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Abstract. We present a perturbed subspace iteration algorithm to approximate the
lowermost eigenvalue cluster of an elliptic eigenvalue problem. As a prototype, we
consider the Laplace eigenvalue problem posed in a polygonal domain. The algorithm
is motivated by the analysis of inexact (perturbed) inverse iteration algorithms in
numerical linear algebra. We couple the perturbed inverse iteration approach with
mesh refinement strategy based on residual estimators. We demonstrate our approach
on model problems in two and three dimensions.

1. Introduction

1.1. Motivation and literature. We present an eigensolver designed for adaptive
finite element methods (AFEM), which increases the efficiency of classical algorithms
when applied to a sequence of locally refined meshes, by carefully reducing the accuracy
at which eigenproblems in intermediate levels are solved. As an a posteriori error
estimator we use a standard residual error estimator such as those from [14]. The
computational costs of adaptive eigenvalue solvers are mostly dominated by the cost
of the iterative algebraic eigenvalue solver, and any method which can generate a
sequence of meshes by saving accurate solves in all loops, while maintaining the overall
accuracy, has a potential for increased efficiency.

The method which we propose is motivated by the work on inexact inverse iteration
solvers in numerical linear algebra [60, 65] and recent work in the perturbed iterative
methods for source problems [55]. In the finite element community, perturbed eigen-
value solvers have been used in the context of numerical homogenization and two level
methods. There the aim is to try to achieve fine level accuracy more efficiently by
using coarse level solves as a form of preconditioning [47, 72]. Also, for the work on
convergence of preconditioned eigenvalue solvers for uniformly refined meshes see [44,
58].

Eigenvalue problems typically require the solution – as intermediate steps – of highly
ill conditioned source problems. Here we mention that even a small algebraic residual
does not guarantee a good accuracy of the resulting solution, neither for linear systems
nor for eigenvalue problems [1, 41, 51]. On the other hand, solving the linear algebraic
problems to a (much) higher accuracy than the order of the discretization error not only
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does not improve the overall accuracy but also significantly increases the computational
cost [36]. These reasons make the study of the algebraic error an integral part of the
adaptive FEM.

Historically, the majority of the AFEM publications has considered exact solutions
of the algebraic problems. However, recent developments of many authors dedicate
a great deal of effort to account for inexactness of the algebraic approximations and
introduce stopping criteria based on the interplay between discretization and algebraic
computation in adaptive FEM. Among others, we mention the seminal contributions
for boundary value problems [1–3, 8, 24, 25, 28, 43, 46, 53, 62].

This becomes a much more complicated task for eigenvalue problems which, by their
nature, are nonlinear. Incorporating the algebraic error in adaptive eigenvalue solvers
is no new development; see [48, 49, 52, 59]. When dealing with inexact AFEM, issues
such as convergence and optimality are of even greater interest; see [14, 22, 23, 29, 30,
33]. For an adaptive finite element method with asymptotic saturation for eigenvalue
problems see [16].

The preconditioned inverse iteration [45, 56–58] is a well-established iterative method
which admits quasi-optimal computational complexity on uniform meshes. The per-
turbed preconditioned inverse iteration uses approximation application operators. Its
convergence was proved in [10], where the bounds for the convergence rate depend on
the eigenvalue gap and the quality of the preconditioner. In [64] the authors consider
a perturbed preconditioned inverse iteration for operator eigenvalue problems with ap-
plications to adaptive wavelet discretization, by exploiting the theory of best N -term
approximation to prove optimality of AFEM.

In [13] the authors present the first adaptive finite element eigenvalue solver (AFEMES)
of overall asymptotic quasi-optimal complexity for both exact and inexact algebraic ap-
proximations, i.e., for sufficiently small mesh-sizes the error is optimal up to a generic
multiplicative constant. In particular, under the assumption that the iteration error
for two consecutive AFEM steps is small in comparison with the size of the residual
a posteriori error estimate, they prove quasi optimality of the inexact inverse itera-
tion coupled with adaptive finite element method for the class of selfadjoint elliptic
eigenvalue problems. A similar analysis of convergence and a quasi-optimality of the
inexact inverse iteration coupled with adaptive finite element methods was presented
in [73] for operator eigenvalue problems.

Another important result in this direction is provided in [15], where an adaptive
algorithm which monitors the discretisation error, the maximal mesh-size, and the
algebraic eigenvalue error is presented. The authors prove fully computable two-sided
bounds on the eigenvalues of the Laplace operator on arbitrarily coarse meshes and
demonstrate the reliability of the guaranteed error control even with inexact solve of
the algebraic eigenvalue problem.

