arXiv:1605.03881v1l [math.NA] 12 May 2016

NUMERICAL APPROXIMATION OF MULTI-PHASE
PENROSE-FIFE SYSTEMS

CARSTEN GRASER, MAX KAHNT, AND RALF KORNHUBER

ABSTRACT. We consider a non-isothermal multi-phase field model. We subse-
quently discretize implicitly in time and with linear finite elements. The arising
algebraic problem is formulated in two variables where one is the multi-phase
field, and the other contains the inverse temperature field. We solve this saddle
point problem numerically by a non-smooth Schur-Newton approach using
truncated non-smooth Newton multigrid methods. An application in grain
growth as occurring in liquid phase crystallization of silicon is considered.

1. INTRODUCTION

The mathematical modelling of phase transitions has a long history and has
stimulated new developments in the field of variational inequalities and free boundary
value problems over more than three decades [3, 18, 36]. Particular attention
was paid to problems of Stefan-type [48] and their mathematical description by
phase field models [17]. In this approach, phase transitions are represented by
an order parameter that is strongly varying across the (diffuse) interface. The
evolution of the order parameter is typically obtained from some gradient flow
of a suitable Ginzburg—Landau free energy that provides non-decreasing entropy
(thermodynamical consistency) and could be mass conserving (phase separation)
or non-conserving (phase transition). More recently Stinner et al. [24] extended
well-established thermodynamically consistent, two-phase Penrose-Fife models [17]
to multiple phases (non-conserved) and components (conserved). Existence of
solutions to the resulting balance equations for the energy, order parameters, and
concentrations of components was studied in [47].

While the numerical analysis of two-phase Penrose—Fife models was based on
implicit time discretization [37], previous numerical computations with multiple
phases and components were typically based on an explicit approach [42]. In this
way, the solution of non-smooth, large-scale algebraic systems is avoided at the
expense of severe stability constraints on the time step.

In this paper, we consider a multi-phase extension of the classical Penrose—
Fife system [17, 37, 45]. Following Stinner et al. [24], this system is derived
from a general entropy functional that combines a Ginzburg-Landau energy with
the thermodynamic entropy. We concentrate on a numerical approach based on
semi-implicit time discretization (with explicit treatment of the concave terms [19,
28]) and first-order Taylor approximation of nonlinearities associated with inverse
temperature. Variational arguments are used to show the existence and uniqueness
of solutions of the resulting spatial problems and the thermodynamic consistency
of this time discretization. Spatial discretization is performed by piecewise linear
finite elements with adaptive mesh refinement based on hierarchical a posteriori
error estimation [30, 27]. The resulting large-scale non-smooth algebraic systems
are solved by non-smooth Schur-Newton multigrid (NSNMG) methods [25, 29, 31]
exploiting again the saddle point structure of these problems. In our numerical
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experiments, we observe optimal order of convergence of the spatial discretization
and mesh-independent, fast convergence speed of NSNMG with nested iteration.
Furthermore, our computations suggest that non-decreasing entropy is preserved
under the spatial discretization. Application to a liquid phase crystallization (LPC)
process occurring in the fabrication of thin film silicon solar cells [41] underline the
potential of the presented solution approach.

2. PHASE FIELD MODELLING

2.1. Thermodynamical background. Let Q C R%, d = 1, 2, 3, be a bounded
domain with Lipschitz boundary T' = 9€). Following [24], we consider the entropy
functional

(1) S(e,d) = / s(e8) — (3926, V) + L)) du

where the entropy density s depends on the internal energy density e and on the
multi-phase field ¢ = (¢,)*.,, v represents the surface gradient entropy, and v a
multi-well potential with M distinct minima. The components of ¢ describe relative
fractions of a given substance. Hence, it is natural to impose the algebraic constraint

M
(2) Zd)a =1.

We postulate the Gibbs relation [1, 24]

M
(3) df = =sdT+ > f4, dda

a=1
with absolute temperature T' > 0 and a Helmholtz free energy density f = f(T, ¢)
according to

(4) e=f+sT.

As a consequence, we have

M

(5) s=—fr, ds = %(de— df) = de— > *fq, doa,
a=1

and therefore

(6) s,e:%, 5,¢a:f%f,¢a a=1,...,M.

We assume that the free energy density f is obtained by interpolation of the
- T(In(T) — 1) for each phase a. Here,
L, > 0 and T, > 0 represent the latent heat and melting temperature of pure phase
«, respectively, and ¢, > 0 is the specific heat capacity. In the light of (2), this
leads to

M
(7) F(T,0) = Z 72 o — e, T(I(T) — 1),

and we have
(8) f,(ﬁa (T7 ¢) = La T;fa .

Utilizing (4), (5), and the state equation (7), we can represent the entropy s and
the energy e in terms of the temperature T" and the phase field ¢ according to

9
(9) Ny Ny
8(6 (b) § T, (b Z Oé'I}a ¢o¢ + ¢y IH(T)7 €= é(Tv ¢) = - Z La¢o¢ +c,T




Though our approach could be extended to anisotropic interfacial energies [28], we
choose

(10) v(¢, Vo) = |Vl
for simplicity. Finally, ¢ stands for the classical multi-obstacle potential [13, 5]

(11) b(9) = xa(0) + 30" Ko,

with x denoting the characteristic function

(12) xa(x)=0ifx € Aand ya(z)=ccifx & A
and G the Gibbs simplex

M
13 G={v=(vy) e RM va=1land vy >0, a=1,..., M} CRM,
(13)

a=1
We choose the negative definite interaction matrix
K=-1eRMM

leading to the concave contribution ¢ K¢ = —|¢|? to the multi-obstacle potential.
With these specifications the entropy functional takes the form

(14) S(e.0) = So(e.d) = x6(0). Sofe.d) = [ s(e.6) = §IVf — 6" Koda
where xg is the characteristic functional of

(15) G={ve  H Q)M |v(x) € G ae. in Q}.

