
An introduction to the analysis and implementation of
sparse grid finite element methods

Stephen Russell · Niall Madden

October, 2015

Abstract Our goal is to present an elementary approach to the analysis and pro-
gramming of sparse grid finite element methods. This family of schemes can com-
pute accurate solutions to partial differential equations, but using far fewer degrees
of freedom than their classical counterparts. After a brief discussion of the classical
Galerkin finite element method with bilinear elements, we give a short analysis of
what is probably the simplest sparse grid method: the two-scale technique of Lin
et al. [12]. We then demonstrate how to extend this to a multiscale sparse grid
method which, up to choice of basis, is equivalent to the hierarchical approach, as
described in, e.g., [3]. However, by presenting it as an extension of the two-scale
method, we can give an elementary treatment of its analysis and implementation.
For each method considered, we provide MATLAB code, and a comparison of
accuracy and computational costs.

Keywords finite element · sparse grids · two-scale discretizations · multiscale
discretization · MATLAB.

Mathematics Subject Classification (2000) 65N15 · 65N30 · 65Y20

1 Introduction

Sparse grid methods provide a means of approximating functions and data in
a way that avoids the notorious “curse of dimensionality”: for fixed accuracy,
the computational effort required by classical methods grows exponentially in the
number of dimensions. Sparse grid methods hold out the hope of retaining the
accuracy of classical techniques, but at a cost that is essentially independent of
the number of dimensions.

An important application of sparse grid methods is the solution of partial
differential equations (PDEs) by finite element methods (FEMs). Naturally, the
solution to a PDE is found in an infinite dimensional space. A FEM first refor-
mulates the problem as an integral equation, and then restricts this problem to
a suitable finite-dimensional subspace; most typically, this subspace is comprised

S. Russell
School of Mathematics, Statistics and Applied Mathematics,
National University of Ireland, Galway, Ireland
E-mail: S.Russell1@NUIGalway.ie

N. Madden
School of Mathematics, Statistics and Applied Mathematics,
National University of Ireland, Galway, Ireland
E-mail: Niall.Madden@NUIGalway.ie

ar
X

iv
:1

51
1.

07
19

3v
1

 [
m

at
h.

N
A

]
 2

3
N

ov
 2

01
5

2 Stephen Russell, Niall Madden

of piecewise polynomials. This “restricted” problem can be expressed as a matrix-
vector equation; solving it gives the finite element approximation to the solution of
the PDE. For many FEMs, including those considered in this article, this solution
is the best possible approximation (with respect to a certain norm) that one can
find in the finite-dimensional subspace. That is, the accuracy of the FEM solution
depends on the approximation properties of the finite dimensional space.

The main computational cost incurred by a FEM is in the solution of the
matrix-vector equation. This linear system is sparse, and amenable to solution
by direct methods, such as Cholesky-factorisation, if it is not too large, or by
highly efficient iterative methods, such as multigrid methods, for larger systems.
The order of the system matrix is the dimension of the finite-element space, and so
great computational efficiencies can be gained over classical FEMs by constructing
a finite-dimensional space of reduced size without compromising the approximation
properties: this is what is achieved by sparse grid methods.

We will consider the numerical solution of the following PDE

Lu := −∆u+ ru = f(x, y) in Ω := (0, 1)2, (1.1a)

u = 0 on ∂Ω. (1.1b)

Here r is a positive constant and so, for simplicity, we shall take r = 1, but f
is an arbitrary function. Our choice of problem is motivated by the desire, for
the purposes of exposition, to keep the setting as simple as possible, but without
trivialising it. The main advantages of choosing r to be constant are that no
quadrature is required when computing the system matrix, and that accurate
solutions can be obtained using a uniform mesh. Thus, the construction of the
system matrix for the standard Galerkin FEM is reduced to several lines of code,
which we show how to do in Section 2. In Section 3 we show how to develop
the two-scale sparse grid method and, in Section 4 show how to extend this to
a multiscale setting. A comparison of the accuracy and efficiency of the methods
is given in Section 5. We stress that the choice of constant r in (1.1) is only to
simplify the implementation of the standard Galerkin method: our implementation
of the sparse grid methods is identical for variable r, and would require only minor
modifications for nonuniform tensor product meshes.

We aim to provide an introduction to the mathematical analysis and com-
puter implementation of sparse grids that is accessible to readers who have a basic
knowledge of finite element methods. For someone who is new to FEMs, we pro-
pose [19, Chapter 14] as a primer for the key concepts. An extensive mathematical
treatment is given in [1]: we use results from its early chapters.

We do not aim to present a comprehensive overview of the state of the art
sparse grid methods: there are many important contributions to this area which
we do not cite. However, we hope that, having read this article, and experimented
with the MATLAB programs provided, the reader will be motivated to learn more
from important references in the area, such as [3].

1.1 MATLAB code

All our numerical examples are implemented in MATLAB. Full source code is
available from www.maths.nuigalway.ie/∼niall/SparseGrids while snippets are

http://www.maths.nuigalway.ie/~niall/SparseGrids

Introduction to analysis and implementation of sparse grid FEMs 3

presented in the text. Details of individual functions are given in the relevant
sections. For those using MATLAB for the first time, we recommend [6] as a
readable introduction. Many of the finer points of programming in MATLAB are
presented in [15] and [10]. A detailed study of programming FEMs in MATLAB
may be found in [7].

We make use of the freely-available Chebfun toolbox [5] to allow the user to
choose their own test problem, for which the corresponding f is automatically
computed. We also use Chebfun for some computations related to calculating
the error. (We highly recommend using Chebfun Version 5 or later, as some of the
operations we use are significantly faster than in earlier versions). Only Test FEM.m,
the main test harness, uses Chebfun. That script contains comments to show how
it may be modified to avoid using Chebfun, and thus run on Octave [16]. We
have found the direct linear solver (“backslash”) to be less efficient in Octave than
MATLAB, and thus timing may be qualitatively different from those presented
here (though no doubt some optimisations are possible).

1.2 Notation

We use the standard L2 inner product and norm:

(u, v) :=

∫
Ω

uv dΩ, ‖u‖0,Ω =
√

(u, u).

The bilinear form, B(·, ·) associated with (1.1) is

B(u, v) = (∇u,∇v) + (ru, v),

which induces the energy norm

‖u‖B = {‖∇u‖20,Ω + ‖u‖20,Ω}
1/2. (1.2)

The space of functions whose (weak) kth derivatives are integrable on a domain
ω is denoted by Hk(ω), and if these functions also vanish on the boundary of ω it
is Hk

0 (ω). See, e.g., [1, Chap. 2] for more formal definitions.
Throughout this paper the letter C, with or without subscript, denotes a

generic positive constant that is independent of the discretization parameter, N ,
and the scale of the method k, and may stand for different values in different
places, even within a single equation or inequality.

2 Standard Galerkin finite element method

2.1 A Galerkin FEM with bilinear elements

The weak form of (1.1) with r = 1 is: find u ∈ H1
0 (Ω) such that

B(u, v) := (∇u,∇v) + (u, v) = (f, v) ∀v ∈ H1
0 (Ω). (2.1)

A Galerkin FEM is obtained by replacing H1
0 (Ω) in (2.1) with a suitable finite-

dimensional subspace. We will take this to be the space of piecewise bilinear func-
tions on a uniform mesh with Nx equally sized intervals in one coordinate direction

http://www.maths.nuigalway.ie/~niall/SparseGrids/Test_FEM.m

4 Stephen Russell, Niall Madden

and Ny equally sized intervals in the other. We first form a one-dimensional mesh
ωx = {x0, x1, . . . , xNx

}, where xi = i/Nx. Any piecewise linear function on this
mesh can be uniquely expressed in terms of the so-called “hat” functions

ψNi (x) =


x− xi−1

xi − xi−1
if xi−1 ≤ x < xi,

xi+1 − x
xi+1 − xi

if xi ≤ x < xi+1,

0 otherwise.

