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Abstract: Solving the Stokes equation by an optimal domain decompositionmethod derived algebraically in-
volves the use of nonstandard interface conditions whose discretisation is not trivial. For this reason the use
of approximation methods such as hybrid discontinuous Galerkin appears as an appropriate strategy: on the
one hand they provide the best compromise in terms of the number of degrees of freedom in between stan-
dard continuous and discontinuous Galerkin methods, and on the other hand the degrees of freedom used
in the nonstandard interface conditions are naturally defined at the boundary between elements. In this pa-
per, we introduce the coupling between awell chosen discretisationmethod (hybrid discontinuous Galerkin)
and a novel and efficient domain decomposition method to solve the Stokes system. We present the detailed
analysis of the hybrid discontinuous Galerkin method for the Stokes problem with nonstandard boundary
conditions. The full stability and convergence analysis of the discretisation method is presented, and the re-
sults are corroborated by numerical experiments. In addition, the advantage of the new preconditioners over
more classical choices is also supported by numerical experiments.

Keywords: Stokes Problem, Hybrid Discontinuous Galerkin Methods, Domain Decomposition, Restricted
Additive Schwarz Methods

MSC 2010: 65F10, 65N22, 65N30, 65N55

1 Introduction
Discontinuous Galerkin (DG) methods have been first introduced in the early 1970s [25] and they have bene-
fited of a wide interest from the scientific community. The main advantages of these methods are their gener-
ality and flexibility as they can be used for a variety of partial differential equations on unstructuredmeshes.
Moreover, they can preserve local properties such as mass and momentum conservation while ensuring a
high-order accuracy. However, the cost of these advantages is a larger amount of degrees of freedom in com-
parison to the continuous Galerkin methods [17] for the same approximation order.
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A good compromise between the previous methods, while preserving the high order, are the hybridised
versions of DGusing divergence conforming spaces such asRaviart–Thomas (RT) andBrezzi–Douglas–Marini
(BDM) [2]. Thesemethods are a subset of the hybrid discontinuous Galerkin (HDG)methods, introduced in [8]
for second-order elliptic problems, and extended to three-dimensional Stokes equation in [7]. The authors
present there the mixed formulation of HDG methods defined locally on each element. They consider many
types of boundary conditions that involve normal and tangential velocity, pressure, and tangential stress. The
formulations of themethods are similar, the only difference lies in the choice of thenumerical traces. A refined
analysis of HDG methods for the Stokes equation with Dirichlet boundary conditions was presented in [9],
where optimal convergence in theHDGnorm is proven, and superconvergent postprocessings are introduced.
An alternative strategy to approximate the Stokes problemwas used in [16], where a combination of HDG and
a symmetric interior penalty (somehow linked to the work [27]) is presented and analysed.

In a further paper [15] this approach is extended to Darcy, and coupled Darcy–Stokes flows. The new
formulation includes different degrees of polynomials for finite element spaces associatedwith different vari-
ables.

In all HDG discretisations, one important component is the Lagrange multiplier defined on the inter ele-
ment edges (faces in 3D). In the work [22] the authors approximate the Navier–Stokes equation using H(div)-
conforming spaces (rather than the usual H1-conforming ones) together with an HDG approach. Now, in
order to reduce the number of degrees of freedom needed for the Lagrange multiplier, the authors introduce
an edge-wise projection into a finite element space of lower degree. This projection was also shown to be of
paramount importance to establish the connection between the hybrid high-order [11] and the HDGmethods
presented in [6].

Even considering the decrease of the number of degrees of freedom provided by the HDG methods with
projection,modern applications lead to linear systemswhose size is too large to allow theuse of direct solvers.
Thus, parallel solvers are becoming increasingly important in scientific computing. A natural paradigm to
take advantage of modern parallel architectures is the Domain Decomposition method, see e.g. [12, 24, 28,
31]. Domain decomposition methods are iterative solvers based on a decomposition of a global domain into
subdomains. At each iteration, one (or two) boundary value problem(s) are solved in each subdomain and
the continuity of the solution at the interfaces between subdomains is only satisfied at convergence of the
iterative procedure. The partial differential equation is the one of the global problem.

For Additive Schwarz methods and Schur complement methods, the boundary conditions on the inter-
faces between subdomains, or, interface conditions (IC), are Dirichlet or Neumann boundary conditions. For
scalar equations there is a consensus on this choice of IC. On the other hand, for systems of differential equa-
tions, such as the Stokes or incompressible elasticity equations, alternatives like normal velocity-tangential
flux (NVTF) or tangential velocity-normal flux (TVNF) IC should be superior to the pure velocity (Dirichlet
like) or pure stress (Neumann like) IC, see [12, Section 6.6] and the references therein. In [19], this choice
was motivated by symmetry considerations, while in [4, 5, 14], they were obtained by an analysis of the sys-
tems of partial differential equations by symbolic techniques, mostly linked to the Smith factorization [29].
Similar attempts to derive more intrinsic IC to the nature of the equation to solve were derived [13] for the
Euler system.

Due to the difficulty of implementing these IC, previous numerical testswere restricted to decompositions
where the boundaries of subdomains are rectilinear so that the normal to the interface is easy to define. The
underlying domain decomposition method was a Schur complement method. That is mainly the reason we
have considered and analysed a specific HDG method where this kind of degrees of freedom are naturally
present.

In this paper, we want to combine appropriate HDG discretisation and the associated domain decompo-
sition methods mentioned above using nonstandard IC. The combination of the two is meant to provide a
competitive solving strategy for this kind of partial differential equation system. A different, but somewhat
related, approach can be found in [1] where a DG type discretisation is coupled to a discrete Helmholtz de-
composition to propose some preconditioners.

Concerning the HDG discretisation, in approach similar to the one presented in this work, but using com-
pletely discontinuous spaces, is given in [23]. Our analysis is related to the one in that paper, but the method
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presented herein uses H(div)-conforming spaces, which implies in turn that the Lagrange multipliers are
scalar valued. The combination of these two facts reduces the number of degrees of freedom significantly. In
addition, the use of nonstandard boundary conditions (motivated by the newly defined domain decomposi-
tion preconditioners) makes the analysis somehow more involved.

