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Abstract

The embedded discontinuous Galerkin (EDG) method by Cockburn et al. [SIAM J. Nu-

mer. Anal., 2009, 47(4), 2686-2707] is obtained from the hybridizable discontinuous Galerkin

method by changing the space of the Lagrangian multiplier from discontinuous functions to

continuous ones, and adopts piecewise polynomials of equal degrees on simplex meshes for all

variables. In this paper, we analyze a new EDG method for second order elliptic problems

on polygonal/polyhedral meshes. By using piecewise polynomials of degrees k + 1, k + 1, k

(k ≥ 0) to approximate the potential, numerical trace and flux, respectively, the new method

is shown to yield optimal convergence rates for both the potential and flux approximations.

Numerical experiments are provided to confirm the theoretical results.

Keywords. embedded discontinuous Galerkin method, hybridizable discontinuous Galerkin method,

optimal convergence rate

1 Introduction

Let Ω ⊂ Rd (d = 2, 3) be a polyhedral domain with boundary ∂Ω. We consider the following

second-order elliptic problem: Find the potential u and the flux σ such that
cσ −∇u = 0, in Ω

− divσ = f, in Ω

u = g, on ∂Ω

(1.1)

where the diffusion-dispersion tensor c ∈ [L2(Ω)]d×d is a matrix valued function that is symmetric

and uniformly positive definite on Ω, f ∈ L2(Ω), and g ∈ L2(∂Ω).

∗This work was supported in part by National Natural Science Foundation of China (11771312, 11401407) and

Major Research Plan of National Natural Science Foundation of China (91430105).
†Email: zhangxiaofem@163.com
‡Email: xpxie@scu.edu.cn
§Corresponding author. Email: shiquanzhang@scu.edu.cn

1

ar
X

iv
:1

71
1.

05
54

4v
1 

 [
m

at
h.

N
A

] 
 1

5 
N

ov
 2

01
7



In [5], Cockburn et al. first proposed a unifying framework for hybridization of finite element

methods for second-order elliptic problems. The unifying framework includes as particular cases

hybridized versions of mixed methods [1, 2, 4], the continuous Galerkin (CG) method [8], and

a wide class of hybridizable discontinuous Galerkin (HDG) methods. In the HDG framework,

the constraint of function continuity on the inter-element boundaries is relaxed by introducing

numerical traces (Lagrange multipliers) defined on the inter-element boundaries, thus allowing for

piecewise-independent approximation to the potential or flux solution. By local elimination of

the unknowns defined in the interior of elements, the HDG methods finally lead to symmetric

and positive definite (SPD) systems where the unknowns are only the globally coupled degrees of

freedom describing the numerical traces. We refer to [6, 9, 12] for some relevant analyses for the

HDG methods.

The EDG methods were first proposed in [11] for linear shell problems, and then were further

studied in [7] for second-order elliptic problems. The methods are obtained from the HDG methods

by simply reducing the space of the numerical traces, from piecewise independent to continuous on

the whole inter-element boundaries. Since the only degrees of freedom that are globally coupled

are precisely those of the numerical traces, such reduction leads to smaller computational cost of

an EDG method than that of the corresponding HDG method. Recently, the EDG methods have

been extended to solving several types of fluid flow problems [10,13,14].

However, as shown in [7], the EDG methods using piecewise polynomials of degree k(k ≥ 1) to

approximate all kinds of variables results in loss of convergence rate for the approximation of flux.

On the other hand, so far all the EDG methods [7,10,11,13,14] are based on simplex meshes, and

there is no such work on general polygonal/polyhedral meshes. We note that the classical analysis

of HDG methods on simplex meshes [5, 6] is hard to extend to polygonal meshes; one can see [9]

for more details.

In this paper, we shall develop a class of new EDG methods for the model problem (1.1) on

polygonal/polyhedral meshes. Compared with the original EDG methods in [7], our methods are

of the following features.

• The new methods use piecewise polynomials of degrees k+1, k+1, k (k ≥ 0) to approximate

the potential, numerical trace and flux, respectively.

• Optimal error estimates are derived for both the potential and flux approximations.

• Our analysis is based on polygonal/polyhedral meshes. The analysis technique here is due

to [12], where a family of HDG methods for (1.1) on simplex meshes were analyzed under

the minimal regularity condition.

The rest of this paper is organized as follows. In Section 2 we introduce notation. Section

3 describes the EDG scheme. Section 4 is devoted to the error estimation of the proposed EDG
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methods. Finally, Section 5 provides some numerical results to verify the theoretical analysis.

2 Notation

For an arbitrary open set D ⊂ Rd, we denoted by H1(D) the Sobolev space of scalar func-

tions on D whose derivatives up to order 1 are square integrable, with the norm ‖ · ‖1,D. The

notation | · |1,D denotes the semi-norm derived from the partial derivatives of order equal to 1.

