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Abstract:We consider a class of nonlinear elliptic problems associated with models in biophysics, which are

described by the Poisson–Boltzmann equation (PBE). We prove mathematical correctness of the problem,

study a suitable class of approximations, and deduce guaranteed and fully computable bounds of approxi-

mation errors. The latter goal is achieved by means of the approach suggested in [19] for convex variational

problems. Moreover, we establish the error identity, which defines the error measure natural for the consid-

ered class of problems and show that it yields computablemajorants andminorants of the global error aswell

as indicators of local errors that provide efficient adaptation of meshes. Theoretical results are confirmed by

a collection of numerical tests that includes problems on 2D and 3D Lipschitz domains.

Keywords: Poisson–Boltzmann Equation, Semilinear Partial Differential Equations, Existence and
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Guaranteed and Efficient a Posteriori Error Bounds, Error Indicators and Adaptive Mesh Refinement
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1 Introduction

1.1 Classical Statement of the Problem

Let Ω ⊂ ℝd , d = 2, 3 be a bounded domain with Lipschitz boundary ∂Ω. We assume that Ω contains an inte-

rior subdomain Ω
1
with Lipschitz boundary Γ. In general, Ω

1
may consist of several disconnected parts (in

this case, all of them are assumed to have Lipschitz continuous boundaries). We consider a class of nonlinear

elliptic equationsmotivatedby thePoisson–Boltzmannequation (PBE),which iswidelyused for computation

of electrostatic interactions in a system of biomolecules in ionic solution [10, 11, 23],

−∇ ⋅ (ϵ∇u) + k2 sinh(u + w) = l in Ω
1
∪ Ω

2
, (1.1a)

[u]
Γ
= 0, (1.1b)

[ϵ ∂u∂n]
Γ

= 0, (1.1c)

u = 0 on ∂Ω, (1.1d)
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where Ω
2
:= Ω \ (Ω

1
∪ Γ), the coefficients ϵ, k ∈ L∞(Ω), ϵ

max
≥ ϵ ≥ ϵ

min
> 0, w is measurable, and l ∈ L2(Ω).

Typically, in biophysical applications, Ω
1
is occupied by one or more macromolecules, and Ω

2
is occupied

by a solution of water and moving ions. The coefficients ϵ and k represent the dielectric constant and the

modified Debye–Hückel parameter, and u is the dimensionless electrostatic potential. Concerning the given

functions k and w, we can identify three main cases:

(a) k
max
≥ k(x) ≥ k

min
> 0 in Ω and w ∈ L∞(Ω),

(b) k(x) ≡ 0 in Ω
1
, k

max
≥ k(x) ≥ k

min
> 0 in Ω

2
and w ∈ L∞(Ω

2
),

(c) k(x) ≡ 0 in Ω
2
, k

max
≥ k(x) ≥ k

min
> 0 in Ω

1
and w ∈ L∞(Ω

1
).

Throughout the paper, themajor attention is paid to case (b), which arises when solving the PBE andwhich is

themost interesting from the practical point of view. Cases (a) and (c) can be studied analogously (with some

rather obviousmodifications). The casewith nonhomogeneousDirichlet boundary condition u = g on ∂Ω can

also be treated in this framework provided that the boundary condition is defined as the trace of a function g
such that g ∈ H1(Ω) ∩ L∞(Ω) and ∇g ∈ Ls(Ω) with s > max{2, d}.

The ability to find reliable and efficient solutions of the nonlinear Poisson–Boltzmann equation (PBE) for

complex geometries of the interior domain Ω
1
(with Lipschitz boundary) and piecewise constant dielectrics

is important for applications in biophysics and biochemistry, e.g., in modeling the effects of water and ion

screening on the potentials in and around soluble proteins, nucleic acids, membranes, and polar molecules

and ions; see [23] and the references therein. Although the solution of the linearized PBE (as in the linear

Debye–Hückel theory) often yields accurate approximations [22], certainmathematicalmodels are valid only

if they are based on the nonlinear PBE.

Over the recent years, adaptive finite element methods have proved to be an adequate technique in the

numerical solution of elliptic problemswith sharp local features such as point sources, heterogeneous coeffi-

cients or nonsmooth boundaries or interfaces (e.g., see [4, 9] and also have been successfully used to solve the

nonlinear PBE [5, 14]. Adaptivity heavily relies on reliable and efficient error indicators, which are typically

developed in the framework of a posteriori error control methods. While the theory of a posteriori error esti-

mates for linear elliptic partial differential equations is already well established and understood, it is far less

developed for nonlinear problems. A posteriori error analysis based on functional estimates has already been

successfully applied to variational nonlinear problems including obstacle problems in [20, 21]. The accuracy

verification approach taken in this work is also based on arguments that are commonly used in duality theory

and convex analysis and can be found, e.g., in [8, 17]. Fast solution methods for systems of nonlinear differ-

ential equations is another important issue that affects efficiency of computer simulationmethods. Multigrid

methodsmay provide optimal or nearly optimal algorithms (in terms of complexity) to perform this task (e.g.,

see [18]). However, a systematic discussion of this topic is beyond the framework of this paper.

Themain questions studied in the paper are related to the well-posedness of problem (1.1) and a posteri-

ori error estimation of its numerical solution. We use a suitable weak formulation (Definition 2.1), where

the nonlinearity does not satisfy any polynomial growth condition, and consequently it does not induce

a bounded mapping from H1

0

(Ω) to its dual H−1(Ω). For this (more general) weak formulation, we can guar-

antee existence of a solution and prove its uniqueness using a result of Brezis and Browder [3]. Additionally,

in Proposition 2.1, we show that the solution is bounded (here [3] is used, again together with special test

functions suggested in [16, 26]). Boundedness of the solution is important and later used in the derivation of

functional a posteriori error estimates. Applying the general approach from [17, 19], we derive guaranteed

and computable bounds of the difference between the exact solution and any function from the respective

energy class in terms of the energy and combined energy norms (equation (3.20)). Moreover, we obtain an

error identity (3.19) with respect to a certain measure for the error which is the sum of the usual combined

energy norm ⦀∇(v − u)⦀2 + ⦀y∗ − p∗⦀2∗ and a nonlinear measure. In the case of a linear elliptic equation of

the form −div(ϵ∇u) + u = l, this nonlinear measure reduces to ‖v − u‖2L2(Ω) + ‖div(y
∗ − p∗)‖2L2(Ω), where v and

y∗ are approximations to the exact solution u and the exact flux p∗ = ϵ∇u. One advantage of the presented
error estimate is that it is valid for any conforming approximations of u and ϵ∇u and that it does not rely

on Galerkin orthogonality or properties specific to the used numerical method. Another advantage is that

only the mathematical structure of the problem is exploited, and therefore no mesh dependent constants

are present in the estimate. Majorants of the error not only give guaranteed bounds of global (energy) error
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norms but also generate efficient error indicators (cf. (1.1a), Figures 12 and 13). Also, we derive a simple, but

efficient lower bound for the error in the combined energy norm. Using only the error majorant, we obtain

an analog of Cea’s lemma which forms a basis for the a priori convergence analysis of finite element approx-

imations for this class of semilinear problems. Finally, we present three numerical examples that verify the

accuracy of error majorants and minorants and confirm efficiency of the error indicator in mesh adaptive

procedures.

The outline of the paper is as follows. In Section 2, we discuss correctness of problem (1.1) and prove an

a priori L∞(Ω) estimate for the solution u. In Section 3, first we recall some facts from the duality theory and

general a posteriori error estimation method for convex variational problems. Then we apply this abstract

framework and derive explicit forms of all the respective terms. A special attention is paid to the general error

identity that defines a combined error measure natural for the considered class of problems. At the end of

Section 3, we prove convergence of the conforming finite element method based on P
1
Lagrange elements.

In Section 4, we consider numerical examples associated with 2D and 3D problems and make a systematic

comparison of numerical solutions computed by adaptive mesh refinements based on different indicators.

The last section includes a summary of the presented results.

2 Variational Form of the Problem

From now on, we assume that the functions k and w fall in case (b) of Section 1.1.

Definition 2.1. A function u ∈ H1

0

(Ω) is called a weak solution of (1.1) if u is such that b(x, u + w)v ∈ L1(Ω)
for any v ∈ H1

0

(Ω) ∩ L∞(Ω) and

a(u, v) + ∫
Ω

b(x, u + w)v dx = ∫
Ω

lv dx for all v ∈ H1

0

(Ω) ∩ L∞(Ω), (2.1)

where a(u, v) = ∫
Ω

ϵ∇u ⋅ ∇v dx and b(x, z) := k2(x) sinh(z).

Define the functional J : H1

0

(Ω)→ ℝ ∪ {+∞} by the relation

J(v) :=
{
{
{

∫
Ω

[ ϵ(x)
2

|∇v|2 + k2 cosh(v + w) − lv] dx if k2 cosh(v + w) ∈ L1(Ω),
+∞ if k2 cosh(v + w) ∉ L1(Ω),

(2.2)

and consider the variational problem:

find u ∈ H1

0

(Ω) such that J(u) = min

v∈H1

0

(Ω)
J(v). (2.3)

2.1 Existence of a Minimizer

We begin with proving that the variational problem is well-posed. First it is necessary to make some com-

ments on specific features of the above defined variational problem associated with the term k2 cosh(v + w).
Notice that, for d ≤ 2, the function e

v ∈ L2(Ω) for all v ∈ H1

0

(Ω) (e.g., see [15, 27]) and, therefore, the set
dom(J) := {v ∈ H1

0

(Ω) : J(v) <∞} is a linear subspace of H1

0

(Ω). However, if d = 3, then dom(J) is a convex
set but not a linear subspace (Remark 2.1). Since dom(J) is convex and obviously J is convex over dom J, it
follows that J is convex over H1

0

(Ω) (e.g., see [8]). Next we note that J is a proper functional, i.e., J is not iden-
tically equal to +∞ (e.g., J(0) = ∫

Ω

k2 cosh(w) dx <∞) and does not take the value −∞ (J(v) is nonnegative).
Therefore, existence of the minimizer u is guaranteed by known theorems of the calculus of variations (e.g.,

see [8]) if we will show that

(1) J is sequentially weakly lower semicontinuous (s.w.l.s.c.), i.e., J(v) ≤ lim infn→∞ J(vn) for any sequence
{vn}∞n=1 ⊂ H

1

0

(Ω) weakly converging to v in H1

0

(Ω)) (vn ⇀ v),
(2) J is coercive, i.e., limn→∞ J(vn) = +∞ whenever ‖vn‖H1(Ω) →∞.
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To prove that (1) is fulfilled, notice that J is the sum of the functionals

∫
Ω

(
ϵ
2

|∇v|2 − lv) dx and ∫
Ω

k2(x) cosh(v + w) dx.