For related results on non-selfadjoint elliptic eigenvalue problems that account for
algebraic inexactness we refer to [9, 17, 31, 50, 52, 63].
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By following a completely different approach, in [54, 55], the authors introduce the
smoothed adaptive FEM (S-AFEM), which improves the computational efficiency by
mimicking the ascending phase of v-cycle multigrid methods. This highly interesting
and promising fast solver is a novel idea that has been derived in the context of self-
adjoint elliptic PDEs and has never been used for eigenvalue problems. The reason
behind the success of this strategy is that classical residual-based a posteriori error
estimators are not sensitive to low frequencies in the solution. Consequently, their
application to very inaccurate approximate solutions in intermediate loops –only cap-
turing high frequency oscillations through a smoother– produces an equally good grid
refinement pattern in each loop, at a fraction of the computational cost.

In the spirit of [55], the eigenvalue solver that we propose can be seen as an extension
of the strategy of S-AFEM in the context of elliptic eigenvalue PDEs.

1.2. Outline. This paper is organized as follows. In Sect. 2 we present the model
problem together with its conforming FEM approximation, and briefly discuss the
main ingredients of AFEM. Sect. 3 presents and analyses smoothed adaptive perturbed
inverse iteration (SA-PINVIT), after briefly describing PINVIT. In Sect. 4 we present
numerical experiments that validate our strategy and finalize with some concluding
remarks in Sect. 5.

2. Model problem and approximation

Let us consider the symmetric Laplace eigenvalue problem: Seek a non-trivial eigen-
pair (λ, u) ∈ R×H1

0 (Ω;R) such that

(1) −∆u = λu in Ω and u = 0 on ∂Ω,

where Ω ( Rd, d = 1, 2, 3 is a bounded, connected polyhedral Lipschitz domain and ∂Ω
is its boundary. This simple – but significant – model problem will serve as a prototype
elliptic, second-order, selfadjoint partial differential operator with a compact resolvent.
We refer to the survey article [37] and to the references therein.

It is well known (see e.g., [6]) that problem (1) has countably many positive eigen-
values which do not have a finite accumulation point. The eigenvalues will be ordered
increasingly

(2) 0 < λ1 < λ2 ≤ λ3 ≤ . . .

where we count them according to their multiplicity. Furthermore, there exists an
orthonormal basis (u1, u2, u3, . . . ) of corresponding eigenvectors. Let us note that, in
the case in which Ω is a connected domain, the eigenvalue λ1 is a simple eigenvalue and
one can choose an associated eigenvector u1 as a positive function. In this paper we will
consider both the case of a simple eigenvalue λ1 as well as the case of a cluster of r ∈ N
lowermost eigenvalues – counting according to multiplicity – which are separated by a
strictly positive distance from the unwanted component of the spectrum. In Figure 1
we show the six lowermost eigenfunctions of the homogeneous Laplace problem on the
dumbbell domain in 2D, that we will discuss in Sect. 4.2.
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Figure 1. Six lowermost eigenfunctions of the homogeneous Laplace problem on
the dumbbell domain in 2D.

The weak problem seeks for a non-trivial eigenpair (λ, u) ∈ R×{V := H1
0 (Ω)} with

b(u, u) = 1 and

(3) a(u, v) = λb(u, v) for all v ∈ V .

The bilinear forms a : V × V → R and b : H ×H → R are defined by

(4) a(u, v) :=

∫
Ω

∇u · ∇v dx and b(u, v) :=

∫
Ω

uv dx

and induce norms |||•||| := | • |H1(Ω;R) on V and ‖ • ‖L2(Ω;R) on H := L2(Ω;R).
The well-established adaptive finite element routine (AFEM) [10, 18, 26, 67] com-

putes a sequence of discrete subspaces

(5) V0 ( V1 ( V2 ( · · · ( V` ( V

using local refinement of the underlying mesh of the computational domain Ω. The
corresponding sequence of meshes consists of nested regular polygonal/polyhedral tes-
sellation (T`)` in the sense of Ciarlet [19] of the domain Ω. The AFEM can be described
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as the following loop

(6) SOLVE → ESTIMATE → MARK → REFINE.

The phases of the AFEM routine are shortly described in what follows. Let V` :=
Pm(T`) ∩ V denote the finite-dimensional subspace of fixed order m > 0, for the
conforming finite element space Pm(T`) of polynomials of degree at most m based on
T`, and let N` := dim(V`). The corresponding discrete eigenvalue problem for each
level reads: Seek a non-trivial eigenpair (λ`, u`) ∈ R× V` with b(u`, u`) = 1 and

(7) a(u`, v`) = λ`b(u`, v`) for all v` ∈ V`.
Given a mesh T` on the level `, step SOLVE computes (assembles) the stiffness

matrix A` and the mass matrixM` and solves the N`-dimensional generalized algebraic
eigenvalue problem associated to discrete problem (7)

(8) A`u` = λ`M`u`,

where

(9) u` =

N∑̀
i=1

u`,iϕ
(i)
` , A` := [a(ϕ

(i)
` , ϕ

(j)
` )]1≤i,j,≤N`

, M` := [b(ϕ
(i)
` , ϕ

(j)
` )]1≤i,j,≤N`

for V` = span{ϕ(1)
` , . . . , ϕ

(N`)
` }. In practice, these discrete eigenvalue problems are

solved inexactly using iterative algebraic eigenvalue solvers. Well-established itera-
tive eigenvalue solvers that satisfy the convergence and complexity assumptions are
the preconditioned inverse iteration (PINVIT) [45] or the locally optimal (block) pre-
conditioned conjugate gradient (LOBPCG) [44]. In this work we limit ourselves to
use PINVIT itarations, and its application to adaptive eigenproblems. We refer to
classical locally adaptive PINVIT with A-PINVIT, which consists on the applications
of several loops of the type:

(10) PINVIT → ESTIMATE → MARK → REFINE.

