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Projection methods for ill-posed problems

revisited

Stefan Kindermann∗

Abstract

The discretization of least-squares problems for linear ill-posed oper-
ator equations in Hilbert spaces is considered. The main subject of this
article concerns conditions for convergence of the associated discretized
minimum-norm least-squares solution to the exact solution using exact
attainable data. The two cases of global convergence (convergence for
all exact solution) or local convergence (convergence for a specific exact
solution) are investigated. We review the existing results and prove new
equivalent condition when the discretized solution always converges to
the exact solution. An important tool is to recognize the discrete solu-
tion operator as oblique projection. Hence, global convergence can be
characterized by certain subspaces having uniformly bounded angles. We
furthermore derive practically useful conditions when this holds and put
them into the context of known results. For local convergence we gen-
eralize results on the characterization of weak or strong convergence and
state some new sufficient conditions. We furthermore provide an example
of a bounded sequence of discretized solutions which does not converge at
all, not even weakly.

1 Introduction

We study the role of discretization in the use of solving ill-posed linear operator
equations in Hilbert spaces. Consider an ill-posed problem in Hilbert spaces

Ax = y, (1)

where A : X → Y is continuous and equation (1) for solving x from given
data y is ill-posed. In the following, N(A) and R(A) denote the nullspace and
the range of an operator A, respectively. By A† we denote the pseudoinverse of
A; cf., e.g., [7]. We symbolize norm-convergence by → and weak convergence by
⇀. We denote the weak limit by the symbol wlim , and, for a closed subspace
Z, ΠZ denotes the associated orthogonal projector onto Z. In the following,
we assume (unless specified otherwise) the attainable case for problem (1), i.e.,
that y is in R(A). In this case, we can set y being the image of an element in
N(A)⊥.

Ax† = y, x† ∈ N(A)⊥.

It is the unique element x†, which we want to reconstruct from given data y.
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We are interested in projection methods acting as a regularization, i.e., in
approximating the pseudoinverse of A by solving discrete least-squares problems
related to (1). For this task we introduce discretizations in the spaces X and Y .
Precisely, we assume given an increasing sequence of finite-dimensional spaces
Xn ⊂ X and Ym ⊂ Y, n,m ∈ N, with the property

Xn ⊂ Xn+1,
⋃

n

Xn = X, Ym ⊂ Ym+1,
⋃

m

Ym = Y. (2)

For the discretization spaces we always denote the associated orthogonal pro-
jector onto Xn by Pn := ΠXn

and onto Ym by Qm := ΠYm

Pn : X → Xn, Qm : Y → Ym.

The discretization of (1) by a general projection method involves the oper-
ator

An,m := QmAPn, (3)

and we define the associated solutions by (assuming attainability)

xn,m := A†
n,my = A†

n,mAx†. (4)

It is well-known that xn,m is the unique solution of minimum norm under all
least-squares solutions of the projected problem, i.e.,

xn,m = argminx∈Xn
‖QmAx− y‖2 = argminx∈Xn

‖QmAx−Qy‖2, and

xn,m ∈ N(An,m)⊥.

It follows that A†
n,m = PnA

†
n,mQm. The general projection method (4) embraces

two special well-known methods: if we put formally m = ∞, and hence Qm = I,
we obtain the projected least-squares method involving

xn := A†
nAx

†, An = APn. (5)

Conversely if we set n = ∞ and formally put n = ∞, we obtain the dual
least-squares method,

x∞,m := A†
∞,mAx†, A∞,m = QmA.

We distinguish these important special cases by labeling them with only one
index for the first method and by the index ∞,m for the second one. However,
the dual least-squares method is not so much of interest for this paper (although
it is of practical importance) as it always leads to a convergent method.

It is clear that A†
n,m is a bounded operator and hence xn,m can be com-

puted in a stable way. Moreover, the usual rules for adjoints and inverses hold:
(A†

n,m)∗ = (A∗
n,m)

†
.

The immediate question that arises from this setup is, if xn,m in (4) converges
to x† as n,m → ∞, in what sense does this convergence happen, and for which
x† does this hold.

More precisely, we study two different subjects:

• Local convergence. Fix x†. Find conditions such that

xn,m ⇀ x† as n,m → ∞,
or

xn,m → x† as n,m → ∞ .
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• Global convergence. Find conditions such that

xn,m → x† as n,m → ∞ ∀x† ∈ N(A)⊥.

The second issue concerns convergence not only for one fixed x† but for all
x† ∈ N(A)⊥.

Both questions are relevant for the general projection method (4) and the
projected least-squares method (5). Note that the distinction between weak
and strong convergence is not relevant for global convergence because the cor-
responding conditions are identical [9].

Of course, these question have been discussed and partly answered in litera-
ture, but often only for the projected least-squares method or even with further
restriction like injective operators; see Section 2.1 for a review. It is observed
that many authors in different articles use different conditions to prove conver-
gence of a specific scheme, for instance, (6) or (7) below. The relation between
different conditions in different papers is not always obvious. It is one of the
purposes of this paper to clarify this situation and to unify the convergence con-
ditions at best, to generalize known results to the general projection case using
the operator (3) and hereby avoiding unnecessary assumptions like injectivity.

Let us mention that the convergence of xn,m to x† is the most important
requirement for the projection methods discussed here to act as regularization.
The second one, the stability of the regularization, is automatically satisfied
since we are dealing with finite-dimensional problems. Indeed, if convergence
of xn,m to x† is verified, it is not difficult to find error estimates for noisy data
as well and with appropriate parameter choice rules (where the index of the
approximation spaces n,m act as “regularization parameter”), convergence of
xn,m to x† can be proven even for the case of noisy data. We do not dwell further
on this matter since it can be treated by standard methods; for results on the
noisy case or also nonlinear problems, see, e.g., [1, 3, 8, 11, 13, 14, 15, 16, 23];
for combination with regularization, see e.g., [25, 30, 31, 34]. For results with
focus on the analysis of specific advanced method of choosing the discretization
spaces (like adaptivity or multilevel-type), we refer to [17, 18, 22].

This paper is organized as follows: in Section 2, we review existing conver-
gence results and prove some important lemmas. In Section 3 we provide new
conditions for global or local convergence and relate them to results in litera-
ture. In Section 4 we state a nontrivial example of a non-convergent sequence
xn,m which is bounded. We summarize with a conclusion in Section 5.

2 Known and preliminary results

In this section we give an extensive literature review of know results related to
the questions raised in the previous section. Moreover, we present some lemmas
needed later for the convergence analysis.

2.1 A review of known results

The question of local or global convergence has, of course, been addressed in
several articles. However, as stated above, quite often only injective operators,
i.e., N(A) = ∅, or the case of projected least-squares problems, i.e., Qm = I,
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have been addressed. Moreover, although those results are useful, they are not
always completely sharp.

Before we come to the positive results, we remind of a well-known negative
result of non-convergence. The following statement is the famous counterexam-
ple of Seidman [32] for the projected least-squares problem.