(2.2)

Similarly, we can construct a mesh in the y-direction: ωy = {y0, y1, . . . , yNy
}, where

yj = j/Ny. We can form a two-dimensional Nx×Ny mesh by taking the Cartesian
product of ωx and ωy, and then define the space of piecewise bilinear functions,
VNx,Ny

⊂ H1
0 (Ω) as

VNx,Ny
= span

{
ψNx
i (x)ψ

Ny

j (y)
}i=1:Nx−1

j=1:Ny−1
, (2.3)

where here we have adopted the compact MATLAB notation i = 1:Nx−1 meaning
i = 1, 2, . . . , Nx − 1. (Later we use expressions such as i = 1 : 2 :Nx − 1 meaning
i = 1, 3, 5, . . . , Nx − 1).

For sparse grid methods, we will be interested in meshes where Nx 6= Ny.
However, for the classical Galerkin method, we take Nx = Ny = N . Thus, our
finite element method for (1.1) is: find uN,N ∈ VN,N such that

B(uN,N , vN,N) = (f, vN,N) for all vN,N ∈ VN,N . (2.4)

2.2 Analysis of the Galerkin FEM

The bilinear form defined in (2.1) is continuous and coercive, so (2.4) possesses a
unique solution. Moreover, as noted in [13, Section 3], one has the quasi-optimal
bound:

‖u− uN,N‖B ≤ C inf
ψ∈VN,N (Ω)

‖u− ψ‖B .

To complete the analysis, we can choose a good approximation of u in VN,N . A
natural choice is the nodal interpolant of u. To be precise, let IN,N : C(Ω̄)→ VN,N
be the nodal piecewise bilinear interpolation operator that projects onto VN,N .
Since IN,Nu ∈ VN,N , one can complete the error analysis using the following
classical results. For a derivation, see, e.g., [8].

Lemma 1 Let τ be any mesh rectangle of size h×h. Let u ∈ H2(τ). Then its piecewise

bilinear nodal interpolant, IN,Nu, satisfies the bounds

‖u− IN,Nu‖0,Ω ≤ Ch
2(‖uxx‖0,Ω + ‖uxy‖0,Ω + ‖uyy‖0,Ω), (2.5a)

‖(u− IN,Nu)x‖0,Ω ≤ Ch(‖uxx‖0,Ω + ‖uxy‖0,Ω), (2.5b)

‖(u− IN,Nu)y‖0,Ω ≤ Ch(‖uxy‖0,Ω + ‖uyy‖0,Ω). (2.5c)

The following results follow directly from Lemma 1.

Introduction to analysis and implementation of sparse grid FEMs 5

Lemma 2 Suppose Ω= (0, 1)2. Let u ∈ H2
0 (Ω) and IN,Nu be its piecewise bilinear

nodal interpolant. Then there exists a constant C, independent of N , such that

‖u− IN,Nu‖0,Ω ≤ CN
−2, and ‖∇(u− IN,Nu)‖0,Ω ≤ CN−1.

Consequently, ‖u− IN,Nu‖B ≤ CN−1.

It follows immediately from these results that there exists a constant C, indepen-
dent of N , such that

‖u− uN,N‖B ≤ CN
−1. (2.6)

2.3 Implementation of the Galerkin FEM

To implement the method (2.4), we need to construct and solve a linear system
of equations. A useful FEM program also requires ancillary tools, for example, to
visualise the solution and to estimate errors.

Because the test problem we have chosen has a constant left-hand side, the
system matrix can be constructed in a few lines, and without resorting to nu-
merical quadrature. Also, because elements of the space defined in (2.3) are ex-
pressed as products of one-dimensional functions, the system matrix can be ex-
pressed in terms of (Kronecker) products of matrices arising from discretizing
one-dimensional problems. We now explain how this can be done. We begin with
the one-dimensional analogue of (1.1):

−u′′(x) + u(x) = f(x) on (0, 1), with u(0) = u(1) = 1.

Its finite element formulation is: find uN ∈ VN (0, 1) such that

(u′N , v
′
N) + (uN , vN) = (f, vN) for all vN ∈ VN (0, 1). (2.7)

This uN can be expressed as a linear combination of the ψNi defined in (2.2):

uN =
∑

j=1,...,N−1

µjψ
N
j (x).

Here the µj are the N − 1 unknowns determined by solving the N − 1 equations
obtained by taking vN = ψNi (x), for i = 1, . . . , N − 1, in (2.7). Say we write the
system matrix for these equations as (a2+a0), where a2 (usually called the stiffness

matrix) and a0 (the mass matrix) are (N − 1)× (N − 1) matrices that correspond,
respectively, to the terms (u′N , v

′
N) and (uN , vN). Then a2 and a0 are tridiagonal

matrices whose stencils are, respectively,

N
(
−1 2 −1

)
and

1

6N

(
1 4 1

)
.

For the two-dimensional problem (1.1) there are (N − 1)2 unknowns to be
determined. Each of these are associated with a node on the mesh, which we must
number uniquely. We will follow a standard convention, and use lexicographic
ordering. That is, the node at (xi, yj) is labelled k = i + (N − 1)(j − 1). The
basis function associated with this node is φNk = ψNi (x)ψNj (x). Then the (N − 1)2

equations in the linear system for (2.4) can be written as

B(uN,N , φ
N
k) = (f, φNk), for k = 1, . . . (N − 1)2.

6 Stephen Russell, Niall Madden

Since r = 1, this can be expressed in terms of Kronecker products (see, e.g., [11,
Chap. 13]) of the one-dimensional matrices described above:

A = a0 ⊗ a2 + a2 ⊗ a0 + a0 ⊗ a0. (2.8)

The MATLAB code for constructing this matrix is found in FEM System Matrix.m.
The main computational cost of executing that function is incurred by computing
the Kronecker products. Therefore, to improve efficiency, (2.8) is coded as

A = kron (a0 , a2) + kron (a2+a0 , a0) ;

The right-hand side of the finite element linear system is computed by the
function FEM RHS.m. As is well understood, the order of accuracy of this quadrature
must be at least that of the underlying scheme, in order for quadrature errors
not to pollute the FEM solution. As given, the code uses a two-point Gaussian
quadrature rule (in each direction) to compute

bk = (f, φNk), for k = 1, . . . , (N − 1)2. (2.9)

It can be easily adapted to use a different quadrature scheme (see, e.g., [8, §4.5]
for higher order Gauss-Legendre and Gauss-Lobatto rules for these elements).

To compute the error, we need to calculate
√
B(u− uN,N , u− uN,N). Using

Galerkin orthogonality, since u solves (2.1) and uN,N solves (2.4), one sees that

B(u− uN,N , u− uN,N) = (f, u)− (f, uN,N). (2.10)

The first term on the right-hand side can be computed (up to machine precision)
using Chebfun

Energy = i n t e g r a l 2 (u .∗ f , [0 , 1 , 0 , 1]) ;

where u and f are chebfuns that represent the solution and right-hand side in
(1.1). We estimate the term (f, uN,N) as

Galerkin Energy = uN’∗b ;

where uN is the solution vector, and b is the right-hand side of the linear system,
as defined in (2.9).

2.4 Numerical results for the Galerkin FEM

The test harness for the code described in Section 2.3 is named Test FEM.m. As
given, it implements the method for N = 24, 25, . . . , 210, so the problem size does
not exceed what may be solved on a standard desktop computer. Indeed, on a
computer with at least 8Gb of RAM, it should run with N = 211 intervals in each
coordinate direction, resolving a total of 4, 190, 209 degrees of freedom. We present
the results in Figure 1, which were generated on a computer equipped with 32Gb
of RAM, allowing to solve problems with N = 212 intervals in each direction (i.e.,
16, 769, 025 degrees of freedom). One can observe that the method is first-order
convergent, which is in agreement with (2.6). Figure 1b shows u−uN,N for N = 64.

http://www.maths.nuigalway.ie/~niall/SparseGrids/FEM_System_Matrix.m
http://www.maths.nuigalway.ie/~niall/SparseGrids/FEM_RHS.m
http://www.maths.nuigalway.ie/~niall/SparseGrids/Test_FEM.m

Introduction to analysis and implementation of sparse grid FEMs 7

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

Error

N
−1

(a) Rate of convergence

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

x 10
−4

xy

(b) u− u64,64

Fig. 1: Left: convergence of the classical Galerkin method. Right: the error in the
Galerkin solutions with N = 64

3 A two-scale sparse grid finite element method

The main purpose of this article is to introduce sparse grid FEMs, which can
achieve accuracy that is comparable to the classical Galerkin FEM of Section 2,
but with much fewer degrees of freedom. As we describe in Section 4, most of
these methods are described as multiscale or “multi-level”. However, the simplest
sparse grid method is, arguably, the two-scale method proposed by Lin et al.
[12]. Those authors were motivated to study the method in order to prove certain
superconvergence results. For us, its appeal is the simplicity of its implementation
and analysis. By extending our MATLAB program from Section 2.3 by only a few
lines of code, we can obtain a solution that has, essentially, the same accuracy as
the classical FEM, but using N4/3 rather than N2 degrees of freedom. Moreover,
having established some basic principles of the method in this simple setting, we
are well equipped to consider the more complicated multiscale method of Section 4.