Thefirst functional is convex and continuous inH1

0

(Ω) and, therefore, it is s.w.l.s.c. (sequentiallyweakly lower
semicontinuous). The second functional is convex and, for d = 2, it is Gateaux differentiable, which implies

that it is also s.w.l.s.c. (the proof of this implication can be found in [24, Corollary 2.4]). However, for d = 3,
the functional∫

Ω

k2(x) cosh(v + w) dx is not Gateaux differentiable (Remark 2.2). Nevertheless, one can show

that it is also s.w.l.s.c. For this purpose, we use Fatou’s lemma and compact embedding of H1

0

(Ω) into L2(Ω).
Let {vn}∞n=1 ⊂ H

1

0

(Ω) be a sequence weakly converging in H1

0

(Ω) to a v ∈ H1

0

(Ω), i.e., vn ⇀ v. Since
the embedding H1

0

(Ω) → L2(Ω) is compact, it follows that vn → v (strongly) in L2(Ω). Therefore, we can
extract a subsequence vnm (x)→ v(x), which converges almost everywhere in the pointwise sense. Recall that

k2(x) cosh(z(x) + w(x)) ≥ 0 for all z ∈ H1

0

(Ω) and that k2(x) cosh( ⋅ ) is a continuous function for a.e. x ∈ Ω.
Hence, by Fatou’s lemma, we obtain

lim inf

m→∞
∫
Ω

k2(x) cosh(vnm (x) + w(x)) dx ≥ ∫
Ω

lim inf

m→∞
k2(x) cosh(vnm (x) + w(x)) dx

= ∫
Ω

k2(x) cosh(v(x) + w(x)) dx. (2.4)

Now it is clear that if {vnm }∞m=1 is an arbitrary subsequence of {vn}
∞
n=1, then there exists a further subsequence

{vnms }
∞
s=1 for which (2.4) is satisfied. This means that (2.4) is also satisfied for the whole sequence {vn}∞n=1,

and hence ∫
Ω

k2 cosh(v + w) dx is s.l.w.s.c.
The coercivity of J follows from the estimate

J(v) ≥ 1
2

a(v, v) − ‖l‖L2(Ω)‖v‖L2(Ω) ≥ ϵmin
‖∇v‖2L2(Ω) − ‖l‖L2(Ω)‖v‖H1(Ω)

≥
ϵ
min

1 + C2
F

‖v‖2H1(Ω) − ‖l‖L2(Ω)‖v‖H1(Ω),

where C
F
is the constant in the Friedrichs inequality ‖v‖L2(Ω) ≤ CF‖∇v‖L2(Ω) for all v ∈ H1

0

(Ω).
Thus conditions (1) and (2) are fulfilled, and the existence of a minimizer u ∈ H1

0

(Ω) is guaranteed.
Moreover, noting that J is strictly convex, we arrive at the following result.

Theorem 2.1. There exists a unique minimizer u ∈ H1

0

(Ω) of problem (2.3).

Remark 2.1. It is worth noting that dom(J) := {v ∈ H1

0

(Ω) : k2(x) cosh(v + w) ∈ L1(Ω)} is a linear subspace of
H1

0

(Ω) for d ≤ 2 and not a linear subspace of H1

0

(Ω) if d ≥ 3. In dimension d ≤ 2, from [15, 27], we know that

e

v ∈ L2(Ω) for any v ∈ H1

0

(Ω), and thus eλv1+μv2 ∈ L2(Ω) for any λ, μ ∈ ℝ and any v
1
, v

2
∈ H1

0

(Ω).
On the other hand, if d ≥ 3, let Ω = B(0, 1), and let the inner domain Ω

2
be given by Ω

2
= B(0, r) for

some r < 1, where B(0, r) denotes the ball in ℝd with radius r centered at zero. Consider the function

v = ln 1

|x| ∈ H
1

0

(B(0, 1)). Since e

v = 1

|x| ∈ L
1(Ω

2
) and e

λv = 1

|x|λ ∉ L
1(Ω

2
) for any λ ≥ d,¹ we find on the one

hand that

∫
Ω

k2 cosh(v + w) dx = ∫
Ω
2

k2 (e
v+w + e−v−w)

2

dx

≤
1

2

k2
max

e

‖w‖L∞(Ω
2
) ∫
Ω
2

(ev + e−v) dx ≤ 1
2

k2
max

e

‖w‖L∞(Ω
2
)(∫
Ω
2

e

v dx + |Ω
2
|) <∞.

On the other hand,

∫
Ω

k2 cosh(λv + w) dx ≥ 1
2

∫
Ω
2

k2eλv+w dx ≥ 1
2

k2
min

e

−‖w‖L∞(Ω
2
) ∫
Ω
2

e

λv dx =∞ for any λ > d.

1 For any d, using spherical coordinates, we have ∫B(0,1)
1

|x|λ dx ∼ ∫
1

0

1

ρλ ρ
d−1 dρ = ∫1

0

1

ρλ−d+1 dρ <∞ if and only if λ − d + 1 < 1,
i.e., if and only if λ < d.
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Hence v ∈ dom(J), but λv ∉ dom(J) for any λ ≥ d and, therefore, dom(J) is not a linear subspace. However,
dom(J) ⊂ H1

0

(Ω) is a convex set. Indeed, let v
1
, v

2
∈ dom(J), i.e., k2 cosh(v

1
+ w), k2 cosh(v

2
+ w) ∈ L1(Ω).

Since k2 cosh( ⋅ ) is convex for almost all x ∈ Ω and any λ ∈ [0, 1], we have

∫
Ω

k2 cosh(λv
1
+ (1 − λ)v

2
+ w) dx ≤ λ∫

Ω

k2 cosh(v
1
+ w) dx + (1 − λ)∫

Ω

k2 cosh(v
2
+ w) dx < +∞.

Hence dom(J) is a convex set.

Remark 2.2. The functional ∫
Ω

k2 cosh(v + w) dx is not Gateaux differentiable at any u ∈ H1

0

(Ω) ∩ L∞(Ω) if
d = 3 (therefore, J is also not Gateaux differentiable). In fact, ∫

Ω

k2 cosh(v + w) dx is discontinuous at every
u ∈ H1

0

(Ω) ∩ L∞(Ω). This fact is easy to see by the following example. Let Ω
2
= B(0, 2) ⊂ Ω be the ball cen-

tered at 0 with radius 2. There exists a function v ∈ H1

0

(Ω) such that ∫
Ω
2

e

λv dx = +∞ for any λ > 0. In par-

ticular, we can set v = ϕ|x|−1/3, where ϕ is a smooth function equal to 1 in B(0, 1) and 0 in ℝ3 \ B(0, 2).
Then v ∈ H1

0

(Ω), but eλv ∉ L1(Ω
2
) for any λ > 0 since e

λv > |x|−3 for small enough |x|. In this case, for any

u ∈ H1

0

(Ω) ∩ L∞(Ω) and any λ > 0, we have

∫
Ω

k2 cosh(u + λv + w) dx ≥ 1
2

∫
Ω
2

k2eu+λv+w dx ≥
k2
min

e

−‖u+w‖L∞(Ω
2
)

2

∫
Ω
2

e

λv dx = +∞.

Now our goal is to show that the minimizer u is a solution of (2.1). To prove this, we use the Lebesgue domi-

nated convergence theorem and the fact that, at the uniqueminimizer u of J, we have k2 cosh(u + w) ∈ L1(Ω).
Since J(u + λv) − J(u) ≥ 0 for all v ∈ H1

0

(Ω) ∩ L∞(Ω) and any λ ≥ 0, we have
1

2

a(u + λv, u + λv) + ∫
Ω

k2 cosh(u + λv + w) dx − ∫
Ω

l(u + λv) dx

−
1

2

a(u, u) − ∫
Ω

k2 cosh(u + w) dx + ∫
Ω

lu dx ≥ 0. (2.5)

Making equivalent transformations of (2.5) and dividing by λ > 0, we obtain

a(u, v) + lim
λ→0+ ∫

Ω

k2(cosh(u + λv + w) − cosh(u + w))
λ

dx − ∫
Ω

lv dx ≥ 0. (2.6)

To compute the limit in the second termof (2.6), wewill apply the Lebesgue dominated convergence theorem.

We have

fλ(x) :=
k2(x)(cosh(u(x) + w(x) + λv(x)) − cosh(u(x) + w(x)))

λ
λ→0+
→ k2(x) sinh(u(x) + w(x))v(x) for a.e. x ∈ Ω. (2.7)

By the mean value theorem, we obtain

fλ(x) = k2(x) sinh(ς(x))v(x),

where ς(x) := u(x) + w(x) + Θ(x)λv(x) and Θ(x) ∈ (0, 1), a.e. x ∈ Ω. Then

|fλ(x)| ≤ k2(x)(
e

ς(x) + e−ς(x)

2

)|v(x)|,

from which it follows that

|fλ| ≤ ‖v‖L∞(Ω)k2 eu+w + e−u−w
2

e

|Θ(x)|λ|v(x)| ≤ ‖v‖L∞(Ω)e‖v‖L∞(Ω) k2 cosh(u + w)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈L1(Ω)

for all λ ≤ 1. (2.8)

From the Lebesgue dominated convergence theorem, (2.7) and (2.8), it follows that the limit in (2.6) is equal

to ∫
Ω

k2 sinh(u + w)v dx, and therefore we obtain

a(u, v) + ∫
Ω

b(x, u + w)v dx − ∫
Ω

lv dx ≥ 0 for all v ∈ H1

0

(Ω) ∩ L∞(Ω). (2.9)

Since the test functions belong to a linear manifold, (2.9) is equivalent to the weak formulation (2.1).



298 | J. Kraus, S. Nakov and S. Repin, Reliable Numerical Solution of Nonlinear Elliptic Problems

2.2 Uniqueness of the Solution to (2.1)

Uniqueness of the solution of (2.1) follows from the monotonicity of b(x, ⋅ ):

∫
Ω

(b(x, v + w) − b(x, z + w))(v − z) dx ≥ 0 for all v, z ∈ H1

0

(Ω) ∩ L∞(Ω). (2.10)

If u
1
, u

2
∈ H1

0

(Ω) are two different solutions of (2.1), then

a(u
1
− u

2
, v) + ∫

Ω

(b(x, u
1
+ w) − b(x, u

2
+ w))v dx = 0 for all v ∈ H1

0

(Ω) ∩ L∞(Ω). (2.11)

Note that the difference u
1
− u

2
is not necessarily in H1

0

(Ω) ∩ L∞(Ω). To show that we can test with u
1
− u

2

in (2.11), we apply a property of Sobolev spaces proved in [3].

Theorem 2.2. Let Ω be an open set in ℝd, T ∈ H−1(Ω) ∩ L1
loc

(Ω), and v ∈ H1

0

(Ω). If there exists a function
f ∈ L1(Ω) such that T(x)v(x) ≥ f(x) a.e in Ω, then Tv ∈ L1(Ω) and the duality product ⟨T, v⟩ in H−1(Ω) × H1

0

(Ω)
coincides with ∫

Ω

Tv dx.

We have the following situation: a locally summable function g ∈ L1
loc

(Ω) defines a bounded linear func-

tional Tg over the dense subspace C∞
0

(Ω) of H1

0

(Ω) through the integral formula ⟨Tg , φ⟩ = ∫
Ω

gφ dx. It is
clear that the functional Tg is uniquely extendable by continuity to a bounded linear functional Tg over the
whole space H1

0

(Ω). The question is whether this extension is still representable by the same integral formula

for any v ∈ H1

0

(Ω) (if the integralmakes sense at all). If the function v ∈ H1

0

(Ω) is fixed, then Theorem2.2 gives

a sufficient condition for gv to be summable and for the extension Tg evaluated at v to be representable with
the same integral formula as above, i.e., ⟨Tg , v⟩ = ∫

Ω

gv dx.
Now, applying Theorem 2.2 to the functional Tg defined by

⟨Tg , v⟩ := ⟨b(x, u1 + w) − b(x, u2 + w), v⟩ for all v ∈ H1

0

(Ω) ∩ L∞(Ω)

and the function v = u
1
− u

2
∈ H1

0

(Ω), using (2.11), we conclude that

a(u
1
− u

2
, u

1
− u

2
) + ∫

Ω

(b(x, u
1
+ w) − b(x, u

2
+ w))(u

1
− u

2
) dx = 0.

Using the monotonicity (2.10) of b(x, ⋅ ) and the coercivity of a( ⋅ , ⋅ ), we obtain u
1
= u

2
.

2.3 Boundedness of the Minimizer

Next we show that the solution to problem (2.1) is essentially bounded. To prove this, we need the following

lemma [16].