Example 1 (Seidman). There exists a compact injective linear operator A and
a x† such that xn as given by (5) is a unbounded sequence. Thus, in particular,
we have non-convergence xn 6→ x†. Moreover there also exists A, x† as before
such that xn is bounded but xn 6→ x†.

The operator used for this example is a diagonal operator in the l2-sequence
space with a rank-1 perturbation:

A : l2 → l2 A = diag(γ) + β ⊗ e1,

where γ and β are appropriate sequences and e1 is the sequence with all 0 except
at the first position, where it is 1. By an appropriate (constructive) choice of
x† and β, γ, the unboundedness of xn can be shown; see [32] or [7]. The last
statement in this theorem of a bounded (strongly-) non-convergence sequence
is stated in [32] but not explicitly proven.

Concerning the question of finding conditions for global convergence, the
problem is well-studied. The following result is proven by Nashed [26], (for An),
see also [27], in [20, Theorem 3.7] for An being injective, and for the general case
with An,m by Du [5] (see also [6]). It gives a necessary and sufficient condition
for global convergence.

Theorem 1.

xn,m → x† as m,n → ∞ ∀x† ∈ N(A)⊥,

if and only if there exists a constant C such that

sup
n,m

‖A†
n,mA‖ ≤ C. (6)

Below, we will also reprove the corresponding result (Theorem 15) and, in
particular, study characterizations of the uniform boundedness condition (6);
see Theorems 17 and 18.

Note that in [5, Theorem 2.6], Theorem 1 has been generalized to the case
of nonatainable data, i.e., when y = Ax† + R(A)†. In this case the necessary
and sufficient conditions for xn being strongly (weakly) convergent to A†y is (6)
and A∗

nQny → 0 ⇒ A†
nQny → (⇀)0.

If follows immediately from Theorem 1 for the dual projection case, i.e.,
An,m = A∞,m, by A†

∞,m = A†
∞,mQm, that condition (6) is always satisfied, i.e.,

this method always globally converges. This is well-known and has been shown,
e.g., in [7].

A widely used sufficient condition for uniform boundedness and hence global
convergence of xn has been presented by Natterer [27] using a result by Nit-
sche [29].

Theorem 2 (Natterer). Let A be injective. Suppose that there exists a con-
stant C such that for all x† ∈ X there exists a un ∈ Xn:

‖x† − un‖+ ‖A†
n‖‖A(x

† − uN )‖ ≤ C‖x†‖. (7)

Then xn → x† as n → ∞ for all x† ∈ X.
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In this theorem,

‖A†
n‖ = sup

‖Anxn‖=1,xn∈Xn

‖xn‖ = σ−1
min(APn).

It is not difficult to verify that (7) implies (6), We will generalize this result
by giving a condition resembling (7) which is equivalent to (6) and hence yields
global convergence in the general case (including non-injective operators and for
the general projection case); see below Proposition 19.

Furthermore a quite general condition has been proposed by Vainikko and
Hämarik [35] (see also [11, 14, 15] and [12] and the references therein).

Theorem 3 (Vainikko and Hämarik). Suppose that N(QmAPnA
∗) = {0}. If

there is a constants C such that

‖A∗QmAPnz‖ ≤ C‖PnA
∗QmAPnz‖ ∀z ∈ Xn, (8)

then xn,m → x† for all x† ∈ N(A)⊥.

Further results, e.g., on appropriate parameter choice rules, are proven in
[35] as well. We will show below (Theorem 18) that (8) is actually equivalent
to (6).

A simple condition involving the product of the ill-posedness and approxi-
mation rate has been used by several authors (e.g., [19, 24])

Theorem 4. If ‖A(I − Pn)‖‖A†
n,m‖ < ∞, then xn,m → x† as m,n → ∞ for

all x† ∈ N(A)⊥. If for a specific x†, limm,n→∞ ‖A(I −Pn)x
†‖‖A†

n,m‖ = 0, then

xn,m → x† as m,n → ∞.

The previous results are ones that hold uniformly for all x† (except for the
very last one), and convergence for all x† ∈ N(A)⊥ is obtained. However, it is
of high interest to study conditions for convergence for one specific x†, when we
do not care about global convergence. There are some statements concerning
local convergence in literature.

In a quite general situation, necessary and sufficient conditions for local
convergence have been established by Groetsch and Neubauer [7, 9].

Theorem 5 (Groetsch and Neubauer, also Du). We have the following local
convergence conditions for strong convergence:

xn → x† ⇐⇒ lim sup
n

‖xn‖ ≤ ‖x†‖.

Moreover, suppose that

⋃

n

(N(A) ∩Xn) = N(A). (9)

Then we have the following local convergence conditions for weak convergence:

xn ⇀ x† ⇐⇒ sup
n

‖xn‖ < ∞. (10)
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Note that the part on weak convergence in Theorem 5, identity (10) is er-
roneously stated in [7, 9] without the space condition (9), as has been noted
by Du [5]. The characterization of strong convergence is valid without (9) and
was already stated in [9] (using the incomplete result for weak convergence).
It has been rigorously proved by Du and Du [6, Remark 4.3]. We will extend
Theorem 5 to general projection methods with xn,m; see Theorem 25.

Besides the convergence result of Neubauer and Groetsch, a sufficient con-
dition for strong local convergence without requiring information about x† has
been stated by Luecke and Hickey [21].

Theorem 6 (Luecke, Hickey). Suppose that

sup
n

‖(A†
n)

∗xn‖ < ∞, (11)

then xn → x†.

This result is also proven in [7], where it is also explained that (11) is quite
strong (and thus not a necessary condition for convergence) as it leads to a
convergence rate of xn − x†. In Proposition 27 we provide a similar result but
by employing weaker conditions.

A subtle and important point is the space condition (9). In case of injective
operators, of course, (9) holds true but in the general case not always, not even
if N(A) is finite-dimensional. (Think, for instance, of a discretization space Xn

that is disjoint to N(A).) We note that (N(A) ∩Xn) is an increasing family of
closed subspaces, thus the following identity holds, (cf., e.g., [10, Chpt. 1, § 12])

⋃

n

(N(A) ∩Xn)
⊥

=
⋂

n

(N(A) ∩Xn)
⊥,

so that (9) is equivalent to

⋂

n

(N(A) ∩Xn)
⊥
= N(A)⊥. (12)

A recent preprint [6, Theorem 1.1] discusses equivalent conditions to (9)
(respectively, (12)).

Theorem 7. The condition (9) is equivalent to each of the following conditions,
Here G(A) denotes the graph of an operator A.

•
∀x ∈ N(A) : lim

n→∞
inf

zn∈N(An)
‖x− zn‖ → 0,

•
∀(x, y) ∈ G(A†) : lim

n→∞
inf

(zn,wn)∈G(A†
n)
‖(x, y)− (zn, yn)‖ → 0,

• for all sequences yn:

sup
n

‖A†
nyn‖ < ∞ and yn ⇀ y :⇒ y ∈ D(A†) and A†y = A†

ny.
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Moreover (6) is equivalent to the following two conditions holding simultane-
ously, (9) and gap(R(A∗APn), R(A†APn) < 1, where the gap between two spaces
M,N is defined as (see [6, Lemma 3.2] gap(M,N) = ‖PM − PN‖.

