ∈ S1,2(Ω,ℝd) for k = 0, 1, 2, . . . ,m.
Let {div v̂k}Ω = 0 for k = 0, 1, 2, . . . ,m. In view of the above presented results, there exist divergence-free

functions v̂0,k such that v̂k = v̂0,k on Γ and

‖∇(v̂k − v̂0,k)‖ ≤ ℂΩ‖div v̂k‖, k = 0, 1, 2, . . . ,m. (2.16)

By v̂0,k we construct a divergence-free function v0(x, t) in the form (2.15). It is easy to see that v0 satis�es the
same boundary conditions as v and

‖∇̂v(x, t) − v0(x, t)‖2QT =
m
∑
k=0

tk+1
∫
tk

(λ‖∇̂(v̂k − v̂0,k)‖Ω + (1 − λ)‖∇(v̂k+1 − v̂0,k+1)‖Ω)2dt

≤ ℂ2Ω
m
∑
k=0

2dk+1
3 (‖div v̂k‖2 + ‖div v̂k+1‖2), (2.17)

where
∇̂ := { ∂

∂xj
}
d

j=1

is the spatial gradient. Hence the distance d(v, S1,2(QT ,ℝd)) is estimated from above by the right-hand side
of (2.17).

In addition to (2.16), error majorants of the distance to exact solutions of evolutionary problems associ-
ated with incompressible media require upper bounds of ‖ ∂(v−v0)∂t ‖QT . Note that

∂(v − v0)
∂t
=

1
dk

((v̂k+1 − v0,k+1) − (v̂k − v0,k)).

We apply (2.16) and the Friedrichs inequality and obtain
"""""""
∂(v − v0)

∂t
"""""""

2

QT
≤ C2Fℂ

2
Ω

m
∑
k=0

1
d2k

(‖div v̂k‖ + ‖div v̂k+1‖)2.
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3 Estimates Based on the Decomposition of Ω

3.1 Non-Overlapping Subdomains

Let Ω be divided into a collection of non-overlapping Lipschitz subdomains Ωi, i = 1, 2, . . . , N.

Theorem 4. If f ∈ Lã(Ω) satis�es the condition

{f}Ωi = 0, i = 1, 2, . . . , N, (3.1)

then there exists vf ∈ W
1,ã
0 (Ω,ℝd) such that

div vf = f and ‖∇vf ‖
ã
Ω,ã ≤

N
∑
i=1
ℂãΩi ,ã‖f‖

ã
Ωi ,ã, (3.2)

where ℂΩi ,ã are positive constants associated with subdomains Ωi.

Proof. In view of (3.1) and Theorem 2, for any i there exists vf,i ∈ W
1,ã
0 (Ωi ,ℝd) such that

div vf,i = f in Ωi and ‖∇vf,i‖Ω,ãi ≤ ℂΩi ,ã‖f‖Ω,ãi .

Set vf (x) = vf,i(x) if x ∈ Ωi. Then, vf ∈ W
1,ã
0 (Ω,ℝd), div vf = f , and

‖∇vf ‖
ã
Ω,ã =

n
∑
i=1

‖vf,i‖
ã
Ω,ãi ≤

n
∑
i=1
ℂãΩi ,ã‖f‖

ã
Ω,ãi .

Theorem4 implies an estimate of the distance between v ∈ W1,ã(Ω,ℝd) and the set of functions in S1,ã(Ω,ℝd)
satisfying the same boundary condition as v (for the case ã = 2 a simple estimate of this type has been estab-
lished in [31]). Assume that v satis�es the conditions

{div v}Ωi = 0, i = 1, 2, . . . , N. (3.3)

It is worth noting that these additional integral type relations imposed on v do not imply essential technical
di�culties (if N is not very large). Indeed, if an approximation v does not satisfy (3.3), then we need to �x
it by changing values of v ⋅ n on Γij = Ωi ∩ Ωj and Γ1 ∩ Ωi. Respective procedures (changing N parameters in
the representation of v) can be easily constructed for approximations of a particular type.