2.2. A multi-phase Penrose—Fife system. We postulate the continuity equation

(16) et = =V -Jo(e, ¢) +qle, @)
with the flux
JO(ea ¢) = KJV((;GS)(G, ¢)7

mobility x > 0, variational derivative .5, and a source term g(e, ¢) to obtain
(17) et = =V - kV(5.5)(e,d) + qle, P).

We assume that the outward energy flux is proportional to the difference of
the temperature T" and a given boundary temperature T or, more precisely, we
prescribe

(18) Jo-n = he(T — Tr)

with the convection coefficient h. > 0 and the outward normal n to 2. It is also
convenient to introduce the inverse temperature

1 1
19 0=—, Or = —.
(19) 7 r=
Note that for given ¢ the variables e, T, and 6 can be transformed into each other
due to the strictly monotone relationships (9) and (19).
In order to provide a non-decreasing entropy S(e, ¢) in the course of the phase
evolution, we set

(20) €ﬁ¢t € 5¢SO(67 (j)) - axg(¢)v

with a kinetic coefficient 8 > 0, the variational derivative 6,50(e, ¢), and the
subdifferential Oxg(¢) of the convex functional xg. For the phase field we impose
homogeneous Neumann boundary conditions

0

(21) n

0o =0, a=1,...,M.



Utilizing (9), (10), (11), and the transformation (19), a weak formulation of the differ-
ential equations (17) and (20) with boundary conditions (18) and (21), respectively,
reads as follows.

Problem 2.1 (Multi-phase Penrose-Fife system with obstacle potential).

Find the phase field ¢ € L2((0,t*), HX(Q)M) N H((0,t*), L>(Q)™) and positive
inverse temperature 6 € L2((0,t*), HY(Q)) N H((0,t*), L?()) such that

(22) ¢(7 0) = ¢07 9(,0) = 00

holds with given initial conditions ¢° € L2(Q)M, 0° € L?(Q), 6° > 0 a.e. in Q and

(23a) (B¢ + L — 0L+ LKo,v—¢) +e(Vo, V(v - 9)) + x5(v) — xg(¢) > 0
(23b) (—LT 60+ cogsbe — g, w) = (V0. V) + (e (= &) sw) =0
holds for allv € H*(Q)™ and w € HY(Q).

Here, (0,¢*) € R is the considered time interval, L = (L), and L = (L=)M

W /a=1
are constant vectors used to simplify the notation of (6) and (7), and (-,-), (-, )r
stand for the scalar product in L?(Q), L?(T), respectively.
For existence and uniqueness results in the special case M = 2, we refer to [17,
Section 7.2], [37], and the references cited therein.

Proposition 2.1. The multi-phase Penrose—Fife system is thermodynamically
consistent in the sense that

(24) S(e(t), o(t)) = S(e(to), d(to)) Vi € [to, "] C (0,17]

holds for any solution (¢,0) of Problem 2.1 with ¢ = 0, h, = 0 satisfying ¢ €
C([to, t*], HY (M) for [to, t*] C (0, 7).

Proof. Since ¢ € G for almost all ¢ and in view of (9) and (14) we can write

@) S(ed) = 50.0) = [ ~ETo+ e In(3) 5[V — 0" Koda.

Testing (23a) with v = ¢(t — 7), dividing by 7 > 0, and letting 7 — 0 we get
0 < el VBl < (~L+ 0L — LK, é1) —£(V, Vebr)
whereas testing (23b) with w = 6 yields
0 < (kV0,V0) = (—L" ¢y + ¢y 9501, 0).
Adding both we get

0 S (_Z7¢t) - (%)7915) - E(V¢7 V(bt) - %(K(ba (bt) = <VS(07¢))7 (9t7¢t)>‘

Now integrating over [tg,t] provides the assertion. O

2.3. Thin film approximation. We consider a domain of the form = Q' x
(0,H) C R%, d = 2,3, with a bounded Lipschitz domain €' ¢ R4~ and H > 0. We
assume that € is “thin” in the sense that variations of ¢, ¢°, 8, 6°, and ¢ normal to €’
as well as the flux Jy across 9’ x (0, H) can be neglected and Jy-n(-,0) = Jo-n(-, H)
holds a.e. in . Inserting these assumptions into (22), (23), we obtain the following
thin film approximation of Problem 2.1.

Problem 2.2 (Thin film multi-phase Penrose-Fife system).
Find the phase field ¢ € L*((0,t*), HL(Q)M) n HL((0,t*), L2(Q)M) and positive
inverse temperature 0 € L2((0,t*), HY(Q")) N H((0,t*), L?(Y')) such that

(26) 6(,0) = % 0(-0) = 6°



holds with given initial conditions ¢° € L*(Q)M, 6° € L?(Q2), 6° > 0 a.e. in Q and

(27a) (B + L — 0L+ LK, v —¢) +e(Vo, V(v — ) + xg(v) — xg(¢) = 0
(27b) (—LT@ +eogely + hLE — LA — g, w) — (kV0,Vw) =0

cor

and h!, = 2k for allv € HY(QV)M and w € H(Q).