We will extend the second part of this result and we show that (6) can be
equivalently be characterized as a certain angle (or gap) between subspaces (but
not those in this theorem) to be smaller then one; cf. Lemma 16. Moreover, we
also study local convergence also when (9) is not satisfied.

The subtle fact that boundedness of xn is not enough for weak convergence
and that an additional condition, e.g., like (9), is needed, is not very well-
known. Du [5, Example 2.10] gave a counterexample of a sequence of ‖xn‖
being uniformly bounded but which does not converge weakly to x†.

Example 2 (Du). There exists a linear operator A and a x† ∈ N(A)⊥ such
that

sup
n

‖xn‖ < ∞,

but xn 6⇀ x†. In this example, however, xn converges strongly to some element
6= x†.

The operator in this counterexample is actually not ill-posed but a simple
projection operator onto the complement of a one-dimensional subspace, A =
I − (., e)e with some appropriately chosen e. Failure of convergence happens
because xn converges (even strongly) but to the “wrong” solution.

Below in Theorem 28, we give a counterexample that is even more extreme:
a situation like in the previous result, Example 2, but where the sequence xn

does not converge at all (not even weakly). This example has been devised by
Neubauer [28].

Example 3 (Neubauer). There exists a linear operator A and a x† ∈ N(A)⊥

such that
sup
n

‖xn‖ < ∞,

but xn does not converge weakly.
Moreover, the sequence xn has a subsequence, which converges weakly but

with limit u 6= x†, and no weakly convergent subsequence has limit x†.

2.2 Preliminary lemmas

Since xn,m is always in N(An,m)⊥, it is important to study these spaces. We
note that by discretization, An,m is an operator with closed range. We have the
well-known duality relations,

R(A∗
n,m) = N(An,m)⊥ and N(A∗

n,m) = R(An,m)⊥, (13)

and all these spaces are closed.
The following characterizations follow easily.

Lemma 8.

N(An,m) = {x ∈ X |x = wn + qn : wn ∈ Xn ∩N(QmA), qn ∈ X⊥
n } (14)

N(An,m)⊥ = {x ∈ Xn ∩ (N(QmA) ∩Xn)
⊥}

= {x ∈ Xn|∃vn : x = PnA
∗Qmvn},
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Proof. The first identity (14) follows easily by x = Pnx + (I − Pn)x. It is
straightforward to proof that any x ∈ Xn ∩ (Xn ∩N(QmA))⊥ is in N(An,m)⊥.
Conversely, by taking either wn or qn to be 0, it follows that any x ∈ N(An,m)⊥

must be in both Xn and (Xn ∩N(QmA))⊥. The last identity is (13).

Note that these spaces are not necessarily nested. However, the following
inclusions can be verified:

N(QmA) ∩Xn ⊂ N(QmA) ∩Xn+1 ⊂ . . . N(QmA), (15)

N(QmA) ∩Xn ⊃ N(Qm+1A) ∩Xn ⊃ . . . N(A) ∩Xn, (16)

N(A) ∩Xn =
⋂

m

(N(QmA) ∩Xn) . (17)

A simple consequence is that, for a fixed x, the norm of the projection
‖ΠN(QmA)∩Xn

x‖, is increasing in m (for fixed n) and decreasing in n (for fixed
m).

We now state some approximation results, namely that elements in N(A)⊥,
i.e., the space where x† lives, can be approximated arbitrary well by elements
in the corresponding discrete space N(An,m)⊥.

Lemma 9. For all x ∈ N(A)⊥,

lim
n,m→∞

inf
z∈R(A∗

n,m)
‖x− z‖ = lim

n,m→∞
inf

z∈N(An,m)⊥
‖x− z‖ = 0 , (18)

Proof. Let x ∈ N(A)⊥ = R(A∗) = R(A∗A). Then for any ǫ > 0 fixed, we can
find a wǫ such that

‖x−A∗wǫ‖ ≤ ǫ, .

Moreover by (2), with ǫ and wǫ as before, we can find a n0 such that for all
n ≥ n0 and m ≥ n0

‖PnA
∗wǫ −A∗wǫ‖ ≤ ǫ, ‖Qmwǫ − wǫ‖ ≤

ǫ

‖A∗‖
,

thus,

‖x− PnA
∗Qmwǫ‖ ≤ ‖x− PnA

∗wǫ‖+ ‖PnA
∗(I −Qm)wǫ‖ ≤ 2ǫ.

which yields (18). Note that PnA
∗Qmwǫ is in R(A∗

n) = N(An)
⊥.

We remark that N(An,m)⊥ is not necessarily a subspace of N(A)⊥ so that
it is not correct to say that N(An,m)⊥ is dense in N(A)⊥.

Furthermore, the operators A∗An,m and A∗
n,mA will play an important role

in the subsequent analysis.

Lemma 10.

N(An,m) = N(A∗An,m) R(A∗
n,mA) = R(A∗

n,m)

Proof. Clearly N(An,m) ⊂ N(A∗An,m) = N(A∗An,m). Conversely for x ∈
N(A∗An,m) we have A∗QmAPnx = 0, and hence also PnA

∗QmQmAPnx = 0,
thus x ∈ N(An,m), which showsN(An,m) = N(A∗An,m), and by (13) the lemma
follows.

8



Using A∗An,m and A∗An,m, we have a characterization of the solution op-
erator A†

n,mA as a certain nonorthogonal projection operator.

Proposition 11. For any x ∈ X and any n,m ∈ N, we have the unique de-
composition

x = vn,m + un,m vn,m ∈ R(A∗
n,mA), un,m ∈ N(A∗

n,mA). (19)

Moreover the mapping x → vn,m is given by A†
n,mA, i.e.,

vn,m = A†
n,mAx.

For any x ∈ X any n,m ∈ N, we have the unique decomposition

x = vn,m + un,m vn,m ∈ R(A∗An,m), un,m ∈ N(A∗An,m) (20)

= vn,m + wn,m + qn,m

vn,m ∈ R(A∗An,m),

wn,m ∈ N(QmA) ∩Xn,

qn,m ∈ X⊥
n .

(21)

Here, vn,m, un,m, wn,m, qn,m are uniquely determined. Moreover, the mapping

x → vn,m is given by A∗(A∗
n,m)

†
, i.e.,

vn = A∗(A∗
n,m)

†
x,

and the mapping x → wn,m is given by

wn,m = ΠN(QmA)∩Xn
x. (22)

Proof. Define vn,m = A†
n,mAx, then vn,m ∈ N(An,m)⊥ = N(A∗An,m)⊥ =

R(A∗
n,mA). In particular, we have vn,m ∈ Xn. Moreover vn satisfies the nor-

mal equations

0 = PnA
∗Qm(APnvn −Ax) = PnA

∗QmA(vn − x).