Lemma 2.1. Let φ(t) be a nonnegative function, which is nonincreasing for s
0
≤ t <∞ and such that

φ(h) ≤ C φ(s)β

(h − s)α
for all h > s > s

0
,

where C and α are positive constants and β > 1. If j ∈ ℝ is defined by jα := Cφ(s
0
)β−12

αβ
β−1 , then φ(s

0
+ j) = 0.

Now we present a main result of this section.

Proposition 2.1. The unique weak solution u to problem (2.1) belongs to L∞(Ω). Moreover, there exists a pos-
itive constant j > 0, depending only on d, Ω, ‖l‖L2(Ω), ϵmin

, such that ‖u‖L∞(Ω) ≤ ‖w‖L∞(Ω
2
) + j. If l = 0, then the

constant j is equal to zero.

Proof. To prove that u is bounded, we apply Theorem 2.2 once again.

The first step is to show that (2.1) holds for the test function

v = Gs(u) := sgn(u)max{|u| − s, 0}, (2.12)

where s ≥ ‖w‖L∞(Ω
2
) (we notice that similar test functions Gs have been used in [16, Theorem B.2] in the

context of linear elliptic problems).
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It is easy to see that Gs(0) = 0, this function is Lipschitz continuous and, therefore, Gs(u) ∈ H1

0

(Ω) (e.g.,
see [12, 16]). Next the functional Tb defined by

⟨Tb , v⟩ := ∫
Ω

b(x, u + w)v dx for all v ∈ H1

0

(Ω) ∩ L∞(Ω)

is bounded and linear and b(x, u + w) ∈ L1
loc

(Ω). This follows from (2.1) and from the fact that the functionals

a(u, ⋅ ) and (l, ⋅ ) belong toH−1(Ω). In view of Theorem2.2, to show that ⟨Tb , Gs(u)⟩ = ∫
Ω

b(x, u + w)Gs(u) dx,
it suffices to verify the inequality

b(x, u + w)Gs(u) ≥ f a.e. for some f ∈ L1(Ω). (2.13)

Choosing s ≥ ‖w‖L∞(Ω
2
), using the monotonicity of b(x, ⋅ ), and the fact that b(x, 0) = 0, we obtain

b(x, u + w)Gs(u) =
{{{
{{{
{

b(x, u + w)(u − s) ≥ 0 for u > s,
0 for u ∈ [−s, s],

b(x, u + w)(u + s) ≥ 0 for u < −s,
(2.14)

which shows that assumption (2.13) holds for f = 0.
Now we are ready to prove that u ∈ L∞(Ω). First we consider the case l = 0. From (2.14), it follows that

∫
Ω

b(x, u + w)Gs(u) dx ≥ 0. (2.15)

Moreover, using the definition of a( ⋅ , ⋅ ) and the definition (2.12) of Gs(u), we obtain

a(u, Gs(u)) = ∫
Ω

ϵ∇u ⋅ ∇Gs(u) dx = ∫
Ω

ϵ∇Gs(u) ⋅ ∇Gs(u) dx

≥ ϵ
min
‖∇Gs(u)‖2L2(Ω) ≥

ϵ
min

C2
F

‖Gs(u)‖2L2(Ω), (2.16)

where C
F
is the constant in Friedrichs’ inequality ‖v‖L2(Ω) ≤ CF‖∇v‖L2(Ω) that holds for all v ∈ H1

0

(Ω). Finally,
using (2.1), (2.15), and (2.16), we get ‖Gs(u)‖2L2(Ω) ≤ 0 for all s ≥ ‖w‖L∞(Ω

2
). Consequently, |u| ≤ s almost

everywhere and for all s ≥ ‖w‖L∞(Ω
2
). In the case where l is not identically zero in Ω, we further estimate

a(u, Gs(u)) from below and ∫
Ω

lGs(u) dx from above using the Sobolev embedding H1(Ω) → Lq(Ω), where
q =∞ for d = 1, q <∞ for d = 2, and q = 2d

d−2 for d ≥ 3. Let q
∗
denote the Hölder conjugate to q. Then q∗ = 1

for d = 1, q∗ = q
q−1 > 1 for d = 2, and q

∗ = 2d
d+2 for d > 2. In order to treat both cases inwhichwe are interested

simultaneously, namely, d = 2, 3, we can take q = 6 and q∗ = 6/5. By C
E
we denote the embedding constant

in the inequality ‖v‖L6(Ω) ≤ CE‖v‖H1(Ω) for all v ∈ H1(Ω), which depends only on the domain Ω and d. For
a(u, Gs(u)), we have

a(u, Gs(u)) = ∫
Ω

ϵ∇Gs(u) ⋅ ∇Gs(u) dx ≥
ϵ
min

1 + C2
F

‖Gs(u)‖2H1(Ω) (2.17)

and, for ∫
Ω

lGs(u) dx, we obtain

∫
Ω

lGs(u) dx = ∫
A(s)

lGs(u) dx ≤ ‖l‖Lq∗ (A(s))‖Gs(u)‖Lq(Ω) ≤ CE‖l‖Lq∗ (A(s))‖Gs(u)‖H1(Ω), (2.18)

where A(s) := {x ∈ Ω : |u(x)| > s}. Combining (2.17), (2.18), (2.15), and (2.1), we arrive at the estimate

ϵ
min

1 + C2
F

‖Gs(u)‖H1(Ω) ≤ CE‖l‖Lq∗ (A(s)). (2.19)

The final step before applying Lemma 2.1 is to estimate the left-hand side of (2.19) from below in terms of

|A(h)| for h > s ≥ ‖w‖L∞(Ω
2
) and the right-hand side of (2.19) from above in terms of |A(s)|. Again, using the
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Sobolev embedding H1(Ω) → Lq(Ω) and Hölder’s inequality yields

‖Gs(u)‖H1(Ω) ≥
1

C
E

(∫
Ω

|Gs(u)|q dx)
1

q
=

1

C
E

( ∫
A(s)

|u| − s

q dx)

1

q

≥
1

C
E

( ∫
A(h)

(h − s)q dx)
1

q
=

1

C
E

(h − s)|A(h)|
1

q
(2.20)

and

‖l‖Lq∗ (A(s)) ≤ ‖l‖L2(Ω)|A(s)| 2−q∗2q∗
. (2.21)

Combining (2.20), (2.21), and (2.19), we obtain the following inequality for the nonnegative and non-in-

creasing function φ(t) := |A(t)|:

|A(h)| ≤ (
C2
E

(1 + C2
F

)
ϵ
min

‖l‖L2(Ω))
q |A(s)|

q−2
2

(h − s)q
for all h > s ≥ ‖w‖L∞(Ω

2
).

Since

q−2
2

= 2 > 1, applying Lemma 2.1, we conclude that there is some j > 0 such that

0 < jq = (
C2
E

(1 + C2
F

)
ϵ
min

‖l‖L2(Ω))
q
|A(‖w‖L∞(Ω

2
))|

q−4
2
2

q(q−2)
q−4

≤ (
C2
E

(1 + C2
F

)
ϵ
min

‖l‖L2(Ω))
q
|Ω|

q−4
2
2

q(q−2)
q−4 =: jq

and |A(‖w‖L∞(Ω
2
) + j)| = 0. Hence ‖u‖L∞(Ω) ≤ ‖w‖L∞(Ω

2
) + j.

The results of this section are summarized in the following theorem.

Theorem 2.3. Problem (2.1) has a unique solution u ∈ H1

0

(Ω) ∩ L∞(Ω), which is the unique minimizer of varia-
tional problem (2.3).

Remark 2.3. Since k = 0 in Ω
1
, w ∈ L∞(Ω

2
) and u ∈ L∞(Ω), we conclude that (2.1) holds for all v ∈ H1

0

(Ω)
resulting in a standard weak formulation. If k2 is uniformly positive in the whole domain Ω and w ∈ L∞(Ω),
then ‖u‖L∞(Ω) ≤ ‖w‖L∞(Ω) + j. On theotherhand, if k = 0 inΩ2

, k2 is uniformlypositive inΩ
1
, andw ∈ L∞(Ω

1
),

we have ‖u‖L∞(Ω) ≤ ‖w‖L∞(Ω
1
) + j.

3 A Posteriori Error Estimates

3.1 Abstract Framework

First we briefly recall some results from the duality theory [8, 17]. Consider a class of variational problems

having the following common form:

find u ∈ V such that J(u) = inf
v∈V

J(v), where J(v) = G(Λv) + F(v). (P)

Here V, Y are reflexive Banach spaces with the norms ‖ ⋅ ‖V and ‖ ⋅ ‖Y , respectively, F : V → ℝ, G : Y → ℝ are
convex andproper functionals, andΛ : V → Y is a bounded linear operator. By0V wedenote the zero element

in V. It is assumed that J is coercive and lower semicontinuous. In this case, problem (P) has a solution u,
which is unique if J is strictly convex.

The spaces topologically dual to V and Y are denoted by V∗ and Y∗, respectively. They are endowed
with the norms ‖ ⋅ ‖V∗ and ‖ ⋅ ‖Y∗ . Henceforth, ⟨v∗, v⟩ denotes the duality product of v∗ ∈ V∗ and v ∈ V. Anal-
ogously, (y∗, y) is the duality product of y∗ ∈ Y∗ and y ∈ Y, and Λ

∗
: Y∗ → V∗ is the operator adjoint to Λ.

It is defined by the relation

⟨Λ∗y∗, v⟩ = (y∗, Λv) for all v ∈ V, y∗ ∈ Y∗.
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The functional J∗ : V∗ → ℝ defined by the relation

J∗(v∗) := sup
v∈V
{⟨v∗, v⟩ − J(v)}

is called dual (or Fenchel conjugate) to J (see, e.g., [8]). In accordance with the general duality theory of the
calculus of variations, the primal problem (P) has a dual counterpart:

find p∗ ∈ Y∗ such that I∗(p∗) = sup

y∗∈Y∗ I∗(y∗), where I∗(y∗) := −G∗(y∗) − F∗(−Λ∗y∗), (P*)

whereG∗ and F∗ are the functionals conjugate toG and F, respectively. Problems (P) and (P*) are generated by

the Lagrangian L : V × Y∗ → ℝ defined by the relation L(v, y∗) = (y∗, Λv) − G∗(y∗) + F(v). If we additionally
assume thatG∗ is coercive and that F(0V ) is finite, then it iswell known that problems (P) and (P*) haveunique

solutions u ∈ V and p∗ ∈ Y∗ and that strong duality relations hold (see [17], or the book [8, Proposition 2.3,
Remark 2.3, and Proposition 1.2 in Chapter VI]):

J(u) = inf
v∈V

J(v) = inf
v∈V

sup

y∗∈Y∗ L(v, y∗) = sup

y∗∈Y∗ infv∈V
L(v, y∗) = sup

y∗∈Y∗ I∗(y∗) = I∗(p∗).
Furthermore, the pair (u, p∗) is a saddle point of the Lagrangian L, i.e.,

L(u, y∗) ≤ L(u, p∗) ≤ L(v, p∗) for all v ∈ V, y∗ ∈ Y∗,

and u and p∗ satisfy the relations
Λu ∈ ∂G∗(p∗), p∗ ∈ ∂G(Λu).