Here, (-,-) = (-, -)q stands for the scalar product in L?()') for ease of notation.
Note that Problem 2.2 is essentially a (d — 1)-dimensional analogue of Problem 2.1
with similar mathematical properties. For example, the thermodynamic consistency
in the sense of Proposition 2.1 is still valid and all considerations concerning the
discretization and algebraic solution of discretized problems to be reported below
carry over from Problem 2.1 to its thin film approximation. For this reason, in the
remainder we consider the more general equation

(28) (—LTgbt + cve%ﬂt + hg% — ¢, w) — (kVO, Vw) + (hr‘(% — é),w)r =0

with the coefficients hq, hr > 0, of which exactly one is zero to recover Problems 2.1
resp. 2.2. Specifically, choose hg = 0, hr = h., and ¢’ = ¢ to obtain (23b) and
hg=nh., hr =0,and ¢ = ¢+ h’cé to obtain (27b).

3. DISCRETIZATION

In this section we present a discretization of Problem 2.1 and Problem 2.2 using
the general equation (28) by Euler-type discretizations in time and finite elements in
space. Since an efficient approximation of the phase field ¢ requires time-dependent,
locally refined spatial grids, it is convenient to use Rothe’s method [15], i.e., the
variational problem (23) is first discretized in time and the resulting spatial problems
are then discretized in space, independently from each other.

3.1. Implicit time discretization. In light of the well-known stiffness of the
non-linear parabolic system of equations, we use a semi-implicit Euler method.
More precisely, after approximating the time derivatives ¢, 6; by backward finite
differences with step size 7 > 0, the nonlinearities 1/6, 1/6% are approximated by
first-order Taylor expansion (cf., e.g., [20, Section 6.4])

1 - 2 0(t) 1 . 3 20(t)

o(t) = ot—7)  (0{t—1)2> 0(t)2 — 0(t—7)? 0(t—7)3"

In particular, this leads to

A1) = M:;(;,M)i;( o 1 )
()2t 0(t)2 T T\ 00 0(t)? T\oE—)2 — o(t—n) )*

Only the concave term %K ¢ is taken explicitly [19, 28], trading unconditional
stability for a potential loss of accuracy, c.f. [11] or [6, section 6.3.1].

For simplicity, we utilize the uniform time step size 7 = t*/n* with given n* € N,
and denote the approximations of ¢(t,), 8(t,) at t, =n7, n=1,...,n* by ¢", 0™,
respectively. The spatial problem to be solved in the n-th time step then reads as
follows.

Problem 3.1 (Spatial multi-phase Penrose-Fife system with obstacle potential).
Find the phase field o™ € HY(Q)M and positive inverse temperature 6™ € H'(Q)
such that

(292)  a(¢",v—¢") +xg(v) = xg(¢") + b(v — ¢",0") > {7 (v — ¢")
(29b) b(¢",w) — " (0", w) = L3 (w)



holds with the bilinear forms

(30a) a(v,v") = e(Bv,v") + 7 (Vo, V'),
(30b) b(v,w) = —7(LT v, w),
(30c) (w,w') = T(fgjflh)% w,w') + 72((9"’%)210, w')r 4+ 7% (kVw, V')

and the linear functionals

(30d) () = (eB¢" " — 7L — TK¢" 1 0),
(30e) Uy (w) = (r2q —7LT¢" ' — ref2a w) — 72hp (555 — 55, w)r

defined for all v,v" € HY(Q)M and w,w’' € H' ().

Proposition 3.1. The time-discrete multi-phase Penrose-Fife system is thermody-
namically consistent in the sense that

(31) S(e", ¢") = S(e" ")

holds for any solution (¢™,60™) of Problem 3.1 with ¢ = 0, h. = 0. Here, ™ =
&(4=,9") is defined according to (9).

Proof. Testing equation (29a) with v = ¢" 1 yields
SIVOP — 5[Ve TP < (L — Lo™ + LK™ "t — g7)
and testing equation (29b) with w = 6" for ¢ = 0, h. = 0 yields
0 < 7r|VO |2 = (L™, ¢" ! — ¢") + ¢, /Q g (1 — 52 ) da.
Adding both inequalities, we obtain

— (L, ¢" " = ¢") — £(|Ve 2 — [V ?)

< o [ = ) o 2K o)
which, using the representation (25), finally can be used to show
S ) = S0 < [ e lin() + 5 (1= ) da.
Since the right hand side is non-positive, this provides the assertion. O

It turns out that the system (29) can be regarded as optimality conditions for a
Lagrange-functional.

Proposition 3.2. Problem 3.1 is equivalent to find ¢" € H*(Q)M and 0™ € H'(Q)
such that

(32)  LM¢",w) < L(P"0") < L"(v,6")  Vee HY(QM, we H(Q),
with the Lagrangian L™ given by

(33) L7 (v,w) = T"(v) = €7 (v) + b(v, w) — &3 (w) — 5" (w, w)
denoting J"(v) = Sa(v,v) + xg(v).

Theorem 3.1. Let ¢g" "1 € G, 0771 € HY(Q) and 6"~ > ¢ a.e. in Q with a positive
constant c. Then the spatial Problem 3.1 admits a unique solution.
6



Proof. Under the given assumptions, ¢} and ¢5 are bounded linear functionals and
a(-,-) is symmetric and coercive. Since G is closed and convex the functional L™ (-, w)
is strictly convex, coercive, and lower semi-continuous for all fixed w € H(Q2). Thus,
we can define the dual functional

h(w)=— inf  L£™v,w) = (T")* " —b(-,w)) + 2™ (w, w) + €3 (w).