Thus vn − x ∈ N(A∗
n,mA) yielding the desired decomposition (19). Conversely,

for any other decomposition as above, it follows that vn ∈ N(An,m)⊥, and it
satisfies the normal equations. By uniqueness of the minimal-norm least-squares
solution, if follows that vn = A†

n,mAx. Thus the decomposition is unique. For

the second part, define zn,m = (A∗
n,m)

†
x, then zn,m ∈ N(A∗

n,m)⊥ = R(An,m).
In particular zn,m ∈ Ym. The normal equation implies that QmAPnA

∗zn,m −
QmAPnx = 0, thus vn,m − x = A∗zn,m − x ∈ N(An,m) = N(A∗An,m), which
gives the decomposition. Any other decomposition of the form x = A∗An,mp+
N(An,m) implies that An,mp satisfies the same normal equation as zn,m and it
clearly is in R(An,m) = N(A∗

n,m)†, thus by the uniqueness of the minimal-norm

least-squares solution, we have An,mp = (A∗
n)

†
x. Hence, A∗An,mp = A∗(A∗

n)
†
x,

which implies the unique decomposition (20). The decomposition of un,m, into
wn,m + qn,m exists by the characterization of N(An,m) in (14) and is clearly
unique since wn,m is orthogonal to qn,m. Since vn,m = A∗zn,m = A∗Qmzn,m, it
follows that vn,m is orthogonal to N(QmA) and clearly qn,m is orthogonal to
Xn, hence applying ΠN(A)∩Xn

to the decomposition gives the representation for
wn,m.

9



Remark 1. This proposition will be used widely; in particular, we recognize
that xn,m = A†

n,mAx† is the first element in (19) in the decomposition of x† and

thus xn,m is the result of a nonorthogonal (oblique) projection applied to x†.
From (19), (20) we also obtain the nontrivial fact that

N(A∗
n,mA) ∩R(A∗

n,mA) = ∅, and N(A∗An,m) ∩R(A∗An,m) = ∅.

As a corollary we have a formula for ΠN(QmA)∩Xn
.

Corollary 12. For any k ≤ n,

PkΠN(QmA)∩Xn
= Pk −A∗

k(A
∗
n,m)

†
,

ΠN(QmA)∩Xn
Pk = Pk −A†

n,mAk.

Proof. Applying Pk to (21) and using the fact that orthogonal projectors are

selfadjoint and (A∗
k(A

∗
n,m)†)∗ = A†

n,mAk yields the result.

As another illustration of the usefulness of Proposition 11, we can prove a
similar characterization of the space condition (9) as in Theorem 7.

Proposition 13. We have that (9) is satisfied if and only if
(

lim
n,m→∞

inf
zn,m∈R(A∗

n,m)
‖x− zn,m‖ = 0

)

=⇒ x ∈ R(A∗) (23)

Proof. Let (23) hold and suppose that (9) does not hold. Then there exists a

x 6= 0 and x ∈ N(A) and x ∈
⋂

n (N(A) ∩Xn)
⊥
. For such a x using (21), (22),

and (17), it follows that for all n limm→∞ wn,m = 0. Thus, by Corollary 12
with k = n,

lim
m→∞

‖(Pn −A∗
n(A

∗
n,m)†)x‖ = lim

m→∞
‖(Pn −A†

n,mAn,m)x‖ = 0.

Taking n such that ‖x− Pnx‖ ≤ ǫ, we find a m such that

‖x−A†
n,mAn,mx‖ ≤ ‖x− Pnx‖ + ‖(Pn −A†

n,mAn,m)x‖ ≤ 2ǫ.

Thus by (23), since A†
n,mAn,m ∈ R(A∗

n,m), it follows that x ∈ R(A∗) = N(A)⊥.
Since x ∈ N(A), we have a contradiction, thus (9) must hold. Conversely, if
(9) holds, suppose that (23) does not hold. Then we have a x ∈ N(A) and
zn,m ∈ R(A∗

n,m) with ‖x − ΠR(A∗
n,m)x‖ →n,m 0. As ΠR(A∗

n,m) = A†
n,mAn,m =

A∗
n,m(A∗

n,m)
†
, we have that x−A∗

n,m(A∗
n,m)

† →n,m 0. Applying Pn to (21), it fol-

lows that wn,m = Pnx−A∗
n,m(A∗

n,m)
†
x →n,m 0; in particular limn limm wn,m =

limn ΠN(A)∩Xn
x = 0. By (15), ΠN(A)∩Xn

x is increasing, hence ΠN(A)∩Xn
x = 0

for all n. In other words, x ∈
⋂

n(N(A) ∩ Xn)
⊥. Using (9) implies that

x ∈ N(A)⊥, which is a contradiction to x ∈ N(A).

In view of Lemma 9, we always have that

N(A)⊥ ⊂
{

x : dist(x,N(An,m)⊥) →n,m 0
}

, (24)

but according to (23), equality holds only if the space condition (9) holds. The
corresponding result for the projected least-squares case using An (and more)
has already been proven in [6].
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3 Convergence results

We now study necessary and sufficient conditions for local and global conver-
gence of xn,m to x†, thus extending the known results of the Section 2.1.

3.1 Conditions for global convergence

At first we consider convergence for all x† ∈ N(A)⊥. We reprove the statement
of Theorem 1 based on the following lemma.

Lemma 14. For all x† ∈ N(A)⊥ and xn,m = A†
nAx

†, we have

lim sup
n,m→∞

‖xn,m − x†‖ ≤ lim sup
n,m→∞

‖A†
n,mA(I − Pn)x

†‖

Proof. Noting that A†
n,mAn,m = I −ΠN(An,m) = ΠN(An,m)⊥ = ΠR(A∗

n,m),

xn,m − x† = A†
n,mAx† − x† = (A†

n,mQmAPn − I)x† +A†
n,mQmA(I − Pn)x

†

= −(I −ΠR(A∗
n,m))x

† +A†
n,mA(I − Pn)x

†.

Thus we have

‖xn,m − x†‖ ≤ inf
z∈R(A∗

n,m)
‖x† − z‖+ ‖A†

n,mA(I − Pn)x
†‖

Now, Lemma 9 and (18) yields the result

Remark 2. In the above result we can easily replace A†
n,mA(I − Pn)x

† by the

expression A†
n,mQmAΠN(QmA)⊥(I − Pn)x

† or by A†
n,mQmAΠN(QmA)⊥∩X⊥

n
x†.

We obtain the first (well-known) result on global convergence; cf. Theorem 1.

Theorem 15. The approximations xn,m converge to x† for all x† ∈ N(A)⊥ if
and only if there exists a constant C such that

sup
n,m

‖A†
n,mA‖ ≤ C. (25)

Equivalent to (25) is that there exists a constant C′ such that

sup
n,m

‖A†
n,mA(I − Pn)‖ ≤ C. (26)

Proof. Let xn,m → x† for all x† ∈ N(A)⊥ as m,n → ∞. Then we have by
xn,m = A†

n,mAx† that A†
n,mA → I pointwise on N(A)⊥. By the uniform bound-

edness principle this implies that A†
n,mA|N(A)⊥ must be uniformly bounded.