The final computation, in general, involves the discretisation error as well as the
algebraic error (in the eigenfunction and eigenvalue of interest) stemming from the
termination of the iterative algebraic eigenvalue solver. In practice, the computational
costs for the iterative algebraic eigenvalue solver dominate the overall computational
costs.

2.1. A residual error estimator for Galerkin approximations. Step ESTIMATE
uses a posteriori error estimators, which are computable quantities defined in terms
of the discrete approximation that can estimate the actual error in a suitable norm.
First, we review the results for finite element approximations which satisfy Galerkin
optimality. We refer to [12] for the formal definition and for an in-depth description.
We consider explicit residual-based a posteriori error estimators [23, 27, 30, 33]. Let
p` denote the discrete gradient and E` denote the set of inner edges (d = 2) or inner
faces (d = 3) of elements of T`. For E ∈ E` let T+, T− ∈ T` be two neighbouring
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elements such that E = T+ ∩ T−. The jump of the discrete gradient p` along an
inner edge E ∈ E` in normal direction νE, pointing from T+ to T−, is defined by
[p`] · νE := (p` |T+ −p` |T−) · νE. The error in the eigenfunction or eigenvalue is esti-
mated based on the solution (λ`, u`) of the underlying algebraic eigenvalue problem
via the explicit residual-based a posteriori error estimator defined by

(11) η2(λ`, u`) :=
∑
T∈T`

ηT (λ`, u`)
2

with d = 2, 3 and

(12)
J2
E(λ`, u`) := |E|1/(d−1)‖[p`] · νE‖2

L2(E)

η2
T (λ`, u`) := |T |2/d‖λ`u` + div(p`)‖2

L2(T ) +
∑
E∈E`

J2
E(λ`, u`).

Based on the local estimators, elements are marked for refinement in a bulk criterion
[26] such thatM` ⊆ T` ∪ E` is an (almost) minimal set of marked edges with

(13)
θη2(λ`, u`) ≤ η2(λ`, u`;M`),

η2(λ`, u`;M`) :=
∑

T∈M`∩T`

η2
T (λ`, u`)

for a bulk parameter 0 < θ ≤ 1. Finally, the mesh is refined locally (REFINE)
according to the setM` of marked elements (MARK).

2.2. A posteriori error estimates for inexact eigenvector approximation. Let
us now briefly review the a posteriori error estimation techniques and results which
we will use to argue the reliability of our approach to quasi optimal adaptive mesh
construction. If cost of the estimation procedure were not of concern we would have
used an auxiliary subspace error estimates such as those utilized in [7, 38]. The
important feature of these estimators is that for eigenvector approximations which
satisfy the Galerkin orthogonality condition for the finite element space we can prove
the reliability and the asymptotic exactness of the a posteriori error estimator for the
lowermost cluster of eigenvalues.

In the case in which we do not assume that the approximate eigenvectors satisfy the
Galerkin orthogonality, we have we have to use the more expensive technique based
on duality residual estimates such as those used in [34]. Such estimators, although
reliable and asymptotically robust, are to expensive to be used in the context of this
paper.

To obtain an a posteriori error estimator which is relatively lightweight and suffi-
ciently robust we will combine the eigenvalue estimator from [35] with the analysis
and the estimator from [61]. The analysis from [35] allows us to reduce the eigenvalue
a posteriori error estimation to the error estimation for the source problem.
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Let us recall the result from [61]. Let the source problem

(14) −4u = f, u ∈ H1
0 (Ω;R)

be given and let V` ⊂ H1
0 (Ω;R) be a finite element space (piece-wise polynomial)

defined by the triangulation T`. We will use u(f) to denote the solution of the problem
(14). It has been established that there exists a constants Cint and C1 such for f ∈ V`
and v` ∈ V`

(15) ‖∇(u(f)− v`)‖2 ≤ C2
1

∑
E∈M`∩E`

|E|1/(d−1)‖[∂v`
νE

]‖2
L2(E) + C2

int‖∇(u`(f)− v`(f))‖,

where [∂v`
νE

] is the jump of the discrete gradient of v` in the direction of the normal
of the edge of an element. Note that in the case of a general f ∈ L2(Ω), there is
an additional data oscillation term in the estimate from [61], which is not present for
f ∈ V`. Further, u`(f) will denote the Galerkin approximation of u(f) which satisfies

u`(f) = argmin{a(v, v)/2− b(f, v) : v ∈ V`} .
Finally we allow for vh ∈ Vh to be arbitrary. The constants C1 and Cint do not depend
on f but do depend on V` and T`. The constant Cint is defined as