(W) == _jnt | £7(00) = () (6 = b,w)) + §"(w,w0) + G (w)
Here, (J™)* is the convex and continuous polar of J". Notice that h is also convex
and continuous because ¢"(-,-) is symmetric and positive-definite.

By integrability of (§"~1)? there must be a subset ' C Q with positive measure
and a constant ¢y > 0 such that 7! < ¢y on . As a consequence we get

¢ (w,w) > &[] ) + 7] Vu®

and therefore coercivity of ¢™(-,-). Hence, h is coercive, continuous, and strictly
convex and thus has a unique minimizer. Existence and uniqueness now follows from
the fact that (¢™,0"™) is a solution of Problem 3.1, if and only if §™ is a minimizer
of h and ¢" = argmin , ¢ g1 (oym L™ (v,0"). O

In general it is not clear if the uniform positivity of the inverse temperature is
preserved by solving Problem 3.1. We refer, however, to [37] for such kind of results
in the scalar case M = 2.

3.2. Adaptive finite element discretization. We will now consider the adaptive
finite element discretization of the spatial Problem 3.1 for an individual fixed time
stepIn order to improve readability we will from now on drop all superscripts (-)"
that identify the current time step. We will designate quantities from the previous
time step by the superscript (-)°'Y whenever necessary.

3.2.1. Finite element discretization. In the following, we assume that 7 is a simplicial
grid that is either conforming or obtained via local hanging node refinement of a
conforming initial grid. We will discretize the spatial Problem 3.1 with respect to
the conforming first order finite element space

(34) S§=8(T)= {veC(ﬁ)‘v\T is affine VTET} C HY(Q).

Notice that S has a uniquely defined nodal basis {\, | p € N'} satisfying \,(g) = dpq
for all p,q € N where N is the set of non-hanging nodes of 7. If the grid is
obtained by uniform or local hanging node refinement, the non-conforming mesh
hierarchy induces a natural hierarchy of subspaces of S that can be used in geometric
multigrid methods. For a detailed discussion of finite element spaces on hierarchies
of non-conforming, locally refined grids we refer to [25, 30].

Note that linearity implies that the Gibbs constraint can be evaluated node-wise,
ie.,

(35) GNSM ={veSM|v(p) e GVpe N}

Problem 3.2 (Discrete spatial multi-phase Penrose—Fife system).
Find the phase field p7 € SM and positive inverse temperature O € S such that

(36a) a(¢p7,v = é7) + Xg(v) — Xg(7) + b(v — ¢7,07) > la(v — ¢7),
holds for all v € SM and w € S.

Here, /1,05, and c(-,-) are defined as in Problem 3.1 but with ¢"~! and ™!
replaced by their finite element approximations ¢°'4 and §°'4. To avoid negative
values for §7 due to overshooting when ¢’ is not resolved by the grid, we replace

the latter by its interpolation in S. Notice that ¢°'4 and #°'¢ are finite element
7



functions on a grid 7°'9. In case of adaptive refinement, 7° is usually different
from 7. See [30] for a detailed discussion.

In analogy to its continuous counterpart, Problem 3.2 can be written as a non-
linear, non-smooth saddle point problem.

Proposition 3.3. Problem 3.2 is equivalent to finding ¢7 € SM and 67 € S such
that

(37) L(pr,w) < L(p7,07) < L(v,07) YveSM wes,
with the Lagrangian L given according to (33).
Existence and uniqueness are also inherited from the continuous case.

Theorem 3.2. Let ¢°'4 € G, 6°'4 ¢ HY(Q) and 0°'4 > ¢ a.e. in Q with a positive
constant c. Then the spatial Problem 3.2 admits a unique solution.

Proof. The proof can be carried out using the same arguments as in the proof of
Theorem 3.1. O

3.2.2. Hierarchical a posteriori error estimation. As the phase field ¢ is expected to
strongly vary across the phase boundaries, spatial adaptivity based on a posteriori
error estimates is mandatory. Similarly, the consumption of heat by phase changes
may lead to strongly varying 6. Hierarchical error estimates rely on the solution
of local defect problems. While originally introduced for linear elliptic problems
[16, 21, 34, 49] this technique was successfully extended to non-linear problems [4],
constrained minimization [35, 38, 40, 46, 50] and non-smooth saddle point problems
[27, 30, 25].

Following [25, 27, 30], we now derive an a posteriori error estimate by a suitable
approximation of the defect problem associated with the defect Lagrangian

D(eg,e9) = L(dT + €g, 07 + €p).

In the first step the defect problem is discretized with respect to a larger finite
element space QM x Q, where Q = S(7”) is defined analogously to (34) for the grid
T’ obtained by uniform refinement of 7. Note that we have Q@ = S ® V with V
denoting the incremental space

V =span{\, |p € £} Cspan{\, [pe N} =§".

Here, N’ denotes the set of non-hanging nodes in 77, {\},|p € N’} the nodal basis
of &, and £ = N\ N is the set of all edge mid points in 7 that are non-hanging in
T
In the second step, the discrete defect problem is localized by ignoring the

coupling between S and V and also the coupling between A}, for all p € £. Denoting
Dy(r,s) = D(r),, s\,), this results in the local saddle point problems
(ep,pr€0.p) € RM xR: Dy(eg,ps 8) < Dyl p, €0,p) < Dy(r,eq,5) V(r,s) € RY x R
for all p € £ that give rise to the hierarchical a posteriori error estimate

1

3 2 2
(38) n=(2m)"  m= el + leonrlly  pee

peE

with the problem-dependent norms
2 2
(39) [ol[y = a(v, v), [wllg = e(w, w)

on VMV, respectively.