But it is easy to see that this is equivalent to (25).
Conversely let (25) hold, then

‖A†
n,mA(I − Pn)x

†‖ ≤ ‖A†
n,mA‖‖(I − Pn)x

†‖,

and by (25) and (2), the first result follows. Since A†
nA(I − Pn) = A†

n,mA −

A†
n,mAn,m, and A†

n,mAn,m is always bounded, (26) follows.

11



Next, we study condition (25) in depth and rewrite it in other forms. Clearly
it holds that

sup
m,n

‖A†
n,mA‖ ≤ C ⇔ sup

m,n
‖A∗(A∗

n,m)
†‖ ≤ C. (27)

We show that (25) is equivalent to the fact that angles between certain subspaces
are uniformly bounded. More precisely, we consider the norm of the product
of orthogonal projectors onto two subspaces, which is related to the (minimal
canonical) angle; cf. [33, Lemma 5.1].

Lemma 16. For a sequence of closed subspaces Xn, Yn, let ΠXn
,ΠYn

be the
corresponding orthogonal projectors.

Then we have the following equivalent conditions

∃ρ < 1 : sup
n

‖ΠXn
ΠYn

‖ ≤ ρ, (28)

⇔∃τ > 0 ∀x ∈ Xn, y ∈ Yn : ‖(x+ y)‖2 ≥ τ‖x‖2, (29)

⇔∃τ ′ > 0 ∀x ∈ Xn, y ∈ Yn : ‖(x+ y)‖2 ≥ τ‖y‖2. (30)

Proof. If (28) holds, then by Young’s inequality for any ǫ > 0 x ∈ Xn, y ∈ Yn,

‖(x+ y)‖2 ≥ ‖x‖2 + ‖y‖2 − 2ρ‖x‖‖y‖ ≥ ‖x‖2(1− ρǫ) + ‖y‖2(1− ρ
ǫ
).

With ǫ = ρ or ǫ = ρ−1 either of (30) or (29) follows. Conversely let (29) hold,
then then for any x ∈ Xn, y ∈ yn with ‖x‖ = ‖y‖ = 1 and any ǫ > 0

ǫ2τ2 ≤ ‖ǫx+
1

ǫ
y‖2 = ǫ2 +

1

ǫ2
− 2(x, y).

Taking ǫ2 = (1 − τ2)−
1

2 gives the bound

2(x, y) ≤ 2(1− ρ2)
1

2 < 2,

thus with (cf. [33, Lemma 5.1])

‖ΠXΠY ‖ = sup
‖x‖≤1,‖y‖≤1,x∈X,y∈Y

(x, y),

the result follows.

Combining Proposition 11 and Lemma 16 yields the following

Theorem 17. The uniform boundedness condition (25) is equivalent to one of
the following (and hence all) conditions:

∃η < 1 : ∀n : ‖ΠN(A∗
n,mA)ΠR(A∗

n,mA)‖ < η, (31)

∃η < 1 : ∀n : ‖ΠN(A∗An,m)ΠR(A∗An,m)‖ < η, (32)

∃η < 1 : ∀n : ‖(I − Pn)ΠR(A∗An,m)‖ < η. (33)

Proof. The boundedness condition can be rephrased as the condition that a
constant C exists with (using the notation in Proposition 11)

‖vn,m‖ ≤ C‖x‖ = C‖vn,m + un,m‖.

12



for all vn,m ∈ R(A∗
n,mA) and un,m ∈ N(A∗

n,mA). However, this is (29) with
the spaces N(A∗

n,mA) and R(A∗
n,mA), thus Lemma 16 gives (31). By (27) we

have the equivalent characterization of uniform boundedness using (29) that a
constant exists, such that

‖vn,m‖ ≤ C‖x‖ = C‖vn,m + un,m‖,

which yields (32). By (30), this is equivalent to the existence of a constant such
that

‖wn,m + qn,m‖ ≤ C‖x‖, (34)

with wn,m, qn,m as in Proposition 11. However, wn,m is always uniformly
bounded for bounded x by (22), and it is orthogonal to qn,m. Thus, this condi-
tion is satisfied if and only if

‖qn,m‖2 ≤ C′‖x‖2 = C′(‖vn,m+qn,m+wn,m‖2) = C′(‖vn,m+qn,m‖2+‖wn,m‖2).

Since we can take x = vn,m + qn,m + wn,m with arbitrary chosen elements
vn,m, qn,m, wn,m out of the corresponding spaces, we have that (34) holds if and

only if for all vn,m ∈ R(A∗An,m) and all qn,m ∈ X⊥
n

‖qn,m‖ ≤ C′(‖vn,m + qn,m‖),

which is equivalent to (33).

Remark 3. We remark that for closed subspaces X, Y , in Hilbert spaces the
identity ‖ΠXΠY ‖ < 1 ⇔ ‖ΠX⊥ΠY ⊥‖ < 1 usually does not hold [2, 4].

These conditions can be rewritten in more convenient form.

Theorem 18. The uniform boundedness condition (25) is is equivalent to one
(and hence all) of the following conditions:

∃C > 0 : ∀n,m, x ‖(I − Pn)A
∗QmAPnx‖ ≤ C′‖PnA

∗QmAPnx‖, (35)

∃η < 1 : ∀n,m, x ‖(I − Pn)A
∗QmAPnx‖ ≤ η‖A∗QmAPnx‖, (36)

∃η < 1 : ∀n,m,w inf
v
‖PnA

∗QmAw −A∗QmAPnv‖ ≤ η‖PnA
∗QmAw‖, (37)

∃η < 1 : ∀n,m, v inf
w

‖PnA
∗QmAw −A∗QmAPnv‖ ≤ η‖A∗QmAPnv‖. (38)

Proof. Condition (33) can be rewritten as (36). By splitting the terms using the
complementary orthogonal projectors P and I −P , it is easy to see that this is
equivalent to (35). The identities (37) and (38) are (31) and (32), respectively,
when writing the projectors onto the nullspaces as complementary projectors
onto the ranges of the adjoints and using the minimization property of such
orthogonal projectors.

It is not difficult to verify that (35) is equivalent to Vainikko and Hämarik’s
condition (8). Note that a characterization over angles of subspaces has also
been used by Du and Du [6, Theorem 1.2] for the case Qm = I and with different
spaces, which do not yield an equivalent condition to (6) but need additionally
the space condition (9).
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3.1.1 Necessary and sufficient conditions for convergence

In this section we investigate practically useful conditions such that (25) is
satisfied and necessary conditions for (25).

We find a condition of Natterer’s type that is equivalent to the uniform
boundedness condition extending Natterer’s result to the cases of non-injective
operators and Qm 6= I.