Lemma 5. Let v ∈ W1,ã(Ω,ℝd) satisfy (3.3) and div v ∈ Lδi (Ω,ℝd), where δi ≥ ã, i = 1, 2, . . . , N. Then, there
exists v0 ∈ S1,ã(Ω,ℝd) such that v = v0 on Γ and

‖∇(v − v0)‖Ω,ã ≤ (
N
∑
i=1
ℂãΩi ,ã|Ωi|

1−ã/δi‖div v‖ãΩi ,δi)
1/ã
. (3.4)

Proof. We set f = div v and use Theorem 4. There exists vf ∈ W
1,ã
0 (Ωi ,ℝd) satisfying (3.2). The function

v0 = v − vf is divergence free, it satis�es the same boundary condition as v, and

‖∇(v − v0)‖
ã
Ω,ã = ‖∇vf ‖

ã
Ω,ã ≤

N
∑
i=1
ℂãΩ,ãi‖div v‖

ã
Ωi ,ã. (3.5)

Now (3.4) follows due to the Hölder inequality.

Remark 4. If div v is bounded almost everywhere (what is typical for piecewise polynomial approximations)
then ∫Ωi |div v|

ãdx ≤ |Ωi|(ess supΩi |div v|)
ã and (3.5) yields the estimate

‖∇(v − v0)‖
ã
Ω,ã ≤

N
∑
i=1
ℂãΩi ,ã|Ωi|(ess supΩi

|div v|)ã. (3.6)
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In particular, if all Ωi are simplexes and div v ∈ P1(Ωi), then

ess sup
Ωi

|div v| = max
N ti

|div v(N ti )|,

where N ti , t = 1, 2, . . . , d + 1 are nodal points of Ωi. The same relation can be used if Ωi are convex polygons
inℝd.

3.2 Subdomains With Overlappings

Let Ω be decomposed into a collection of overlapping Lipschitz subdomains Dk, k = 1, 2, . . . , K. ByℂDk ,ãwe
denote the respective constants. Subdomains Dk may overlap, so that they generate a decomposition of Ω
into a set of non-overlapping subdomains Ωi, k = 1, 2, . . . , N (see Figure 1). In other words,

Ω =
K
⋃
k=1

Dk =
N
⋃
i=1
Ωi , Ωi ∩ Ωj = 0 for i ̸= j, (3.7)

and Dk ∩ Dl is either empty or consists of one or several subdomains Ωi. For any Ωi there exists at least one
Dk such that Ωi ⊂ Dk .We have the following localized version of Theorem 2.

Theorem 5. Let f satisfy the same conditions as in Theorem 4. Then, there exists a function vf ∈ W
1,ã
0 (Ω,ℝd)

such that div vf = f in Ω and

‖∇vf ‖Ω ≤
N
∑
i=1
ℂi‖f‖Ωi ,

where

ℂi = min
k=1,...,K

ρk , ρk =
{
{
{

ℂDk ,ã if Ωi ⊂ Dk ,
+∞ if Ωi ̸⊂ Dk .

(3.8)

Proof. De�ne

fi(x) =
{
{
{

f if x ∈ Ωi ,
0 if x ̸∈ Ωi .

There exists at least one Dk such that Ωi ⊂ Dk. If there are several Dk containing Ωi, then we select k such
thatℂDk ,ã isminimal (see (3.8)). Since {fi}Dk = 0, and Dk is a Lipschitz domain,we can �nd vfi ∈ W

1,ã
0 (Dk ,ℝd)

such that
div vfi = fi in Dk (3.9)

and
‖∇vfi‖ã,Dk ≤ ℂi‖fi‖ã,Dk = ℂi‖f‖Ωi ,ã.

We extend vfi by zero to Ω \ Dk and �nd that (3.9) holds in Ω. Moreover,

‖∇vfi‖Ω,ã ≤ ℂi‖f‖Ω,ãi . (3.10)

Set vf = ∑N
i=1 vfi ∈ W

1,ã
0 (Ω,ℝd). Then div vf = f , and by (3.10) we obtain

‖∇vf ‖Ω,ã ≤
N
∑
i=1

‖∇vfi‖Ω,ã ≤
N
∑
i=1
ℂi‖fi‖Ωi ,ã.

Theorem 5 implies another estimate of the distance to the set of divergence-free �elds.