3.2.3. Adaptive mesh refinement. The initial grid for the adaptive refinement should
be sufficiently fine to detect basic features of the unknown spatial approximation and
sufficiently coarse for efficiency of the overall adaptive procedure. The construction
of such a grid starts with the grid 7°'9 from the preceding time step. In the first
time step, we select a suitable, uniformly refined grid 7°4.

We begin by coarsening 7°'9. To this end, we keep all simplices from the grid
T° from the preceding time step that were obtained by at most jmi, refinements.
In addition, we keep all simplices 7 such that ¢°'4 exhibits a strong local variation
on 7 that is not visible after coarsening, i.e., such that

|||V(IT¢Old)|||L°°(T) 2 TOldcrcﬁnc and |||V(IT’¢Old)|||L°°(T’) < TOldcrcﬁnc

holds with 7/ denoting the simplex resulting from coarsening of 7. I, and I, are
the linear interpolation operators to 7 and 7/, respectively. This set of simplices is
completed by additional local refinements. Possible additional refinement is used to
uniformly bound the ratio of diameters of adjacent simplices.

The adaptive mesh refinement of the resulting initial grid 7 is based on the local
error indicators 77, defined in (38). In each step, the indicators n,,, i = 1,...,|&|, are
arranged with decreasing value, to determine the minimal number iy of indicators
such that

i0
(40) > o=’
i=1

holds with a given parameter p € [0,1]. Then all simplices 7 € T with the property
p; € 7 for some p; with ¢ < iy are marked for refinement [22]. Each marked simplex
is partitioned by (red) refinement [9, 14]. Again, possible additional refinement is
used to uniformly bound the ratio of diameters of adjacent simplices. The refinement
process is stopped, when the estimated relative error is less than a given tolerance
Toladgapt > 0, i.e., if

1

(41) 1 < Toluupe ~(|¢>T|i . ||9T||3)

4. ALGEBRAIC SOLUTION

Several methods have been proposed for the algebraic solution of discretized
multi-phase field equations. The solution of multi-phase Allen—-Cahn-type equations
via primal-dual active set methods was discussed in [10] and multigrid methods
for such problems where proposed in [33, 39]. In contrast to the second order
problems with minimization structure considered there, Problem 3.2 is a saddle
point problem for a discretized fourth order equation. For similar problems resulting
from multi-component Cahn—Hilliard systems block Gaufl—Seidel-type algorithms
with component-wise and vertex-wise blocking where proposed in [12] and [43],
respectively. To overcome the mesh-dependence of the Gaufi—Seidel approach, a
nonsmooth Schur-Newton method was proposed in [29].

While, for Cahn—Hilliard-type systems, the local sum constraint in G can be
enforced using the chemical potential as a natural Lagrange multiplier (cf. [29]),
Problem 3.2 is structurally different and the introduction of such a multiplier would
change the structure of the problem. Therefore, we now introduce a nonsmooth
Schur—-Newton method that does not involve such a multiplier.

4.1. Matrix notation. For the presentation of the algebraic solver for the iterative
solution of Problem 3.2 we first formulate this problem in terms of coefficient vectors
and matrices. To this end let N = dim S and introduce an enumeration of the
nodes N' = {p1,...,pn}. To simplify the presentation, we use the abbreviated

9



notation A\, = A,, for the nodal basis Ai,...,Anx of S and introduce the basis
M AMN of SMoswhere \T(0F) = i), bF € RM is the i-th Euclidean basis vector,
and 7: {1,...,N} x {1,..., M} is the bijective index map given by

w(k,i) =i+ M(k — 1).

For v € SM w € S we then get the associated coefficient vectors Ve RMN W ¢
RN

v =30 VX, w= 30, Wik,
Using the matrices A € RMNMN g ¢ RNMN 0 ¢ RNV and vectors F €
RMN G € RN given by
Aij = G(Aj, )\i), Bij = b()\J, )\2), Cij = C()\j, )\1), Fl = él(Ai), G1 = EQ(}\Z),
and the characteristic functional xg, : RMY — R U {oo} of
Gy ={V eRMY| (Vathi))i=1,...m €G Vk} ={V € RMN | Zf\illv ViXi e G}
Problem 3.2 can be written as:

Problem 4.1 (Algebraic variational inequality).

Find the coefficient vectors ® € RMYN and © € RN of ¢ and 07, respectively, such
that

(42&) <A(I), V- (I)> + Xan (V) — XGn ((I)) + <BT6, V- ®> > <F7 V- CI)>7

(42b) B®-CO=G

holds for all V € RMN

Problem 4.1 can equivalently be written in operator notation as a non-linear
saddle point problem using in turn the subdifferential of xa, -

Problem 4.2 (Discrete saddle point problem).
Find the coefficient vectors ® € RMYN and © € RN of ¢ and 07, respectively, such
that

@ (5 Ze)(6)2 ()

For later reference we note that the Lagrangian for this saddle point problem is
given by the following discrete analogue

L(V,W) = J(V) = (F.V) + (BV — G, W) — L{CW, W)
of L™ where J(V) = $(AV,V) + xa, (V) is the analogue of J".
4.2. Non-smooth Schur—Newton multigrid methods. In the context of non-
smooth Schur-Newton methods as introduced in [25, 29], it is shown that problems

of the form of Problem 4.2 can equivalently be formulated as the following dual
minimization problem.