C2
int = sup

f∈L2(Ω)

sup
v`∈V`

‖∇I(u(f)− v`)‖
‖∇(u(f)− v`)‖

,

where I : L1(Ω) → Vh is the quasi-interpolation operator for V`. Obviously, Cint is
quite pessimistic and we will argue that for the type of right hand sides which we chose
it can be much smaller. Similar argument was used in [39, Theorem 2.1] and we will
refine this analysis with a more refined handling of the computable residual estimates.
We will combine [39, Theorem 2.1] with the analysis from [7, Theorem 3.8.] and [35,
Estimates (35) and (36)] to obtain a computable residual estimate.

Let us introduce some notation. Given linearly independent vectors v(i)
` ∈ V`, i =

1, · · · , r we define the space V` = span{v(1)
` , · · · , v(r)

` } and the associated Ritz values

λ̃i = min{max{a(v, v)/b(v, v) : v ∈ U \ {0}} : U ⊂ V`, dim(U) = i}
and let ṽi ∈ V` be an linearly independent set of vector such that λ̃i = a(ṽi, ṽi)/b(ṽi, ṽi).
The vector ṽi are called the Ritz vectors from V`.
Theorem 2.1. Let linearly independent v(i)

` ∈ V`, i = 1, · · · , r, r ∈ N and the associ-
ated V` be a given. If λr < λr+1, r = argmini∈N

|λi−λ̃r|√
λiλ̃r

and λr < min{a(v, v)/b(v, v) : v ⊥
V`}, then

r∑
i=1

|λi − λ̃i|
λi

≤ min
{
Cclust(V`)

r∑
i=1

‖∇(u(ṽi)− λ̃i
−1
ṽi)‖2,

rmax
i
‖∇(u(ṽi)− λ̃i

−1
ṽi)‖

}
.
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Here Cclust(V`) = λr+1+λ̃i
|λr+1−λ̃i|

is the spectral gap.

Proof. The proof of this result is a direct combination of [39, Theorem 2.1] and [35, Es-
timates (35) and (36)] together with the Bauer-Fike residual estimate [35, Proposition
11]. �

For an analogous finite dimensional version of this theorem we point a reader to
[11, Theorem 4.1]. There we can also find a discussion as to when we can relax an
apparently stringent restriction on the location of the Ritz values from V`.

The constant Cint is a general constant depending on the domain Ω the subspace V`.
However, it is to pessimistic in general – as has been argued in [61] – and in particular
it is so in the case of its application in the analysis of the eigenvalue problem. In the
spirit in which the saturation assumption was handled in [39], we define the subspace
dependent constant

C2
int(e) = sup

f∈V`,
(f,u)L2/(u,u)L2≤E

sup
v`∈V`

‖∇I(u(f)− v`)‖
‖∇(u(f)− v`)‖

.

Obviously, Cint(V`) ≤ Cint and so we see that for judiciously constructed subspaces V`
we can achieve much tighter error control by the discrete residual. Such will be the
case when choosing V` as a prolongation of Galerkin eigenvector approximation from
a sufficiently fine coarse mesh.

Now, as a direct consequence of the fore mentioned we have the following com-
mutable reliability estimate.

Theorem 2.2. Let linearly independent v(i)
` ∈ V`, i = 1, · · · , r, r ∈ N and the associ-

ated V` be a given. If λr < λr+1, r = argmini∈N
|λi−λ̃r|√
λiλ̃r

and λr < min{a(v, v)/b(v, v) : v ⊥
V`}, then

r∑
i=1

|λi − λ̃i|
λi

≤ min
{
Cclust(V`)

(
C2

1

r∑
i=1

J2
` (λ̃−1

i ṽ(i)) + C2
int

r∑
i=1

‖∇(u`(ṽ
(i))− λ̃i

−1
ṽ(i))‖2

)
,√√√√C2

1

r∑
i=1

J2
` (λ̃−1

i ṽ(i)) + C2
int

r∑
i=1

‖∇(u`(ṽ(i))− λ̃i
−1
ṽ(i))‖2

}
.

Where J2
` (λ̃−1

i ṽ(i)) = λ̃i
−1∑

E∈M`∩E` |E|1/(d−1)‖[∂ṽ(i)
νE

]‖2
L2(E) is the discrete residual mea-

sure and we call ‖∇(u`(ṽ
(i)) − λ̃i

−1
ṽ(i))‖2 the algebraic error. For any e, e ≥ λr we

can substitute the constant C2
int(e) for C2

int and the estimate still holds.
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Proof. Under the assumptions of the theorem, the Ritz values from the subspace V`
verify

r∑
i=1

|λi − λ̃i|
λi

≤ min
{
Cclust(V`)

r∑
i=1

‖∇(u(ṽi)− λ̃i
−1
ṽi)‖2,

rmax
i
‖∇(u(ṽi)− λ̃i

−1
ṽi)‖

}
.