The space H1
0 (D) denotes the closure in H1(D) of the set of infinitely differentiable functions with

compact supports in D. We use (·, ·)D and 〈·, ·〉∂D to denote the L2-inner products on the square

integrable function spaces L2(D) and L2(∂D), respectively, with ‖·‖D and ‖·‖∂D representing the

corresponding induced L2-norms. Let Pk(D) denote the set of polynomials of degree ≤ k defined

on D.

Let Th =
⋃
{T} be a conforming and shape regular subdivision of Ω into convex polygons (d=2)

or polyhedron (d=3), with hT being the diameter of T and h := max
T∈Th

{hT }. Here ‘shape regular’

is in the sense that the following two assumptions M1-M2 hold [3].

• M1 (Star-shaped elements). There exists a positive constant θ∗ such that the following holds:

for each element T ∈ Th, there exists a point MT ∈ T such that T is star-shaped with respect

to every point in the circle (or sphere) of center MT and radius θ∗hT .

• M2 (Edges or faces). There exists a positive constant l∗ such that: every element T ∈ Th,

the distance between any two vertexes is no less than l∗hT .

The regularity parameter of Th is defined by ρ := max
T∈Th

{hdT /|T |}, where |T | is the d-dimension

Lebesgue measure of T . Let Fh denote the set of all edges/faces of Th, and set ∂Th := {∂T : T ∈

Th}.

Based on the subdivision Th, we introduce an auxiliary simplicial mesh T ∗h as follows:

• When d = 2, for any T ∈ Th, we connect MT and all T ’s vertexes to divide T into a set of

triangles, denoted by w(T ).

• When d = 3, for any T, T ′ ∈ Th and every face F ⊂ ∂T ∩ ∂T ′, we choose any vertex A on F

and connect A to the rest of F ’s vertexes to get a set of triangles, v(F ), and if F ∩ ∂Ω 6= ∅,

we can get a set of triangles v(F ) by the same way. Finally we connect MT and every v(F )

to get a set of tetrahedrons, w(T ).

• We set T ∗h :=
⋃
T∈Th w(T ) for d = 2, 3. We note that T ∗h is shape regular due to M1 and

M2.

For any T ∈ Th, set ∂T ∗ :=
⋃
T ′∈w(T ) {∂T ′ ∩ ∂T} , and define

∂Th∗ := {∂T ∗ : T ∈ Th},
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F∗h := {F : F is an edge/face of T ∗h and F ⊂ F ′ for some F ′ ∈ Fh} .

Notice that when d = 2 or Th is a tetrahedron mesh for d = 3, it holds

∂T ∗ = ∂T, ∂Th∗ = ∂Th, F∗h = Fh.

And, when d = 3 and Th is a polyhedral mesh, ∂T ∗ is the set of triangles, into which each face

F ⊂ ∂T is subdivided.

We also need the broken Soblev space

Hs(Th) := {v ∈ L2(Ω) : v|T ∈ Hs(T ),∀T ∈ Th},

with the norm ‖ · ‖s,Th defined by

‖v‖2s,Th :=
∑
T∈Th

‖v‖2s,T , ∀v ∈ Hs(Th).

The broken Soblev space Hs(T ∗h ) is defined similarly.

Throughout this paper, x . y(x & y) means x≤ Cy(x ≥ Cy), where C denotes a positive

constant that only depends on d, k, Ω, the regularity parameter ρ, and the coefficient matrix c.

The notation x ∼ y abbreviates x . y . x.

3 EDG method

For any T ∈ Th and F ∈ F∗h , let V (T ) ⊂ L2(T ), W(T ) ⊂ [L2(T )]d and M(F ) ⊂ L2(F ) be local

finite dimensional spaces. Then we define

Vh := {vh ∈ L2(Ω) : vh|T ∈ V (T ),∀T ∈ Th}, (3.1)

Wh := {τh ∈ [L2(Ω)]d : τh|T ∈W(T ),∀T ∈ Th}, (3.2)

Mh := {µh ∈ L2(F∗h) : µh|F ∈M(F ),∀F ∈ F∗h}, (3.3)

M̃h := {µh ∈ C0(F∗h) : µh|F ∈M(F ),∀F ∈ F∗h}, (3.4)

M̃h(g) := {µh ∈ M̃h : µh|∂Ω = Π∂
hg}, (3.5)

where Π∂
h is a continuous interpolation operator from L2(∂Ω) to C0(∂Ω) ∩ Pk+1(F∗h ∩ ∂Ω), which

will be defined in the next section.