We have

J(v) − I∗(y∗) = G(Λv) + F(v) + G∗(y∗) + F∗(−Λ∗y∗) = DG(Λv, y∗) + DF(v, −Λ∗y∗) =: M2

⊕(v, y∗), (3.1)

where

DG(Λv, y∗) := G(Λv) + G∗(y∗) − (y∗, Λv),
DF(v, −Λ∗y∗) := F(v) + F∗(−Λ∗y∗) + ⟨Λ∗y∗, v⟩

are the compound functionals for G and F, respectively [17]. A compound functional is nonnegative by the

definition. Equality (3.1) shows that DG and DF can vanish simultaneously if and only if v = u and y∗ = p∗.
Moreover, setting v := u and y∗ := p∗ in (3.1), we obtain analogous identities for the primal and dual parts

of the error:

J(u) − I∗(y∗) = M2

⊕(u, y∗) = DG(Λu, y∗) + DF(u, −Λ∗y∗), (3.2a)

J(v) − I∗(p∗) = M2

⊕(v, p∗) = DG(Λv, p∗) + DF(v, −Λ∗p∗). (3.2b)

Using the fact that J(u) = I∗(p∗) and that the above equalities (3.2) hold,weobtain another important relation

(see [17])

M2

⊕(v, y∗) = J(v) − I∗(y∗) = J(v) − I∗(p∗) + J(u) − I∗(y∗) = M2

⊕(v, p∗) +M2

⊕(u, y∗). (3.3)

Notice that M2

⊕(v, y∗) depends on the approximations v and y∗ only and, therefore, is fully computable. The

right-hand side of (3.3) can be viewed as a certainmeasure of the distance between (u, p∗) and (v, y∗), which
vanishes if and only if v = u and y∗ = p∗. Hence the relation

DG(Λv, p∗) + DF(v, −Λ∗p∗) + DG(Λu, y∗) + DF(u, −Λ∗y∗) = M2

⊕(v, y∗) (3.4)

establishes the equality of the computable term M2

⊕(v, y∗) and an error measure natural for this class of

variational problems.

It is worth noting that identity (3.4) can be represented in terms of norms if G and F are quadratic func-
tionals. For example, if V = H1

0

(Ω), V∗ = H−1(Ω), Y = [L2(Ω)]d = Y∗, G(Λv) = G(∇v) = ∫
Ω

1

2

A∇v ⋅ ∇v dx and
F(v) = ∫

Ω

(1
2

v2 − lv) dx (where A is a symmetric positive definite matrix with bounded entries), then

DG(Λv, p∗) =
1

2

∫
Ω

A∇(v − u) ⋅ ∇(v − u) dx, DG(Λu, y∗) =
1

2

∫
Ω

A−1(y∗ − p∗) ⋅ (y∗ − p∗) dx,

DF(v, −Λ∗p∗) =
1

2

‖v − u‖2L2(Ω), DF(u, −Λ∗y∗) =
1

2

‖div(y∗ − p∗)‖2L2(Ω).

(3.5)
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In this case, theminimizer of (P) solves the linear elliptic problem−div(A∇u) + u = l inΩ, and (3.4) is reduced
to the error identity

∫
Ω

A∇(v − u) ⋅ ∇(v − u) dx + ∫
Ω

A−1(y∗ − p∗) ⋅ (y∗ − p∗) dx + ‖v − u‖2L2(Ω) + ‖div(y
∗ − p∗)‖2L2(Ω)

= ⦀A∇v − y∗⦀2∗ + ‖v − div y∗ − l‖2L2(Ω) = 2M
2

⊕(v, y∗). (3.6)

The sum of the first and the third term in (3.6) represents the primal, the sum of the second and fourth term

the dual error.

We set V := H1

0

(Ω), Y := [L2(Ω)]d, where d = 2, 3, and Λ the gradient operator ∇ : H1

0

(Ω)→ [L2(Ω)]d.
We further denote g : Ω ×ℝ3 → ℝ, g(x, ξ) := ϵ(x)

2

|ξ|2, and B : Ω ×ℝ→ ℝ, B(x, ξ) := k2(x) cosh(ξ). With this

notation, we have

G(Λv) := ∫
Ω

g(x, ∇v(x)) dx = ∫
Ω

ϵ
2

|∇v|2 dx,

F(v) := ∫
Ω

B(x, v(x) + w(x)) dx − ∫
Ω

lv dx = ∫
Ω

k2 cosh(v + w) dx − ∫
Ω

lv dx,

and the functional J, defined by (2.2), can be written in the form J(v) = G(Λv) + F(v). For any v ∈ V the func-

tional G(Λv) is finite, while F : V → ℝ ∪ {+∞}may take the value+∞ for some v ∈ V if d ≥ 3 (e.g., v = log 1

|x|α ,

α ≥ d on the unit ball inℝd). However, if d ≤ 2, then exp(v) ∈ L1(Ω) for all v ∈ H1

0

(Ω) and F : V → ℝ (see [15]).
Also, F(0V ) is obviously finite since w ∈ L∞(Ω2

). We set V∗ = H−1(Ω) and Y∗ = Y = [L2(Ω)]d. In this case,

Λ

∗
coincides with −div considered as an operator from [L2(Ω)]d to H−1(Ω). We will present the particular

form of error equality (3.4) where the error is measured in a special “nonlinear norm”. This measure contains

the usual combined energy norm terms, i.e., the sum of the energy norms of the errors for the primal and dual

problem, but also two additional nonnegative terms due to the nonlinearity B(x, ξ) (or equivalently b(x, ξ))
which in some cases may dominate the usual energy norm terms. We start by deriving explicit expressions

for G∗, F∗, and then we will use these expressions to get an explicit form of the abstract error equality (3.4).

3.2 Fenchel Conjugates of the Functionals G and F

It is easy to find that G∗(y∗) = ∫
Ω

1

2ϵ(x) |y
∗(x)|2 dx. For y∗ ∈ H(div;Ω) and an arbitrary function z : Ω

2
→ ℝ, we

introduce the functional

Iy∗ (z) := ∫
Ω
2

[(div y∗ + l)z − B(x, z + w)] dx.

Recalling that the nonlinearity B is supported on Ω
2
, we have

F∗(−Λ∗y∗) = sup

z∈H1

0

(Ω)
[⟨−Λ∗y∗, z⟩ − F(z)] = sup

z∈H1

0

(Ω)
[(−y∗, Λz) − F(z)]

= sup

z∈H1

0

(Ω)
∫
Ω

[−y∗ ⋅ ∇z − B(x, z + w) + lz] dx (if y∗ ∈ H(div;Ω))

= sup

z∈H1

0

(Ω)
∫
Ω

[div y∗z − B(x, z + w) + lz] dx (finite if div y∗ + l = 0 in Ω
1
)

= sup

z∈H1

0

(Ω)
Iy∗ (z) ≤ ∫

Ω
2

sup

ξ∈ℝ
[(div y∗(x) + l(x))ξ − B(x, ξ + w(x))] dx

= ∫
Ω
2

[(div y∗(x) + l(x))ξ
0
(x) − B(x, ξ

0
(x) + w(x))] dx = Iy∗ (ξ0). (3.7)

Here ξ
0
: Ω

2
→ ℝ is computed by the condition

d
dξ
[(div y∗(x) + l(x))ξ − B(x, ξ + w(x))] = 0 for a.e. x ∈ Ω

2
, (3.8)
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which is equivalent to

div y∗(x) + l(x) − k2(x) sinh(ξ + w(x)) = 0 for a.e. x ∈ Ω
2
.

We notice that (3.8) is a necessary condition for a maximum which is also sufficient since B(x, ⋅ ) is convex.
The solution of the last equation exists, is unique, and is given by

ξ
0
(x) = arsinh(ρk(y∗)) − w(x) = ln(ρk(y∗) +√ρ2k(y∗) + 1) − w(x) = ln(Θ(ρk(y

∗))) − w(x),

where ρk(y∗) := div y∗(x)+l(x)
k2(x) and Θ(s) := s +√s2 + 1 for s ∈ ℝ. Note that the exact solution p∗ = ϵ∇u of dual

problem (P*) also satisfies the relation div(ϵ∇u) + l = 0 because, for any x ∈ Ω
1
, it holds k(x) = 0. More-

over, since u ∈ L∞(Ω), w ∈ L∞(Ω
2
), and l ∈ L2(Ω), we see that div p∗ = k2 sinh(u + w) + l ∈ L2(Ω) and thus

p∗ ∈ H(div;Ω). In Proposition 3.1, we will later prove that we have not overestimated the supremum over

z ∈ H1

0

(Ω) in (3.7) and that we actually have equalities everywhere. Denoting S := arsinh(ρk(y∗)) and using
the expression for ξ

0
(x) and the formula

cosh(arsinh(x)) = √x2 + 1 for all x ∈ ℝ,

for any y∗ ∈ H(div;Ω) ⊂ [L2(Ω)]d = Y∗ with div y∗ + l = 0 inΩ
1
, we obtain an explicit formula for F∗(−Λ∗y∗):

F∗(−Λ∗y∗) = ∫
Ω
2

[k2ρk(y∗)(ln(Θ(ρk(y∗))) − w) − k2√ρ2k(y∗) + 1] dx

= ∫
Ω
2

[k2 sinh(S)(S − w) − k2 cosh(S)] dx. (3.9)

Remark 3.1. Since |ln(t +√t2 + 1)| ≤ |t| for all t ∈ ℝ, the function ln(Θ(f(x))) − w(x) belongs to L2(Ω
2
) for

any f ∈ L2(Ω
2
), and we conclude that ξ

0
(x) ∈ L2(Ω

2
) if y∗ ∈ H(div;Ω). Therefore, the integral in (3.9) is well

defined.

Now our goal is to prove that the inequality supz∈H1

0

(Ω) Iy∗ (z) ≤ Iy∗ (ξ0) holds as the equality. In other words,
we want to prove that the error estimate remains sharp and that the computed majorant M2

⊕(v, y∗) will be
indeed zero if approximations (v, y∗) coincide with the exact solution (u, p∗).

Proposition 3.1. For any y∗ ∈ H(div;Ω) with div y∗ + l = 0 in Ω
1
, it holds

sup

z∈H1

0

(Ω)
Iy∗ (z) = Iy∗ (ξ0) <∞.

Proof. The idea is to approximate f = div y∗+l
k2 ∈ L

2(Ω
2
) and w↾

Ω
2

∈ L∞(Ω
2
) by C∞

0

(Ω
2
) functions (in the

a.e. sense) and use the Lebesgue dominated convergence theorem. Let fn ∈ C∞
0

(Ω
2
) and wn ∈ C∞

0

(Ω
2
) be

such that fn(x)→ f(x) a.e. in Ω
2
, |fn(x)| ≤ h(x) ∈ L2(Ω2

) (see [2, Theorem 4.9]), wn(x)→ w(x) a.e. in Ω
2
,

|wn(x)| ≤ m + 2, where m := ‖w‖L∞(Ω
2
). Then

zn(x) := ln(Θ(fn(x))) − wn(x)→ ξ
0
(x) a.e. in Ω

2

and zn ∈ C∞
0

(Ω
2
) ⊂ H1

0

(Ω
2
) ⊂ H1

0

(Ω) (by extending the functions by zero in Ω
1
). Since B(x, ⋅ ) is continuous,

we have the pointwise a.e. in Ω
2
convergence

(div y∗(x) + l(x))zn(x) − B(x, zn + w(x))→ (div y∗(x) + l(x))ξ0(x) − B(x, ξ0(x) + w(x))

Nowwe search for a function in L1(Ω
2
) that majorates the function |(div y∗(x) + l(x))zn(x) − B(x, zn + w(x))|:

|(div y∗(x) + l(x))zn(x) − k2(x) cosh(zn(x) + w(x))|
≤ |div y∗(x) + l(x)| |zn(x)| + k2(x)e‖w‖L∞(Ω

2
)e|zn(x)|. (3.10)

Our next goal is to bound |zn(x)| in (3.10). For the first summand, we have

|zn(x)| = |ln(Θ(fn(x))) − wn(x)| ≤ |fn(x)| + m + 2 ≤ h(x) + m + 2 ∈ L2(Ω2
),
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where Remark 3.1 has been used. However, this bound cannot be used in the second term because e

h
might

not belong even to L1(Ω
2
). In order to find an L1-majorant for the second summand in (3.10), we distinguish

the following two cases: In the first case, fn(x) > 0. Then |ln(Θ(fn(x)))| ≤ |ln(Θ(h(x)))|.
In the second case (fn(x) ≤ 0), we have Θ(fn(x)) ≤ 1. Therefore, 0 ≥ fn(x) ≥ −h(x). Since Θ(s) is a mono-

tonically increasing function, Θ(0) = 1 ≥ Θ(fn(x)) ≥ Θ(−h(x)) > 0. From here, we obtain

ln(1) = 0 ≥ ln(Θ(fn(x))) ≥ ln(Θ(−h(x))),

and using the relation Θ(−h) = 1

Θ(h) , we conclude that

|ln(Θ(fn(x)))| ≤ |ln(Θ(−h(x)))| = |ln(Θ(h(x)))|.