We now apply the estimate (15) on the associated source problems

(16) −4u = ṽi

to estimate the error

‖∇(u(ṽi)− λ̃i
−1
ṽi)‖, i = 1, · · · , r.

Here we use λ̃iṽi as an approximate coarse solution of (16) and directly apply the
source problem error estimate [61, Corollary 4.2]. The claim that we can substitute
C2
int(e) for C2

int follows directly from [61, Inequality (4.5)]. �

Let us note that these results imply that our approach is only going to be robust
if we deal with the whole cluster of lowermost eigenvalues of interest which are well
separated from the rest of the spectrum (in the sense of Theorem 2.2). For eigenvalues
high up in the spectrum or for indefinite problems, other techniques and or analysis
have to be utilized.

3. Smoothed-adaptive PINVIT

The algorithm that we propose is inspired by the ascending phase of the v-cycle
multigrid methods. Those methods use prolongation to transfer the low frequency
information contained in the coarse approximation to a finer –nested–grid, and then
apply few steps of a smoothing iteration to improve the accuracy of the solution in the
high frequency range. The iteration of this procedure is based on the principle that
even a small number of smoothing iterations is sufficient to eliminate the high frequency
error, while the prolongation from coarser grids guarantees the convergence in the low
frequency regime, providing accurate algebraic solutions in linear computational time
[40].

We emphasize that the algebraic solutions for intermediate AFEM loops (6) serve
solely to the construction of the final grid, and as a initial guess for the next space in the
sequence. Their role is instrumental in triggering the ESTIMATE-MARK-REFINE
steps, and in providing a reasonable initial guess for the finest level.

Smoothed-adaptive PINVIT (SA-PINVIT) is formalized in the following scheme.
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PINVIT ESTIMATE MARK REFINE

PROLONGATES-PINVIT

PINVIT

Smoothed-PINVIT (S-PINVIT) refers to classical PINVIT iteration, where we allow
only a fixed number of iteration steps, and we use a smoother as preconditioner. In this
way, we allow for very inaccurate approximate eigenpairs in those intermediate loops
by applying a fixed number of few PINVIT iterations, or by setting as intermediate
stop criterion a very large error tolerance. The prolongation of the residual from the
previous level is used as an initial guess for the next level.

We start by recalling the PINVIT procedure in Algorithm 3.1, and after some con-
siderations we describe SA-PINVIT in Algorithm 3.5.

The Rayleigh quotient of any nonzero vector v` ∈ RN` is defined by µ(v`) :=
〈A`v`,v`〉 / 〈M`v`,v`〉. PINVIT algorithm can be described as:

Algorithm 3.1 (PINVIT(v0
` , P`, max_iter, tol)). Given the initial guess v0

` with
associated Rayleigh quotient µ0

` := µ(v0
` ), generate a sequence of vectors {vn` }n≥0 and

associated Rayleigh quotients {µn` }n≥0 through steps 1.− 3., iterated for a maximum of
max_iter times, or until (µn+1

` − µn` )/µn` ≤ tol:
1. ṽn+1

` = vn` − P−1
` (A`v

n
` − µ`(vn` )M`v

n
` )

2. vn+1
` = ‖ṽn+1

` ‖−1ṽn+1
` ,

3. µn+1
` = µ`(v

n+1
` ).

In parallel to the inverse iteration for a single vector, we will also consider simulta-
neous or blocked inverse iteration called BPINVIT.

Algorithm 3.2 (BPINVIT(V0
` , P`, max_iter, tol)). Given the initial guess V0

` ∈
RN`×r with associated generalized Rayleigh quotient Ξ0

` ∈ Rr×r, generate a sequence of
matrices {V`

n}n≥0 and associated generalized Rayleigh quotients {Ξn
` }n≥0 through steps

1.− 3., iterated for a maximum of max_iter times, or until ‖Ξn+1
` − Ξn

` ‖/‖Ξn
` ‖ ≤ tol:

1. Ṽn+1
` = Vn

` − P−1
` (A`V

n
` −M`V

n
` Ξn

` )
2. Compute W and Ξn+1

` as an eigenvector and eigenvalue matrix of the generalized
eigenproblem ((Ṽn+1

` )∗A`Ṽ
n+1
` , (Ṽn+1

` )∗M`Ṽ
n+1
` ).

3. Set Vn+1
` = Ṽn+1

` W

Generally, in both Algorithms 3.1 and 3.2, the initial guesses V0
` and V0

` ∈ RN`×r are
chosen randomly, while the preconditioner is a linear operator P−1

` which is positive
definite and spectrally equivalent to A`. This property can be formulated as: there
exists a sufficiently small constant γP`

< 1 such that

(17) ‖Id` − P−1
` A`‖A`

≤ γP`
,
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where ‖ • ‖A`
denotes the operator norm induced by A`. An example is given by the

wavelet preconditioners as in [64]. However, this is a stronger property w.r.t. what we
need to ensure convergence for our algorithm based on the result from [65].