Then the variational formulations of the EDG method are given as follows: Seek (uh, λ̃h,σh) ∈

Vh × M̃h(g)×Wh such that

(cσh, τh) + (uh,divhτh)−
∑
T∈Th

〈λ̃h, τh · n〉∂T∗ = 0 ∀τh ∈Wh, (3.6)

−(vh,divhσh) +
∑
T∈Th

〈αT (uh − λ̃h), vh〉∂T∗ = (f, vh) ∀vh ∈ Vh, (3.7)

∑
T∈Th

〈σh · n− αT (uh − λ̃h), µ̃h〉∂T∗ = 0 ∀µ̃h ∈ M̃h(0). (3.8)
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Here the broken operator divh is defined by divhτh|T := div(τh|T ) for any τh ∈Wh, T ∈ Th.

In this paper we choose the local spaces V (T ), M(F ), W(T ) and the penalty parameter αT as

following: for integer k ≥ 0,

V (T ) = Pk+1(T ), M(F ) = Pk+1(F ), W(T ) = [Pk(T )]d, (3.9)

αT |F = h−1
T , ∀ face F of T. (3.10)

We have the following existence and uniqueness result:

Lemma 3.1. The EDG method (3.6)-(3.8) admits a unique solution (uh, λ̃h,σh) ∈ Vh × M̃h(g)×

Wh.

Proof. It suffices to prove the uniqueness, or equivalently, to show that the system has the trivial

solution when f = g = 0.

In fact, f = g = 0 implies λ̃h ∈ M̃0
h . By taking (τh, vh, µ̃h) = (σh, uh, λ̃h) in (3.6)-(3.8), and

summing all equations together, one can obtain

(cσh,σh) +
∑
T∈Th

αT ||uh − λ̃h||2∂T∗ = 0.

Since c is uniformly positive and αT is nonnegative, the above equation implies σh = 0 and uh = λ̃h

on ∂T for all T ∈ Th. Then, taking τh = ∇uh in (3.6) yields

0 = (uh,divh∇uh)Th −
∑
T∈Th

〈λ̃h,∇uh · n〉∂T∗ = −(∇uh,∇uh).

This means ∇uh = 0 on each T ∈ Th, i.e. uh is piecewise constant. Recalling that uh = λ̃h on F∗h
and λ̃h = 0 on ∂Ω, we finally obtain uh = 0 and λ̃h = 0.

Introduce the following two local problems:

For any T ∈ Th and λh ∈ L2(∂T ∗), seek (uλh
,σλh

) ∈ V (T )×W(T ) such that

(cσλh
, τh)T + (uλh

,divτh)T = 〈λh, τh · n〉∂T∗ ∀τh ∈W(T ), (3.11)

−(vh,divσλh
)T + 〈αTuλh

, vh〉∂T = 〈αTλh, vh〉∂T∗ ∀vh ∈ V (T ). (3.12)

For any T ∈ Th and f ∈ L2(T ), seek (uf ,σf ) ∈ V (T )×W(T ) such that

(cσf , τh)T + (uf ,divτh)T = 0 ∀τh ∈W(T ), (3.13)

−(vh,divσf )T + 〈αTuf , vh〉∂T = (f, vh)T ∀vh ∈ V (T ). (3.14)

Similar to the HDG method, after the local elimination of unknowns uh and σh, the EDG

method leads to the following reduced system: seek λ̃h ∈ M̃h(g) such that

ah(λ̃h, µ̃h) = (f, vµ̃h
) ∀µ̃h ∈ M̃h(0). (3.15)
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where ah(·, ·) : M̃h(g)× M̃0
h −→ R is defined by

ah(λ̃h, µ̃h) :=
∑
T∈Th

(cσλ̃h
,σµ̃h

)T +
∑
T∈Th

〈αT (uλ̃h
− λ̃h), uµ̃h

− µ̃h〉∂T∗ . (3.16)

Remark 3.1. Follow from [5], we can define an HDG method: Seek (uh, λh,σh) ∈ Vh×M̂h(g)×Wh

such that

(cσh, τh) + (uh, divhτh)−
∑
T∈Th

〈λh, τh · n〉∂T = 0 ∀τh ∈Wh,

−(vh, divhσh) +
∑
T∈Th

〈αT (uh − λh), vh〉∂T = (f, vh) ∀vh ∈ Vh,∑
T∈Th

〈σh · n− αT (uh − λh), µh〉∂T = 0 ∀µh ∈ M̂h(0).

Here

M̂h(g) := {µ ∈ L2(Fh) : µ|F ∈ Pk+1(F ),∀F ∈ Fh and 〈µ, η〉F = 〈g, η〉F if F ⊂ ∂Ω,∀η ∈ Pk+1(F )}.

Remark 3.2. We can see that the EDG method is a modification of the corresponding HDG method

by simply replacing the discontinuous numerical trace space M̂h(g) with the continuous trace space

M̃h(g). In particular, when d = 2 or Th is a tetrahedron mesh, M̃h(g) is much smaller than M̂h(g).