Problem 4.3 (Dual minimization problem).
Find © € RN such that

h(©) <h(W) VW eRY
where h: RY — R 4s the dual functional
MOV) == int L(V,W) = ~L(B(W). W)
and ®(W) = (A+ dxay) H(F — BTW).
10



Proposition 4.1. Problems 4.2 and 4.3 are equivalent in the sense that (P, 0)
solves Problem 4.2 if and only if © solves Problem 4.3 and ® = ®(©). Furthermore,
the dual functional h : RN — R is convex and continuously differentiable with the
Lipschitz-continuous derivative

Vh(W) = —-B®(W)+CW + G
= —B(A+0xgy) Y(F - B"W) + CW +G.

The proof of Proposition 4.1 can be done analogously to the proof of [26, Theo-
rem 2.1]. This proof also shows that h can be written as

(W) = J*(F — BTW) + J(CW, W) + (G, W)

where J* : RMN — R is the polar (or conjugate) functional of J which is convex
itself. This especially shows that h is a strongly convex functional because C is
positive definite due to coercivity of the associated bilinear form c(,-) (cf. proof of
Theorem 3.1).

As a consequence of Proposition 4.1 we can apply gradient-related descent methods
of the form

(44) et =" +p,D¥

where D € RY is a decent direction and p, a step size. The non-smooth Schur—
Newton method as introduced in [26, 25, 29] is such a descent method where D" is
taken to be

(45) DY = —S;'Vh(eY)

and S, € RY'V is a generalized linearization of the non-smooth, non-linear but
Lipschitz continuous Schur complement operator —Vh at ©V.

The derivation of S, essentially amounts to deriving a generalized linearization
of the operator (A + dxgy) ' at Y = F — BTO". For simple component-wise
bound constraints is has been shown in [26] that such a linearization is given by
(Aw(x))T. Here, Ayy(x) is the restriction of A to W(X) x W(X), W(X) is the
maximal subspace such that J is locally smooth in

(X + W(X)) NUx

for some neighborhood Ux of X = (A+0x¢g,) 1 (Y), and (-)* is the Moore-Penrose
pseudoinverse or, equivalently, the inverse of Ayy(xy: W(X) — W(X).

For the simplex constraints in the present problem we will use exactly the same
approach. In the following we will outline the construction of Ayyx) for local
simplex constraints following [33]. To this end we identify vectors V' € RM¥Y with
block-structured vectors V € (RM)N such that Va(k,i) = (Vie)s-

Due to the product structure

Gy ={V eRMN |V e GV},

of the feasible set Gy we can determine the subspace W(X) in each block individually.
Hence W(X) takes the form

N
W(X) ={V eRMN |V e [T WX}
k=1

where W(X' k) is the maximal subspace where x¢ is locally smooth near X5, As
outlined in [33] the local subspace W(&) is given by

W) =span{d’ — ¥/ e RM |1 <i<j< M, & >0,& >0}
11



for ¢ € RM. Since W(X) is a product space the orthogonal projection Pwx) :
RMN 5 W(X) is given by a block diagonal matrix where the k-th diagonal block
is the orthogonal projection PW( X RM — W(X k). For an explicit representation
of Pyy(x,) € RM-M we refer to [33]. Using Pyy(x) we now get

Awxy = Pwx)APw(x)-

Although the chain rule does in general not hold true for generalized Jacobians
in the sense of Clarke (see, e.g. [25]), we define a generalized linearization of the
non-linear Schur complement operator —Vh at ©” in an analogous manner by

toor
(46) S, = B(AW(‘I>(®"))) B* +C.
As a consequence of the convexity of h we can show global convergence.

Theorem 4.1. Assume that the step sizes p, are efficient (cf. [44, 26]), then the
iterates produced by the descent method (44) with Schur—Newton directions (45) for

S, given by (46) converge to the solution © of Problem 4.3 for any initial guess
00 e RN,

Proof. Notice that the S, are uniformly bounded from above and below. Hence
global convergence follows from [26, Theorem 4.2]. O

Efficient step sizes p, as required in Theorem 4.1 can be obtained by classical
step size rules like, e.g., the Armijo rule or bisection. Notice that it is not necessary
to evaluate S, ! exactly in (45) because global convergence is preserved as long as
the approximation of S, ! is sufficiently accurate. Since the dual functional h is
strongly convex, one can also show global linear convergence with a rate depending
on the bounds for S, and the step size rule. For further details we refer to [26].

During each iteration of the algorithm two types of subproblems have to be solved.
The evaluation of —Vh(6©") requires to compute ®(0") = (A+dxa,y ) (F—BTOY).
This is equivalent to minimizing J(-)+(BT©", ), i.e., a convex minimization problem
for a quadratic functional with local simplex constraints. If the step size rule requires
several trial steps further problems of this type have to be solved for each evaluation
of h or Vh. These convex minimization problems can efficiently be solved using
non-linear multigrid methods [39, 33]. More precisely the TNNMG method for
simplex-constrained problems as proposed in [33] allows to solve these problems
with an effective complexity of O(M?2N). This method was used in all numerical
examples presented below.

The second type of subproblems are the linear problems (45) for the symmetric
positive definite operators S,. Since each S, is a linear Schur complement this is
equivalent to solving the linear saddle point problem

(AW@(GU)) (BPW(<1>(@")))T> (V") _ ( 0 )

B'PW(q;.(@u)) —C DY Vh(@u)

whose solution is unique in (ker 7?1,\;(4)(@,,)))L x RN . In the numerical examples
presented below we used a linear multigrid method with a Vanka-type smoother
to solve these problems. Notice that there is no convergence proof for this linear
iterative method. To increase its robustness it can be used as preconditioner for a

GMRes iteration.