Lemma 6. Assume that v ∈ W1,ã(Ω,ℝd) satis�es (3.3) and div v ∈ Lδ(Ω), where δ ≥ ã. Then, there exists
v0 ∈ W1,ã(Ω,ℝd) such that div v0 = 0, v0 = v on Γ, and

‖∇(v − v0)‖Ω,ã ≤
N
∑
i=1
ℂi|Ωi|

1ã − 1δ ‖div v‖Ωi ,δ , (3.11)

where the constants ℂi are de�ned by (3.8).



S. Repin, Distance to the Set of Solenoidal Vector Fields | 525

3.3 Decomposition-Based Estimates in Abstract Form

It is clear that the same method can be applied to other operators with closed ranges. Below we shortly
discuss formalities that yield decomposition-based estimates. Let V(Ω) be a re�exive Banach space and
V0(Ω) denote the subspace of V containing functions vanishing on Γ. We consider a bounded linear operator
B : V0(Ω)→ H(Ω), where H(Ω) is another re�exive Banach space. We assume that Im B ⊂ H is closed in H.

By the closed range lemma (see, e.g., [37]), we have the following result.

Lemma 7. For any g ∈ Im B there exists vg ∈ V0 such that

Bvg = g and ‖vg‖V(Ω) ≤ ℂΩ‖g‖H(Ω),

where ℂΩ > 0 does not depend on v.

Let Ω be divided into a collection of non-overlapping Lipschitz subdomains Ωi, the spaces V0(Ωi) are gener-
ated by the same norm as V0 and contain functions vanishing on ∂Ωi.

Assume that any function v(x) de�ned by the relation v(x) = vi(x) in Ωi and v(x) = 0 in Ω \ Ωi belongs
to V0(Ω) provided that vi ∈ V0(Ωi). Also, we assume that all the operators Bi : V0(Ωi)→ H(Ωi) (which are
generated by restrictions of the operator B) are such that the sets Im Bi are closed in H(Ωi) for i = 1, 2, . . . , N.

Let g = gi in Ωi and gi ∈ Im Bi, i = 1, 2, . . . , N. In view of Lemma 7, there exists vgi such that

Bvgi = gi and ‖vgi‖V(Ωi) ≤ ℂΩi‖gi‖H(Ωi), (3.12)

where ℂΩi > 0 depends on Ωi. We extend all vgi to Ω \ Ωi by zero and set vg = ∑N
i=1 vgi ∈ V0(Ω). Since

‖vg‖ ≤ ∑N
i=1‖vgi‖V(Ωi), we use (3.12) and conclude that

Bvg = g and ‖vg‖V(Ω) ≤
N
∑
i=1
ℂΩi‖gi‖H(Ωi). (3.13)

If a collection of subdomains satis�es (3.7), then similar arguments yield an analogue of Theorem 5. In
this case, there exists vg ∈ V0(Ω) such that

Bvg = g and ‖vg‖V(Ω) ≤
N
∑
i=1
ℂi‖gi‖H(Ωi), (3.14)

where ℂi are de�ned by (3.8).

Remark 5. If V(Ω) is a Hilbert space and ‖v‖2V(Ω) = (v, v)V(Ω), then

‖v‖2V(Ω) =
N
∑
i=1

‖v‖2V(Ωi),

and in addition to (3.13) we have the better estimate

‖vg‖2V(Ω) ≤
N
∑
i=1
ℂ2Ωi‖gi‖

2
H(Ωi). (3.15)

Estimates (3.13)–(3.15) yield estimates of the distance to the set

W0(Ω) := {v ∈ V0(Ω) | Bv = 0}.

In particular, (3.15) yields the estimate

d(v,W0(Ω)) ≤
N
∑
i=1
ℂ2Ωi‖Bv‖

2
H(Ωi),

where d(v,W0(Ω)) = infw0∈W0(Ω)‖v − w0‖V(Ω).
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Figure 1. Domains composed of overlapping subdomains D1, D2, and D3.

3.4 Examples

Consider two simple examples related to the case where Ω = D1 ∪ D2 ∪ D3 (the respective domains are de-
picted in Figure 1).