Proposition 19. The uniform boundedness condition (25) and hence xn,m →
x† for all x† ∈ N(A)⊥ holds if and only if there exists a constant C such that
for all x† ∈ X there exists a un ∈ Xn such that

‖x† − un‖+ ‖A†
n,mA(x† − un)‖ ≤ C‖x†‖. (39)

In particular for the case Qm = I, if Natterer’s condition (7) holds for all
x† ∈ N(A)⊥, then (25) holds, thus xn → x† for all x† ∈ N(A)⊥.

Proof. If (25) and hence global convergence holds, then un = xn,m satisfies (39).
Conversely if (39) holds, then since QmAun = An,mun

‖A†
n,mAx‖ ≤ ‖A†

n,mQmA(x− un)‖+ ‖A†
n,mAn,mun‖

≤ ‖A†
n,mA(x − un)‖ + c1‖un‖

≤ ‖A†
n,mA(x − un)‖ + c1‖un − x†‖+ c1‖x

†‖ ≤ C′‖x†‖ .

It is easy to see that (7) implies (39).

From the conditions (35)–(38), probably (35) is the most useful. We intro-
duce the norm of the pseudoinverse of the discretized forward operator

‖A†
n,m‖ =

1

σmin(QmAPn)
= sup

x∈Pn,QmAPnx 6=0

(x, x)

(x, PnA∗QmAPnx)
,

where σmin denotes the smallest (by definition nonzero) singular value. We have
the following result:

Lemma 20. If there exists a constant C such that

∀n,m ‖(I − Pn)A
∗Qm‖‖A†

n,m‖ ≤ C, (40)

then (35) and hence (25) is satisfied.

Proof. In view of (35), we observe that

‖PnA
∗Qmz‖ ≥ σmin(QmAPn)‖z‖.

Taking z = APnx and ‖(I − Pn)A
∗QmAPnx‖ ≤ ‖(I − Pn)A

∗Qm‖‖QmAPnx‖
proves the assertion.

Note that this result implies in particular Theorem 4. In the same way we
could prove the result by replacing (40) by

∀n,m ‖(I − Pn)A
∗QmA‖‖A†

n,m‖2 ≤ C.

Natterer [27] has outlined how to prove conditions like (39) in practical
situations, namely from inverse inequalities of approximation spaces combined
with error estimates for the approximation. Using (40) we can do a similar
thing.
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Proposition 21. Let (Hs, ‖x‖s)s∈R be a Hilbert scale generated by a densely
defined unbounded selfadjoint strictly positive operator L, i.e.,

‖x‖s = ‖Lsx‖.

Suppose that A : H0 → H0 is such that for some numbers l, r > 0

c1‖x‖−l ≤ ‖Ax‖L2 ≤ c2‖x‖−r ∀x ∈ H0, (41)

and that Xn is a discrete subspace satisfying the approximation condition

‖(I − Pn)z‖ ≤ γn‖z‖l ∀z ∈ Hl,

and the inverse inequality

‖zn‖L2 ≤
1

βn

‖zn‖−r ∀zn ∈ Xn

holds. Then if

lim sup
n

γn

βn

≤ C,

the uniform boundedness condition (25) holds.

Proof. We have that

‖APnx‖ ≥ c1‖Pnx‖−l ≥ c1βn‖Pnx‖.

Thus,

‖A†
n‖ ≤

1

c1βn

.

Moreover with z = A∗x we find that

‖(I − Pn)A
∗x‖ ≤ γn‖A

∗x‖r.

From the right hand side of (41), we see that ALr is a bounded linear operator
and so is its adjoint LrA∗, i.e., ‖A∗x‖r ≤ C‖x‖. Thus (40) is satisfied by

‖(I − Pn)A
∗x‖‖A†

n‖ ≤ C
γn

βn

≤ C.

In a typical case of finite-element spaces or spline spaces and if we consider
a Hilbert scale of Sobolev spaces, then the inverse inequality is usually satisfied
with βn = 1

nl and the approximation condition with γn = 1
nr . Thus if r = l is

applicable, then we obtain convergence. A similar argument has been utilized
by Natterer using condition (7).

The next result concerns the dual variant of (33).

Proposition 22. If

∃ : η < 1 : ∀n : ‖PnΠN(A∗
n,mA)‖ < η, (42)

then (25) is satisfied. Moreover, (42) holds if

∃ : η < 1 : ∀n, ∀w : inf
v
‖A∗QmAPnv − Pnw‖ ≤ η‖Pnw‖. (43)
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Proof. Inequality (42) can be written as

η > ‖ΠN(A∗
n,mA)Pn‖ = ‖(I −ΠR(A∗An,m))Pn‖.

By the characterization of orthogonal projectors as minimizers we have that this
is equivalent to

inf
v∈R(A∗An,m)

‖v − Pnx‖ ≤ η‖Pnx‖,

which is exactly (43). Setting x = A∗QmAw we obtain that this implies (37).

Note that (42) is not equivalent to (25) because (42) can only hold if the inter-
section of the corresponding spaces is empty. However, if Xn ∩N(A∗

n,mA) 6= ∅,
then (42) cannot hold but (25) still can.

Let us now come to a necessary condition for uniform boundedness. We
show that the uniform boundedness (25) implies the space condition (9). In the
case Qm = I, this has already been observed by Du [5].

Proposition 23. Let (25) hold, then
⋂

n

(N(A) ∩Xn)
⊥ = N(A)⊥,

i.e., the space condition (9) holds.

Proof. Since
⋃

n(N(A)∩Xn) ⊂ N(A) it follows thatN(A)⊥ ⊂
⋂

n(N(A)∩Xn)
⊥.

Thus, we only need to proof the opposite inclusion. Let x ∈
⋂

n(N(A) ∩Xn)
⊥.

In view of (17) we have that for all n,

lim
m→∞

‖x−Π(N(QmA)∩Xn)
⊥x‖ → 0,

thus using (21) for x, we have that

∀n : lim
m→∞

wn,m = 0.

By (16), we have that the double sequence ‖wn,m‖ is decreasing in m for all n.
Since

‖x‖2 = ‖wn,m‖2 + ‖vn,m + qn,m‖2,

we have that for all n, ‖vn,m + qn,m‖ is increasing in m and that

limm→∞ vn,m + qn,m = x†. Thus for all n, supm ‖vn,m + qn,m‖ = x†, and hence
‖vn,m+ qn,m‖ is bounded uniformly in n,m. Since (25) implies (33) using (30),
we have a constant C such that

‖qn,m‖ ≤ C‖vn,m + qn,m‖ ≤ C‖x‖.

Thus, ‖qn,m‖ is uniformly bounded, it has a weakly convergent subsequence as

n,m → ∞, and as qn,m ∈ X⊥
n , it follows that this limit can only be 0. By a

subsequence argument we conclude that wlim n,m→∞ qn,m = 0. It follows that

the iterated limit wlim n→∞

(

wlimm→∞ qn,m
)

= 0. Thus,

x = wlim
n→∞

(

wlim
m→∞

vn,m

)

.