The rest of the paper is organised as follows. To start with, we introduce the problem and notation in
Section 2. In Section 3, we present the hybridisation of a symmetric interior penalty Galerkin method that
allows us to impose the TVNF and NVTF boundary conditions in quite a natural way. The formulation is
similar to the one from [22] with Dirichlet boundary conditions. In addition to different kinds of boundary
conditions,we include a local edge-basedprojection in order to reduce thedimensionof the space of Lagrange
multipliers. Our analysis follows the one from [22] (see also [21] for a more detailed version). Thanks to the
HDG discretisation, we can consider domain decomposition methods with arbitrary shape of the interfaces
and Schwarz type methods. In Section 4, the Additive Schwarz methods are defined at the algebraic level.
Section 5 contains the numerical results, including the convergence validation of the HDG method and a
comparison of the domain decomposition preconditioners. Finally, some conclusions are drawn.

2 Notation and Preliminary Results
Let Ω be an open polygonal domain in ℝ2 with Lipschitz boundary Γ := ∂Ω. We use boldface font for tensor
or vector variables, e.g. u is a velocity vector field. The scalar variables will be italic, e.g. p denotes a pres-
sure scalar value. We define the stress tensor σ := ν∇u − pI and the flux σn := σn. In addition, we denote
normal and tangential components as follows: un := u ⋅ n, ut := u ⋅ t, σnn := σn ⋅ n, σnt := σn ⋅ t, where n is
the outward unit normal vector to the boundary Γ and t is a vector tangential to Γ such that n ⋅ t = 0.

For D ⊂ Ω, we use the standard L2(D) space with the following norm:

‖f‖2D := ∫
D

f 2 dx for all f ∈ L2(D).

Let us define, for m ∈ ℕ, the following Sobolev spaces:

Hm(D) := {v ∈ L2(D) : ∂αv ∈ L2(D) for all |α| ≤ m},
H(div, D) := {v ∈ [L2(D)]2 : ∇ ⋅ v ∈ L2(D)},

where, for α = (α1, α2) ∈ ℕ2, |α| = α1 + α2, and

∂α = ∂|α|
∂xα11 ∂xα22

.

In addition, we will use following standard semi-norm and norm for the Sobolev space Hm(D):

|f|2Hm(D) := ∑|α|=m ‖∂α f‖2D , ‖f‖2Hm(D) := m
∑
k=0 |f|2Hk(D) for all f ∈ Hm(D).

In this work, we consider the two-dimensional Stokes problem

{
−ν∆u + ∇p = f in Ω,
∇ ⋅ u = 0 in Ω,

(2.1)

where u : Ω̄ → ℝ2 is the unknown velocity field, p : Ω̄ → ℝ the pressure, ν > 0 the viscosity, which is con-
sidered to be constant, and f ∈ [L2(Ω)]2 is a given function. For g ∈ L2(Γ)we consider two types of boundary
conditions:
∙ tangential-velocity and normal-flux (TVNF)

{
σnn = g on Γ,
ut = 0 on Γ,

(2.2)
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∙ normal-velocity and tangential-flux (NVTF)

{
σnt = g on Γ,
un = 0 on Γ,

(2.3)

which together with (2.1) define two boundary value problems. We will detail the analysis for the TVNF
boundary value problem

{{{{{{
{{{{{{
{

−ν∆u + ∇p = f in Ω,
∇ ⋅ u = 0 in Ω,
σnn = g on Γ,
ut = 0 on Γ,

(2.4)

since considering the NVTF boundary conditions (2.3) instead is very similar. Wewill just add a remarkwhen
necessary to stress the differences between them. The restriction to homogeneous Dirichlet conditions on ut
is made only to simplify the presentation.

Let {Th}h>0 be a regular family of triangulations of Ω̄ made of triangles. For each triangulation Th,
Eh denotes the set of its edges. In addition, we set hK := diam(K) for each K ∈ Th, and h := maxK∈Th hK . We
define the following Sobolev spaces on the triangulation Th and the set of all edges in Eh:

L2(Eh) := {v : v|E ∈ L2(E) for all E ∈ Eh},
Hm(Th) := {v ∈ L2(Ω) : v|K ∈ Hm(K) for all K ∈ Th} for m ∈ ℕ,

with the corresponding broken norms.
The following results will be very useful in what follows.

Lemma 2.1 (Inverse and Trace Inequalities). There exist C, Cmax > 0, independent of hK , such that for every
K ∈ Th and every polynomial function v in K the following inequalities hold:

|v|Hs(K) ≤ Chm−sK |v|Hm(K), 0 ≤ m ≤ s, (2.5)

h
1
2
K ‖v‖∂K ≤ Cmax‖v‖K . (2.6)

Moreover, there exists C > 0, independent of hK , such that for any v ∈ H1(K), the following local trace inequality
holds:

‖v‖∂K ≤ C(h
− 12
K ‖v‖K + h

1
2
K |v|H1(K)). (2.7)

Proof. For (2.5) see [17, Lemma 1.138] and for (2.6) see [10, Lemma 1.46]. The discrete trace inequality (2.7)
follows by standard scaling arguments.

We now introduce the finite element spaces used for discretisation. First, we present them for the particular
case in which we consider the TVNF boundary condition. For this case for k ≥ 1, we discretise the velocity
using the Brezzi–Douglas–Marini space (see [2, Section 2.3.1]) given by

BDMk
h := {vh ∈ H(div, Ω) : vh|K ∈ [ℙk(K)]

2 for all K ∈ Th}.

The choice of the above finite element spaces is motivated by two requirements. On the one hand, we have
imposed that the finite element space must be conforming in H(div, Ω), while on the other hand, it has to
satisfy the inf-sup condition with respect to a broken H1-norm of the velocity. The BDM space appears then
as a natural alternative satisfying both these requirements. In fact, other popular alternatives, such as the
Raviart–Thomas space, while conforming in H(div, Ω) do not satisfy the inf-sup condition with respect to the
norm used in this work.

In addition, for 1 ≤ m ≤ k + 1 we denote by Πk : [Hm(Ω)]2 → BDMk
h the BDM projection defined in [2,

Section 2.5]. TheHDG formulation includes a Lagrangemultiplier over the internal edges. In order to propose
a discretisation with fewer degrees of freedom, we discretise the Lagrange multiplier ũ using the spaces

Mk−1
h := {ṽh ∈ L2(Eh) : ṽh|E ∈ ℙk−1(E) for all E ∈ Eh},

Mk−1
h,0 := {ṽh ∈ Mk−1

h : ṽh = 0 on Γ}.
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Furthermore, we introduce for all E ∈ Eh the L2(E)-projection Φk−1
E : L2(E) → ℙk−1(E) defined as follows. For

every w̃ ∈ L2(E), Φk−1
E (w̃) is the unique element of ℙk−1(E) satisfying

∫
E

Φk−1
E (w̃)ṽh ds = ∫

E

w̃ṽh ds for all ṽh ∈ ℙk−1(E),
and we define Φk−1 : L2(Eh) → Mk−1

h by Φk−1|E := Φk−1
E for all E ∈ Eh.