Finally, for almost all x ∈ Ω
2
, we have

|zn(x)| = |ln(Θ(fn(x))) − wn(x)|
≤ |ln(Θ(h(x)))| + m + 2 = ln(Θ(h(x))) + m + 2 because h(x) ≥ 0 for a.e. x ∈ Ω

2
.

Therefore,

|(div y∗(x) + l(x))zn(x) − k2(x) cosh(zn(x) + w(x))|
≤ |div y∗(x) + l(x)|(h(x) + ‖w‖L∞(Ω

2
) + 2) + k2(x)e2‖w‖L∞(Ω

2
)+2

Θ(h(x)) := H(x) ∈ L2(Ω
2
),

where, in the last line, we used the fact that Θ(h(x)) ∈ L2(Ω
2
). All the conditions of the Lebesgue dominated

convergence theorem are satisfied, and we see that Iy∗ (zn)→ Iy∗ (ξ0) and, consequently,
sup

z∈H1

0

(Ω)
Iy∗ (z) = Iy∗ (ξ0).

3.3 Error Measures

In this section, we apply the abstract framework from Section 3.1 and derive an explicit form of relation (3.4)

adapted to our problem. For any y∗ ∈ H(div;Ω)with div y∗ + l = 0 in Ω
1
, the quantity M2

⊕(v, y∗) is fully com-

putable and is given by the relation

M2

⊕(v, y∗) = DG(Λv, y∗) + DF(v, −Λ∗y∗)
= G(Λv) + G∗(y∗) − (y∗, Λv) + F(v) + F∗(−Λ∗y∗) + ⟨Λ∗y∗, v⟩

= ∫
Ω

η2(x) dx = 1
2

⦀ϵ∇v − y∗⦀2∗ + DF(v, −Λ∗y∗), (3.11)

where

η2(x) =
{{{{
{{{{
{

1

2ϵ |ϵ∇v − y
∗|2, x ∈ Ω

1

1

2ϵ |ϵ∇v − y
∗|2 + k2 cosh(v + w) − lv
+k2ρk(y∗)(ln(Θ(ρk(y∗))) − w) − k2√ρ2k(y∗) + 1 − div y

∗v, x ∈ Ω
2

(3.12)

and we have used the expressions for G∗ and F∗. It is clear that η2(x) ≥ 0 since it is the sum of the compound

functionals generated by ̃gx(s) := g(x, s) and B̃x(s) − l(x)s = B(x, s + w(x)) − l(x)s evaluated at (∇v(x), y∗(x))
and (v(x), div y∗(x)), respectively. It therefore qualifies as an error indicator, provided that y∗ is chosen appro-
priately, which we demonstrate with numerical experiments in the next section. Using the expression for G∗,
we obtain

DG(Λv, p∗) =
1

2

∫
Ω

ϵ|∇(v − u)|2 dx =: 1
2

⦀∇(v − u)⦀2, (3.13)

DG(Λu, y∗) =
1

2

∫
Ω

1

ϵ
|y∗ − p∗|2 dx =: 1

2

⦀y∗ − p∗⦀2∗.

Now we find explicit expressions for the nonlinear measures DF(v, −Λ∗p∗) and DF(u, −Λ∗y∗) similar to the

ones for the case of quadratic F in (3.5) for the linear elliptic equation −div(A∇u) + u = l. We will need the

following assertion, which is easy to prove.
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Proposition 3.2. For all s, t ∈ ℝ, it holds

(t − s)2

2

≤ A(s, t) ≤ (sinh(t) − sinh(s))
2

2

, (3.14)

where A(s, t) = cosh(t) − cosh(s) + s sinh(s) − t sinh(s).

Since, for the exact solution u, we have ρk(p∗) = sinh(u + w) and u = arsinh(ρk(p∗)) − w for a.e. x ∈ Ω
2
, we

find that

DF(v, −Λ∗p∗) = ∫
Ω
2

(k2 cosh(v + w) − lv + k2 sinh(u + w)u − k2 cosh(u + w) − div p∗v) dx

= ∫
Ω
2

k2(cosh(v + w) − cosh(u + w) + u sinh(u + w) − v sinh(u + w)) dx.

Similarly, DF(u, −Λ∗y∗) = ∫
Ω
2

k2(cosh(T) − cosh(S) + S sinh(S) − T sinh(S)) dx, where T := arsinh(ρk(p∗)).
The nonlinear quantities DF(v, −Λ∗p∗) and DF(u, −Λ∗y∗) measure the error in v and in div y∗, respectively.
Using inequality (3.14), we can represent these two measures in a form which resembles the corresponding

estimates in the case (3.5) of a quadratic functional F, namely,

∫
Ω
2

k2

2

(v − u)2 dx ≤ DF(v, −Λ∗p∗) ≤ ∫
Ω
2

k2

2

(sinh(v + w) − sinh(u + w))2 dx, (3.15)

∫
Ω
2

k2

2

(T − S)2 dx ≤ DF(u, −Λ∗y∗) ≤ ∫
Ω
2

1

2k2
(div p∗ − div y∗)2 dx. (3.16)

Note that, for k ≥ k
min
> 0 in Ω, the following equivalences hold:

∫
Ω

k2

2

(v − u)2 dx ≂ ‖v − u‖2L2(Ω) and ∫
Ω

1

2k2
(div p∗ − div y∗)2 dx ≂ ‖div y∗ − div p∗‖2L2(Ω).

Moreover, replacing the nonlinear term k2 sinh(u + w) with u, inequalities (3.15) and (3.16) reduce to the

equalities for DF(v, −Λ∗p∗) and DF(u, −Λ∗y∗) in (3.5) because, in this case, the inverse function of f(x) = x is
again f(x). The functions on the left-hand side, in the middle, and on the right-hand side in inequality (3.14)

are depicted on Figure 1.



cosh(t) - cosh(s) + s sinh(s) - t sinh(s)
1

2
(t - s)2

1

2
(sinh(t) - sinh(s))2

Figure 1: Functions in inequality (3.14).
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Further, if v is in a δ
1
-neighborhood of u in L∞(Ω) norm, thenwe can find a constant C

1
(δ

1
, ‖u‖L∞(Ω)) > 1

such that

∫
Ω
2

k2

2

(sinh(v + w) − sinh(u + w))2 dx ≤ C
1
(δ

1
, ‖u‖L∞(Ω)) ∫

Ω
2

k2

2

(v − u)2 dx. (3.17)

Analogously, if l ∈ L∞(Ω
2
) and ‖div(y∗ − p∗)‖L∞(Ω

2
) ≤ δ2 (recall that when l ∈ L∞(Ω

2
), div p∗ is in L∞(Ω

2
)),

then we can find a constant C
2
(δ

2
, ‖div p∗‖L∞(Ω

2
)) < 1 such that

C
2
(δ

2
, ‖div p∗‖L∞(Ω

2
)) ∫
Ω
2

1

2k2
(div p∗ − div y∗)2 dx ≤ ∫

Ω
2

k2

2

(T − S)2 dx. (3.18)

The constants C
1
and C

2
are just Lipschitz constants for the locally Lipschitz function sinh. Notice that if

k2 ≥ k
min
> 0 in Ω, then everywhere in (3.15), (3.16), (3.17), and (3.18), the integrals are taken over the

entire domain Ω. Now the abstract error identity (3.4) takes the form

1

2

⦀∇(u − v)⦀2 + 1
2

⦀p∗ − y∗⦀2∗ + ∫
Ω
2

k2

2

(v − u)2 dx + C
2
(δ

2
, ‖div p∗‖L∞(Ω)) ∫

Ω
2

1

2k2
(div p∗ − div y∗)2 dx

≤
1

2

⦀∇(u − v)⦀2 + 1
2

⦀p∗ − y∗⦀2∗ + DF(v, −Λ∗p∗) + DF(u, −Λ∗y∗) = M2

⊕(v, y∗)

≤
1

2

⦀∇(u − v)⦀2 + 1
2

⦀p∗ − y∗⦀2∗

+ C
1
(δ

1
, ‖u‖L∞(Ω)) ∫

Ω
2

k2

2

(v − u)2 dx + ∫
Ω
2

1

2k2
(div y∗ − div p∗)2 dx, (3.19)

where we have used p∗ = ϵΛu = ϵ∇u. Relation (3.19) shows that the computable majorant M2

⊕(v, y∗) is
bounded from below and above by a multiple of one and the same error norm. Since DF(v, −Λ∗p∗) ≥ 0 and
DF(u, −Λ∗y∗) ≥ 0, we also obtain a guaranteed bound on the error in the combined energy norm,

⦀∇(u − v)⦀2 + ⦀p∗ − y∗⦀2∗ ≤ 2M2

⊕(v, y∗). (3.20)

From the pointwise equality

1

ϵ
|ϵ∇v − y∗|2 = 1

ϵ
|ϵ∇(v − u) − (y∗ − p∗)|2

= ϵ|∇(v − u)|2 + 1
ϵ
|y∗ − p∗|2 − 2(y∗ − p∗) ⋅ ∇(v − u), (3.21)

after applying Young’s inequality and integrating over Ω, we obtain a lower bound for the error in combined

energy norm,

1

2

⦀ϵ∇v − y∗⦀2∗ ≤ ⦀∇(v − u)⦀2 + ⦀y∗ − p∗⦀2∗ (3.22)

Remark 3.2. Integrating (3.21) over Ω, we obtain the algebraic identity

⦀ϵ∇v − y∗⦀2∗ = ⦀∇(v − u)⦀2 + ⦀y∗ − p∗⦀2∗ − 2∫
Ω

(y∗ − p∗) ⋅ ∇(v − u) dx, (3.23)

from which the Prager–Synge identity is derived. Comparing the last relation with (3.19), using the fact that

M⊕(v, y∗)2 = 1

2

⦀ϵ∇v − y∗⦀2∗ + DF(v, −Λ∗y∗), we arrive at the relation

DF(v, −Λ∗y∗) = DF(v, −Λ∗p∗) + DF(u, −Λ∗y∗) + ∫
Ω

(y∗ − p∗) ⋅ ∇(v − u) dx. (3.24)

From here, it is seen that if the integral on the right-hand side is small compared to the other terms, then

the error in v and div y∗measured with DF(v, −Λ∗p∗) + DF(u, −Λ∗y∗) is controlledmainly by the computable

term DF(v, −Λ∗y∗) in the majorant M2

⊕(v, y∗). Moreover, (3.23) enables us to give a practical estimation of
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the error in combined energy norm, which is very close to the real error in all of the experiments that we

have conducted.

We conclude the section by presenting a near best approximation result. Contrary to the result in [5, Theo-

rem 6.2], we do not make any restrictive assumptions on themeshes to ensure that the finite element approx-

imations uh are uniformly bounded in L∞ norm. In our analysis, Vh ⊂ L∞ is a finite-dimensional subspace

of H1

0

, and uh is the minimizer of J over Vh, which is the unique solution of the Galerkin problem:

find uh ∈ Vh such that a(uh , v) + ∫
Ω

b(x, uh + w)v dx = (l, v) for all v ∈ Vh . (3.25)

Then, using (3.2b) and expression (3.13) for DG(Λv, p∗), for any v ∈ Vh, we can write

⦀∇(uh − u)⦀2 + 2DF(uh , −Λ∗p∗) = 2(J(uh) − J(u))
≤ 2(J(v) − J(u)) = ⦀∇(v − u)⦀2 + 2DF(v, −Λ∗p∗).