In the �rst example, Di are rectangles with sides ai and di, D2 = Ω2 ∪ Ω4, and D3 = Ω3 ∪ Ω5.
Let v ∈ V0(Ω) be such that

{div v}Ωi = 0, i = 1, 2, 3, 4, 5. (3.16)
From (1.5) it follows that for a rectangular domain ◻a,b := (0, a) × (0, b) (a, b > 0, a > b), the stability

constant meets the estimate
ℂ◻ab ≤

1
b
√2d(a + d), (3.17)

where d = √a2 + b2 is the length of the diagonal. In particular, for the unit square, estimate (3.17) gives
ℂ◻11 < 2.6131which is in good correspondence with [17], where by accurate computations it was found that
2.347 ≤ ℂ◻11 < 2.611.

In view of Lemma 6, there exists a divergence-free �eld v0 such that v0 = v on Γ and

‖∇(v − v0)‖ ≤ ℂD1‖div v‖Ω1 + ℂD2(‖div v‖Ω2 + ‖div v‖Ω4) + ℂD3(‖div v‖Ω3 + ‖div v‖Ω5),

where
ℂDk =

1
bk

√2d2k + 2akdk , k = 1, 2, 3.

Hence, the distance between v and the set of divergence-free �elds is estimated from above by the expression
in the right-hand side.

Another example is related to the domain depicted in Figure 1 (right). Here D1 and D3 are isosceles tri-
angles and D2 is a circle. Let

Ω2 = D1 ∩ D2, Ω1 + Ω2 = D1, Ω2 + Ω3 + Ω4 = D2 (measΩ1 > 0),

Ω4 = D3 ∩ D2, Ω4 + Ω5 = D3 (measΩ5 > 0),

and v satisfy (3.16). In view of Lemma 6 (for ã = δ = 2), there exists v0 such that div v0 = 0, v = v0 on Γ and

‖∇(v − v0)‖ ≤ ℂD1‖div v‖Ω1 + ℂD3‖div v‖Ω5 + ℂD2(‖div v‖Ω2 + ‖div v‖Ω3 + ‖div v‖Ω4).

Since ℂD2 = √2, it remains to �nd estimates of ℂD1 and ℂD2 . Note that for a simplex ∆abc with sides
a ≥ b ≥ c > 0, we have

ρ = √ (s − a)(s − b)(s − c)
s

and R2 = ρ2 + (a + b − c)
2

4 ,

where s is the semiperimeter. By (1.5) we �nd that

ℂ∆abc ≤
R
ρ (

2 + a + b − c
R )

1/2
. (3.18)

If a = b = c = 1, then ℂ∆111 ≤ 3.8637 (compare this result with [17], where 3.401 ≤ ℂ∆111 < 3.861 was
found). Hence, we can set ℂD1 = ℂD3 = ℂ∆111 . By (3.18) it is not di�cult to �nd stability constants if D1
and D3 are arbitrary nondegenerate triangles. We note that the upper bound in (3.18) is minimal for equilat-
eral triangles. For other triangles the estimate generates larger bounds, which tend to in�nity if b + c tends
to a.
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4 Applications to A Posteriori Estimates

Guaranteed bounds of the distance to the exact solution of a boundary value problem usually contain con-
stants in functional inequalities (e.g., Poincaré, Friedrichs, Korn, trace inequalities). Such bounds are often
called a posteriori estimates of functional type (or deviation estimates). The reader can �nd a systematic ex-
position of the respective theory andmany references in [30]. Computational aspects related to e�cient use of
these estimates for various problems are discussed in [21] (see also [36]). Here,we brie�y recall results related
to the Stokes problem, which is the basic model in the theory of incompressible viscous �uids and show how
the constant ℂΩ enters these estimates. The problem is to �nd u (velocity vector function), σ (stress tensor
function), and p (pressure �eld) satisfying the system

{{{{{{
{{{{{{
{

− Div σ = f − ∇p in Ω,
σ = ν∇u in Ω,
div u = 0 in Ω,
u = g on Γ.

(4.1)

Here ν is a positive constant (viscosity), f ∈ L2(Ω,ℝd), and g ∈ H1(Ω,ℝd) is a given vector function, which
must be selected such that the compatibility condition

∫
Γ

g ⋅ nds = 0

holds. Guaranteed and computable bounds of the distance between any (energy admissible) approximation
v and the exact solution u were �rstly derived in [28] (see also [12, 13, 22, 29, 31]). It was shown that if
v ∈ S1,2(Ω,ℝd) + g, then the following error identity holds:

∫
Ω

(ν|∇(u − v)|2 + ν−1|σ − τ|2)dx = 2(J(v) − I∗(τ)), (4.2)

where J(v) := ∫Ω(
ν
2 |∇v|

2 − f ⋅ v)dx is the energy functional of the Stokes problem, I∗(τ) := −12 ‖τ‖
2 is the dual

energy functional, σ = ν∇u, and

τ ∈ Qf := {τ ∈ L2(Ω,Md×dsym) | Div τ + f = 0}.