Recalling Section 2.2, the error analysis of a FEM follows directly from estab-
lishing the approximation properties of the finite dimensional space and, typically,
this follows from an analysis of a particular candidate for an approximation of
the true solution: the nodal interpolant. Therefore, in Section 3.1 we describe a
two-scale interpolation operator. This naturally leads to a two-scale FEM, the
implementation of which is described in Section 3.3. That section also contains
numerical results that allow us to verify that the accuracy of the solution is very
similar to the FEM of Section 2. Although the whole motivation of the method
is to reduce the computational cost of implementing a classical Galerkin method,
we postpone a discussion of the efficiency of the method to Section 5, where we
compare the classical, two-scale and multiscale methods directly.

We will make repeated use of the following one-dimensional interpolation bounds.
Their proofs can be found in [19, Theorem. 14.7].

Theorem 1 Suppose that u ∈ H2(0, 1) ∩ H1
0 (0, 1). Then the piecewise linear inter-

polant INu satisfies

‖u− INu‖0,Ω ≤ Ch
2
i ‖u
′′‖0,Ω , and ‖u′ − (INu)′‖0,Ω ≤ Chi‖u′′‖0,Ω , (3.1)

for i = 1, 2, ..., N , and hi = xi − xi−1.

8 Stephen Russell, Niall Madden

3.1 The two-scale interpolant

Let VNx
([0, 1]) be the space of piecewise linear functions defined on the one-

dimensional mesh with Nx intervals on [0, 1]. Define VNy
([0, 1]) in the same way.

Then let VNx,Ny
be the tensor product space VNx

([0, 1])×VNy
([0, 1]). Let INx,Ny

:

C(Ω̄)→ VNx,Ny
be the nodal piecewise bilinear interpolation operator that projects

onto VNx,Ny
. Write INx,0 for the interpolation operator that interpolates only in

the x-direction, so INx,0 : C(Ω̄) → VNx
([0, 1]) × C([0, 1]). Similarly, let I0,Ny

:
C(Ω̄)→ C([0, 1])× VNy

([0, 1]) interpolate only in the y-direction. Then clearly

INx,Ny
= INx,0 ◦ I0,Ny

= I0,Ny
◦ INx,0, (3.2a)

∂

∂x
INx,Ny

= I0,Ny
◦ ∂

∂x
INx,0, (3.2b)

∂

∂y
INx,Ny

= INx,0 ◦
∂

∂y
I0,Ny

. (3.2c)

In this section we present an interpretation of the two-scale technique outlined
in [13]. The two-scale interpolation operator ÎN,N : C(Ω̄)→ VN,N is defined as

ÎN,Nu = IN,σ(N) + Iσ(N),N − Iσ(N),σ(N), (3.3)

where σ(N) is an integer that divides N . The following identity appears in [13],
and is an integral component of the following two-scale interpolation analysis:

IN,Nu− ÎN,Nu = (IN,0 − Iσ(N),0)(I0,N − I0,σ(N)). (3.4)

Theorem 2 Suppose Ω = (0, 1)2 and u ∈ H1
0 (0, 1). Let IN,Nu be the bilinear inter-

polant of u on ΩN,N , and ÎN,Nu be the two-scale bilinear interpolant of u described

in (3.3). Then there exists a constant C independent of N , such that

‖ÎN,Nu− IN,Nu‖B ≤ Cσ(N)−3.

Proof First from (3.4), and then by the first inequality in (3.1), one has

‖ÎN,Nu− IN,Nu‖0,Ω = ‖(IN,0 − Iσ(N),0)(I0,N − I0,σ(N))u‖0,Ω

≤ Cσ(N)−2

∥∥∥∥(I0,N − I0,σ(N))
∂2u

∂x2

∥∥∥∥
0,Ω

≤ Cσ(N)−2σ(N)−2

∥∥∥∥ ∂4u

∂x2∂y2

∥∥∥∥
0,Ω

= Cσ(N)−4

∥∥∥∥ ∂4u

∂x2∂y2

∥∥∥∥
0,Ω

≤ Cσ(N)−4. (3.5)

Following the same reasoning, but this time using the second inequality in (3.1),∥∥∥∥ ∂∂x (ÎN,Nu− IN,Nu)

∥∥∥∥
0,Ω

≤ Cσ(N)−1

∥∥∥∥(I0,N − I0,σ(N))
∂2u

∂x2

∥∥∥∥
0,Ω

≤ Cσ(N)−3.

(3.6)
Using the same approach, the corresponding bound on ‖∂/∂y(ÎN,Nu− IN,Nu)‖0,Ω
is obtained, and so

‖∇(ÎN,Nu− IN,Nu)‖0,Ω ≤ Cσ(N)−3.

Introduction to analysis and implementation of sparse grid FEMs 9

To complete the proof, using the definition of the energy norm and the results (3.5)
and (3.6) one has

‖ÎN,Nu− IN,Nu‖B ≤ ‖ÎN,Nu− IN,Nu‖0,Ω + ‖∇(ÎN,Nu− IN,Nu)‖0,Ω
≤ Cσ(N)−4 + Cσ(N)−3 ≤ Cσ(N)−3.

This result combined, via the triangle inequality, with Lemma 2, leads imme-
diately to the following theorem.

Theorem 3 Let u and ÎN,N be defined as in Theorem 2. Then there exists a constant,

C, independent of N , such that

‖u− ÎN,Nu‖B ≤ C(N−1 + σ(N)−3).

Remark 1 We wish to choose σ(N) so that the sparse grid method is as economical
as possible while still retaining the accuracy of the classical scheme. Based on the
analysis of Theorem 3, we take σ(N) = N1/3.

Corollary 1 Taking σ(N) = N1/3 in Theorem 3, there exists a constant, C, such that

‖u− ÎN,Nu‖B ≤ CN
−1.

3.2 Two-scale sparse grid finite element method

Let ψNi (x) and ψNj (y) be defined as in (2.2). We now let V̂N,N ⊂ H1
0 (Ω) be the

finite dimensional space given by

V̂N,N = span
{
ψNi (x)ψ

σ(N)
j (y)

}i=1:N−1

j=1:σ(N)−1
+ span

{
ψ
σ(N)
i (x)ψNj (y)

}i=1:σ(N)−1

j=1:N−1
.

(3.7)
Now the FEM is: find ûN,N ∈ V̂N,N such that

B(ûN,N , vN,N) = (f, vN,N) ∀vN,N ∈ V̂N,N . (3.8)

Using the reasoning that lead to (2.6), Theorem 3 leads to the following result.

Theorem 4 Let u be the solution to (1.1), and ûN,N the solution to (3.8). Then there

exists a constant C, independent of N , such that ‖u− ûN,N‖B ≤ C(N−1 + σ(N)−3).

In particular, taking σ(N) = N1/3,

‖u− ûN,N‖B ≤ CN
−1.

3.3 Implementation of the two-scale method

At first, constructing the linear system for the method (3.8) may seem somewhat
more daunting than that for (2.4). For the classical method (2.4), each of the
(N − 1)2 rows in the system matrix has (at most) nine non-zero entries, because
each of the basis functions shares support with only eight of its neighbours. For
a general case, where r in (1.1) is not constant, and so (2.8) cannot be used, the
matrix can be computed either

10 Stephen Russell, Niall Madden

– using a 9-point stencil for each row, which incorporates a suitable quadrature
rule for the reaction term, or

– by iterating over each square in the mesh, to compute contributions from the
four basis functions supported by that square.