Let us denote Vh := BDMk
h ×M

k−1
h,0 . The pressure is discretised using the following space:

Qk−1
h := {qh ∈ L2(Ω) : qh|K ∈ ℙk−1(K) for all K ∈ Th}.

In addition, we define the local L2(K)-projection Ψk−1
K : L2(K) → ℙk−1(K) for each K ∈ Th defined as follows.

For every w ∈ L2(K), Ψk
K(w) is the unique element of ℙk−1(K) satisfying
∫
K

Ψk−1
K (w)vhdx = ∫

K

wvhdx for all vh ∈ ℙk−1(K).
We will also use the following results.

Lemma 2.2 (Approximation Results). There exists C > 0, independent of hK , such that for all v ∈ [Hm(K)]2 and
v ∈ Hm(K), 1 ≤ m ≤ k + 1, the following interpolation estimates hold:
∙ local Brezzi–Douglas–Marini approximation

‖v − Πk(v)‖K ≤ ChmK |v|Hm(K), ‖v − Πk(v)‖H1(K) ≤ Chm−1K |v|Hm(K), (2.8)

∙ trace L2-projection approximation

‖v − Φk(v)‖∂K ≤ Ch
m− 12
K |v|Hm(K), (2.9)

∙ local L2-projection approximation

‖v − Ψk
K(v)‖K ≤ Ch

m
K |v|Hm(K), |v − Ψk

K(v)|H1(K) ≤ Chm−1K |v|Hm(K). (2.10)

Proof. For (2.8) see [2, Proposition 2.5.1], for (2.9) see [18, Lemma III.2.10], and for (2.10) see the proof of
[17, Theorem 1.103].

3 Hybrid Discontinuous Galerkin Method
In this section, we introduce the HDG method proposed in this work, study its well-posedness, and analyse
its error.

3.1 The Discrete Problem

Fromnowonwewill use∇ to denote the element-wise gradient. First, wemultiply the first equation from (2.1)
by a test function vh ∈ BDMk

h and integrate by parts. This gives

∫
Ω

(−ν∆u + ∇p) ⋅ vh dx = ∑
K∈Th

(∫
K

ν∇u : ∇vh dx − ∫
K

p∇ ⋅ vh dx − ∫
∂K

ν∂nuvh ds + ∫
∂K

p(vh)n ds). (3.1)

Since the normal and tangential vectors are perpendicular (n ⋅ t = 0), we can split (3.1) as

∫
Ω

(−ν∆u + ∇p) ⋅ vh dx = ∑
K∈Th

(∫
K

ν∇u : ∇vh dx − ∫
K

p∇ ⋅ vh dx − ∫
∂K

σnt(vh)t ds − ∫
∂K

σnn(vh)n ds). (3.2)
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For the solution of the Stokes problem (2.1), σn is continuous across all interior edges. Moreover, since
vh ∈ BDMk

h, we see that (vh)n is continuous across all interior edges, and thus we can rewrite (3.2) as

∫
Ω

(−ν∆u + ∇p) ⋅ vh dx = ∑
K∈Th

(∫
K

ν∇u : ∇vh dx − ∫
K

p∇ ⋅ vh dx − ∫
∂K

σnt(vh)t ds) − ∫
Γ

σnn(vh)n ds. (3.3)

In addition, since σn is continuous across all interior edges, we have

∑
K∈Th

∫
∂K

σnt ṽh ds = 0 for all ṽh ∈ Mk−1
h,0 ,

and we can add this to (3.3) to get

∫
Ω

(−ν∆u + ∇p) ⋅ vh dx = ∑
K∈Th

(∫
K

ν∇u : ∇vh dx − ∫
K

p∇ ⋅ vh dx − ∫
∂K

σnt((vh)t − ṽh) ds) − ∫
Γ

σnn(vh)n ds. (3.4)

Denoting ũ = ut on Eh leads to (ut − ũ) = Φk−1(ut − ũ) = 0 on Eh. Applying the boundary conditions (2.2), we
can rewrite (3.4) as

∫
Ω

(−ν∆u + ∇p) ⋅ vh dx = ∑
K∈Th

(∫
K

ν∇u : ∇vh dx − ∫
K

p∇ ⋅ vh dx

− ∫
∂K

ν(∂nu)t((vh)t − ṽh) ds ± ∫
∂K

ν(ut − ũ)(∂nvh)t ds

+ ν τ
hK
∫
∂K

Φk−1(ut − ũ)Φk−1((vh)t − ṽh) ds) − ∫
Γ

g(vh)n ds,

where τ > 0 is a stabilisation parameter. Hence, we define the velocity bilinear form a : Vh × Vh → ℝ as

a((wh , w̃h), (vh , ṽh)) := ∑
K∈Th

(∫
K

ν∇wh : ∇vh dx − ∫
∂K

ν(∂nwh)t((vh)t − ṽh) ds

+ ε ∫
∂K

ν((wh)t − w̃h)(∂nvh)t ds

+ ν τ
hK
∫
∂K

Φk−1((wh)t − w̃h)Φk−1((vh)t − ṽh) ds), (3.5)

where ε ∈ {−1, 1} and τ > 0 is a stabilisation parameter, and b : Vh × Qk−1
h → ℝ as

b((vh , ṽh), qh) := − ∑
K∈Th

∫
K

qh∇ ⋅ vh dx.

With these definitions we propose the HDG method for the TVNF boundary value problem (2.4):
Find (uh , ũh , ph) ∈ Vh × Qk−1

h such that for all (vh , ṽh , qh) ∈ Vh × Qk−1
h ,

{{{
{{{
{

a((uh , ũh), (vh , ṽh)) + b((vh , ṽh), ph) = ∫
Ω

f vh dx + ∫
Γ

g(vh)n ds,

b((uh , ũh), qh) = 0.
(3.6)

Remark 3.1. The use of H(div)-conforming spaces not only decreases the number of degrees of freedom in
comparison to [23], but leads as well to a simpler bilinear form b, as the jump terms appearing in that refer-
ence are no longer needed for stability or consistency.
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3.2 Well-Posedness of the Discrete Problem

Let us consider the following semi-norm:

|||(wh , w̃h)|||2 := ν ∑
K∈Th

(|wh|2H1(K) + hK‖∂nwh‖2∂K +
τ
hK
‖Φk−1((wh)t − w̃h)‖2∂K). (3.7)

Lemma 3.2. The semi-norm |||⋅||| defined by (3.7) is a norm on Vh.