Moreover, in [28] it was shown that (4.2) can be extended to classes of functions which are much wider than
v ∈ S1,2(Ω,ℝd) + g and Qf (what is important from the practical point of view). The respective results are
presented by the estimates

ν‖∇(u − v)‖ ≤ 2νR1(v) + R2(v, τ) + CFΩR3(τ, q) =: Mv(q, τ), (4.3)
1

2ℂΩ
‖p − q‖ ≤ νR1(v) + R2(v, τ) + 2CFΩR3(τ, q) =: Mq(v, τ), (4.4)

‖τ − σ‖ ≤ νR1(v) + R2(v, τ) + CFΩR3(τ, q) =: Mτ(v, q), (4.5)

where (cf. (2.3))

R1(v) := d(v, S1,20 + g) ≤ ℂΩ‖div v‖,
R2(v, τ) := ‖τ − ν∇v‖,
R3(v, q) := ‖Div τ + f − ∇q‖,

v is any function in the set
V + g : {v = w0 + g, w0 ∈ V0 := H1

0(Ω,ℝ
d)}

satisfying the last equation in (4.1), τ is any function in H(Ω,Div), q is any function in L̃2(Ω), and CFΩ is the
constant in the Friedrichs inequality for the functions in V0.
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By setting τ = η + qI (where η ∈ H(Ω,Div)), we obtain a slightly di�erent form of (4.3)–(4.5) where
R2(v, τ) and R3(τ, q) are replaced by

R2(v, η, q) := ‖η − ν∇v + qI‖ and R3(η) := ‖Div τ + f‖,

respectively. It is easy to show that combined norms containing errors in the left-hand sides of (4.3)–(4.5)
are bounded from below by weighted sums analogous to the majorants Mv(q, τ) or Mτ(v, q). Therefore, the
majorants indeed present adequate separatemeasures of errors in terms of velocity, pressure, and stress, and
also a measure of the combined error containing all of them. Since

inf
q∈L̃2(Ω)

τ∈H(Ω,Div)

Mv(q, τ) = Mv(p, σ) = ν‖∇(u − v)‖,

inf
q∈L̃2(Ω)
v∈V0+g

Mτ(q, τ) = Mτ(p, u) = ‖σ − τ‖,

inf
η∈H(Ω,Div)
v∈V0+g

Mq(q, η) = Mτ(p, u) = √d‖p − q‖,

the majorants always provide realistic error bounds if approximate solutions are close to the exact ones.
Estimates (4.3) and (4.5) involve the constantℂΩ, which appears if the distance to the set of divergence-

free �elds is measured by Lemma 1. If v satis�es condition (3.3) for a non-overlapping collection of sub-
domains Ωi, then we use Lemma 5 and obtain a somewhat di�erent error majorant for the Stokes problem:

ν‖∇(u − v)‖ ≤ 2ν(
N
∑
i=1
ℂ2Ωi‖div v‖

2
Ωi)

1/2
+ ‖η + qI − ν∇v‖ + CFΩ‖Div η + f‖. (4.6)

Here, the functions η ∈ H(Ω,Div) and q ∈ L̃2(Ω) can be viewed as approximations of the stress and pressure
functions, respectively. If div v has higher regularity div v ∈ Lδ(Ω), δ > 2, then the sum in round brackets
(which re�ects the distance to divergence-free �elds) could be replaced with the help of estimates (3.4) or
(3.6). If Ωi are formed by intersecting subdomains, then this term should be replaced by the right-hand side
of (3.11) with ã = 2.

Remark 6. Estimates (4.3)–(4.5) could be helpful in selecting suitable weights if approximate solutions to
the Stokes problem are computed by the least squares �nite element method. For example, if our analy-
sis is focused on the velocity �eld, then (4.3) shows that the weights of R21, R

2
2, and R

2
3 should be close to

4ν2ℂ2Ω, 1, and C
2
F, respectively. Analogously, estimate (4.6) suggests a “decomposed” version of the least

square complex
N
∑
i=1

4ν2ℂ2Ωi‖div v‖
2
Ωi + R

2(v, η, q) + C2FΩR
2(η),

where the weights are presented by local stability constants ℂΩi .