Since each vn,m is in N(A)⊥, and this space is weakly closed, all the limits are
in N(A)⊥ as well, thus x ∈ N(A)⊥.
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3.2 Conditions for local convergence

We are now interested in local convergence results, i.e., to study the question
if for a given a specific element x† ∈ N(A)⊥ the corresponding sequence xn,m

converges (weakly or strongly). The difference to the previous section is that
the conditions imposed here are not “uniform” in x† but depend on the specific
x†.

A practically useful sufficient condition for strong convergence is a simple
consequence of Lemma 14 (compare Theorem 4).

Proposition 24. If

lim
m,n→∞

‖A†
n,m‖‖A(I − Pn)x

†‖ → 0,

then xn,m → x† as m,n → ∞.

Hence if x† can be approximated well in Xn, we can hope for strong conver-
gence. This result is quite crude compared to Theorem 5, where (except for weak
convergence) equivalent conditions to convergence are established. However, the
mentioned theorem of Groetsch and Neubauer (with the supplementary result
of Du) can also be extended with minor modifications to the case of Qm 6= I.

Theorem 25. We have the following local convergence conditions for strong
convergence.

xn,m → x† ⇐⇒ lim sup
n,m

‖xn,m‖ ≤ ‖x†‖. (44)

Suppose that the space condition (9) holds. Then we have the following local
convergence conditions for weak convergence.

xn,m ⇀ x† ⇐⇒ sup
n,m

‖xn,m‖ < ∞.

Proof. Consider first the part on weak convergence. By boundedness, xn,m has
a weakly convergent subsequence with limit u. As in [9] it follows immediately
that u−x† ∈ N(A). Moreover each xn,m ∈ (N(QmA)∩Xn)

⊥ ⊂ (N(A)∩Xn)
⊥,

thus xn,m ∈ (N(A)∩Xk)
⊥ for all k ≥ n. This implies that u ∈

⋂

n(N(A)∩Xn)
⊥,

and by (9), u ∈ N(A)⊥. Thus u − x† ∈ N(A) ∩ N(A)⊥, hence u = x†. By a
subsequence argument, xn,m ⇀ x†. For (44), we do not need (9). The proof
follows [5]: from (44), we again find a weakly convergence subsequence with
limit u and u− x† ∈ N(A) and x† ∈ N(A)⊥. Thus,

‖u− x†‖2 + ‖x†‖2 = ‖u‖2 ≤ lim inf
n,m

‖xn,m‖2 ≤ lim sup
n,m

‖xn,m‖2 ≤ ‖x†‖2,

thus u = x† and as before xn,m ⇀ x†. From (44) we also find that ‖xn,m‖ →
‖x†‖, which together with weak convergence implies strong convergence. The
other directions of the implications are trivial.

In a next step, we replace (9) by other “local” conditions.

Lemma 26. We have that

xn,m ⇀ x† ⇐⇒

{

supn,m ‖xn,m‖ < ∞ and

ΠN(A)xn,m ⇀ 0.
(45)
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Proof. Suppose that xn,m converges weakly to x†. Then for arbitrary z

lim
n,m→∞

(ΠN(A)xn,m, z) = lim
n,m→∞

(xn,m,ΠN(A)z)

= lim
n,m→∞

(xn,m − x†,ΠN(A)z) = 0,

where we used that (x†,ΠN(A)z) = 0 as x† ∈ N(A)⊥. Conversely, let xn,m

be bounded and ΠN(A)xn,m ⇀ 0. As in the proof before, xn,m has a weakly

convergent subsequence with limit u such that u − x† ∈ N(A). Thus with z =
u− x† we have that

0 = lim
k
(ΠN(A)xnk,mk

, u− x†) = lim
k
(xnk,mk

,ΠN(A)(u− x†))

= lim
k
(xnk,mk

− x†,ΠN(A)(u− x†)) = ‖u− x†‖2,

thus u = x†. By a subsequence argument xn,m ⇀ x†.

As a consequence, we can find sufficient conditions for weak and strong local
convergence generalizing the results of Luecke and Hickey.

Proposition 27. Suppose that with some fixed constant C, there exists for
each n,m an index pair (m̃n,m, ñn,m) ∈ N × N with limn,m→∞ ñn,m = ∞, and
m̃n,m ≥ m, and ñn,m ≤ n, such that

sup
n,m

‖xn,m‖ < C and sup
n,m

‖A∗(A∗
m̃n,m,ñn,m

)
†
xn,m‖ < C . (46)

Then xn,m ⇀ x† as m,n → ∞.
If we can choose (m̃n,m, ñn,m) = (n,m), i.e.,

sup
n,m

‖xn,m‖ < C and sup
n,m

‖A∗(A∗
n,m)

†
xn,m‖ < C, (47)

then xn,m → x† as m,n → ∞.

Proof. We apply (21) and get for all n,m

xn,m = A∗(A∗
m̃n,m,ñn,m

)
†
xn,m + wm̃n,m,ñn,m

+ qm̃n,m,ñn,m
.

By (46) it follows that wm̃n,m,ñn,m
+qm̃n,m,ñn,m

is uniformly bounded, and since
these two elements are orthogonal to each other it follows that both components
are uniformly bounded as well, hence they have weakly convergent subsequences
as n,m → ∞ with limit w, q.

For fixed k, Pkq = wlim n,m→∞ Pkqm̃n,m,ñn,m
= 0 since ñn,m → ∞, and thus

it follows that q = 0. Since xn,m ∈ (N(Qm̃n,m
A) ∩ Xn)

⊥, for m̃n,m ≥ m, and
(N(Qm̃n,m

A)∩Xn)
⊥ ⊂ (N(Qm̃n,m

A)∩Xñn,m
)⊥, we have that wm̃n,m,ñn,m

= 0.
Thus we have for a subsequence

wlim
k→∞

(

xnk,mk
−A∗(A∗

m̃mk,nk
,ñmk,nk

)†xnk,mk

)

= 0.

By a subsequence argument we have that this holds for the whole sequence.

wlim
n,m→∞

(xn,m −A∗(A∗
m̃n,m,ñn,m

)
†
xn,m) = 0. (48)
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It follows that

ΠN(A)xn = ΠN(A)(xn,m −A∗(A∗
m̃n,m,ñn,m

)
†
xn,m) ⇀ 0, as m,n → ∞,

thus, by (45) we obtain the result that xn ⇀ x† as m,n → ∞. Since (47) is a
special case of (46), we have that under (47), xn,m converges weakly to x† and

furthermore by (48) also that A∗(A∗
n,m)

†
xn,m ⇀ x† as m,n → ∞. Thus, by

weak convergence,

lim
n,m→∞

‖xn,m‖2 = lim
n,m→∞

(

A∗(A∗
n,m)†xn,m, x†

)

= (x†, x†) = ‖x†‖2.

By the Radon-Riesz property, we obtain that ‖xn,m − x†‖ → 0.

Remark 4. Proposition 27 includes Theorem 6 as a special case. Indeed, setting
Qm = I, from (11), the boundedness of xn and ‖A∗(A∗

n)
†
xn‖ follows immedi-

ately, and thus by (47) we obtain Theorem 6 as a corollary.