Since 2DF(uh , −Λ∗p∗) ≥ 0, using (3.15), we obtain the following generalization of Cea’s lemma to the case

of our nonlinear problem.

Proposition 3.3. Let Vh ⊂ L∞(Ω) be a closed subspace of H1

0

(Ω) and uh ∈ Vh the Galerkin approximation of u
defined by (3.25). Then

⦀∇(uh − u)⦀2 ≤ inf
v∈Vh
{⦀∇(v − u)⦀2 + ∫

Ω
2

k2(sinh(v + w) − sinh(u + w))2 dx}. (3.26)

Since we use the finite element method with P
1
Lagrange elements, let Vh be the corresponding space,

where h refers to the maximum element size. By Ih(φ), we denote the Lagrange finite element interpolant

of φ ∈ C0(Ω). Using (3.26), we can show unqualified convergence of the finite element approximations uh
to u as h → 0. Let ε > 0, and ̄u ∈ C∞

0

(Ω) is such that ‖∇( ̄u − u)‖L2(Ω) ≤ ε and ‖ ̄u‖L∞(Ω) ≤ ‖u‖L∞(Ω) + 2. Also, let
L be the Lipschitz constant in the inequality

|sinh(s) − sinh(t)| ≤ L|s − t| for all s, t ∈ [−2‖w‖L∞(Ω
2
) − j − 2, 2‖w‖L∞(Ω

2
) + j + 2],

where j is the constant from Proposition 2.1. Then, applying the triangle inequality together with Young’s

inequality, we obtain

⦀∇(uh − u)⦀2 ≤ 2(⦀∇(Ih( ̄u) − ̄u)⦀2 + ⦀∇( ̄u − u)⦀2)

+ 2(∫
Ω

k2(sinh(Ih( ̄u) + w) − sinh( ̄u + w))2 dx

+ ∫
Ω

k2(sinh( ̄u + w) − sinh(u + w))2 dx). (3.27)

For the first term in (3.27), assuming mesh regularity, we have

⦀∇(Ih( ̄u) − ̄u)⦀2 + ⦀∇( ̄u − u)⦀2 ≤ ϵmax
(C| ̄u|2

2

h2 + ε2),

where | ̄u|
2
denotes the H2

seminorm of ̄u and C > 0 is a constant depending on the mesh regularity. Using

the fact that ‖Ih( ̄u)‖L∞(Ω) ≤ ‖ ̄u‖L∞(Ω) ≤ ‖u‖L∞(Ω) + 2, for the second term in (3.27), we obtain the upper bound

2k2
max

L2(‖Ih( ̄u) − ̄u‖2L2(Ω) + ‖ ̄u − u‖
2

L2(Ω)) ≤ 2k
2

max
L2C2

F

(‖∇(Ih( ̄u) − ̄u)‖2L2(Ω) + ‖∇( ̄u − u)‖
2

L2(Ω))

≤ 2k2
max

L2C2
F

(C| ̄u|2
2

h2 + ε2).

This inequality shows that the right-hand side of (3.27) can be made as small as desired provided that we

choose ε and h small enough, and therefore ⦀∇(uh − u)⦀→ 0when h → 0. Moreover, (3.26) can be also used

to obtain qualified convergence of uh in the energy norm under additional assumptions on the interface Γ,

the meshes, and the regularity of u.
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4 Numerical Results

In this section, we present numerical examples illustrating error identity (3.19) and performance of func-

tional a posteriori error estimates. All numerical experiments are carried out in FreeFem++ developed and

maintained by Frederich Hecht [13], and all pictures are generated in VisIt [6]. We solve adaptively the

homogeneous nonlinear problem (1.1) with w := wh
ref

= g − zh
ref

, where zh
ref

is a good Galerkin finite element

approximation of the solution z of

−∇ ⋅ (ϵ∇z) = −k2 sinh(g) + l in Ω
1
∪ Ω

2
,

[z]
Γ
= 0,

[ϵ ∂z∂n]
Γ

= 0,

z = 0 on ∂Ω,

for given functions g and l. We compare the accuracy of the adaptively computed solution uh of (1.1)

for w = wh
ref

to the reference solution zh
ref

. The adaptive mesh refinement is based on the error indicator

‖√2η‖L2(Oi) on subdomains Oi, where the function η is defined in (3.12) and η2 is the integrand of the majo-

rant M2

⊕(v, y∗). The factor √2 accounts for the factor 2 in (3.20). More precisely, we find approximations uh
to the exact solution u ∈ H1

0

(Ω) of the problem

∫
Ω

ϵ∇u ⋅ ∇v dx + ∫
Ω

b(x, u + wh
ref

)v dx = ∫
Ω

lv dx = 0 for all v ∈ H1

0

(Ω).

In all examples, we use piecewise constant parameters ϵ and k, and for y∗ ∈ H(div;Ω), we used a patchwise
equilibrated reconstruction of the numerical flux ϵ∇uh based on [1]. More precisely, we find y∗ in the Raviart–
Thomas space RT

0
over the same mesh such that its divergence is equal to the L2 orthogonal projection of

k2 sinh(uh + w) + l onto the space of piecewise constants.
Recall that

M2

⊕(v, y∗) = M2

⊕(v, p∗) +M2

⊕(u, y∗),

where M2

⊕(v, y∗) = 1

2

⦀ϵ∇v − y∗⦀2∗ + DF(v, −Λ∗y∗) and M2

⊕(v, p∗) = J(v) − J(u) = 1

2

⦀∇(v − u)⦀2 + DF(v, −Λ∗p∗)
is the primal error, whereasM2

⊕(u, y∗) = I∗(p∗) − I∗(y∗) = 1

2

⦀y∗ − p∗⦀2∗ + DF(u, −Λ∗y∗) is the dual error. Fur-
ther, we use v for the approximate solution uh and u for the reference solution zh

ref

and define the efficiency

index of the lower bound for the error in combined energy norm (3.22) by

ICEN,Low
Eff

:=
√2
2

⦀ϵ∇v − y∗⦀∗
√⦀∇(v − u)⦀2 + ⦀y∗ − p∗⦀2∗

.

Similarly,

ICEN,Up
Eff

:=
√2M2

⊕(v, y∗)

√⦀∇(v − u)⦀2 + ⦀y∗ − p∗⦀2∗

defines the efficiency index of the upper bound (3.20) for the error in combined energy norm. Finally,

IE
Eff

:=
√2M2

⊕(v, y∗)
⦀∇(v − u)⦀

and PCEN
rel

:=
⦀ϵ∇v − y∗⦀∗
√⦀∇v⦀2 + ⦀y∗⦀2∗

define the efficiency index of the upper bound for the error in energy norm and the practical estimate of the

relative error in combined energy norm, respectively.
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4.1 Example 1 (2D Problem)

In the first example, the domain Ω is a square with a side 20 with Ω
1
being a regular 15-sided polygon with

a radius of its circumscribed circle equal to 2. The coefficients ϵ and k are defined by the relations

ϵ(x) =
{
{
{

ϵ
1
= 1, x ∈ Ω

1
,

ϵ
2
= 100, x ∈ Ω

2
,

k(x) =
{
{
{

k
1
= 0.15, x ∈ Ω

1
,

k
2
= 0.4, x ∈ Ω

2
,

and

g = L(exp(−b
1
(
(x

1
− c

1
)2

σ2
1

− 1)) − exp(−b
2
(
(x

2
− c

2
)2

σ2
2

− 1))),

l = 0, where b
1
= 2 = b

2
= 2, c

1
= −1, c

2
= 6, σ

1
= σ

2
= 1.5, L = 0.8. The reference solution zh

ref

is computed

on a multiply refined mesh with 50086142 triangles. Note that k2 = 0.0225 in Ω
1
and k2 = 0.16 in Ω

2
. The

mesh adaptation is done with the built-in function “adaptmesh” of FreeFem++. The localized error indicator

‖√2η‖L2(Oi), computed on each vertex patch Oi of themesh, is compared to its average value over all patches,

and the local mesh size is divided by two if this average is smaller than the local value.

Table 1 illustrates the main error identity (3.3) and the convergence of its constituent parts. Further,

it is seen that the dual error 2M2

⊕(u, y∗) dominates the primal error in this example. This is due to the

fact that the term 2DF(u, −Λ∗y∗), measuring the error in div y∗ (cf. (3.16) and (3.18)), is much larger than

⦀∇(v − u)⦀2 + DF(v, −Λ∗p∗), where DF(v, −Λ∗p∗) behaves like ‖v − u‖2L2(Ω
2
) (cf. (3.15) and (3.17)). As we

mentioned earlier, for y∗, we use a partially equilibrated reconstruction of the numerical flux ϵ∇v, which is

the reason why the integral term in (3.23) is negligible compared to the combined energy norm of the error.

This fact is confirmed by the values of the efficiency index of the lower bound (3.22).

In Table 3, we can see that ICEN,Low
Eff

is approximately equal to 0.7071 ≈ √2
2

. The value of the efficiency

index with respect to the combined energy norm and the value of the ratio DF(v, −Λ∗y∗)/M2

⊕(v, y∗) are also
coupled in the sense that if we have only one of these two quantities, we can estimate the other one by using

the main error equality (3.19). This estimation is accurate because the integral term in (3.24) is very close to

zero, and therefore DF(v, −Λ∗y∗) ≈ DF(v − Λ∗p∗) + DF(u − Λ∗y∗). Onemore consequence of using a partially

equilibrated flux is that we obtain a very accurate practical estimate of the absolute and relative error in

combined energy norm as illustrated in the last two columns of Table 3.

Figure 2 depicts a mesh that is a part of a sequence of meshes obtained by mesh adaptation using the

localized functional error indicator ‖√2η‖L2(Oi). Figure 3 depicts ameshwith approximately the samenumber

of elements but obtained by mesh adaptation using the error indicator ⦀ϵ∇v − y∗⦀∗(Oi). The mesh in Figure 2

is refined mainly where the error in div y∗ is the dominant part of the error M2

⊕(v, −Λ∗p∗) +M2

⊕(u, −Λ∗y∗).
On the other hand, the mesh in Figure 3 is refined most around the extrema of the solution. Figure 5

depicts the minimal set of elements K of a mesh Th that contains at least 30% of the total indicated error

∑K∈Th ⦀ϵ∇v − y
∗⦀∗(K) (greedy algorithm with a bulk factor of 0.3), where Th is part of the same sequence as

the mesh illustrated in Figure 3.

Figure 6 depicts the elements marked by the greedy algorithm using a bulk factor of 0.5 and employing

the true error

√
2M2

⊕(v, p∗) + 2M2

⊕(u, y∗)

as indicator. Figure 7 depicts elements which aremarked additionally or fail to bemarked by the same greedy

algorithm when employing the functional error indicator ‖√2η‖L2(Oi) for the same bulk factor. The ratio of

the number of these differently marked elements, that is, elements which are marked by one of the two

methods but not by the other one, and the total number of elements is 0.022, and the ratio of the number

of differently marked elements to the number of marked elements using the true error is 0.048 (Table 4).