In contrast, for any choice of basis for the space (3.7), a single basis function will
share support with O(σ(N)) others, so any stencil would be rather complicated
(this is clear from the sparsity pattern of a typical matrix shown in Figure 3).
Further, determining the contribution from the O(σ(N)) basis functions that have
support on a single square in a uniform mesh appears to be non-trivial. However,
as we shall see, one can borrow ideas from Multigrid methods to greatly simplify
the process by constructing the linear system from entries in the system matrix
for the classical method.

We begin by choosing a basis for the space (3.7). This is not quite as simple
as taking the union of the sets{

ψNi (x)ψ
σ(N)
j (y)

}i=1:N−1

j=1:σ(N)−1
and

{
ψ
σ(N)
i (x)ψNj (y)

}i=1:σ(N)−1

j=1:N−1
,

since these two sets are not linearly independent. There are several reasonable
choices of a basis for the space. Somewhat arbitrarily, we shall opt for{
ψNi (x)ψ

σ(N)
j (y)

}i=1:N−1

j=1:σ(N)−1
∪
{
ψ
σ(N)
i (x)ψNj (y)

}i=1:σ(N)−1

j=(1:N−1)/(σ(N):σ(N):N−σ(N))
.

(3.9)
This may be interpreted as taking the union of the usual bilinear basis functions
for an N×σ(N) mesh, and a σ(N)×N mesh; but from the second of these, we omit
any basis functions associated with nodes found in the first mesh. For example,
if N = 27, these basis functions can be considered to be defined on the meshes
shown in Figure 2, where each black dot represents the centre of a bilinear basis
function that has support on the four adjacent rectangles.

(a) A grid for
{
ψ27
i (x)ψ3

j (y)
}i=1:26

j=1:2
(b) A grid for

{
ψ3
i (x)ψ27

j (y)
}i=1:2

j=(1:26)/{9,18}

Fig. 2: Meshes for the two-scale FEM, for N = 27

To see how to form the linear system associated with the basis (3.9) from the
entries in (2.8), we first start with a one-dimensional problem. Let Vσ(N) be the

Introduction to analysis and implementation of sparse grid FEMs 11

space of piecewise linear functions defined on the mesh ω
σ(N)
x , and which vanishes

at the end-points. So any v ∈ Vσ(N) can be expressed as

v(x) =
∑

i=1:σ(N)−1

viψ
σ(N)
i (x).

Suppose we want to project v onto the space VN . That is, we wish to find coeffi-
cients w1, . . . , wN−1 so that we can write the same v as

v(x) =
∑

i=1:N−1

wiψ
N
i (x).

Clearly, this comes down to finding an expression for the ψ
σ(N)
i in terms of the ψNi .

Treating the coefficients (v1, . . . , vσ(N)) and (w1, . . . , wN) as vectors, the projection
between the corresponding spaces can be expressed as a (N−1)×(σ(N)−1) matrix.
This matrix can be constructed in one line in MATLAB:

p = sparse (interp1 (x2 , eye (length (x2)) , x)) ;

where x is a uniform mesh on [0, 1] with N intervals, and x2 is a uniform mesh on
[0, 1] with N2 intervals, where N2 = σ(N) is a proper divisor of N .

To extend this to two-dimensions, we form a matrix P1 that projects a bilinear
function expressed in terms of the basis functions in{

ψNi (x)ψ
σ(N)
j (y)

}i=1:N−1

j=1:σ(N)−1

to one in VN,N using

P1 = kron (p (2 :end−1 ,2:end−1) , speye (N−1)) ;

Next we construct the matrix P2 that projects a bilinear function expressed in
terms of the basis functions in{

ψ
σ(N)
i (x)ψNj (y)

}i=1:σ(N)−1

j=(1:N−1)/(σ(N):σ(N):N−σ(N))
,

to one in VN,N . Part of this process involves identifying the nodes in ωNx which

are not contained in ω
σ(N)
x . Therefore, we use two lines of MATLAB code to form

this projector:

UniqueNodes=sparse (s e t d i f f (1 : (N−1) , N/N2 :N/N2 :N−N/N2)) ;
P2 = kron (sparse (UniqueNodes , 1 : length (UniqueNodes) , 1) , . . .

p (2 :end−1 ,2:end−1)) ;

The actual projector we are looking for is now formed by concatenating the arrays
P1 and P2. That is, we set P = (P1|P2). For more details, see the MATLAB
function TwoScale Projector.m. In a Multigrid setting, P would be referred to as
an interpolation or prolongation operator, and PT is known as a restriction operator;
see, e.g., [2]. It should be noted that, although our simple construction of the
system matrix for the classical Galerkin method relies on the coefficients in the
right-hand side of (1.1) being constant, the approach for generating P works in
the general case of variable coefficients. Also, the use of the MATLAB interp1

function means that modifying the code for a non-uniform mesh is trivial.

http://www.maths.nuigalway.ie/~niall/SparseGrids/TwoScale_Projector.m

12 Stephen Russell, Niall Madden

Equipped with the matrix P , if the linear system for the Galerkin method is
AuN,N = b, then the linear system for the two-scale method is (PTAP)ûN,N =

PT b. The sparsity pattern of PTAP is shown in Figure 3. The solution can be
projected back onto the original space VN,N by evaluating PûN,N .

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 2872
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 2872

Fig. 3: Sparsity patterns for the two-scale method with N = 27. Left: ordered as
in (3.9). Right: lexicographical ordering

To use the test harness, Test FEM.m, to implement the two-scale method for
our test problem, set the variable Method to two-scale on Line 18.

In Figure 4a we present computed errors for various values of N , that are
chosen, for simplicity, to be perfect cubes, which demonstrates that Theorem 4
holds in practice: the method is indeed first-order convergent in the energy norm.
Moreover, the errors for the two-scale method are very similar to those of the
classical method (the difference is to the order of 1%) even though far fewer degrees
of freedom are used. For example, when N = 212 the classical FEM has 16,769,025
degrees of freedom, compared with 122,625 for the two-scale method. However,
comparing Figure 1b and Figure 4b, we see that the nature of the point-wise
errors are very different. We defer further comparisons between the methods to
Section 5, where efficiency of the various methods is discussed in detail.

4 A multiscale sparse grid finite element method

We have seen that the two-scale method can match the accuracy of the classical
FEM, even though only O(N4/3) degrees of freedom are used, rather than O(N2).
We shall now see that it is possible to further reduce the required number of
degrees of freedom to O(N logN), again without sacrificing the accuracy of the
method very much. The approach we present is equivalent, up to the choice of
basis, to the hierarchical sparse grid method described by, for example, Bungartz
and Griebel [3]. But, because we present it as a generalisation of the two-scale
method, we like to refer to it as the “multiscale” method.

Informally, the idea can be summarised in the following way. Suppose that
N = 2k for some k. For the two-scale method, we solved the problem (in a sense) on
two overlapping grids: one with N×N1/3 intervals, and one with N1/3×N . Instead,

http://www.maths.nuigalway.ie/~niall/SparseGrids/Test_FEM.m

Introduction to analysis and implementation of sparse grid FEMs 13

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

Classical FEM Error

Two−scale FEM

N
−1

(a) Rate of convergence

0

0.5

1

0

0.5

1
0

1

2

3

x 10
−3

xy

(b) u− û64,64

Fig. 4: Left: convergence of the classical and two-scale methods. Right: error in
the two-scale solution with N = 64 (right)

we could apply the same algorithm, but on grids with N × (N/2) and (N/2) ×N
intervals respectively. Next we apply this same two-scale approach to each of these
two grids, giving three overlapping grids with N × (N/4), (N/2) × (N/2), and
(N/4) × N intervals. The process is repeated recursively, until the coarsest grids
have 2 intervals in one coordinate direction — the smallest feasible number.

More rigorously, we begin in Section 4.1 by constructing a multiscale inter-
polant, using an approach the authors presented in [14, §3.1]. This is then analysed
in Section 4.2. As with the two-scale method, this leads to a FEM, described in
4.3. In Section 4.4 we show how this can be programmed, and present numerical
results for our test problem.