Proof. Since |||⋅||| is a semi-norm, we only need to show that

|||(wh , w̃h)||| = 0 󳨐⇒ wh = 0 and w̃h = 0.

Let us suppose (wh , w̃h) ∈ Vh and |||(wh , w̃h)||| = 0. Then ∇wh = 0 in all K ∈ Th, and thus wh|K = CK for all
K ∈ Th. Now, since wh ∈ [ℙ0(K)]2 in every K, we have

‖Φk−1((wh)t − w̃h)‖∂K = 0 󳨐⇒ (wh)t = w̃h in each E ∈ Eh .

Since w̃h is single valued on all the edges in Eh, we have that (wh)t is continuous in Ω. Moreover, wh belongs
to BDMk

h, so (wh)n is also continuous in Ω. Then, wh is continuous in Ω, and thus wh = C ∈ ℝ2 in Ω. Finally,

(wh)t = (C)t = 0 on Γ 󳨐⇒ wh = 0 in Ω,

which finishes the proof since w̃h = (wh)t on every edge.

Lemma 3.3. There exists C > 0 such that, for all (w, w̃), (v, ṽ) ∈ [H1(Ω) ∩ H2(Th)]2 × L2(Eh) and q ∈ L2(Ω),
we have

|a((w, w̃), (v, ṽ))| ≤ C|||(w, w̃)||| |||(v, ṽ)|||, (3.8)

|b((w, w̃), q)| ≤ √2
ν
|||(w, w̃)||| ‖q‖Ω . (3.9)

Proof. Let us start with (3.8). Using the Cauchy–Schwarz inequality, we get

|a((w, w̃), (v, ṽ))| ≤ 2|||(w, w̃)||| |||(v, ṽ)||| + ∑
K∈Th

(ν‖∂nw‖∂K‖vt − ṽ‖∂K + ν‖∂nv‖∂K‖wt − w̃‖∂K).

Therefore, using the triangle inequality and the trace L2-projection approximation (2.9), we get

‖∂nw‖∂K‖vt − ṽ‖∂K ≤ ‖∂nw‖∂K‖vt − Φk−1(vt)‖∂K + ‖∂nw‖∂K‖Φk−1(vt − ṽ)‖∂K
≤ c̃1√hK‖∂nw‖∂K |v|H1(K) + ‖∂nw‖∂K‖Φk−1(vt − ṽ)‖∂K .

Thus, using the Cauchy–Schwarz inequality gives

ν‖∂nw‖∂K‖vt − ṽ‖∂K ≤ c1|||(w, w̃)||| |||(v, ṽ)|||,
ν‖∂nv‖∂K‖wt − w̃‖∂K ≤ c2|||(v, ṽ)||| |||(w, w̃)|||.

Finally, we get (3.8) for C = (2 + c1 + c2). The continuity (3.9) is analogous.

To show the well-posedness of (3.6) we need the ellipticity of the bilinear form a and an inf-sup condition for
the bilinear form b. We start by showing that a is elliptic with respect to |||⋅|||.

Lemma 3.4. There exists α > 0 such that for all (vh , ṽh) ∈ Vh,

a((vh , ṽh), (vh , ṽh)) ≥ α|||(vh , ṽh)|||2. (3.10)

If ε = −1 in the definition (3.5), then inequality (3.10) only holds under the additional hypothesis of τ being
large enough. If ε = 1 in (3.5), then inequality (3.10) holds for arbitrary τ.
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Proof. First, since ∂nvh|E ∈ [ℙk−1(E)]2 for all E ∈ Eh, we have
a((vh , ṽh), (vh , ṽh)) = ∑

K∈Th

(ν|vh|2H1(K) − ν(1 − ε) ∫
∂K

(∂nvh)tΦk−1((vh)t − ṽh) ds
+ ν τ

hK
‖Φk−1((vh)t − ṽh)‖2∂K). (3.11)

To bound the middle term in terms of the other two, we consider two cases.

Case 1: ε = 1. Then (3.11) reduces to

a((vh , ṽh), (vh , ṽh)) = ∑
K∈Th

(ν|vh|2H1(K) + ν τ
hK
‖Φk−1((vh)t − ṽh)‖2∂K). (3.12)

It only remains to show that the right-hand side of (3.12) is an upper bound (up to a constant) for the norm
|||⋅||| given by (3.7). Using the discrete trace inequality (2.6), we get

∑
K∈Th

hK‖∂nvh‖2∂K ≤ ∑
K∈Th

C2max|vh|2H1(K),
and then

|||(vh , ṽh)|||2 ≤ (1 + C2max) ∑
K∈Th

ν(|vh|2H1(K) + τ
hK
‖Φk−1((vh)t − ṽh)‖2∂K), (3.13)

which proves (3.10) with α = 1/(1 + C2max).

Case 2: ε = −1. Then (3.11) becomes

a((vh , ṽh), (vh , ṽh)) = ∑
K∈Th

(ν|vh|2H1(K) − 2ν ∫
∂K

(∂nvh)tΦk−1((vh)t − ṽh) ds + ν τ
hK
‖Φk−1((vh)t − ṽh)‖2∂K).

Using the Cauchy–Schwarz inequality, we deduce

a((vh , ṽh), (vh , ṽh)) ≥ ∑
K∈Th

(ν|vh|2H1(K) − 2ν‖∂nvh‖∂K‖Φk−1((vh)t − ṽh)‖∂K + ν τ
hK
‖Φk−1((vh)t − ṽh)‖2∂K).

Since vh ∈ BDMk
h is a piecewise polynomial, we can apply the discrete trace inequality (2.6) to the second

term, followed by Young’s inequality to arrive at

a((vh , ṽh), (vh , ṽh)) ≥ ∑
K∈Th

(ν|vh|2H1(K) − 2ν Cmax

√hK
|vh|H1(K)‖Φk−1((vh)t − ṽh)‖∂K + ν τ

hK
‖Φk−1((vh)t − ṽh)‖2∂K)

≥ ∑
K∈Th

(
ν
2 |vh|

2
H1(K) + ν τ − 2C2max

hK
‖Φk−1((vh)t − ṽh)‖2∂K)

≥ νC ∑
K∈Th

(|vh|2H1(K) + τ
hK
‖Φk−1((vh)t − ṽh)‖2∂K).

Finally, if we suppose τ > 2C2max and set

C := min{12 ,
τ − 2C2max

τ } > 0,

then using (3.13), we get (3.10) for α = C/(1 + C2max).

The next step towards stability is proving the inf-sup condition for b(⋅, ⋅).