In such cases, the EDG method leads to a smaller system than the corresponding HDG method.

4 Error analysis

This section is devoted to the estimation of the flux error σ−σh and the potential error u−uh
for the EDG scheme (3.6)-(3.8). In subsections 4.1 and 4.2 we carry out the analysis for the flux

and potential approximations, respectively on 2D/3D polygon meshes.

4.1 Estimation for flux approximation

This subsection is devoted to the error estimation of the flux approximation σh for the EDG

scheme (3.6)-(3.8).

Let PV : L2(Ω) −→ Vh, PW : [L2(Ω)]d −→ Wh, and PM : L2(F∗h) −→ Mh be the standard

L2-orthogonal projection operators. Then the following estimates are standard.

Lemma 4.1. For any T ∈ Th and (v, τ ) ∈ Hk+2(T )× [Hk+1(T )]d, it holds

‖v − PV v‖T + h
1
2

T ‖v − PV v‖∂T . hk+2
T |v|k+2,T ,

‖τ − PWτ‖T + h
1
2

T ‖τ − PWτ‖∂T . hk+1
T |τ |k+1,T ,

‖v − PMv‖∂T∗ . h
k+ 3

2

T |v|k+2,T .

(4.1)
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For any d-simplex element T ∈ Th with vertices aj = (x1j , x2j , ...xdj)
T (1 ≤ j ≤ d+ 1), denote

by

ST := {x|x =

d+1∑
i=1

ji
k + 1

ai,

d+1∑
i=1

ji = k + 1, ji ∈ {0, 1, ..., k + 1}, 1 ≤ i ≤ d+ 1} (4.2)

the set of nodes of T and by STh :=
⋃

T∈Th
ST the set of nodes of Th. Note that ST is the set of

nodes for the C0 Lagrange finite element of order k + 1. We let ai,T be a node of Lagrange finite

element of ST and ai,F ∈ STh , which lays on some edge/face F ∈ Fh.

Given a point a ∈ Rd, we define

Sch(a) := {T : T ∈ Th,a ∈ T},

SFh (a) := {F : F ∈ F∗h ∩ ∂Ω,a is on F},

and let #Sch(a) and #SFh (a) be the number of elements in Sch(a) and SFh (a), respectively.

Now we define the continuous interpolation operator Π∂
h : L2(∂Ω) −→ C0(∂Ω)∩Pk+1(F∗h ∩∂Ω)

as follows: For any g ∈ L2(∂Ω) and F ∈ F∗h ∩ ∂Ω, Π∂
hg|F ∈M(F ) satisfies

Π∂
hg|F (ai,F ) = PMg|F (ai,F ), if ai,F is in the interior of F,

Π∂
hg|F (ai,F ) =

1

#SFh (ai,F )

∑
F ′∈SF

h (ai,F )

PMg|F ′(ai,F ), if ai,F is a vertex of F .

Following Chapter 3 of [15], we introduce the projection mean operator ΠP
h : L2(Ω) −→

Vh
⋂
H1(Ω), defined as follows: for any T ∈ Th, u ∈ L2(Ω), ΠP

h u|T ∈ V (T ) and

ΠP
h u|T (ai,T ) = (PV u)|T (ai,T ) for any ai,T in the interior of T ,

ΠP
h u|T (ai,T ) =

1

#Sch(ai,T )

∑
T ′∈Sc

h(ai,T )

(PV u)|T ′(ai,T ′) for any ai,T on ∂T, ∂T ∩ ∂Ω = ∅

ΠP
h u|T (ai,T ) = Π∂

hg(ai,T ) for any ai,T on ∂Ω.

When Th is a polygonal/polyhedral subdivision, we can first define the projection mean operator

ΠP
h∗ on the auxilliary mesh T ∗h whose elements are simplexes. Then we define ΠP

h as follows:

ΠP
h u(a) = ΠP

h∗u(a) ∀a ∈ STh∗ ∩ F
∗
h , ∀u ∈ H1(Ω).

From [15] we have the following approximation result.

Lemma 4.2. For any u ∈ Hk+2(Th) and T ∈ Th, it holds

||u−ΠP
h∗u||∂T∗ . h

k+ 3
2

T

( ∑
T ′∈ωT

|v|2k+2,T ′
) 1

2 , (4.3)

where ωT := {T ′ ∈ Th : T ′ ∩ T 6= ∅}.

With the above projection operators, we set

δσ := σ − PWσ, δu := u− PV u, δλ̃ := u−Πhu,

eσh := PWσ − σh, euh := PV u− uh, eλ̃h := Πhu− λ̃h. (4.4)
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For any given (τ , v) ∈ [L2(Ω)]d ×H1(Ω), we define

Lτ ,v(ψ) :=
∑
T∈Th

〈(PW τ − τ ) · n− αT (PV v −ΠP
h v), ψ〉∂T∗ , ∀ψ ∈ H1(Ω)

⋃
M̃h

⋃
Vh. (4.5)

Then we have the following error equations.