5. NUMERICAL EXPERIMENTS

All our computations are based on a non-dimensionalized version of the Penrose—
Fife systems stated in Problem 2.1 and Problem 2.2, respectively, as obtained by
12



setting

Thet
47 H =22
(47) x
instead of (19). While the order parameter ¢; is representing the liquid fraction,
the order parameters ¢o, ..., ¢ are associated with certain solid states, as, e.g.,

crystalline structures, of the given material. With this in mind, the positive
reference value T € R is chosen to be the melting temperature and we set
Tieg =Ty =--- =Ty = 1. Accordingly we set L1 =0 and Ly =---= Ly; >0 in
all our computational examples.

Efficient step sizes p, for the Schur—Newton iteration (44) as required in Theo-
rem 4.1 are determined by bisection. The iteration is stopped, once the criterion
(48) % < Tolorrection
is satisfied. We use Tolcorrection = 10711 in all our computations.

For each time step a grid hierarchy is obtained either by uniform refinement or
according to the adaptive coarsening and refinement strategy described in Subsec-
tion 3.2.3.

The initial iterate for the algebraic Schur-Newton solver is derived by nested
iteration, i.e., on each refinement level an initial iterate is obtained by nodal
interpolation of the final iterate from the preceding one. On the first refinement
level, the initial iterate is obtained by nodal interpolation of the final approximation
in the preceding time step. For the first time step, the continuous initial conditions
are interpolated to the initial grid 7°'9.

All numerical experiments were conducted using the DUNE (Distributed and
Unified Numerics Environment) framework and the DUNE-modules dune-subgrid
and dune-tnnmg (cf. [7, 8, 32]).

5.1. Experimental order of convergence. In order to numerically assess the
spatial discretization error of the finite element discretization stated in Problem 3.2,
we consider the multi-phase Penrose-Fife Problem 2.1, with = (0,2)? C R?,
M = 5 phases of which only the liquid and one solid phase is present, and the
following parameters

e=6-10"2, cp =1, q=0, he =0,
k=1, 8=1, L, =0, Lo=2 a=2,..., M.
We select the initial temperature #° = 0.5. The initial phase field ¢ is given by
1 if d(x) < 0.5
P9(x) = ¢ |4 cos(5m(d(x) — 0.5)) + 0.5 if 0.5 < d(z) < 0.7
0 else

where d(x) stands for the Euclidean distance from z to (1,1), ¢9(z) = 1 — ¢3(x, 1),
and ¢2 = 0 for a = 3, 4,5, as depicted in Figure 1. We select the uniform time step
size 7 = 5-107%. A sequence Ty, ..., Tio of grids is obtained by uniform refinement
of Ty consisting of a partition of € into two triangles.

Figure 2 shows the approximate discretization error in the first time step plotted

over the mesh size hj, j = 2,...,9. The exact error is approximated by ey = ¢ —¢*
and ey = 07 — 0*, with approximations ¢* and 0* obtained from 7T7y. Our results
suggest optimal order O(h) of the discretization error |le]| = |leq|ls + |lealls-

We next investigate the convergence properties of the non-smooth Schur—Newton
method as applied to the discrete saddle point problem in the first time step. Figure 3
depicts the number vy,.x of iteration steps needed until the stopping criterion (48)
is satisfied plotted over N = dim S;, where S; is the finite element space associated

13



FIGURE 1. Initial phase field: A circular solid phase (orange) in a
liquid environment (teal).

107" g
—
2
5]
10
1077 * *
-9 mesh size h 21
FIGURE 2. Discretization error |le|| = |les|ls + |lesllo and its com-

ponents ||eg || and ||eg|lo over mesh size.

with 7;. The results indicate mesh independence of the Schur-Newton iteration.
While up to vpmax = 17 iteration steps are required on coarser levels, only vp.x < 7
steps are needed once the diffuse interface is properly resolved by sufficiently fine
grids. This is in accordance with previous computations with multi-component
Cahn—Hilliard systems [29].

We also computed the approximate solution for the first 500 time steps utilizing
the grid 77 obtained by seven uniform refinements to illustrate the evolution of the
approximate entropy as depicted in Figure 4.

5.2. Evolution of energy and entropy. In order to illustrate the equilibration
of energy in terms of latent heat and temperature and the evolution of entropy, we
consider the multi-phase Penrose-Fife Problem 2.1 on the unit square Q = (0,1)? C
R? with M = 5 phases of which only the liquid and one solid phase are present, and
the parameters

e=8-1072, cp =1, q=0, he =0
k=1, 8=1, Ly =0, Lo=2 a=2,...,5.
14
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FIGURE 3. Number of Schur—Newton iterations vpy., needed to
solve Problem 3.2 over N.
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FI1GURE 4. Approximate entropy over time steps.

We choose an initial configuration with two phases (liquid and solid) and a planar
interface according to

1 if x1 > a2*+0.1,
¢9(r1,m2) = 10(x — %) if 2 4+ 0.1 > 2 > a*
0 ifx*Eixh

#) =1—¢9, and ¢° = 0, @ = 3,4,5. The parameter z* and constant initial
temperature 0% = 6* will be fixed later.

We select the time step size 7 = 5-1072. The grid T is obtained by eight uniform
refinements of an initial partition of 2 into two triangles.