Comparing the indicated error and the true error elementwise, one finds that the error indicator generated

by the majorant M2

⊕(v, y∗) reproduces the local distribution of the error with a very high accuracy. This is

also confirmed by Figure 8, where it can be seen that all error measures are almost identical in both cases

of adaptive mesh refinement. Mesh adaptation based on the functional error indicator ‖√2η‖L2(Oi) instead of

the error indicator ⦀ϵ∇v − y∗⦀∗(Oi) (Figure 9) yields approximately twice smaller efficiency indices in energy
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Example 1 (2D): k1 = 0.15, k2 = 0.4, ϵ1 = 1, ϵ2 = 100

# elts ‖v − u‖0
‖u‖0

[%] ⦀∇(v − u)⦀
⦀∇u⦀

[%]
⦀y∗ − p∗⦀∗
⦀p∗⦀∗

[%] 2M2
⊕(v, y∗) 2M2

⊕(v, p∗) 2M2
⊕(u, y∗)

196 15.0077 51.5582 86.1021 1778.14 66.5980 1711.54
347 5.69339 30.8534 41.7241 703.594 20.7780 682.816
630 4.20384 21.7715 31.4858 217.719 10.2201 207.498

1315 2.39552 15.8532 23.1244 76.8018 5.37574 71.4261
2865 1.87075 11.7353 17.1655 33.9310 2.94414 30.9869
5938 0.64611 7.93001 11.4692 16.0812 1.33874 14.7425

12006 0.36985 5.64786 8.23544 7.75232 0.67872 7.07360
24571 0.16023 3.94241 5.76054 3.85268 0.33039 3.52229
48483 0.08909 2.80265 4.09366 1.90043 0.16682 1.73361
97423 0.03961 1.97875 2.88455 0.96275 0.08304 0.87970

192905 0.02230 1.39832 2.03200 0.47524 0.04136 0.43388
386185 0.01015 0.99471 1.44616 0.24134 0.02082 0.22052

Table 1: Constituent parts of main error identity (3.3) for Example 1 (2D).

Example 1 (2D): k1 = 0.15, k2 = 0.4, ϵ1 = 1, ϵ2 = 100

# elts ⦀∇(v − u)⦀2 ⦀y∗ − p∗⦀2∗ 2DF (v, −Λ∗p∗) 2DF (u, −Λ∗y∗)

196 56.5057 157.588 10.0923 1553.95
347 20.2350 37.0058 0.54296 645.811
630 10.0756 21.0729 0.14450 186.425

1315 5.34235 11.3668 0.03338 60.0593
2865 2.92742 6.26338 0.01671 24.7235
5938 1.33673 2.79619 0.00200 11.9462

12006 0.67805 1.44169 0.00067 5.63191
24571 0.33038 0.70538 0.00001 2.81691
48483 0.16696 0.35622 0.00000 1.37739
97423 0.08323 0.17687 0.00000 0.70283

192905 0.04156 0.08777 0.00000 0.34611
386185 0.02103 0.04445 0.00000 0.17606

Table 2: Constituent parts of error identity (3.6) for example Example 1 (2D).

Example 1 (2D): k1 = 0.15, k2 = 0.4, ϵ1 = 1, ϵ2 = 100

# elts
DF (v, −Λ∗y∗)
M2
⊕(v, y∗)

[%] ICEN,LowEff ICEN,UpEff IE,UpEff PCENrel [%] True rel. error
in CEN [%]

196 89.0701 0.67371 2.88191 5.60966 74.6973 70.9641
347 92.4942 0.67919 3.50597 5.89671 36.2638 36.6935
630 85.9525 0.70066 2.64380 4.64848 27.1574 27.0680

1315 78.2616 0.70681 2.14392 3.79158 19.9383 19.8250
2865 72.8992 0.70729 1.92142 3.40452 14.7523 14.7032
5938 74.3009 0.70708 1.97256 3.46846 9.87419 9.85973

12006 72.6473 0.70722 1.91238 3.38130 7.06762 7.06119
24571 73.1176 0.70708 1.92864 3.41485 4.93753 4.93591
48483 72.4826 0.70694 1.90588 3.37371 3.50789 3.50805
97423 73.0084 0.70678 1.92392 3.40108 2.47256 2.47347

192905 72.8486 0.70629 1.91692 3.38145 1.74226 1.74418
386185 72.9912 0.70546 1.91972 3.38748 1.23829 1.24114

Table 3: Efficiency indices for Example 1 (2D).
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Figure 2:Mesh on the 9th level of AMR (97 423 elements)
based on the error indicator ‖√2η‖L2(Oi) with flux
equilibration for y∗.

Figure 3:Mesh on the 9th level of AMR (97 353 elements)
based on the error indicator ⦀ϵ∇v − y∗⦀∗(Oi) with flux
equilibration for y∗.

Figure 4: Reference solution for Example 1 (2D). Figure 5:Mesh on the 7th level of AMR (24 122 elements)
based on the error indicator ⦀ϵ∇v − y∗⦀∗(Oi) with flux
equilibration for y∗. The elements are marked by
applying the error indicator ‖√2η‖L2(K) and using the
greedy algorithm with bulk factor 0.3.

and combined energy norms and approximately twice smaller values for the full error M2

⊕(v, p∗) +M2

⊕(u, y∗)
on meshes with a comparable number of elements. The reason for the higher efficiency indices is that no

adaptive control is applied on the nonlinear part of the error measure in (3.19), and consequently, the

ratio DF(v, −Λ∗y∗)/M2

⊕(v, y∗) is increasing, reaching values close to 100% on fine meshes. However, the

error in ⦀∇(v − u)⦀ and ⦀y∗ − p∗⦀∗ might be a little higher in the case of the functional error indicator

‖√2η‖L2(Oi). For example, on themesh from Figure 5 with 24122 elements,M2

⊕(v, p∗) +M2

⊕(u, y∗) = 3.8314,
⦀∇(v − u)⦀ = 0.4674, ⦀y∗ − p∗⦀∗ = 0.6540, whereas on a mesh with 24571 elements from the sequence

adapted with the indicator ‖√2η‖L2(Oi), we obtained a value of 1.9263 for M2

⊕(v, y∗), and 0.574791 and

0.8399 for ⦀∇(v − u)⦀ and ⦀y∗ − p∗⦀∗, respectively. This shows that, reducing the error in div y∗, the func-
tional error indicator ‖√2η‖L2(Oi) provides a better approximation for the primal and dual problem together.
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Figure 6:Mesh on the 2nd level of AMR (630 elements)
based on the error indicator ‖√2η‖L2(Oi) with flux
equilibration for y∗. The elements are marked by applying
the true error√2M2

⊕(v, p∗) + 2M2
⊕(u, y∗) as an indicator

using greedy algorithm with bulk factor 0.5.

Figure 7:Mesh on the 2nd level of AMR (630 elements)
based on the error indicator ‖√2η‖L2(Oi) with flux
equilibration for y∗. Here we mark red those elements, which
differ in the markings based on the indicator ‖√2η‖L2(K) and
on the true error√2M2

⊕(v, p∗) + 2M2
⊕(u, y∗). Marking is done

by greedy algorithm with bulk factor 0.5.
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Figure 8: Comparison of errors for AMR based on the functional error indicator ‖√2η‖L2(Oi) versus AMR based on the indicator
generated by the true error√2M2

⊕(v, p∗) + 2M2
⊕(u, y∗).

Nowwewant to demonstrate that flux equilibration is indeed an important subtask tomake the proposed

error bounds reliable and efficient. For this purpose, we use a simple global gradient averaging procedure,

i.e., project the numerical flux ϵ∇v ∈ L2(Ω) onto the subspace [Vh]2, where Vh is the finite element space of

continuous piecewise linear functions. Then the problem in Example 1 is solved adaptively once applying

the functional error indicator ‖√2η‖L2(Oi) and next applying the error indicator ⦀ϵ∇v − y∗⦀∗(Oi). Figure 10

shows the adapted mesh with 563965 elements, which is a part of a sequence of meshes obtained applying

the functional error indicator with gradient averaging for y∗. Figure 11 shows a mesh with 444092 ele-

ments, which is part of a sequence of meshes adapted using the second indicator with gradient averaging
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Figure 9: Comparison of errors for AMR based on the functional error indicator ‖√2η‖L2(Oi)
versus AMR based on the indicator ⦀ϵ∇v − y∗⦀∗(Oi).

Example 1 (2D): k1 = 0.15, k2 = 0.4, ϵ1 = 1, ϵ2 = 100

# elts # marked elts
with true error

# differently
marked elts

differently marked elts
in % of all mesh elts

196 62 6 3.06122
347 150 10 2.88184
630 288 14 2.22222

1315 632 39 2.96578
2865 1439 113 3.94415
5938 2949 216 3.63759

12006 5981 534 4.44778
24571 12099 961 3.91111
48483 24194 2233 4.60574
97423 47784 4012 4.11812

Table 4:Marking based on true error and functional error indicator in Example 1 (2D).

for y∗. Comparing with the results based on flux equilibration for y∗, it can be seen that the mesh in Ω
2
close

to the interface Γ is refined too much for both error indicators. Apart from that, the meshes on Figures 11

and 3 look quite similar, unlike the meshes on Figures 10 and 2. For meshes with a comparable number of

elements, applying the indicator ⦀ϵ∇v − y∗⦀∗(Oi) using gradient averaging instead of flux equilibration, we

obtained ∼30% larger values for the error ⦀∇(v − u)⦀ and 60% larger values for the error ⦀y∗ − p∗⦀∗. The
difference in the errors when applying the functional indicator ‖√2η‖L2(Oi) with gradient averaging for y∗

instead of flux equilibration resulted in an evenmore drastic increase of the error, namely, between 40% and

180% for ⦀∇(v − u)⦀ and between 64% and 66% for ⦀y∗ − p∗⦀∗, where the meshes had between 21528

and 563965 elements. In both cases, we obtained an increasing sequence of efficiency indices with respect

to energy and combined energy norms reaching values of 133 and 107 with the functional error indicator on

a mesh with 2 089022 elements, and 570 and 269 with the error indicator ⦀ϵ∇v − y∗⦀∗(Oi) on a mesh with

2 954218 elements. This is due to the fact that the nonlinear term DF(u, −Λ∗y∗), which measures the error

in div y∗ (see (3.16) and (3.18)), dominates the other terms in the nonlinear measure M2

⊕(v, p∗) +M2

⊕(u, y∗)
for the error, reaching more than 99.99% of it in both cases. In both experiments with gradient averaging

for y∗, increasing values of DF(u, −Λ∗y∗) are in correspondence with increasing error ‖div y∗ − div p∗‖L2(Ω)
and increasing efficiency indices.
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Figure 10:Mesh with 563965 elements, adapted using the
error indicator ‖√2η‖L2(Oi) with gradient averaging for y

∗.
Figure 11:Mesh with 444092 elements, adapted using the
error indicator ⦀ϵ∇v − y∗⦀∗(Oi) with gradient averaging
for y∗.

4.2 Example 2 (2D Problem)

Figures 13 and 15 show how meshes depend on the indicator in another example, where ϵ
1
= 1 ϵ

2
= 100,

k
1
= 0.2, k

2
= 0.3. The functions

g = exp(−b
1
(
|x − c

1
|2

σ2
1

− 1)) − exp(−b
2
(
|x − c

2
|2

σ2
2

− 1)) and l = exp(−b
3
(
|x|2

σ2
3

− 1)) sin(
x
1
x
2

4

),

where b
1
= 2.2, b

2
= 2.5, b

3
= 6, c

1
= (−1, 0), c

2
= (5, 5), σ

1
= σ

2
= 2, σ

3
= 10. The indicator ⦀ϵ∇v − y∗⦀∗(Oi)

correctly approximates elementwise errors in the combined energy norm but does not capture the rest of the

error, which results from the nonlinearity k2 sinh(u + w) and the right-hand side l in (1.1). On the other hand,
the term DF(v, −Λ∗y∗) controls the error DF(v, −Λ∗p∗) + DF(u, −Λ∗y∗), and this is the reason why the mesh

on Figure 13 resembles the wavy features of the function f = −k2 sinh(u + w) + l.
The isolines of the reference solution and of the function f are depicted on Figures 14 and 12.