Lemma 3.5. There exists β > 0 independent of hK such that

sup(vh ,ṽh)∈Vh

b((vh , ṽh), qh)
|||(vh , ṽh)|||

≥
β
√ν
‖qh‖Ω for all qh ∈ Qk−1

h .
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Proof. According to the Fortin criterion, see [17, Lemma 4.19], we need to prove that there exists a Fortin
operator Π : [H1(Ω)]2 → Vh such that for every v ∈ [H1(Ω)]2 the following conditions hold:

b((v, ṽ), qh) = b(Π(v), qh) for all qh ∈ Qk−1
h , (3.14)

|||Π(v)||| ≤ C√ν‖v‖H1(Ω). (3.15)

Let v ∈ [H1(Ω)]2 and let us consider the operator Π(v) := (Πk(v), Φk−1(vt)). It is well known, see [2, Sec-
tion 2.5], that Πk satisfies (3.14). To prove (3.15) we denote (wh , w̃h) := Π(v). Then using the discrete trace
inequality (2.6) and the fact that the projection is a bounded operator, we get

|||(wh , w̃h)|||2 = ∑
K∈Th

ν(|wh|2H1(K) + hK‖∂nwh‖2∂K +
τ
hK
‖Φk−1((wh)t − w̃h)‖2∂K)

≤ ∑
K∈Th

ν((1 + C2max)|wh|2H1(K) + τ
hK
‖(wh)t − w̃h‖2∂K). (3.16)

Applying the triangle inequality for the last term of (3.16), we arrive at

|||(wh , w̃h)|||2 ≤ ∑
K∈Th

ν((1 + C2max)|wh|2H1(K) + 2τhK (‖(wh)t − vt‖2∂K + ‖vt − w̃h‖2∂K))

=: ∑
K∈Th

ν((1 + C2max)T
K
1 +

2τ
hK
(TK

2 + T
K
3 )).

Using the stability of Πk leads to
TK
1 = |Π

k(v)|2H1(K) ≤ c1|v|2H1(K). (3.17)

Using (2.8) and the local trace inequality (2.7), we get

TK
2 ≤ ‖v − wh‖2∂K ≤ c̃1(

1
hK
‖v − wh‖2K + hK |v − wh|2H1(K))

≤ c̃1(c̃2hK |v|2H1(K) + c̃3hK |v|2H1(K))
≤ c̃1(c̃2 + c̃3)hK |v|2H1(K). (3.18)

Finally, using the trace L2-projection approximation (2.9) for the third term, we get

TK
3 ≤ c̃4hK |v|

2
H1(K). (3.19)

Then collecting (3.17), (3.18) and (3.19), we obtain (3.15) with

C := √(1 + C2max)c1 + 2τc̃1(c̃2 + c̃3) + 2τc̃4,

which finishes the proof.

Using the last two results and the standard theory of variational problemswith constraints [2, Section4.2],we
deduce there exists a unique solution of (3.6). In addition, thanks to the derivation carried out in Section 3.1,
method (3.6) is consistent as the following result shows.

Lemma 3.6 (Consistency). Let (u, p) ∈ [H1(Ω) ∩ H2(Th)]2 × L2(Ω) be the solution of problem (2.4) and ũ = ut
on all edges of Eh. If (uh , ũh , ph) ∈ Vh × Qk−1

h solves (3.6), then for all (vh , ṽh , qh) ∈ Vh × Qk−1
h the following

holds:
a((u − uh , ũ − ũh), (vh , ṽh)) + b((u − uh , ũ − ũh), qh) + b((vh , ṽh), p − ph) = 0.

3.3 Error Analysis

In this section, we present the error estimates for the method. These estimates are proved using the norm

|||(u, ũ, p)|||h := |||(u, ũ)||| +
1
√ν
‖p‖Ω .

The first step is the following version of Cea’s lemma.
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Lemma 3.7. Let (u, p) ∈ [H1(Ω) ∩ H2(Th)]2 × L2(Ω) be the solution of (2.4), ũ = ut on all edges in Eh, and let
(uh , ũh , ph) ∈ Vh × Qk−1

h be the solution of (3.6). Then there exists C > 0, independent of h and ν, such that

|||(u − uh , ũ − ũh , p − ph)|||h ≤ C inf(vh ,ṽh ,qh)∈Vh×Qk−1
h

|||(u − vh , ũ − ṽh , p − qh)|||h . (3.20)

Proof. Let us denote

B((wh , w̃h , rh), (vh , ṽh , qh)) := a((wh , w̃h), (vh , ṽh)) + b((vh , ṽh), rh) + b((wh , w̃h), qh).

Using Lemmas 3.4 and 3.5, and [17, Proposition 2.36], we get the following stability for B: There exists
βB > 0, independent of h and ν, such that for all (vh , ṽh , qh) ∈ Vh × Qk−1

h there exists (wh , w̃h , rh) ∈ Vh × Qk−1
h

such that |||(wh , w̃h , rh)|||h = 1, and

B((vh , ṽh , qh), (wh , w̃h , rh)) ≥ βB|||(vh , ṽh , qh)|||h . (3.21)

Now Lemma 3.3 yields the following continuity for B: there exists CB > 0 such that

|B((wh , w̃h , rh), (vh , ṽh , qh))| ≤ CB|||(wh , w̃h , rh)|||h|||(vh , ṽh , qh)|||h . (3.22)

Let (vh , ṽh , qh) ∈ Vh. Then, using Lemma 3.6, the triangle inequality, (3.21) and (3.22), we arrive at

|||(vh − uh , ṽh − ũh , qh − ph)|||h ≤
1
βB

B((vh − u, ṽh − ũ, qh − p), (wh , w̃h , rh))

+
1
βB

B((u − uh , ũ − ũh , p − ph), (wh , w̃h , rh))

≤
CB
βB
|||(vh − u, ṽh − ũ, qh − p)|||h .

Thus, we get (3.20) with C := 1 + CB/βB.

We prove the following error estimate using standard interpolation estimates.