The evolution of temperature is illustrated in terms of its maximal variation

Gd:r&aé(@ (x)—gnelsr)lﬁ (z), n=1,...,500,

and the average

6 = 1(max6"(z) + min6"(x)), n=1,...,500,

zeQ €N

N

of its extremal values. The parameter 2* and constant initial temperature ° = 6*
are set to z* = 0.8 and 6* = 0.27! in our first experiment and to z* = 0.2
and 6* = 1.57! in our second experiment. The corresponding two evolutions are
illustrated in Figure 5 and Figure 6, respectively. Both figures show several time
steps of the phase field in the left picture. As the solution is constant in vertical
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F1cURE 5. Solidification induced by latent heat. Left: Evolution
of phases by means of approximations at the time steps 0, 40,
80, 120, 160, 500. Right: Evolution of inverse temperature § and
approximate entropy S.
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FIGURE 6. Melting induced by latent heat. Left: Evolution of
phases by means of approximations at the time steps 0, 40, 80,
120, 160, 500. Right: Evolution of inverse temperature 6 and
approximate entropy S.

direction only a cut-out is shown. The picture on the right shows the evolution
of temperature in terms of 67, and ¢ and of the entropy S = S(6",¢") (cf. (25))
approximated by numerical quadrature.

In the first experiment we observe a growth of the initial solid grain that slows
down continuously due to intrinsic specimen heating by solidification. Conversely,
the shrinking of the initial grain observed in the second experiment slows down due
to intrinsic cooling by melting. In both experiments, absorption or release of latent
heat is driving the approximate temperature ein towards the melting temperature
=1 at equilibrium. Both cases exhibit a monotonically increasing entropy.

N

6. A LIQUID PHASE CRYSTALLIZATION PROCESS

Liquid phase crystallization (LPC) is an emerging technology to produce silicon
thin film solar cells with advanced photoelectronic properties that enable high
efficiency devices. In an LPC process, silicon is deposited on a substrate and then is

swept over with a heat source for local melting and subsequent recrystallization to
16



FIGURE 7. Adaptively refined grid for time step 5 (left) and 100 (right).

coarser, photoelectronically beneficial structures. Optimization of parameters like
speed, shape or intensity of the heat source for various semi-conducting materials is
the subject of current experimental research, cf., e.g., [2, 23, 41].

Mathematical modelling of LPC processes can be performed in the framework
of multi-phase field models presented in Section 2. To this end, we consider the
thin-film approximation Problem 2.2 on © = (0,2)? with M = 5 phases with ¢,,
a =2,... M, representing different crystal structures and the parameters

e=5-1072, ¢y =1, Tr = 0.1, T,=1 a=2,...,M,
h. =5-10% k=1, L, =0, Lo=1 a=2,...,M.

In order to prescribe a slower solid—solid interface evolution in comparison the
to solid-liquid interfaces, we now choose a solution-dependent kinetic coefficient
B = (Ba(¢, V$))5_1 according to

100 |¢1Vda — da V1| < 1075,
1 else.

Ba((bla---7¢M7v¢1a-~'av¢M):

The heat source is represented by
4(0,,8) = qmax(0) - exp (225210 ).
Gmax(8) = g (1= ) + B = Tr)
and we select the parameters
qp(t) = 0.9 + 1.5¢, qw = 0.2, Oy =% hg =5-10%

Notice that the consistency statements of Proposition 2.1 and 3.1 cannot be applied
in this case, because ¢ # 0 and because the coefficient 5 depends on ¢. It is unclear
if similar results can be shown for solution dependent coefficients.

Observe that the heat source peaks at z1 = ¢,(¢) and is moving across the
device from left to right with constant speed. The initial temperature is given by
6° =10 = % = 0%1 and the initial phase configuration ¢° is depicted in the upper
left picture of Figure 8 with teal color representing the liquid phase. We choose
an initial value that already prescribes a local liquid phase, because this simplifies
to exclude superheating effects such as instantaneous global melting of the whole
material.

We select the time step size 7 = 2-1073. In each time step, we construct a
sequence of locally refined meshes 7y, ..., T using the adaptive refinement algorithm
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FIGURE 8. Initial distribution of phases and temperature (top left)
and approximate distribution of phases and temperature for the
time steps 5, 10, 20, 100, 250.
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FIGURE 9. Robustness of Schur—-Newton convergence. Left: vyax
corresponding to the final mesh over time steps. Right: vpax
corresponding to different adaptively refined meshes over degrees
of freedom NN for the fixed time step 5.

described in Subsection 3.2.3. The derefinement and refinement parameters are
selected as follows

Jmin = 2, Tolgerefine = 10—6’ pP= 0.9, TOladapt =38- 10_3-

In the first time step, we start with an initial grid 7°'9 obtained by eight uniform
refinements of an initial partition of  into two triangles. The final mesh 7 for time
steps 5 and 100 is depicted in Figure 7. In both cases, the mesh is obtained by 6

adaptive refinement steps after coarsening.
Figure 8 shows the (approximate) evolution of phases and temperature. For
each of the time steps 0, 5, 10, 20, 100, 250 the left picture depicts the liquid
18



and the different crystalline phases while the right picture shows the temperature
distribution. The liquid phase adapts to the shape of the heat source in course of
the evolution. As the heat source travels on, the right hand crystalline phases start
melting, while recrystallization occurs on the left solid-liquid interfaces, because
the local temperature drops below melting temperature. Note that recrystallization
leads to coarser grain structures which is a characteristic feature of LPC.

To briefly highlight the efficiency of the Schur—Newton method with nested
iteration, the number of Schur-Newton steps vpyax required on the finest mesh is
plotted over the time step in the left of Figure 9. We observe that this number does
not exceed 3 in any time step. Mesh independence is illustrated by the number of
Schur-Newton steps over N = dim §; in time step 5.
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