4.3 Example 3 (3D Problem)

Here we consider an example close to a real physical problem. The computational domain Ω is a cube of

side length 20 angstrom with a triangulated water molecule Ω
1
in it. The diameter of the water molecule,

which is positioned in the center of the cube, is about 2.75 angstrom. Its shape is not changed during the

mesh adaptation process. The surfacemesh of the water molecule is taken from [28]. Figure 16 illustrates the

initial tetrahedral mesh, which consists of 60 222 elements. It is generated using TetGen [25] and adaptively

refined with the help of mmg3d [7]. Using the localized error indicator ‖√2η‖L2(Oi) computed on each vertex

patch Oi of the mesh, a new local mesh size at each vertex is defined by the formula

hnewi = h
old

i (max{min{
AM{‖√2η‖L2(Oj)}

‖√2η‖L2(Oi)
, 1}, 0.35})

and supplied tommg3d,whereAM{‖√2η‖L2(Oj)} is the arithmeticmeanof {‖√2η‖L2(Oj)}over all vertexpatches
Oj. The coefficients ϵ and k for this example are typical for electrostatic computations in biophysics using the

PBE and are given by

ϵ(x) =
{
{
{

ϵ
1
= 2, x ∈ Ω

1
,

ϵ
2
= 80, x ∈ Ω

2
,

k(x) =
{
{
{

k
1
= 0, x ∈ Ω

1
,

k
2
= 0.84, x ∈ Ω

2
.
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Figure 12: Function f = −k2 sinh(u + w) + l. Figure 13:Mesh with 395935 elements, obtained by
AMR using the error indicator ‖√2η‖L2(Oi) with flux
equilibration for y∗.

Figure 14: Reference solution. Figure 15:Mesh with 555489 elements, obtained by
AMR using the error indicator ⦀ϵ∇v − y∗⦀∗(Oi) with flux
equilibration for y∗.

We consider the homogeneous problem, i.e., l = 0, and

g = exp(−b
1
(
|x − c

1
|2

σ2
1

− 1)) − exp(−b
2
(
|x − c

2
|2

σ2
2

− 1))

+ exp(−b
3
(
|x − c

3
|2

σ2
3

− 1)) + exp(−b
4
(
|x − c

4
|2

σ2
4

− 1)),

where b
1
= b

2
= b

3
= b

4
= 2.3, c

1
= (1, 1, 0), c

2
= (4, 4, 0), c

2
= (0, 6, 0), c

2
= (−5, 0, 0), σ

1
= σ

2
= σ

3
= σ

4
= 2.

The reference solution zh
ref

is computed on a very fine mesh, obtained after a sequence of adaptive mesh

refinements, that contains 79 917007 tetrahedrons.

Since l = 0 inΩ
1
is a constant function, the patchwise reconstruction from [1] produces a flux y∗with zero

divergence in Ω
1
and, therefore, the reliability of our majorant is guaranteed. In this example, we achieved

a very tight guaranteed bound on the error in combined energy norm, as well as in energy norm. The effi-

ciency index ICEN,Up
Eff

settles at around 1.05 and the efficiency index IE,Up
Eff

decreases to 1.30 (Table 6). This is
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Figure 16: Initial mesh in Example 3 consisting of
60 222 tetrahedrons.

Figure 17: Ratio of the error indicator ⦀ϵ∇v − y∗⦀∗ and combined
energy norm of the error, elementwise. Mesh on the 4th level
of AMR (1.1736e+06 elements) in Example 3 using the error
indicator ‖√2η‖L2(Oi) with flux equilibration for y

∗.

Example 3 (3D): k1 = 0, k2 = 0.84, ϵ1 = 2, ϵ2 = 80

# elts ‖v − u‖0
‖u‖0

[%] ⦀∇(v − u)⦀
⦀∇u⦀

[%]
⦀y∗ − p∗⦀∗
⦀p∗⦀∗

[%] 2M2
⊕(v, y∗) 2M2

⊕(v, p∗) 2M2
⊕(u, y∗)

60222 76.8320 108.015 167.589 425569 117373 308196
103236 11.9257 46.3306 55.1210 47104.5 17845.0 29259.5
222118 1.09233 17.7353 14.9578 4484.44 2224.69 2259.75
552936 0.49820 8.67222 7.09062 965.067 513.706 451.361

1.1736 e+06 0.25609 6.58075 5.33661 539.734 295.254 244.481
2.05668e+06 0.17094 5.37625 4.18207 350.648 197.016 153.631
2.97315e+06 0.12317 4.73466 3.53852 265.167 152.783 112.385
3.90692e+06 0.10071 4.32886 3.12966 216.336 127.703 88.6336

Table 5: Constituent parts of main error identity (3.3) for Example 3 (3D).

in a good agreement with the fact that, in this example, the ratio DF(v, −Λ∗y∗)/M2

⊕(v, y∗) is well controlled
and decreases to around 10% (column 2 in Table 7). We also note that, in this example, we obtained very

similar results with the error indicator ⦀ϵ∇v − y∗⦀∗(Oi). For the efficiency index ICEN,Low
Eff

of the lower bound

on the combined energy norm of the error, we obtain values converging to approximately 0.7071, which is

the approximate value of

√2
2

(column 3 in Table 6). This means that the combined energy norm of the error

√⦀∇(v − u)⦀2 + ⦀y∗ − p∗⦀2∗

is practically equal to ⦀ϵ∇v − y∗⦀∗.
Another consequence of this fact is the good accuracy of the practical estimation PCEN

rel

of the relative

error in combined energy norm (columns 6 and 7 in Table 6). The tight bounds on the error also enable us to

compute tight and guaranteed upper bounds on the relative error in energy norm:

⦀∇(v − u)⦀
⦀∇u⦀

≤
√2M2

⊕(v, y∗)

⦀∇v⦀ −√2M2

⊕(v, y∗)
=: REUp, (4.1)

where (4.1) is valid if ⦀∇v⦀ −√2M2

⊕(v, y∗) > 0.
As a remark, we note that the efficiency indices with respect to the energy and combined energy norms

of the error can be improved if we use a flux reconstruction in a bigger space, say, RT
1
, which has better
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Example 3 (3D): k1 = 0, k2 = 0.84, ϵ1 = 2, ϵ2 = 80

# elts ⦀∇(v − u)⦀2 ⦀y∗ − p∗⦀2∗ 2DF (v, −Λ∗p∗) 2DF (u, −Λ∗y∗) REUp [%]

60222 79487.0 191346 37886.0 116850 —
103236 14623.9 20699.7 3221.12 8559.78 310.049
222118 2142.92 1524.28 81.7757 735.474 33.9219
552936 512.376 342.528 1.32980 108.833 13.4714

1.1736 e+06 295.039 194.026 0.21458 50.455 9.75647
2.05668e+06 196.919 119.155 0.09743 34.4762 7.72193
2.97315e+06 152.724 85.3044 0.05857 27.0805 6.64970
3.90692e+06 127.666 66.7303 0.03663 21.9033 5.96873

Table 6: Constituent parts of error identity (3.6) for Example 3 (3D).

Example 3 (3D): k1 = 0, k2 = 0.84, ϵ1 = 2, ϵ2 = 80

# elts
DF (v, −Λ∗y∗)
M2
⊕(v, y∗)

[%] ICEN,LowEff ICEN,UpEff IE,UpEff PCENrel [%] True rel. error
in CEN [%]

60222 40.0541 0.68627 1.25353 2.31386 92.8434 140.985
103236 20.4500 0.72828 1.15478 1.79473 47.6870 50.9159
222118 16.1172 0.71615 1.10583 1.44661 16.4040 16.4054
552936 11.2249 0.70786 1.06248 1.37241 7.90966 7.92099

1.1736 e+06 9.33477 0.70731 1.05053 1.35254 5.98505 5.99106
2.05668e+06 9.82289 0.70725 1.05327 1.33442 4.81343 4.81632
2.97315e+06 10.2057 0.70722 1.05547 1.31767 4.17784 4.17960
3.90692e+06 10.1194 0.70719 1.05492 1.30175 3.77592 3.77716

Table 7: Efficiency indices for Example 3 (3D).

approximation properties. In this way, the error in div y∗ will decrease and, as a result, the term DF(v, −Λ∗y∗)
and consequently the dual part of the error 2M2

⊕(u, y∗) = ⦀y∗ − p∗⦀2∗ + DF(u, −Λ∗y∗)will constitute a smaller

part of thewholemajorant and the error, respectively. Even better, we canminimize themajorantwith respect

to y∗ in a subspace of H(div;Ω) like RT
0
, possibly on another finer mesh. Note that, in the limit case, we have

infy∗∈H(div;Ω)M2

⊕(v, y∗) = M2

⊕(v, p∗) = 1

2

⦀∇(v − u)⦀2 + DF(v, −Λ∗p∗), and the dual error completely vanishes.

In this case,

ICEN,Up
Eff

= IE
Eff

=
√2M2

⊕(v, p∗)
⦀∇(v − u)⦀

=
√⦀∇(v − u)⦀2 + 2DF(v, −Λ∗p∗)

⦀∇(v − u)⦀
,

where the last ratio tends to 1 because, by (3.15) and (3.17), the term DF(v, −Λ∗p∗) ∼ ‖v − u‖2L2(Ω
2
) and has

a higher order of convergence than ⦀∇(v − u)⦀2. In practice, we canminimize the majorant with respect to y∗

only once on a sufficiently big subspace ofH(div;Ω) to find some good approximation y∗ of p∗ and then reuse
this y∗ and obtain guaranteed and tight bounds on the error in energy and combined energy norm.

A key factor that determines the efficiency index is the ratio

DF(v,−Λ∗y∗)
M2⊕(v,y∗) . Assuming that

DF(v, −Λ∗y∗) ≈ DF(v, −Λ∗p∗) + DF(u, −Λ∗y∗),

which means that the last term in (3.24) is close to zero, we obtain from (3.19) the estimate

ICEN,Up
Eff

≈
1

√1 − DF(v,−Λ∗y∗)
M2⊕(v,y∗)

.

From what we have observed, the efficiency index IE,Up
Eff

with respect to the energy norm usually is no more

than twice bigger than ICEN,Up
Eff

(assuming we have a good approximation y∗ to p∗). Therefore, if, during the
computations, we detect that this ratio is increasing, we can apply the so-called estimation with one step

delay, i.e., compute the value of the majorant M2

⊕(v, y∗) for the current mesh level with the reconstructed y∗

from the next level.



318 | J. Kraus, S. Nakov and S. Repin, Reliable Numerical Solution of Nonlinear Elliptic Problems

5 Conclusions

Weproved the existence anduniqueness of a solution u of the nonlinear elliptic problem (1.1), which appears

in the context of solving the nonlinear PBE numerically by two- or three-term regularization. Also, we estab-

lished the L∞(Ω) regularity of the solution u and an analog of Cea’s lemma (cf. (3.26)). These results are used

to prove convergence of P
1
FEM approximations under natural conditions on regularity of the meshes used

in the constructions of Galerkin approximations.

The main result is the error identity (3.19). We deduced it by finding explicit forms of the terms in gen-

eral error relations (3.1) and (3.4). The identity defines a natural error measure for the considered class of

problems and forms a basis for fully computable and guaranteed tight bounds on the global errors (Table 6).

An advantage of the suggested approach is that it can be used for any conforming approximation (e.g.,

P1 or P2 finite element, IGA, or spectral approximations) and that the estimates do not contain local (mesh

dependent) constants or unknown global constants.

As we have confirmed by our theoretical findings and numerical experiments, flux equilibration is an

important paradigm to obtain an accurate error indicator (cf. Figures 10 and 11) as well as to guarantee that

the last term in (3.11) does not dominate the majorant.
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