If we have an overlapping collection of subdomains Dk and the corresponding set of Ωi satisfying (3.7), then
Lemma 6 yields another estimate:

ν‖∇(u − v)‖ ≤ 2ν
N
∑
i=1
ℂi‖div v‖Ωi + ‖η + qI − ν∇v‖ + CFΩ‖Div η + f‖, (4.7)

where the constants ℂi are de�ned in (3.8). Similar estimates (based on decomposition of Ω) for other prob-
lems related to incompressible �uids can be found in [31, 32].

Remark 7. There is an obvious way to obtain computable estimates of the distance to divergence-free
�elds without the condition (3.3). For this purpose, we need to construct a suitable correction function
w ∈ W1,ã

0 (Ω,ℝd) such that

∫
Ωi

divwdx = δi := ∫
Ωi

div vdx for i = 1, 2, . . . , N.
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Then using (4.5), we conclude that there exists a solenoidal vector-valued function v0 such that v = v0 on Γ
and

‖∇(v − v0)‖Ω,ã ≤ (
N
∑
i=1
ℂãΩi ,ã‖div(v − w)‖

ã
Ωi ,ã)

1/ã
+ ‖∇w‖Ω,ã.

This estimate provides an upper bound of the distance to the set of divergence-free �elds for any w ∈
W1,ã

0 (Ω,ℝd). Certainly the quality of this estimate depends on the choice of w, which should be selected
such that ‖∇w‖Ωi ,ã is small and div v does not di�er much from divw. In certain cases, �nding such w may
generate a special and not an easy task. We believe that conceptually it is more logical to view (3.3) as a
natural condition for any “good” (physically suitable) approximation and use (4.6) or (4.7).

Acknowledgment: The author is grateful to the organizers of CMAM-6 and to the Radon Institute of Compu-
tational and Applied Mathematics in Linz.

Funding: This research was partially supported by RFBR grant N 14-01-00162.

References
[1] G. Acosta, R. Duran and L. Fernando, Korn inequality and divergence operator: Counterexamples and optimality of

weighted estimates, Proc. Amer. Math. Soc. 141 (2013), 217–232.
[2] I. Babuška, The �nite element method with Lagrangian multipliers, Numer. Math. 20 (1973), 179–192.
[3] I. Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the �nite element method, Academic Press,

New York, 1972.
[4] J. Bramble, A proof of the inf-sup condition for the Stokes equations on Lipschitz domains,Math. Models Methods Appl.

Sci. 13 (2003), 361–371.
[5] M. E. Bogovskii, Solution of the �rst boundary value problem for the equation of continuity of an incompressible medium,

Soviet Math. Dokl. 248 (1979), 1037–1040.
[6] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers,

RAIRO Anal. Numer. R2 (1974), 129–151.
[7] F. Brezzi and M. Fortin,Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer, New York,

1991.
[8] M. Costabel and M. Dauge, On the inequalities of Babuška–Aziz, Friedrichs and Horganâ–Payne, Arch. Ration. Mech. Anal.

217 (2015), 873–898.
[9] B. Dacorogna, N. Fusco and L. Tartar, On the solvability of the equation div u = f in L1 and in C0, Atti Accad. Naz. Lincei Cl.

Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14 (2003), 239–245.
[10] M. Dobrowolski, On the LBB constant on stretched domains,Math. Nachr. 254/255 (2003), 64–67.
[11] K. O. Friedrichs, On certain inequalities and characteristic value problems for analytic functions and for functions of two

variables, Amer. Math. Soc. Transl. 41 (1937), 321–364.
[12] M. Fuchs and S. Repin, Estimates for the deviation from the exact solutions of variational problems modeling certain

classes of generalized Newtonian fluids,Math. Methods Appl. Sci. 29 (2010), 2225–2244.
[13] M. Fuchs and S. Repin, Estimates of the deviations from the exact solutions for variational inequalities describing the

stationary flow of certain viscous incompressible fluids,Math. Methods Appl. Sci. 33 (2010), 1136–1147.
[14] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Springer, New York, 1994.
[15] V. Girault and P. A. Raviart, Finite Element Approximation of the Navier–Stokes Equations, Springer, Berlin, 1986.
[16] C. Horgan and L. Payne, On inequalities of Korn, Friedrichs and Babuška–Aziz, Arch. Ration. Mech. Anal. 82 (1983), 165–