Throughout the analysis, we use the following identities, which are easily es-
tablished using, for example, inductive arguments.

Lemma 3 For any k ≥ 1 we have the following identities

k−1∑
i=0

2i = 2k − 1, and

k−1∑
i=0

2−i = 2− 21−k.

4.1 The multiscale interpolant

Let IN,N denote the piecewise bilinear interpolation operator on VN,N . Consider
the following two-scale interpolation technique (3.3):

I
(1)
N,N = IN,σ(N) + Iσ(N),N − Iσ(N),σ(N), (4.1)

where σ(N) is an integer that divides N . In particular, in Corollary 1, σ(N) =
CN1/3 is presented as a suitable choice. However, the same approach can be applied
to, say, the terms IN,σ(N) and Iσ(N),N , and again recursively to the terms that
emerge from that. Following the approach that is standard for multiscale sparse
grid methods, we let σ(N) = N/2.

14 Stephen Russell, Niall Madden

Let INx,Ny
denote the piecewise bilinear interpolation operator on VNx,Ny

. The
corresponding Level 1 operator is

I
(1)
Nx,Ny

:= I
Nx,

Ny
2

+ INx
2
,Ny
− INx

2
,
Ny
2

. (4.2a)

The positively signed terms of (4.2a) are associated with spaces of dimension
O(N2/2) while the negatively signed term is associated with a space of dimension
O(N2/4). The Level 2 operator is obtained by applying the Level 1 operator to
the positive terms in (4.2a), giving

I
(2)
N,N = I

(1)

N,N
2

+ I
(1)
N
2
,N
− IN

2
,N

2
= IN,N

4
+ IN

2
,N

2
+ IN

4
,N − IN

2
,N

4
− IN

4
,N

2
. (4.2b)

Note that the right-hand side of this expression features three (positively signed)
operators that map to subspaces of dimension O(N2/4), and two (negatively
signed) operators that map to subspaces of dimension O(N2/8). To obtain the
Level 3 operator, we again apply the Level 1 operator to the positive terms in
(4.2b), because they are the ones associated with the larger spaces. In general,
the Level k operator is obtained by applying the Level 1 operator of (4.2a) to the

positive terms in I
(k−1)
N,N . This leads to the following definition.

Definition 1 (Multiscale Interpolation Operator) Let I
(0)
N,N = IN,N and, from

(4.2a), let I
(1)
N,N = I

N,N
2

+ IN
2
,N
− IN

2
,N

2

. For k = 2, 3, . . . , let I
(k)
N,N be obtained by

applying the Level 1 operator in (4.2a) to the positively signed terms in I
(k−1)
N,N .

We now provide an explicit formula for I
(k)
N,N . This recovers a standard expres-

sion used, for example, in the combination technique outlined in [17].

Lemma 4 Let I
(k)
N,N be the multiscale interpolation operator constructed in Definition

1 above. Then

I
(k)
N,N =

k∑
i=0

IN
2i
, N

2k−i
−

k∑
i=1

IN
2i
, N

2k+1−i
, for k = 0, 1, 2, (4.3)

Proof It is easy to check that the formula (4.3) is consistent with the construction
given in Definition 1 for k = 0 and k = 1.

Next, assume that (4.3) holds for an arbitrary k = n; that is,

I
(n)
N,N =

n∑
i=0

IN
2i
, N
2n−i

−
n∑
i=1

IN
2i
, N
2n+1−i

. (4.4)

Following Definition 1, apply the Level 1 operator (4.2a) to each term in the first
sum of the right-hand side of (4.4). This gives

I
(n+1)
N,N =

n∑
i=0

[
IN

2i
, N
2n+1−i

+ I N
2i+1 ,

N
2n−i

− I N
2i+1 ,

N
2n+1−i

]
−

n∑
i=1

IN
2i
, N
2n+1−i

= I N
2n+1 ,N

+
n∑
i=0

[
IN

2i
, N
2n+1−i

− I N
2i+1 ,

N
2n+1−i

]
=
n+1∑
i=0

IN
2i
, N
2n+1−i

−
n+1∑
i=1

IN
2i
, N
2n+2−i

.

Introduction to analysis and implementation of sparse grid FEMs 15

That is, (4.3) holds for k = n+ 1, as required.

Although (4.3) is a succinct representation of the multiscale interpolation op-
erator, for the purposes of analysis we are actually interested in the difference
between operators at successive levels. First consider the difference between the
interpolation operators at Levels 0 and 1:

I
(0)
N,N − I

(1)
N,N = IN,N − IN,N

2
− IN

2
,N + IN

2
,N

2
.

Recalling (3.2a) and (3.4), this expression can be written as

I
(0)
N,N − I

(1)
N,N = (IN,0 ◦ I0,N)− (IN,0 ◦ I0,N

2
)− (IN

2
,0 ◦ I0,N) + (IN

2
,0 ◦ I0,N

2
)

=
(
IN,0 − IN

2
,0

)(
I0,N − I0,N

2

)
, (4.5)

an identity used repeatedly in [13]. One can derive a similar expression I
(1)
N,N−I

(2)
N,N :

I
(1)
N,N − I

(2)
N,N = IN,N

2
+ IN

2
,N − IN

2
,N

2
− IN,N

4
− IN

2
,N

2
− IN

4
,N + IN

2
,N

4
+ IN

4
,N

2
.

Invoking (3.2a) and simplifying we get

I
(1)
N,N − I

(2)
N,N =(IN,0 ◦ I0,N

2
) + (IN

2
,0 ◦ I0,N)− (IN

2
,0 ◦ I0,N

2
)− (IN,0 ◦ I0,N

4
)

− (IN
2
,0 ◦ I0,N

2
)− (IN

4
,0 ◦ I0,N) + (IN

2
,0 ◦ I0,N

4
) + (IN

4
,0 ◦ I0,N

2
),

=
(
IN,0 − IN

2
,0

)(
I0,N

2
− I0,N

4

)
+
(
IN

2
,0 − IN

4
,0

)(
I0,N − I0,N

2

)
.

We now give the general form for the representation of the difference between
operators at successive levels in terms of one-dimensional operators. The resulting
identity is an important tool in our analysis of the bound on the error for the
multiscale interpolation operator.

Lemma 5 Let I
(k)
N,N be the multiscale interpolation operator defined in (4.3). Then,

for k = 0, 1, 2, . . . ,

I
(k−1)
N,N − I(k)N,N =

k−1∑
i=0

(
IN

2i
,0 − I N

2i+1 ,0

)(
I0, N

2k−1−i
− I0, N

2k−i

)
. (4.6)

Proof From the expression for the multiscale operator in (4.3) we can write

I
(k−1)
N,N − I(k)N,N =

k−1∑
i=0

IN
2i
, N

2k−1−i
−
k−1∑
i=1

IN
2i
, N

2k−1
−

k∑
i=0

IN
2i
, N

2k−i
+

k∑
i=1

IN
2i
, N

2k+1−i

=
k−1∑
i=0

IN
2i
, N

2k−1−i
−

(
k−1∑
i=0

IN
2i
, N

2k−i
− IN, N

2k

)
−

(
k−1∑
i=0

IN
2i
, N

2k−i
+ I N

2k
,N

)
+
k−1∑
i=0

I N
2i+1 ,

N

2k−i

=
k−1∑
i=0

(
IN

2i
, N

2k−1−i
− IN

2i
, N

2k−i
+ I N

2i+1 ,
N

2k−i

)
−
k−1∑
i=0

IN
2i
, N

2k−i
+ IN, N

2k
− I N

2k
,N

=
k−1∑
i=0

(
IN

2i
, N

2k−1−i
− IN

2i
, N

2k−i
+ I N

2i+1 ,
N

2k−i

)
−
k−1∑
i=0

I N
2i+1 ,

N

2k−1−i

=
k−1∑
i=0

(
IN

2i
, N

2k−1−i
− IN

2i
, N

2k−i
+ I N

2i+1 ,
N

2k−i
− I N

2i+1 ,
N

2k−1−i

)
,

16 Stephen Russell, Niall Madden

which, recalling (4.5), gives the desired expression.