For simplicity, let us assume that the preconditioner is spectrally equivalent to A`.
Then the corresponding error propagation equation reads

(18) v`
n+1 − µ`(v`n)A−1

` M`v`
n = (I − P−1

` A`)(v`
n − µ`(v`n)A−1

` M`v`
n)

and it illustrates the dependence between the initial error v`
n − µ`(v`

n)A−1
` M`v`

n,
the new iterate v`n+1−µ`(v`n)A−1

` M`v`
n, and the error propagation matrix (reducer)

(I − P−1
` A`).

Next, we explicitly write the basic PINVIT iteration as

(19)

ṽ`
n+1 = vn` − P−1

` (A`v`
n − µ`(vn` )Mvn` )

= vn` − P−1
` A`v

n
` + µ`(v

n
` )P−1

` M`v
n
`

= (Id` − P−1
` A`)v

n
` + µ`(v

n
` )P−1

` M`v
n
`

= µ`(v
n
` )P−1

` M`v
n
` + ξγP`

,

where, using (17), we split the identity into the contracting part and the rest labeled
as ξγP`

.
We can now analyze the convergence of this scheme using [65, Proposition 3.7].

Lemma 3.3. Let PINVIT be implemented by Algorithm 3.1, let γP`
be small enough

compared to λ2(A`)/λ1(A`), and let v0
` be not orthogonal to u1(A`). Then

tan∠(vn` ,u1(A`))→ 0.

Proof. Apply [65, Proposition 3.7]. Alternatively, see [64, Theorem 3]. �

An equivalent result is available for the blocked PINVIT.

Theorem 3.4. Let BPINVIT be implemented by Algorithm 3.2, let γP`
be small enough

compared to λr+1/λr, and let there be no vectors in Ran(V 0
` ) orthogonal to the subspace

Er spanned by the eigenvectors belonging to first r eigenvalues. Then

tan∠(Ran(V n
` ), Er)→ 0.

However, a weaker condition than (17) still allows us to use the convergence analysis
from [65, Proposition 3.7]. Namely, it is sufficient that the preconditioner does a good
job only on the iterates it is applied on. Since this is a computation of the dominant
(low frequency) eigenspace, a smoother will satisfy such a requirement.

Quantitatively, this reads

(20)
‖P−1

` v − A−1
` v‖ ≤ ‖A−1

` ‖‖A`(P−1
` v − v)‖

≤ γP`,k‖v‖A`
, v ∈ Ran(V k

` )
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and since we compute the action of P−1
` by applying several smoothing steps we can

control the size of γP`,k by increasing the number of steps applied while monitoring the
size of the discrete residual ‖A`(P−1

` v − v)‖. Condition (20) allows for a smoother,
which is going to satisfy this requirement on low frequencies (e.g. those close to
‖A−1

` ‖−1). Here we have tacitly assumed that the initial subspace had a small angle
with the space spanned by low frequency eigenmodes. Let us point out that even
though these results present estimates, their conditions are vary hard to check in
practice. The fact that an eigenvalue estimate depends on external information on the
unwanted part of the spectrum (e.g. location of λ2) is frequently found in eigenvalue
bracketing results such as e.g. [70, 71]. In this context the estimates have to be seen as
asymptotic and their main value is indicating the source of instability in the realization
of the method.

We now combine these considerations in the next algorithm. The parameters of the
algorithm are: the maximum number of adaptive loops ¯̀, the preconditioner P ext for
the first and last loop, the preconditioner P int for the intermediate loops, the tolerance
for the error estimator tolη, the tolerance and maximum number of iterations for the
intermediate loops tolint and max_iterint, and tolext and max_iterext for the first and
last loop respectively.

As an error estimator, we use any error estimator which works directly with an
approximate eigenvector, without assuming that the approximate eigenvector satisfies
any variational optimality condition (e.g. it needs not be a Ritz vector – or even close
to it – from a given finite element space, see [16, 33, 38]) and Section 2.2.

Algorithm 3.5 (SA-PINVIT(tolη, ¯̀, P ext, P int, tolext, tolint, max_iterext, max_iterint)).
Starting from an initial coarse mesh T1, and an initial random vector v1, apply PINVIT(v1,
P ext

1 , max_iterext, tolext).
Then, for ` = 1, . . . , ¯̀− 1 do steps 1.− 5.

1. S-PINVIT: Apply PINVIT(v0
` , P int

` , max_iterint, tolint), with initial guess v0
` :=

I``−1v`−1, and define v`, µ` as the resulting approximated eigenpair.
2. Estimate: Compute ηT (µ`,v`) for any T .
3. Check convergence: If η(µ`,v`) < tolη go to Step 6.
4. Mark: Choose set of cells to refineM` ⊂ T` based on ηT (µ`,v`).
5. Refine: Generate new mesh T`+1.