179.
[17] M. Keßler, Die Ladyzhenskaya-Konstante in der numerischen Behandlung von Strömungsproblemen, Ph.D. thesis, Julius-

Maximilians-Universität Würzburg, 2000.
[18] O. A. Ladyzhenskaya,Mathematical Problems in the Dynamics of a Viscous Incompressible Flow, 2nd ed., Gordon and

Breach, New York, 1969.
[19] O. A. Ladyzenskaja and V. A. Solonnikov, Some problems of vector analysis, and generalized formulations of boundary

value problems for the Navier–Stokes equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 59 (1976),
81–116.

[20] D. S. Malkus, Eigenproblems associated with the discrete LBB-condition for incompressible �nite elements, Int. J. Engrg.
Sci. 19 (1981), 1299–1310.

[21] O. Mali, P. Neittaanmäki and S. Repin, Accuracy veri�cation methods. Theory and algorithms, Springer, New York, 2014.



530 | S. Repin, Distance to the Set of Solenoidal Vector Fields

[22] A. Mikhailov and S. Repin, Estimates of deviations from exact solution of the Stokes problem in the velocity-vorticity-
pressure formulation, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 397 (2011), 73–87.

[23] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson et Cie, Éditeurs, Paris; Academia Éditeurs,
Prague 1967.

[24] M. A. Olshanskii and E. V. Chizhonkov, On the best constant in the inf-sup condition for prolonged rectangular domains,
Mat. Zametki 67 (2000), 387–396.

[25] L. E. Payne, A bound for the optimal constant in an inequality of Ladyzhenskaya and Solonnikov, IMA J. Appl. Math. 72
(2007), 563–569.

[26] K. I. Piletskas, On spaces of solenoidal vectors, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96 (1980),
237–239.

[27] K. I. Piletskas, Spaces of solenoidal vectors, Trudy Mat. Inst. Steklov 159 (1983), 137–149.
[28] S. Repin, Aposteriori estimates for the Stokes problem, J. Math. Sci. (New York) 109 (2002), 1950–1964.
[29] S. Repin, Estimates of deviations from exact solutions for some boundary-value problems with incompressibility condi-

tion, St. Petersburg Math. J. 16 (2004), 124–161.
[30] S. Repin, A Posteriori Estimates for Partial Di�erential Equations, De Gruyter, Berlin, 2008.
[31] S. Repin, Estimates of deviations from exact solution of the generalized Oseen problem, Zap. Nauchn. Sem. S.-Peterburg.

Otdel. Mat. Inst. Steklov. (POMI) 410 (2013), 110–130.
[32] S. Repin, Estimates of the distance to the set of divergence free �elds, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst.

Steklov. (POMI) 425 (2014), 99–116.
[33] S. Repin and R. Stenberg, A posteriori error estimates for the generalized Stokes problem, J. Math. Sci. (New York) 142

(2007), 1828–1843.
[34] G. Stoyan, Towards discrete Velte decompositions and narrow bounds for inf-sup constants, Comput. Math. Appl. 38

(1999), 243–261.
[35] R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl. 2, North-Holland, Amsterdam,

1979.
[36] J. Valdman, Minimization of functional majorant in a posteriori error analysis based on H(div)multigrid-preconditioned

CG method, Adv. Numer. Anal. 2009 (2009), Article ID 164519.
[37] K. Yosida, Functional Analysis, Springer, New York, 1996.


	Estimates of the Distance to the Set of Solenoidal Vector Fields and Applications to A Posteriori Error Control
	1 Introduction
	2 Estimates of the Distance to the Set $S^{1,\gamma}_0$
	3 Estimates Based on the Decomposition of $\Omega$
	3.1 Non-Overlapping Subdomains
	3.2 Subdomains With Overlappings
	3.3 Decomposition-Based Estimates in Abstract Form
	3.4 Examples

	4 Applications to A Posteriori Estimates