4 A counterexample

In this section we provide a nontrivial example of a sequence of projected least-
squares solutions, xn, which is bounded but non even weakly convergent. Note
that Du’s example considers a similar situation but the sequence xn is strongly
convergent (but not to x†). The example again stresses the importance of the
space conditions (9) and the fact that the part on weak convergence in Theo-
rem 5 is false without the space condition (9).

Theorem 28. There exists an operator A and x† and a sequence of finite-
dimensional spaces (Xn)n satisfying (2) such that x2n ⇀ u but x2n 6→ u and
x2n+1 ⇀ v, but x2n+1 6→ v and u, v 6= x†. In particular the sequence xn neither
converges weakly nor strongly and it has no weakly convergent subsequence has
limit x†.

Proof. Let X be a separable Hilbert space with orthonormal basis eij , (i, j) ∈
N× N, i.e., all elements x ∈ X may be represented via

x =

∞
∑

i,j=1

ξijeij with ‖x‖2 =

∞
∑

i,j=1

ξ2ij < ∞ .

We define a linear bounded operator A : X → X via

Ax :=

∞
∑

i=1

∞
∑

j=2

(ξij + qjξi1)eij ,

where q ∈ (0, 1) is fixed. Obviously,

‖Ax‖2 =

∞
∑

i=1

∞
∑

j=2

(ξij + qjξi1)
2 ≤ 2max

{

1,
q4

1− q2

}

‖x‖2 .

It is easy to see that A has an infinite-dimensional nullspace. It holds that

x ∈ N(A) ⇐⇒ ∀i ≥ 1, j > 1 : ξij = −qjξi1 and
∞
∑

i=1

ξ2i1 < ∞ . (49)
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A generalized solution x† = A†y of the equation Ax = y is always an element
of N(A)⊥; we may characterize these elements as follows:

z =

∞
∑

i,j=1

ηijeij ∈ N(A)⊥ ⇐⇒ ∀i ≥ 1 :

ηi1 =
∞
∑

j=2

qjηij and

∞
∑

i=1

∞
∑

j=2

η2ij < ∞

. (50)

Now we choose finite-dimensional subspaces of X :

Xn := span{eij : 1 ≤ i, j ≤ n}.

Obviously, (2) holds. Let x† ∈ N(A)⊥ with x† =
∑∞

i,j=1 ζijeij ∈ N(A)⊥ and

y := Ax†, and set xn := A†
ny, where An := APn.

Since, due to (49), N(A) ∩ Xn = {0}, we get by (14) that N(An) = X⊥
n .

Therefore,

xn =
n
∑

i,j=1

ξnijeij (51)

is the unique minimizer in Xn of the problem

‖Axn − y‖2 =
∞
∑

i=1

∞
∑

j=2

(

(ξnij − ζij) + qj(ξni1 − ζi1)
)2

→ min ,

where ξnij := 0 if i > n or j > n.
From the first order necessary conditions for a minimum we obtain the so-

lution:
ξnij = ζij − qj(ξni1 − ζi1) , if 1 ≤ i ≤ n , 2 ≤ j ≤ n ,

and

ξni1 = ζi1 +





∞
∑

j=n+1

q2j





−1
∞
∑

j=n+1

qjζij

= ζi1 + (1− q2)q−(n+1)
∞
∑

j=0

qjζi,n+1+j , 1 ≤ i ≤ n .

Now we choose a concrete element x† ∈ N(A)⊥:

ζij :=
qj

1− q2
(ciρj + rij) , i ≥ 1, j > 1 ,

with

ρj :=

{

1 , j even ,

0 , j odd ,
rij :=

{

1 , j = i+ 1 ,

0 , else ,

∞
∑

i=1

c2i < ∞ , (52)

and the extension (50) for j = 1. The condition on the coefficients ci guarantees
that

∞
∑

i=1

∞
∑

j=2

ζij
2 < ∞ .
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It then holds that

ξni1 = ζi1 + cien + ri,n+1 with en :=

∞
∑

j=0

q2jρn+1+j . (53)

Noting that

en =
1

1− q4
·

{

q2 , n even ,

1 , n odd ,
(54)

(53) implies that

lim
l→∞

ξ2li1 = ζi1 +
ciq

2

1− q4
, (55)

lim
l→∞

ξ2l+1
i1 = ζi1 +

ci

1− q4
. (56)

Let us now define the two elements

u :=

∞
∑

i,j=1

uijeij and v :=

∞
∑

i,j=1

uijeij

with

ui1 := ζi1 +
ciq

2

1− q4
uij := ζij − qj(ui1 − ζi1) , j > 1 ,

vi1 := ζi1 +
ci

1− q4
vij := ζij − qj(vi1 − ζi1) , j > 1 .

Obviously, due to (49) and (52), u − x† and v − x† ∈ N(A), and thus u and v

are least-squares solutions of Ax = y = Ax† with u, v 6= x†. Together with (52),
(53), and (54) we immediately obtain that (remember that xn = A†

ny is given
by (51), (53))

‖x2l − P2lu‖
2 =

q4 − q2n+2

1− q2
= ‖x2l+1 − P2l+1v‖

2. (57)

Now (55) and (56) imply that

x2l ⇀ u , x2l+1 ⇀ v ,

but (57) implies x2l 6→ u and x2l+1 6→ v. Thus, it is possible that xn has different
weakly convergent subsequences, but it neither converges weakly nor strongly
towards x†.

5 Conclusion

We have studied global and local convergence of general projection schemes for
ill-posed problems. For global convergence, we have established the uniform
boundedness condition (25) as being necessary and sufficient and have found
concrete conditions in Theorems 17 and 18 when this holds. Several practically
useful sufficient condition were given in Section 3.1.1. Concerning local conver-
gence, we have generalized the well-known results of Groetsch and Neubauer and
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Du giving an equivalent characterization of local convergence by norm bounds
in Theorem 25. Further sufficient conditions of the type of Luecke and Hickey
were given in Proposition 27.

In the analysis, we point out two important findings: the recognition of
the xn,m as oblique projection of x†, which leads to a study of angles of a se-
quence of subspaces. The second point is the question if the intuitive identity
“N(A)⊥ = limm,nN(An,m)⊥” is valid, understood in the sense as (24). As the
inclusion “⊂“ always holds, this gives a way of applying the uniform bounded-
ness principle. However it is important to notice that this identity does only
hold unless the additional space condition (9) holds. While for injective oper-
ators this is trivially true, for noninjective operators (9) has to be taken into
account when studying local (weak) convergence.

The issue that this condition is needed for weak convergence is illustrated
by a nontrivial counterexample in Theorem 28 of a bounded sequence xn which
does not converge at all, thus generalizing the examples of Seidman and Du.
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schiedener Normen, Numer. Math., 15 (1970), pp. 224–228.

[30] R. Plato and G. Vainikko, On the regularization of projection methods
for solving ill-posed problems, Numer. Math., 57 (1990), pp. 63–79.
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