Lemma 3.8 (HDG Error). Let us assume (u, p) ∈ [H1(Ω) ∩ Hk+1(Th)]2 × Hk(Th) is the solution of (2.4), and
ũ = ut on all edges in Eh. If (uh , ũh , ph) ∈ Vh × Qk−1

h solves the discrete problem (3.6), then there exists C > 0,
independent of h, such that

|||(u − uh , ũ − ũh , p − ph)|||h ≤ Chk(√ν‖u‖Hk+1(Th) + 1
√ν
‖p‖Hk(Th)). (3.23)

Proof. Let us consider the Fortin operator Π defined in the proof of Lemma 3.5. If Π(u) = (wh , w̃h), then by
using the triangle inequality and boundedness of the projection Φk−1, we get
|||(u − wh , ũ − w̃h)|||2 = ∑

K∈Th

ν(|u − wh|2H1(K) + hK‖∂n(u − wh)‖2∂K +
τ
hK
‖Φk−1((u − wh)t − (ũ − w̃h))‖2∂K)

≤ ∑
K∈Th

ν(|u − wh|2H1(K) + hK‖∂n(u − wh)‖2∂K +
2c1τ
hK
(‖u − wh‖2∂K + ‖ũ − w̃h‖2∂K))

=: ∑
K∈Th

ν(TK
1 + hKT

K
2 +

2c1τ
hK
(TK

3 + T
K
4 )). (3.24)

For the first term from (3.24), we use the BDM approximation (2.8) to get

TK
1 ≤ c2h

2k
K |u|

2
Hk+1(K). (3.25)

Next we use the local trace inequality (2.7) to get

TK
2 ≤ c3(

1
hK
|u − wh|2H1(K) + hK |u − wh|2H2(K)). (3.26)
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Let Lku be the usual Lagrange interpolant of degree k of u (see [17, Example 1.31]). Using the triangle in-
equality followedby the local inverse inequality (2.5), the local Lagrange approximation [17, Example 1.106]
and (2.8), we see that (3.26) becomes

TK
2 ≤ c3(

1
hK
|u − wh|2H1(K) + 2hK |u − Lku|2H2(K) + 2hK |Lku − wh|2H2(K))

≤ c3((c4 + 2c5)h2k−1K |u|
2
Hk+1(K) + 2c6hK

|Lku − wh|2H1(K))
≤ c3((c4 + 2c5)h2k−1K |u|

2
Hk+1(K) + 4c6hK

|Lku − u|2H1(K) + 4c6hK
|u − wh|2H1(K))

≤ c3(c4 + 2c5 + 4c6(c7 + c8))h2k−1K |u|
2
Hk+1(K). (3.27)

For the third term in (3.24), we use (2.7) and (2.8) to get

TK
3 ≤ c9(

1
hK
‖u − wh‖2K + hK |u − wh|2H1(K)) ≤ c9c10h2k+1K |u|

2
Hk+1(K). (3.28)

The last term in (3.24) is bounded using (2.9) as follows:

TK
4 ≤ c11h

2k+1
K |u|

2
Hk+1(K). (3.29)

Finally, the local L2-projection approximation (2.10) gives

inf
q∈Qk−1

h

‖p − qh‖Ω = ‖p − Ψk−1
h (p)‖Ω ≤ c̃1h

k
K‖p‖Hk(Th). (3.30)

Thus, putting together (3.24) with (3.25), (3.27)–(3.30), and using the shape regularity of the mesh, we get

inf(vh ,ṽh ,qh)∈Vh
|||(u − vh , ũ − ṽh , p − qh)|||h ≤ Ĉhk(√ν‖u‖Hk+1(Th) + 1

√ν
‖p‖Hk(Th))

with
Ĉ := max{√c2 + c3(c4 + 2c5 + 4c6(c7 + c8)) + 2τc1c9c10 + 2τc1c11, c̃1},

and the result (3.23) follows from Lemma 3.7.

3.4 NVTF Boundary Conditions

As we mentioned before, the analysis in case of NVTF boundary conditions (2.3) is similar. Thus, we just
highlight themain differences. If we consider NVTF boundary conditions (2.3), then to discretise the velocity
we use the BDM space

BDMk
h,0 := {vh ∈ BDM

k
h : (vh)n = 0 on Γ}.

For the Lagrange multiplier we use the polynomial space Mk−1
h , while the pressure is discretised using

Qk−1
h,0 := {qh ∈ Qk−1

h : ∫
Ω

qh dx = 0}.

The product space then becomes Vh := BDMk
h,0 ×M

k−1
h and we pose the following discrete problem:

Find (uh , ũh , ph) ∈ Vh × Qk−1
h,0 such that for all (vh , ṽh , qh) ∈ Vh × Qk−1

h,0 ,

{{{
{{{
{

a((uh , ũh), (vh , ṽh)) + b((vh , ṽh), ph) = ∫
Ω

f vh dx + ∫
Γ

gṽh ds,

b((uh , ũh), qh) = 0.
(3.31)

In obtaining (3.31) the only difference step in the derivation is that now (3.4) is replaced by

∫
Ω

(−ν∆u + ∇p) ⋅ vh dx = ∑
K∈Th

(∫
K

ν∇u : ∇vh dx − ∫
K

p∇ ⋅ vh dx − ∫
∂K

σnt((vh)t − ṽh) ds) − ∫
Γ

gṽh ds.

Concerning the analysis, the proofs of all the results presented in the last sections remain essentially un-
changed.
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4 The Domain Decomposition Preconditioner
Let us assume that we have to solve the linear system

AU = F,

where A is the matrix arising from discretisation of the Stokes equations on the domain Ω, U is the vector
of unknowns and F is the right-hand side. To accelerate the performance of an iterative Krylov method ap-
plied to this systemwewill consider domain decomposition preconditioners which are naturally parallel [12,
Chapter 3]. They are based on an overlapping partition of the computational domain.

Let {Th,i}Ni=1 be a partition of the triangulation Th. For an integer value l ≥ 0, we define an overlapping
decomposition {T l

h,i}
N
i=1 such that T l

h,i is a set of all triangles from T l−1
h,i and all triangles from Th \ T l−1

h,i that
have non-empty intersectionwith T l−1

h,i , and T0h,i = Th,i. With this definition thewidth of the overlapwill be 2l.
Furthermore, if Wh stands for the finite element space associated to Th, then W l

h,i is the local finite element
space on T l

h,i that is a triangulation of Ωi.
LetN be the set of indices of degrees of freedomofWh and letNl

i be the set of indices of degrees of freedom
ofW l

h,i for l ≥ 0.Moreover,wedefine the restriction operatorRi : Wh → W l
h,i as a rectangularmatrix |Nl

i | × |N|
such that if V is the vector of degrees of freedom of vh ∈ Wh, then RiV is the vector of degrees of freedom of
W l

h,i in Ωi. Abusing notation, we denote by Ri both the operator and its associated matrix. The extension
operator fromW l

h,i toWh and its associatedmatrix are both given byRT
i . In addition, we introduce a partition

of unity Di as a diagonal matrix |Nl
i | × |N

l
i | such that

Id =
N
∑
i=1RT

i DiRi ,

where Id ∈ ℝ|N|×|N| is the identity matrix.
We are ready to present the first preconditioner, called Restricted Additive Schwarz (RAS) [3], given by

M−1RAS = N
∑
i=1RT

i Di(RiART
i )
−1Ri . (4.1)

We also introduce a new preconditioner that is a modification of the above one. The modification is similar
to the Optimized RAS [30], however we do not use Robin IC. For this, let Bi be the matrix associated to a
discretisation of (2.1) in Ωi where we impose either TVNF (2.2) or NVTF (2.3) boundary conditions in Ωi.
Then, the preconditioner reads

M−1MRAS = N
∑
i=1RT

i DiB−1i Ri . (4.2)

Remark 4.1. The improvement of convergence in the case of Optimized RAS depends on the choice of the
parameter. This parameter depends on the problem and discretisation. The big advantage of MRAS precon-
ditioners is that they are parameter-free.