Lemma 4.3. For all (τh, vh, µ̃h) ∈Wh × Vh × M̃h(0) it holds

(ceσh , τh) + (euh, divhτh)−
∑
T∈Th

〈eλ̃h, τh · n〉∂T∗ = −(cδσ, τh) +
∑
T∈Th

〈PMu−ΠP
h u, τh ·n〉∂T∗ , (4.6)

−(divhe
σ
h , vh) +

∑
T∈Th

〈αT (euh − eλ̃h), vh〉∂T∗ = Lσ,u(vh), (4.7)

∑
T∈Th

〈eσh · n− αT (euh − eλ̃h), µ̃h〉∂T∗ = −Lσ,u(µ̃h). (4.8)

Proof. In light of (1.1) and the definitions of L2-orthogonal projection operators, we have, for all

(τh, vh) ∈Wh × Vh,

(cPWσ, τh) + (PV u,divhτh)−
∑
T∈Th

〈ΠP
h u, τh · n〉∂T∗ = (c(PWσ − σ), τh)

+
∑
T∈Th

〈PMu−ΠP
h u, τh · n〉∂T∗ ,

(PWσ,∇vh)Th +
∑
T∈Th

〈PWσ · n, vh〉∂T∗ = (f, vh)Th +
∑
T∈Th

〈(PWσ − σ) · n, vh〉∂T .

By subtracting the above two equations from (3.6) and (3.7), respectively, we then obtain (4.6)

and (4.7). Finally, equation (4.8) follows form (3.8) and the relation∑
T∈Th

〈σ · n, µ̃h〉∂T∗ = 0, ∀µ̃h ∈ M̃h(0). (4.9)

Introduce a seminorm ||| · ||| : Vh × M̃h(0)×Wh −→ R with

|||(vh, µ̃h, τh)|||2 := (cτh, τh) +
∑
T∈Th

||α
1
2

T (vh− µ̃h)||2∂T∗ , ∀(vh, µ̃h, τh) ∈ Vh× M̃h(0)×Wh, (4.10)

then we easily get the following lemma.

Lemma 4.4. It holds

|||(euh, eλ̃h, eσh )|||2 . ||σ − PWσ||2Th +
∑
T∈Th

hT ||σ − PWσ||2∂T∗ +
∑
T∈Th

h−1
T ||Π

P
h u− PMu||2∂T∗ .

(4.11)
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Proof. We first show

|||(euh, eλ̃h, eσh )|||2 = I1 + I2 + I3, (4.12)

where I1 := −(cδσ, eσh ), I2 :=
∑
T∈Th〈PMu−ΠP

h u, e
σ
h · n〉∂T∗ , and I3 := Lσ,u(euh − eλ̃h).

In fact, taking τh = eσh in (4.6), vh = euh in (4.7), µ̃h = eλ̃h in (4.8), and adding the resultant

three equations together, we obtain

(ceσh , e
σ
h ) + (euh,divhe

σ
h )−

∑
T∈Th

〈eλ̃h, eσh · n〉∂T∗ − (divhe
σ
h , e

u
h)

+
∑
T∈Th

〈αT (euh − eλ̃h), euh〉∂T∗ +
∑
T∈Th

〈eσh · n− αT (euh − eλ̃h), eλ̃h〉∂T∗

= |||(euh, eλ̃h, eσh )|||2,

which, together with Lemma 4.3, yields (4.12).

In view of Cauchy-Schwarz inequality and the trace inequality, it is easy to get

I1 . ||δσ||Th |||(euh, eλ̃h, eσh )|||,

I2 . (
∑
T∈Th

h−1
T ||(PMu−ΠP

h u)||2∂T∗)
1
2 |||(euh, eλ̃h, eσh )|||,

I3 . (
∑
T∈Th

hT ||δσ||2∂T∗ + h−1
T ||PV u−ΠP

h u||2∂T∗)
1
2 |||(euh, eλ̃h, eσh )|||.

Finally, the desired estimate (4.11) follows from (4.12) and the above three inequalities.

Based on the above lemmas, we easily derive the following error estimate for the flux approxi-

mation.

Theorem 4.1. Let (u,σ) ∈ Hk+2(Th)× [Hk+1(Th)]d be the weak solution to the model (1.1) with

k ≥ 0, and let (uh, λ̃h,σh) ∈ Vh × M̃h(g) ×Wh be the solution to the EDG scheme (3.6)-(3.8).

Then we have

||σ − σh|| . hk+1(||σ||k+1,Th + ||u||k+2,Th). (4.13)

Proof. The desired estimate (4.13) follows from the triangle inequality

||σ − σh|| 6 ||σ − PWσ||+ ||PWσ − σh||,

the defintion (4.10) of the seminorm ||| · |||, and Lemmas 4.1, 4.2 and 4.4.