6. PINVIT: Apply PINVIT(v0
¯̀, P ext

¯̀ , max_iterext, tolext), with initial guess v0
¯̀ =

I
¯̀
¯̀−1

v¯̀−1.
Output: nested sequence of meshes T`, smoothed approximations (µ`,v`), estimators
η(µ`,v`) for ` = 1, . . . , ¯̀− 1, final problem-adapted approximations (µ¯̀,v¯̀) such that
|µ¯̀ − µ¯̀−1|/µ¯̀−1 ≤ tolext (if the maximum number of external iterations was not
reached).
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According to [65], Algorithm 3.5 will converge if γP`,k → 0 as ` → ∞. We can
monitor this by monitoring the behavior of the relative residuals ‖A`(P−1

` v− v)‖/‖v‖.
Intuitively, the sequence of vectors (subspaces in the blocked version) v¯̀ can be seen as
a perturbation (with a diminishing perturbation size) of the Ritz vectors u`. Since the
perturbation size is decreasing and v` converge to u` we have convergence of perturbed
inverse iteration as in [60, 65].

4. Numerical validation

In order to validate our findings, we implemented both a S-AFEM and a SA-PINVIT
solver in C++ using the deal.II library [4, 5, 66].

The code is available as opensource on a public repository at https://github.
com/luca-heltai/sa-pinvit. It is based on a modification of the tutorial program
step-50 of the deal.II library [20], and it implements the Laplace and Poisson oper-
ators using state-of-the-art matrix-free geometric multigrid preconditioners with local
smoothing (see, for example, [21, 42]). The code is fully parallel, and it is HPC ready.
All experiments were run on parallel using message passing interface (MPI) paral-
lelization, on a single node with two CPUS, each featuring a 24-cores Intel Xeon 8160
(SkyLake) running at 2.10 GHz, for a total of 48 cores. All the timings in this section
refer to this machine.

4.1. Fichera corner in two dimensions. We now explore in detail the actual perfor-
mance of SA-PINVIT in the fully adaptive case, and compare it with pure A-PINVIT.
We start with a classical two dimensional Fichera corner (also known as L-shape do-
main), and refer to [68] for reference eigenvalue computations.

This first test is meant to provide an overview of the behaviour of A-PINVIT and
SA-PINVIT in terms of preconditioners, smoothers, and maximum number of inner
iterations allowed.

The most sofisticated preconditioner we use is a geometric multigrid (GMG) v-cycle,
with a single Jacobi iteration as pre and post smoother. The second type of precondi-
tioner we test is a Chebyshev smoother of variable order (see, for example, [69]). In the
figures, these are indicated using the notation GMGk(Jacobi1) to identify the applica-
tion of k geometric multigrid v-cyles, with one application of the Jacobi preconditioner
as inner smoother.

Similarly, we indicate with Chebyshevk(d) the application of k steps of polynomial
Chebyshev smoothing of order d. When the Chebyshev degree is equal to one, this
smoother coincides with the one used internally by the GMG preconditioner, i.e., it is
a Jacobi smoother.

Figures 2 and 3 show the error in the first eigenvalue computation for bi-linear finite
elements, and the difference in the estimator evaluated on the (inexact) intermediate
solvers, and on the PINVIT iteration (which is iterated until the iterative tolerance is
lower than 10−12) with different smoothers.

https://github.com/luca-heltai/sa-pinvit
https://github.com/luca-heltai/sa-pinvit
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Figure 2. Error in the computation of the lowermost eigenvalue for SA-
PINVIT vs A-PINVIT, Fichera corner problem in 2D. The comparison
shows pure A-PINVIT (using as preconditioner a geometric multigrid
v-cycle iteration with one cycle of Jacobi iteration as internal smoother,
indicated with GMG∞(Jacobi1)), where the ∞ is there to indicate that
we iterate until convergence to a tolerance of 10−12), and SA-PINVIT
based on the application of a fixed number of the same v-cycle algorithm,
or a fixed number of smoothing steps using Chebyshev polynomials of
order 1, 3, or 5 as preconditioner, indicated with Chebyshevk(d) where
k is the number of iteration steps, and d is the polynomial degree of the
Chebyshev smoother.

From the figures, it is clear that choosing a better smoother (i.e., using a higher
order in the Chebyshev polynomial expansion, increasing the number of smoothing
steps, or using a v-cycle multigrid iteration) decreases the error in the computation of
the lowermost eigenvalue in the intermediate stages, but – in most of the cases – it
has little or no effect on the error that we obtain on the final refinement grid (where
full PINVIT is used, with the same configuration as above).