4.1 Partition of Unity

The above definitions of the preconditioners can be associated with any discretisation of the problem. How-
ever, each discretisation involves the construction of a relevant partition of unityDi, i = 1, . . . , N. We discuss
here the construction ofDi when the problem (2.1) is discretised by theHDGmethod in case k = 1, eitherwith
TVNF boundary conditions (3.6), or NVTF boundary conditions (3.31). Let us introduce the piecewise linear
functions χ̃li of Th such that

χ̃li =
{
{
{

1 on all nodes of T0h,i ,
0 on other nodes.
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Now we define the piecewise linear functions χli of T
l
h,i as follows:

χli :=
χ̃li
∑Nj=1 χ̃lj .

Obviously ∑Ni=1 χli = 1. We define the partition of unity matrix Di as a block diagonal matrix where the first
block DBDM

i is associated with BDM1
h, the second block DM

i with M0
h, and the third block DQ

i with Q0
h. The

degrees of freedomof theBDMelements are associatedwith thenormal components on the edges of themesh.
For these finite elements, the diagonal ofDBDM

i is a vector obtained by interpolating χli at the two points of the
edges. The degrees of freedom of the Lagrange multiplier finite elements are associated with the edges of the
mesh. For these finite elements, the diagonal of DM

i is a vector obtained by interpolating χli at the midpoints
of the edges. For pressure finite elements, the diagonal of DQ

i is a vector obtained by interpolating χli at the
midpoints of the elements.

5 Numerical Results
In this section, we present a series of numerical experiments aimed at confirming the theory developed in
Section 3, and to give a computational comparison of the preconditioners discussed in the previous section.
All experiments have beenmade by using FreeFem++ [20], which is a free software specialised in variational
discretisations of partial differential equations.

5.1 Convergence Validation

The computational domain for both test cases considered here is the unit square Ω = (0, 1)2. We present the
results for k = 1, that is, the discrete space is given by BDM1

h ×M
0
h,0 × Q

0
h for TVNF boundary conditions and

BDM1
h,0 ×M

0
h × Q

0
h,0 for NVTF boundary conditions.We test both the symmetricmethod (ε = −1) and the non-

symmetric method (ε = 1). For both cases we have followed the recommendation given in [21, Section 2.5.2]
and taken τ = 6.

The first example aims at verifying the formulation with TVNF boundary conditions (3.6). We choose the
right-hand side f and the boundary datum g such that the exact solution is given by

u = curl[100(1 − cos((1 − x)2)) sin(x2) sin(y2)(1 − cos((1 − y)2))], p = tan(xy).

In Figures 1a and 1b we show the results of the usual convergence order tests for the symmetric case and
the non-symmetric case by plotting in log-log scale the error as a function of the size of the mesh. We no-
tice that they validate the theory from Section 3.3. In addition, an optimal h2 convergence rate is observed
for ‖u − uh‖Ω. The proof of this last fact is lacking. This is due to the lack of regularity results concerning
the solution of the continuous problem with these nonstandard boundary conditions, and hence the usual
Aubin–Nitsche approach can not be advocated.

In the second example we want to verify the formulation with NVTF boundary conditions (3.31). In this
case, the right-hand side f and the boundary datum g are chosen for the following exact solution:

u = curl[x2(1 − x)2y2(1 − y)2], p = x2 − y2.

The convergence error with respect to the size of the mesh is depicted on the log-log plots for the symmetric
case and the non-symmetric case in Figures 2a and 2b, respectively. We can see that they not only validate
the theory from Section 3.3, but also show an optimal h2 convergence rate for ‖u − uh‖Ω.
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Figure 1: Error convergence of the HDG method with TVNF boundary condition – the first example.
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(b) Non-symmetric bilinear form (ε = 1)
Figure 2: Error convergence of the HDG method with NVTF boundary condition – the second example.

5.2 Comparison of Different Domain Decomposition Preconditioners

In this section,we compare the standardRASpreconditioner (4.1)with thenewly introducedpreconditioners,
that is, the ones based on nonstandard IC. We call them MRAS preconditioners (4.2) and more precisely
TVNF-MRAS for which Bi is the matrix arising from the discretisation of (2.1) in Ωi with IC (2.2) on ∂Ωi, and
NVTF-MRAS for which Bi is the matrix arising from the discretisation of (2.1) in Ωi with IC (2.3) on ∂Ωi. As
we mentioned before, our preconditioners do not depend on the used discretisation, that is why we add also
similar preconditioners but based on a more standard discretisation, that is, the lowest order Taylor–Hood
discretisation [18, Section II.4.2]. In all cases, they are used in conjunctionwith a Krylov iterative solver such
as GMRES [26]. In addition, N stands for the number of subdomains. In all tables we present the number of
iterations needed to achieve an euclidean norm of the error (with respect to the one domain solution) smaller
than 10−6. We have implemented the RAS preconditioner (4.1) and the MRAS (4.2), using both TVNF and
NVTF interface conditions.

We start with the second example from the previous section. However, now we consider the symmetric
(ε = −1) formulation with TVNF boundary conditions (3.6). The mesh is uniform and contains 125000 tri-
angles for a total of 565003 degrees of freedom for the Taylor–Hood discretisation and 689000 degrees of
freedom for the HDG discretisation. We use a random initial guess for the GMRES iterative solver. The over-
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Taylor–Hood HDG

N RAS NVTF-MRAS TVNF-MRAS RAS NVTF-MRAS TVNF-MRAS

Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS

4 133 311 40 39 37 37 58 95 41 45 53 50
9 336 563 58 58 52 60 94 131 62 66 69 81

16 315 691 60 76 59 73 101 151 68 85 80 100
25 427 774 76 93 71 90 127 186 77 100 103 119
64 630 1132 113 147 112 132 196 280 126 172 148 183

100 769 1246 136 174 132 169 247 348 151 205 175 228
144 929 1434 158 201 155 192 306 408 178 228 192 259
196 1000 1637 180 239 168 224 354 480 198 326 212 299
256 1133 1805 201 265 183 286 403 536 226 358 233 341

Table 1: Preconditioners comparison – the first test case.