4.2 Estimation for potential approximation

Based on the error estimation for the flux approximation σh in the previous subsection, we shall

use the Aubin-Nitsche’s technique of duality argument to derive the estimation for the potential
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approximation uh. First, we introduce the following auxilliary problem:
cΦ−∇Ψ = 0 in Ω,

∇ ·Φ = euh in Ω,

Ψ = 0, on ∂Ω,

(4.14)

where, as defined in (4.4), euh = PV u−uh. In addition, we assume the following regularity property

holds:

||Φ||1,Ω + ||Ψ||2,Ω . ||euh||0,Ω. (4.15)

We have the following equality.

Lemma 4.5. It holds

||euh||2 = (ceσh , δ
Φ) + (cδσ, PWΦ) + 〈euh − eλ̃h, δΦ · n〉∂Th∗ +

∑
T∈Th

〈αT (euh − eλ̃h), PV Ψ−ΠP
hΨ〉∂T∗

−〈eσh · n, δΨ̃〉∂Th∗ + 〈PMu−ΠP
h u, δ

Φ · n〉∂Th∗ − Lσ,u(ΠP
hΨ− PV Ψ). (4.16)

where δΦ := Φ− PWΦ, δΨ := Ψ− PV Ψ, δΨ̃ := Ψ−ΠP
hΨ, and eσh , δ

σ, eλ̃h are defined in (4.4).

Proof. By taking τh = −PWΦ, vh = PV Ψ, and µ̃h = ΠP
hΨ in the error equations (4.6)-(4.8), we

can get

−(ceσh , PWΦ)−(euh,∇·PWΦ)+
∑
T∈Th

〈eλ̃h, PWΦ·n〉∂T∗ = (cδσ, PWΦ)−〈PMu−ΠP
h u, PWΦ·n〉∂Th∗ ,

(4.17)

−(∇ · eσh , PV Ψ) +
∑
T∈Th

〈αT (euh − eλ̃h), PV Ψ〉∂T∗ = Lσ,u(PV Ψ), (4.18)

∑
T∈Th

〈eσh · n− αT (euh − eλ̃h),ΠP
hΨ〉∂T∗ = −Lσ,u(ΠP

hΨ). (4.19)

Integration by parts gives

−(euh,∇ · PWΦ) =− 〈euh, PWΦ · n〉∂Th∗ + (∇euh, PWΦ)Th

=− 〈euh, PWΦ · n〉∂Th∗ + (∇euh,Φ)Th

=〈euh, δΦ · n〉∂Th∗ − (euh,∇ ·Φ)Th

=〈euh, δΦ · n〉∂Th∗ − ‖e
u
h‖2Th .

Similarly, we can get

−(∇ · eσh , PV Ψ)Th = (eσh ,∇Ψ)Th − 〈eσh · n,Ψ〉∂Th∗ .
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Inserting the two equations above into (4.17)-(4.18), we have

−(ceσh ,Φ)Th + 〈euh, δΦ · n〉∂Th∗ − ‖e
u
h‖2Th + 〈eλ̃h, PWΦ · n〉∂Th∗

= (cδσ, PWΦ)Th − (ceσh , δ
Φ)Th + 〈PMu−ΠP

h u, PWΦ · n〉∂Th∗ , (4.20)

(eσh ,∇Ψ)Th − 〈eσh · n,Ψ〉∂Th∗ +
∑
T∈Th

〈αT (euh − eλ̃h), PV Ψ〉∂T∗ = Lσ,u(PV Ψ). (4.21)

Adding equations (4.19), (4.20), and (4.21) together, and using the facts that Φ − ∇Ψ = 0 and

〈eλ̃h,Φ · n〉∂Th∗ = 0, we obtain

(eσh ,−cΦ +∇Ψ)Th + 〈euh − eλ̃h, δΦ · n〉∂Th∗ − ‖e
u
h‖2Th

+
∑

T∈∂Th

〈αT (euh − eλ̃h), PV Ψ−ΠP
hΨ〉∂T∗ − 〈eσh · n, δΨ̃〉∂Th∗

= −(cδσ, PWΦ)Th − (ceσh , δ
Φ)Th + Lσ,u(PV Ψ−ΠP

hΨ)

− 〈PMu−ΠP
h u, δ

Φ · n〉∂Th∗ ,

which yields the desired conclusion.

In light of Lemma 4.5, we further have the following estimate.