4.2 Analysis of the multiscale interpolation operator

In this section we provide an analysis for the error incurred by the multiscale
interpolant. Standard finite element analysis techniques then provide a full analysis
of the underlying method. We begin by establishing a bound, in the energy norm,
for the difference between interpolants at successive levels.

Theorem 5 Suppose Ω = (0, 1)2. Let u ∈ H1
0 (Ω) and I

(k)
N,N be the multi-scale inter-

polation operator defined in (4.3). Then there exists a constant, C, independent of N

and k, such that

‖I(k)N,Nu− I
(k−1)
N,N u‖B ≤ C(k4k+1N−4 + 4k+1N−3).

Proof By stating ‖I(k)N,Nu− I
(k−1)
N,N u‖0,Ω in the form of Lemma 5 and applying the

triangle inequality, along with the first inequality in (3.1) and Lemma 3 we see

‖I(k)N,Nu− I
(k−1)
N,N u‖0,Ω =

∥∥∥∥∥
k−1∑
i=0

(IN
2i
,0 − I N

2i+1 ,0
)(I0, N

2k−1−i
− I0, N

2k−i
)u

∥∥∥∥∥
0,Ω

≤ C
k−1∑
i=0

(
N

2i+1

)−2 ∥∥∥∥(I0, N

2k−1−i
− I0, N

2k−i

)
∂2u

∂x2

∥∥∥∥
0,Ω

≤ C
k−1∑
i=0

(
N

2i+1

)−2(
N

2k−i

)−2 ∥∥∥∥ ∂4u

∂x2∂y2

∥∥∥∥
0,Ω

≤ C
k−1∑
i=0

(22i+2)(22k−2i)N−4 = Ck4k+1N−4. (4.7)

Using a similar argument, but with the second inequality in (3.1), we have∥∥∥∥∥ ∂∂x
(
k−1∑
i=0

(IN
2i
,0 − I N

2i+1 ,0
)(I0, N

2k−1−i
− I0, N

2k−i
)u

)∥∥∥∥∥
0,Ω

≤ C0

k−1∑
i=0

(
N

2i+1

)−1 ∥∥∥∥(I0, N

2k−1−i
− I0, N

2k−i
)
∂2u

∂x2

∥∥∥∥
0,Ω

≤ C4k+1N−3. (4.8)

The corresponding bound on the y-derivatives is obtained in a similar manner.
Combining these results gives

‖∇(I
(k)
N,Nu− I

(k−1)
N,N u)‖0,Ω ≤ C4k+1N−3.

Now following from the definition of the energy norm and results (4.7) and (4.8)
one has

‖I(k)N,Nu− I
(k−1)
N,N u‖B ≤ ‖∇(I

(k)
N,Nu− I

(k−1)
N,N u)‖0,Ω + ‖I(k)N,Nu− I

(k−1)
N,N u‖0,Ω

≤ C4k+1N−3 + Ck4k+1N−4.

Introduction to analysis and implementation of sparse grid FEMs 17

We now want to show that ‖I(k)N,Nu−I
(k−1)
N,N u‖B is an upper bound for ‖I(k−1)

N,N u−
IN,Nu‖B , thus showing that in, order to estimate ‖IN,Nu− I

(k)
N,Nu‖B , it is enough

to look at ‖I(k)N,Nu− I
(k−1)
N,N u‖B .

Lemma 6 Let u and I
(k)
N,N be defined as in Theorem 5. Then there exists a constant,

C, independent of N and k, such that

‖I(k−1)
N,N u− IN,Nu‖B ≤ ‖I

(k)
N,Nu− I

(k−1)
N,N u‖B .

Proof Taking the result of Theorem 5 and by applying an inductive argument one
can easily deduce that

k−1∑
i=1

i4i+1 ≤ k4k+1 and
k−1∑
i=1

4i+1 ≤ 4k+1.

The result then follows by applying the triangle inequality and observing that

k−1∑
i=1

‖I(i)N,Nu− I
(i−1)
N,N u‖B ≤

k−1∑
i=1

(i4i+1N−4 + 4i+1N−3).

Lemma 7 Let u and I
(k)
N,N be defined as in Theorem 5. Then there exists a constant,

C, independent of N and k, such that

‖I(k)N,Nu− IN,Nu‖B ≤ C4k+1N−3.

Proof By the triangle inequality and the results of Theorem 5 and Lemma 6 one
has

‖I(k)N,Nu− IN,Nu‖B ≤ ‖I
(k)
N,Nu− I

(k−1)
N,N u‖B + ‖I(k−1)

N,N u− IN,Nu‖B

≤ C(k4k+1N−4 + 4k+1N−3).

The result now follows by noting that, for k ≤ N (which will always be the case),

4k+1N−3 ≥ k4k+1N−4.

Using the triangle inequality, we combined this result with Lemma 2 and 7 to
establish the following error estimate.

Theorem 6 Let u and I
(k)
N,N be defined as in Theorem 5. Then there exists a constant,

C, independent of N and k, such that

‖u− I(k)N,Nu‖B ≤ C(N−1 + 4k+1N−3).

Remark 2 Our primary goal is to construct an efficient finite element method, by

taking the smallest possible space on which I
(k)
N,Nu can be defined. Thus we want

to take k as large as is possible while retaining the accuracy of the underlying
method. On a uniform mesh the coarsest grid must have at least two intervals in
each coordinate direction. From (4.3) it is clear that the coarsest grid we interpolate
over has N/2k intervals. Thus the largest and most useful value of k we can choose
is k̃ = log2N − 1. In light of this, we have the following result.

Corollary 2 Let u and I
(k̃)
N,N be defined as in Theorem 5. Taking k := k̃ = log2(N)−1

in Theorem 6, there exists a constant, C, independent of N , such that

‖u− I(k̃)N,Nu‖B ≤ CN
−1.

18 Stephen Russell, Niall Madden

4.3 Multiscale sparse grid finite element method

Let ψNi and ψNj be as defined in (2.2) We now define the finite dimensional space

V
(k)
N,N ⊂ H

1
0 (Ω) as

V
(k)
N,N = span

{
ψNi (x)ψ

N/2k

j (y)
}i=1:N−1

j=1:N/2k−1

+ span
{
ψ
N/2
i (x)ψ

N/2k−1

j (y)
}i=1:N/2−1

j=1:N/2k−1−1

+· · ·+span
{
ψ
N/2k−1

i (x)ψ
N/2
j (y)

}i=1:N/2k−1−1

j=1:N/2−1
+span

{
ψ
N/2k

i (x)ψNj (y)
}i=1:N/2k−1

j=1:N−1
.

Note that each two dimensional basis function is the product of two one-dimensional
functions that are of different scales. This description involves (k + 1)2−kN2 +
(2−k+1 − 4)N + k + 1 functions in the spanning set, which are illustrated in the
diagrams in Figure 5. The left most diagram shows a uniform mesh with N = 16
intervals in each coordinate direction. Each node represents a basis function for

the space V
(0)
N,N = VN,N .

Fig. 5: Meshes for the multiscale method for N = 16, based on the spaces (left to

right) V
(0)
N,N , V

(1)
N,N and V

(2)
N,N

In the centre column of Figure 5 we show the grids associated with V
(1)
N,N . Notice

that the spaces associated with these two grids are not linearly independent. To

Introduction to analysis and implementation of sparse grid FEMs 19

form an invertible system matrix, in Figure 5 we highlight a particular choice of
non-redundant basis functions by solid circles:{

ψNi (x)ψ
N/2
j (y)

}i=1:2:N−1

j=1:N/2−1
and

{
ψ
N/2
i (x)ψNj (y)

}i=1:N/2−1

j=1:N−1
.

The right-most column of Figure 5 show the grids associated with V
(2)
N,N . Again

we use solid circles to represent our choice of basis:

{
ψNi (x)ψ

N/4
j (y)

}i=1:2:N−1

j=1:N/4−1
,
{
ψ
N/2
i (x)ψ

N/2
j (y)

}i=1:N/2−1

j=1:N/2−1
,

and
{
ψ
N/4
i (x)ψNj (y)

}i=1:N/4−1

j=1:2:N−1
.