Taylor–Hood HDG

N RAS NVTF-MRAS TVNF-MRAS RAS NVTF-MRAS TVNF-MRAS

Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS Unif MTS

4 117 220 36 39 38 36 58 95 39 47 54 48
9 294 421 63 60 54 54 103 129 66 67 77 78

16 236 510 59 73 61 68 98 153 65 83 74 94
25 300 642 68 89 72 83 120 184 77 103 88 115
64 454 916 102 144 100 122 188 279 117 160 120 165

100 559 1088 122 173 116 154 225 349 140 198 138 215
144 940 1251 176 195 145 215 342 395 198 231 183 232
196 781 1346 166 230 146 242 325 486 191 277 173 284
256 881 1553 189 269 159 272 368 538 210 316 195 309

Table 2: Preconditioners comparison – the Poiseuille problem.

lapping decomposition into subdomains can be uniform (Unif) or generated by METIS (MTS) and it has two
layers of size h in the overlap.

The first thing that we can notice from Table 1 is the important convergence improvement in case of
RAS applied to a system resulting from a HDG discretisation in comparison to the RAS applied to the system
resulting from theTaylor–Hooddiscretisationdespite the fact that thenumber of degrees of freedom is slightly
bigger in the first case. The change in discretisation presumably leads to better conditioned systems to solve.
Also theMRASpreconditionerwith both discretisations performs better than the standardRASmethodwhich
fully justifies the use of the new IC no matter the discretisation method. Moreover, as expected, the number
of iterations increases with respect to the number of the subdomains and this behaviour is common to the
three preconditioners. It is worth noticing that this increase is slower than the expected linear one.

We also plot the convergence of the error for the different discretisations in Figure 3. We observe that in
all cases the MRAS preconditioner (4.2) shortens the plateau region in the convergence curves significantly
which leads, automatically, to an important reduction in the number of iterations.

Now we consider the Poiseuille problem and we choose the right-hand side f and the TVNF boundary
condition such that the exact solution is given by

u = [4y(1 − y), 0]T , p = 4 − 8x.

We use the same mesh as in the previous case and a random initial guess for the GMRES iterative solver, but
this time the overlapping decomposition has three layers of size h in the overlap.

The conclusions stay the same as in previous example since the results from Table 2 are similar to the
previous ones. We consider a different problem, however on the same mesh. Hence the global matrix is the
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(a) Taylor–Hood, uniform decomposition (b) HDG, uniform decomposition

(c) Taylor–Hood, METIS decomposition (d) HDG, METIS decomposition

Figure 3: Convergence of error in the 64 subdomains case – the first test case.

same in both cases. Thus, we can notice a reduction in the number of iterations caused by the increase of the
width of the overlap.

We observe in Figure 4 that once again the MRAS preconditioner (4.2) leads to a reduction of the number
of iterations in all cases.

The last example is on a T-shaped domain Ω = (0, 1.5) × (0, 1) ∪ (0.5, 1) × (−1, 1), andwe imposemixed
boundary conditions given by

{{{
{{{
{

u(x, y) = (4y(1 − y), 0)T if x = 0,
σnn(x, y) = 0, ut(x, y) = 0 if x = 1.5,
u(x, y) = (0, 0)T otherwise.

In Figure 5we plot the numerical solution obtainedwith theHDGdiscretisation using τ = 6 on a coarsemesh.
In this case, we used a mesh containing 379402 triangles, which gives linear systems of a size 1 712352 for
the Taylor–Hood discretisation and 2089735 for the HDG discretisation. The initial guess in the GMRES
iterative solver is zero. The overlapping decomposition into subdomains is generated by METIS and it has
two layers of size h in the overlap.

According to Table 3 the conclusions remain the same, that is, the standard RASmethod performs far bet-
terwhen applied to aHDGdiscretisationwith respect to a Taylor–Hood one and theMRASpreconditioners are
better than the standard RAS preconditioner for both discretisations. Figure 6 again confirms the superiority
of the MRAS preconditioner over the RAS preconditioner.
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(a) Taylor–Hood, uniform decomposition (b) HDG, uniform decomposition

(c) Taylor–Hood, METIS decomposition (d) HDG, METIS decomposition

Figure 4: Convergence of error in the 144 subdomains case – the Poiseuille problem.

(a) Velocity field u (b) Pressure p

Figure 5: Numerical solution of the T-shaped domain problem.



720 | G.R. Barrenechea et al., Hybrid DG and DD Preconditioners for the Stokes Problem

Taylor–Hood HDG

N RAS NVTF-MRAS TVNF-MRAS RAS NVTF-MRAS TVNF-MRAS

50 752 121 105 209 132 135
100 903 175 147 307 190 197
200 1272 245 211 441 264 281
400 1747 341 342 613 366 399
800 2433 469 417 863 650 549

Table 3: Preconditioners comparison – the T-shaped domain problem.

(a) Taylor–Hood (b) HDG

Figure 6: Convergence of error for METIS decomposition in the 800 subdomains case – the T-shaped domain problem.

6 Conclusion
In this paper, we introduced a HDG method for the Stokes equations that naturally discretises nonstandard
boundary value problems such as those with TVNF and NVTF boundary conditions. This approach can be
extended naturally to the case of incompressible, or nearly incompressible, elasticity. We proved the well-
posedness and convergence with respect to the norm (3.7) of this method and in the numerical experiments
from Section 5.1 we validated the theory and observed the optimal convergence.

To solve the discretised problem we introduced two different kinds of preconditioners with nonstandard
boundary conditions whose optimality has been proved by algebraic techniques. We compared the newly
introduced preconditioners to the more standard RAS preconditioner and numerical tests from Section 5.2
clearly show their superiority for different test cases in two space dimensions. Moreover, our numerical expe-
rience seems to hint that the linear systems arising from the HDG discretisation are better conditioned than
those obtained using the Taylor–Hood element. This can be seen from the fact that the RAS preconditioner
already performs far better when applied to the HDG method than when using Taylor–Hood.

We observed, as expected, that the Schwarz preconditioners are not scalable with respect to the number
of subdomains. However, this can be fixed by using an appropriate coarse spaces [12, Chapter 4]. A suitable
choice of a coarse space will be a subject of future research.
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