Lemma 4.6. Under the regularity assumption (4.15), it holds

||euh||Th . h|||(euh, eλ̃h, eσh )|||+ h||δσ||Th + h
3
2 ||δσ||∂Th∗ + h

1
2 ||PV u−ΠP

h u||∂Th∗ . (4.22)

Proof. Set ||euh||2 =: Π1 + Π2 + Π3 + Π4 + Π5 + Π6 + Π7 with

Π1 := (ceσh , δ
Φ)Th , Π2 := (cδσ, PWΦ), Π3 := 〈euh − eλ̃h, δΦ · n〉∂Th∗ ,

Π4 :=
∑
T∈Th

〈αT (euh − eλ̃h), PV Ψ−ΠP
hΨ〉∂T∗ , Π5 := −〈eσh · n, δΨ̃〉∂Th∗ ,

Π6 := 〈PMu−ΠP
h u, δ

Φ · n〉∂Th∗ , Π7 := −Lσ,u(ΠP
hΨ− PV Ψ).

In view of Lemmas 4.1-4.2, the assumption (4.15), and Cauchy-Schwartz inequality, we obtain

|Π1| . ‖eσh‖Th‖δΦ‖Th . h‖eσh‖Th‖Φ‖1,Ω . h|||(euh, eλ̃h, eσh )|||‖euh‖Th ,

|Π3| ≤ ‖euh − eλ̃h‖∂Th∗‖δ
Φ‖∂Th . h

1
2 ‖euh − eλ̃h‖∂Th∗‖Φ‖1,Ω . h|||(euh, eλ̃h, eσh )|||‖euh‖Th ,

|Π4| ≤ h−1‖euh − eλ̃h‖∂Th∗‖PV Ψ−ΠP
hΨ‖∂Th∗ . h|||(euh, eλ̃h, eσh )|||‖euh‖Th ,

|Π5| ≤ ‖eσh‖∂Th∗‖δ
Ψ̃‖∂Th∗ . h‖eσh‖Th‖Ψ‖2,Ω . h|||(euh, eλ̃h, eσh )|||‖euh‖Th ,

|Π6| . ‖PMu−ΠP
h u‖∂Th∗‖δ

Φ‖∂Th∗ . h
1
2 ‖PMu−ΠP

h u‖∂Th∗ ‖e
u
h‖Th

|Π7| . (‖δσ‖∂Th∗ + h−1‖PV u−ΠP
h u‖∂Th∗ )(‖PV Ψ−ΠP

hΨ‖∂Th∗ )

. h
3
2 ‖δσ‖∂Th∗‖Ψ‖2,Ω + h

1
2 ‖PV u−ΠP

h u‖∂Th∗‖Ψ‖2,Ω

. (h
3
2 ‖δσ‖∂Th∗ + h

1
2 ‖PV u−ΠP

h u‖∂Th∗ )‖euh‖Th
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The thing left is to estimate Π2, and we have

Π2 = (PWσ − σ, cPWΦ)

= (PWσ − σ, c(PWΦ−Φ)) + (PWσ − σ, cΦ)

= (PWσ − σ, c(PWΦ−Φ)) + (PWσ − σ,∇φ−∇PV φ)

. h‖δσ‖Th‖Φ‖1,Ω + h‖δσ‖Th‖Ψ‖2,Ω

. h‖δσ‖Th‖euh‖Th .

Finally, combining all the estimates of Πj (j = 1, · · · , 7) indicates the conclusion.

Theorem 4.2. Let (u,σ) ∈ Hk+2(Th) × [Hk+1(Th)]d be the weak solution to model (1.1) with

k ≥ 0, and let (uh, λ̃h,σh) ∈ Vh × M̃h(g) ×Wh be the solution to the EDG scheme (3.6)-(3.8).

Then, under the regularity assumption (4.15), it holds

||u− uh|| . hk+2(||σ||k+1,Th + ||u||k+2,Th). (4.23)

Proof. From the triangle inequality and Lemmas 4.6, 4.4 and 4.1, we have

‖u− uh‖Th ≤ ‖euh‖Th + ‖δu‖Th . hk+2(|σ|k+1 + |u|k+2).

5 Numerical results

In this section, we use a two-dimensional numerical example to verify the theoretical results.

We take Ω = [0, 1]× [0, 1], and let the exact solution to (1.1) be u(x, y) = sin(πx)sin(πy) with the

coefficient matrix

c =

 1 + x2y2 0

0 1 + x2y2

 . (5.1)

We consider two types of meshes: uniform triangular meshes and quadrilateral meshes (Figure

1). Numerical results of the flux and potential approximations are listed in Tables 1 and 2 for the

proposed EDG methods and the corresponding HDG methods with k = 0, 1, 2. We can see that

both the HDG and EDG methods converge with the optimal rates.

Table 3 shows the numbers of unknowns of the reduced system (3.16) with k = 0, 1, 2 which

contains the degrees of freedom of the numerical traces on interelement boundary as the only un-

knowns. In this example, the EDG method always leads to smaller systems than the corresponding

HDG method.