There are many ways in which one can choose which basis functions to include.
The way we have chosen, excluding the boundary, is as follows:

– when Nx > Ny include every second basis function in the x-direction;
– when Nx = Ny or when 2Nx = Ny include all basis functions;
– from the remaining subspaces include every second basis function in the y-

direction.

In general the choice of basis we make for the space V
(k)
N,N is dependent on whether

k is odd or even. When k is odd the basis we choose is:

(k−1)/2⋃
l=0

{
ψ
N/2l

i ψ
N/2k−l

j

}i=1:2:N/2l−1

j=1:N/2k−l−1

⋃{
ψ
N/2(k+1)/2

i ψ
N/2(k−1)/2

j

}i=1:N/2(k+1)/2−1

j=1:N/2(k−1)/2−1

k⋃
l=(k+3)/2

{
ψ
N/2l

i ψ
N/2k−l

j

}i=1:N/2l−1

j=1:2:N/2k−l−1
; (4.9a)

And when k is even the basis we choose is:

k/2−1⋃
l=0

{
ψ
N/2l

i ψ
N/2k−l

j

}i=1:2:N/2l−1

j=1:N/2k−l−1

⋃{
ψ
N/2k/2

i ψ
N/2k/2

j

}i=1:N/2k/2−1

j=1:N/2k/2−1

k⋃
l=k/2+1

{
ψ
N/2l

i ψ
N/2k−l

j

}i=1:N/2l−1

j=1:2:N/2k−l−1
. (4.9b)

This has dimension 2−k(k/2 +1)N2−2N + 1. For a computer implementation one
can, of course, choose alternative ways of expressing the basis. Although these are
mathematically equivalent, they can lead to different linear systems. We can now

formulate the multiscale sparse grid finite element method: find u
(k)
N,N ∈ V

(k)
N,N such

that

B(u
(k)
N,N , vN,N) = (f, vN,N) for all vN,N ∈ V

(k)
N,N . (4.10)

We will consider the analysis for the case k := k̃ = log2N − 1.

20 Stephen Russell, Niall Madden

Theorem 7 Let u be the solution to (1.1), and u
(k̃)
N,N the solution to (4.10). Then

there exists a constant C, independent of N and ε, such that

‖u− u(k̃)N,N‖B ≤ CN
−1.

Proof The bilinear form (4.10) is continuous and coercive, so it follows from clas-
sical finite element analysis that

‖u− u(k̃)N,N‖B ≤ C inf
ψ∈V (k̃)

N,N (Ω)

‖u− ψ‖B .

Since I
(k)
N,Nu ∈ V

(k̃)
N,N (Ω) the result is an immediate consequence of Corollary 2.

4.4 Implementation of the multiscale method

We now turn to the construction of the linear system for the method (4.10). As
with the construction of the linear system for (3.8), we begin by building matrices
that project from the one-dimensional subspaces of VN to the full one-dimensional
space VN . In MATLAB this is done with the following line of code

px = sparse (interp1 (Sx , eye (length (Sx)) , x)) ;

where x is a uniform mesh on [0, 1] with N intervals, and Sx is a submesh of x
with N/M intervals and M is a proper divisor of N .

Next we build a collection of two-dimensional projection matrices, P . Each of
these projects a bilinear function expressed in terms of each of the basis functions
in (4.9), to one in VN,N . This is done using MultiScale Projector.m, a function
written in MATLAB, and the following piece of code:

P = kron (py (2 :N, 2 : s k ip y :My) , px (2 :N, 2 : s k ip x :Mx)) ;

Here Mx and My are the number of intervals in the coarse x- and y-directions
respectively. The values skipx and skipy are set to either 1 or 2 depending on
whether we include all basis functions, or every other basis function, in (4.9). The

projectors in the collection are concatenated to give the projector from V
(k)
N,N to

UN,N That is P = (P1|P2| . . . |Pk|Pk+1).
As is the case with the two-scale method, having constructed P and given the

linear system for the classical Galerkin method, AuN,N = b, the linear system for

the multiscale method is (PTAP)u
(k)
N,N = PT b. Evaluating Pu

(k)
N,N then projects

the solution back to the original space VN,N .
To use the test harness, Test FEM.m, to implement the multiscale method for

our test problem, set the variable Method to multiscale on Line 18.
In Figure 6a we present numerical results for the multiscale method which

demonstrate that, in practice, the CN−1 term from the theoretical results of The-
orem 7 is observed numerically. The errors for the multiscale method are very
similar to those of the classical Galerkin method and the two-scale method, how-
ever the degrees of freedom are greatly reduced. We saw in Section 3.3, that for
N = 212 the classical Galerkin FEM involves 16, 769, 025 degrees of freedom, com-
pared to 122, 625 for the two-scale method. This is further reduced to 45, 057

http://www.maths.nuigalway.ie/~niall/SparseGrids/MultiScale_Projector.m
http://www.maths.nuigalway.ie/~niall/SparseGrids/Test_FEM.m

Introduction to analysis and implementation of sparse grid FEMs 21

degrees of freedom for the multiscale method (taking k = log2N − 1). Again com-
paring Figure 1b, Figure 4b and Figure 6b we see that although the nature of the
point-wise errors are quite different, they are all similar in magnitude.

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

Classical FEM Error

Two−scale FEM

Multiscale FEM

N
−1

(a) Rate of convergence

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

2

4

6

x 10
−4

xy

(b) u− u
(5)
64,64

Fig. 6: Left: the convergence of the classical, two-scale and multiscale methods.
Right: error in the multiscale solution with N = 64 and k = 5

4.5 Hierarchical basis

The standard choice of basis used in the implementation of a sparse grid method
is generally the hierarchical basis ([20]), which is quite different from that given
in (4.9). The most standard reference for sparse grids is the work of Bungartz and
Griebel [3], so we adopt their notation.

The hierarchical basis for the (full) space VN,N (Ω), is⊕
m,n=1,...,log2N

Wm,n, where Wm,n =
{
ψ2m

i ψ2n

j

}i=1:2:2m−1

j=1:2:2n−1
. (4.11)

This is shown in Figure 7 for the case N = 8. The hierarchical basis is con-
structed from 9 subspaces. Recall that each dot on these grids represents a basis
function with support on the adjacent four rectangles. For example, W11 is shown
in the top left, and represents a simple basis function with support on the whole
domain. In the subspace W33 in the bottom right of Figure 7 each basis function
has support within the rectangle on which it is centred. No two basis functions in
a given subspace share support within that subspace.

A sparse grid method is constructed by omitting a certain number of the sub-
spaces Wm,n in (4.11). For a typical problem, one uses only those subspaces Wm,n

for which m + n ≤ log2N + 1: compare Figures 3.3 and 3.5 of [3]. This gives the
same spaces as defined by (4.9), taking k = log2N − 1. Expressed in terms of a

hierarchical basis, the basis for V
(k)
N,N is written as⊕

m,n=1,...,log2N
m+n≤log2N+1

Wm,n. (4.12)

22 Stephen Russell, Niall Madden

W11 W21

W12

W31

W13

N = 2 N = 4 N = 8

Fig. 7: Left: All subspaces required to build a hierarchical basis for a full grid
where N = 8. Right: Full grid with basis functions for N = 8.

Both choices give rise to basis functions centred at the same grid points (but with
different support) and have linear systems of the same size, but different structure:
see Figure 9 and Figure 10.

W11 W21

W12

W31

W13

W22

N = 2 N = 4 N = 8

Fig. 8: Left: All subspaces required to build a hierarchical basis for a sparse grid
where N = 8. Right: Sparse grid with basis functions for N = 8.

It is known that this basis leads to reduced sparsity of the linear system (see,
e.g., [9, p. 250]). Numerical experiments have shown that the basis given in (4.9)
leads to fewer non-zeros entries in the system matrix, and so is our preferred
basis. In Figure 9 we compare the sparsity pattern of the system matrices for

Introduction to analysis and implementation of sparse grid FEMs 23

the basis described in (4.9) for the case N = 32 using a natural ordering (left)
and lexicographical ordering (right). For the same value of N , Figure 10 shows
the sparsity patterns for the system matrices constructed using the hierarchical
basis (4.12), again using natural and lexicographical ordering. The matrices in
Figure 10 contain more nonzero entries and are much denser than those in Figure 9.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 3777
0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 3777

Fig. 9: Sparsity patterns for the multiscale method using the basis in (4.9) with
N = 32. Left: unknowns ordered as (4.9). Right: lexicographical ordering.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 5897
0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 5897

Fig. 10: Sparsity patterns using a hierarchical basis (4.12) with N = 32. Left:
unknowns ordered as in (4.12). Right: lexicographical ordering.