12



Table 1: Convergence history on triangular meshes

EDG HDG

k Mesh ||u− uh|| rate ||σ − σh|| rate ||u− uh|| rate ||σ − σh|| rate

0 4× 4 8.076e-2 - 3.820e-1 - 1.940e-1 - 2.775e-1 -

8× 8 2.084e-2 1.954 1.966e-1 0.958 4.917e-2 1.980 1.412e-1 0.975

16× 16 5.274e-3 1.982 9.907e-2 0.989 1.233e-2 1.996 7.089e-2 0.994

32× 32 1.323e-3 1.995 4.963e-2 0.997 3.086e-3 1.998 3.549e-2 0.998

64× 64 3.310e-4 1.999 2.483e-2 0.999 7.717e-4 2.000 1.775e-2 1.000

1 4× 4 2.305e-2 - 4.770e-2 - 2.410e-2 - 4.232e-2

8× 8 2.883e-3 2.999 1.312e-2 1.862 3.031e-3 2.991 1.085e-2 1.964

16× 16 3.522e-4 3.033 3.580e-3 1.874 3.791e-4 2.999 2.730e-3 1.991

32× 32 4.336e-5 3.022 9.358e-4 1.936 4.739e-5 2.999 6.839e-4 1.997

64× 64 5.387e-6 3.009 2.377e-4 1.977 5.923e-6 3.000 1.711e-4 1.999

2 4× 4 2.677e-3 - 6.482e-3 - 2.880e-3 - 5.378e-3

8× 8 1.746e-4 3.938 8.074e-4 3.005 1.827e-4 3.978 6.874e-4 2.968

16× 16 1.106e-5 3.981 1.004e-4 3.008 1.146e-5 3.995 8.650e-5 2.990

32× 32 6.938e-7 3.994 1.251e-5 3.004 7.166e-7 3.999 1.084e-5 2.997

64× 64 4.342e-08 3.998 1.561e-6 3.002 4.479e-8 4.000 1.355e-6 2.999

Figure 1: Two types of meshes: Left : 4× 4; Right : 8× 8.
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Table 2: Convergence history on quadrilateral meshes

EDG HDG

k Mesh ||u− uh|| rate ||σ − σh|| rate ||u− uh|| rate ||σ − σh|| rate

0 4× 4 2.623e-1 - 3.324e-1 - 2.722e-1 - 3.362e-1 -

8× 8 6.917e-2 1.923 1.706e-1 0.962 7.228e-2 1.913 1.721e-1 0.950

16× 16 1.752e-2 1.981 8.583e-2 0.991 1.845e-2 1.970 8.621e-2 0.997

32× 32 4.395e-3 1.995 4.298e-2 0.998 4.644e-3 1.990 4.305e-2 1.002

64× 64 1.100e-3 1.998 2.150e-2 0.999 1.163e-3 1.998 2.151e-2 1.001

1 4× 4 4.666e-2 - 7.782e-2 - 4.498e-2 - 8.057e-2 -

8× 8 6.023e-3 2.960 1.973e-2 1.982 5.408e-3 3.056 2.058e-2 1.919

16× 16 7.633e-4 2.980 4.958e-3 1.993 6.592e-4 3.036 5.094e-3 2.014

32× 32 9.590e-5 2.993 1.241e-3 1.998 8.201e-5 3.007 1.258e-3 2.018

64× 64 1.201e-5 2.997 3.104e-4 1.999 1.026e-5 3.000 3.123e-4 2.010

2 4× 4 7.744e-3 - 1.200e-2 - 7.720e-3 - 1.219e-2 -

8× 8 4.942e-4 3.970 1.387e-3 3.113 4.936e-4 3.967 1.412e-3 3.111

16× 16 3.096e-5 3.997 1.729e-4 3.004 3.101e-5 3.993 1.749e-4 3.013

32× 32 1.933e-6 4.002 2.139e-5 3.015 1.940e-6 3.999 2.152e-5 3.023

64× 64 1.207e-7 4.001 2.659e-6 3.008 1.213e-7 4.000 2.667e-6 3.012
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Table 3: Comparison of numbers of degrees of freedom

simplex meshes quadrilateral meshes

k Mesh EDG HDG EDG HDG

0 4× 4 9 80 9 48

8× 8 49 352 49 224

16× 16 225 1472 225 960

32× 32 961 6016 961 3968

64× 64 3936 24320 3936 16128

1 4× 4 49 120 33 72

8× 8 225 528 161 336

16× 16 961 2208 705 1440

32× 32 3936 9024 2945 5952

64× 64 16129 36480 12033 24192

2 4× 4 89 160 57 96

8× 8 401 704 273 448

16× 16 1697 2944 1185 1920

32× 32 6977 12032 4929 7936

64× 64 28289 48640 20097 32256
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