5 Comparison of three FEMs

In Figure 6a we presented results that demonstrated that the three methods
achieve similar levels of accuracy. We now wish to quantify if, indeed, the sparse
grid methods are more efficient than the classical method. To do this in a thorough
fashion would require a great deal of effort to

24 Stephen Russell, Niall Madden

– investigate efficient storage of matrices arising from these specialised grids;
– investigate the design of suitable preconditioners for iterative techniques, or

Multigrid methods.

These topics are beyond the scope of this article. Instead, we apply a direct solver,
since it is the simplest possible “black-box” solver and avoids concerns involving
preconditioners and stopping criteria. Therefore we compare the methods with
respect to the wall-clock time taken by MATLAB’s “backslash” solver. Observing
the diagnostic information provided (spparms(’spumoni’,1)), we have verified that
this defaults to the CHOLMOD solver for symmetric positive definite matrices [4].

The results we present were generated on a single node of a Beowulf cluster,
equipped with 32 Mb RAM and two AMD Opteron 2427, 2200 MHz processors,
each with 6 cores. The efficiency of parallelised linear algebra routines can be
highly dependent on the matrix structure. Therefore we present results obtained
both using all 12 cores, and using a single core (enforced by launching MATLAB
with the -singleCompThread option). All times reported are in seconds, and have
been averaged over three runs.

In Table 1 we can see that, for N = 212, over a thousand seconds are required
to solve the system for the classical method on a single core, and 560 seconds with
all 12 cores enabled. (It is notable, that, for smaller problems, the solver was more
efficient when using just 1 core).

When the two-scale method is used, Table 1 shows that there is no great loss
of accuracy, but solve times are reduced by a factor of 3 on 1 core and (roughly)
a factor of 5 on 12 cores. Employing the multiscale method, we see a speed-up of
(roughly) 7 on one core, and 15 on 12 cores.

Table 1: Comparing efficiency of the classical, two-scale, and multiscale FEMs

Classical Galerkin
N 512 1024 2048 4096
Error 4.293e-03 2.147e-03 1.073e-03 5.346e-04
Solver Time (1 core) 3.019 18.309 134.175 1161.049
Solver Time (12 cores) 6.077 26.273 119.168 562.664
Degrees of Freedom 261,121 1,046,529 4,190,209 16,769,025
Number of Non-zeros 2,343,961 9,406,489 37,687,321 150,872,089

Two-scale method
N 512 1000 2197 4096
Error 4.668e-03 2.383e-03 1.082e-03 5.796e-04
Solver Time (1 core) 0.806 4.852 43.702 281.838
Solver Time (12 cores) 0.810 3.274 21.448 105.727
Degrees of Freedom 7,105 17,901 52,560 122,625
Number of Non-zeros 1,646,877 6,588,773 33,234,032 118,756,013

Multiscale method
N 512 1024 2048 4096
Error 4.437e-03 2.219e-03 1.109e-03 5.529e-04
Solver Time (1 core) 0.370 2.280 20.692 150.955
Solver Time (12 cores) 0.384 1.665 7.464 36.469
Degrees of Freedom 4,097 9,217 20,481 45,057
Number of Non-zeros 996,545 3,944,897 15,525,569 61,585,473

Introduction to analysis and implementation of sparse grid FEMs 25

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Classical FEM Error

Two−scale FEM

Multiscale FEM

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Classical FEM Error

Two−scale FEM

Multiscale FEM

Fig. 11: Solve time, in seconds, for linear systems using a direct solver on 1 core
(left) and 12 cores (right)

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Classical FEM Error

Two−scale FEM

Multiscale FEM

10
1

10
2

10
3

10
4

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Classical FEM Error

Two−scale FEM

Multiscale FEM

Fig. 12: The number of degrees of freedom (left) and non-zero entries in the
system matrices (right)

6 Conclusions

There are many published papers on the topic of sparse grid methods, particularly
over the last two decades. Often though, they deal with highly specialized prob-
lems, and the analysis tends to be directed at readers that are highly knowledgeable
in the fields of PDEs, FEMs, and functional analysis. Here we have presented a
style of analysing sparse grid methods in a way that is accessible to a more general
audience. We have also provided snippets of code and details on how to implement
these methods in MATLAB.

The methods presented are not new. However, by treating the usual multiscale
sparse grid method as a generalization of the two-scale method, we have presented
a conceptually simple, yet rigorous, way of understanding and analysing it.

Here we have treated just a a simple two-dimensional problem on a uniform
mesh. However, this approach has been employed to analyse sparse grid methods
for specialised problems whose solutions feature boundary layers, and that are
solved on layer-adapted meshes, see [14,18].

More interesting generalisations are possible, but the most important of these
is to higher dimensional problems. An exposition of the issues involved is planned.

26 Stephen Russell, Niall Madden

Acknowledgements

The work of Stephen Russell is supported by a fellowship from the College of
Science at the National University of Ireland, Galway. The simple approach in
(2.10) in determining the error was shown to us by Christos Xenophontos.

References

1. Susanne C. Brenner and Ridgway L. Scott. The mathematical theory of finite element
methods. 3rd ed. Texts in Applied Mathematics 15. New York, NY: Springer. xvii, 397 p.,
2008.

2. William L. Briggs, Van Emden Henson, and Steve F. McCormick. A multigrid tutorial.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition,
2000.

3. Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numer., 13:147–269,
2004.

4. Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam.
Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/down-
date. ACM Trans. Math. Software, 35(3):Art. 22, 14, 2008.

5. T. A. Driscoll, N. Hale, and L. N. Trefethen (eds). Chebfun Guide. Pafnuty Publications,
Oxford, 2014.

6. Tobin A. Driscoll. Learning MATLAB. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2009.

7. Mark S. Gockenbach. Understanding and implementing the finite element method. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006.

8. Christian Grossmann and Hans-Görg Roos. Numerical treatment of partial differential
equations. Universitext. Springer, Berlin, 2007. Translated and revised from the 3rd
(2005) German edition by Martin Stynes.

9. Markus Hegland, Jochen Garcke, and Vivien Challis. The combination technique and
some generalisations. Linear Algebra Appl., 420(2-3):249–275, 2007.

10. Desmond J. Higham and Nicholas J. Higham. MATLAB guide. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2005.

11. Alan J. Laub. Matrix analysis for scientists & engineers. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2005.

12. Qun Lin, Ningning Yan, and Aihui Zhou. A sparse finite element method with high
accuracy. I. Numer. Math., 88(4):731–742, 2001.

13. Fang Liu, Niall Madden, Martin Stynes, and Aihui Zhou. A two-scale sparse grid method
for a singularly perturbed reaction-diffusion problem in two dimensions. IMA J. Numer.
Anal., 29(4):986–1007, 2009.

14. N. Madden and S. Russell. A multiscale sparse grid finite element method for a two-
dimensional singularly perturbed reaction-diffusion problem. Adv. Comput. Math., (to
appear).

15. Cleve B. Moler. Numerical computing with MATLAB. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2004.

16. Octave community. GNU Octave 3.8.1, 2014.
17. C. Pflaum and A. Zhou. Error analysis of the combination technique. Numer. Math.,

84(2):327–350, 1999.
18. Stephen Russell and Niall Madden. A multiscale sparse grid technique for a two-

dimensional convection-diffusion problem with exponential layers. Lect. Notes Comput.
Sci. Eng. Springer, Berlin, 2015, to appear.

19. Endre Süli and David F. Mayers. An introduction to numerical analysis. Cambridge
University Press, Cambridge, 2003.

20. Harry Yserentant. On the multilevel splitting of finite element spaces. Numer. Math.,
49(4):379–412, 1986.

	1 Introduction
	2 standard Galerkin FEM
	3 two-scale sparse grid FEM
	4 multiscale sparse grid FEM
	5 Comparison of three FEMs
	6 Conclusions