Just as it happens for the source problem [55], the estimator (and therefore the final
mesh pattern) is almost insensitive to the quality of the smoother, and all smoothers
used in this set of experiments provide almost the same global estimator (see Figure 3).
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Figure 3. Error estimator for SA-PINVIT vs A-PINVIT, Fichera cor-
ner problem in 2D. The comparison shows pure A-PINVIT (using as
preconditioner a geometric multigrid v-cycle iteration with one cycle of
Jacobi iteration as internal smoother, indicated with GMG∞(Jacobi(1)),
where the ∞ is there to indicate that we iterate until convergence to a
tolerance of 10−12), and SA-PINVIT based on the application of a fixed
number of the same v-cycle algorithm, or a fixed number of conjugate
gradient iterations with Chebyshev smoother of degree 1,3, or 5 as pre-
conditioner, indicated with CGk(Chebyshev(d))) where k is the number
of iteration steps, and d is the polynomial degree of the Chebyshev
smoother.

When analyzing the convergence properties of the inexact (smoothed) algorithm,
one should concentrate on the concept of the total error in the sense of [61]. The
total error of an eigenvalue/vector approximation consists of two parts, the discrete
residual measure and the algebraic error, see Theorem 2.2. We use the discrete residual
measure to drive the adaptivity and we control the total energy of the current iterate(s)
by smoothing to limit the influence of the algebraic error. When analyzing the discrete
residual of a given eigenvector approximation, one sees that it essentially depends on
the topology of the mesh (as well as on the properly scaled eigenvector). As such,
the convergence of the estimator indicates that the best possible approximation which
can be obtained from the current mesh topology is improving by refinement. In view
of Theorem 2.2, as well as common sense, it does not imply that the total error
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Figure 4. Mesh pattern comparison on the Fichera corner problem in
2D, with ten adaptive refinements. Left: full A-PINVIT (98.457 cells
on final level), center: SA-PINVIT with GMG1(Jacobi1) (98.601 cells
on final level), right: SA-PINVIT with GMG3(Jacobi1) (98505 cells on
final level). The plot shows higher levels of refinement in red, in the
intermediate step number four.

converges. Subsequently, a marking strategy based on such an indicator produces a
similar refinement as it would have if were we to compute the discrete residual measure
from the optimal Galerkin approximation instead of the smoothed prolongation from
the previous mesh. The smoothing process primarily ensures that the coefficient in
front of the algebraic error does not explode.

Using a lower quality smoother, however, has a strong impact on the computational
cost of the last step, which will take longer to converge if the initial guess is too
far away from the exact solution (see Figure 5). Choosing a better smoother in the
intermediate steps does not have a large benefit on the final solver accuracy, but it
does help in decreasing its computational cost.

The analysis of Figures 2, 3 and 5 shows that it is necessary to find a balance between
accuracy in the intermediate levels, and the overall computational cost. In the tests
we performed, the best balance seems to be obtained by applying as a smoother a
small fixed number of GMG v-cycle iterations (either two or three). Figure 4 shows
that the actual mesh refinement patterns generated by A-PINVT and SA-PINVIT
with one and three steps of GMG preconditioner respectively are almost identical, at
a significant fraction of the total computational cost.

Finally, in Figure 6 we provide a convergence plot for the first six eigenvalues of the
L-shaped domain when using full A-PINVIT or SA-PINVIT based on the application
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Figure 5. Computational cost of A-PINVIT and SA-PINVIT for the
Fichera corner problem in 2D. The timing is in seconds, and the dimen-
sion of the problem goes to O(106) degrees of freedom.

of two GMG v-cycle steps as smoother. The plot shows optimal (linear) convergence
of the eigenvalues w.r.t. the global number of degrees of freedom, in both A-PINVIT
and SA-PINVIT, also in the intermediate steps, showing that this choice of smoother
is very effective in providing a good approximation of the lowest part of the spectrum
with very few iterations.

4.2. Dumbbell in two dimensions. A more difficult test case is given by a dumbbell
domain in two dimensions. We take two copies of the same rectangle connected by the
small bridge (see [68] for the detailed description of the domain). If we were just to
have two rectangles, we would have the multiplicities of the eigenvalues of the Laplace
operator on the square doubled. However, due to the small connection the eigenvalues
degenerate in the cluster of eigenvalues of the same joint multiplicity. We consider
6 lowermost eigenvalues since this cluster is relatively tight and well separated from
the rest of the spectrum. As reference eigenvalues we use highly accurate eigenvalues
computed by the hp adapted DG method [32]. For an alternative method to compute
highly accurate eigenvalues of polygonal regions see [68].

In Figure 7 we plot the error in the six lowermost eigenvalues (shown in Figure 1),
when the error estimator is computed only with the first eigenpair. We show the
difference between A-PINVIT and SA-PINVIT, where the same colors indicate the
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Figure 6. Error in the first six lowermost eigevnalues for SA-PINVIT
vs A-PINVIT, Fichera corner problem in 2D. The estimator is computed
w.r.t. the first eigenvalue and eigenvector pair. The comparison shows
pure A-PINVIT (using as preconditioner a geometric multigrid v-cycle
iteration with two cycles of Jacobi iteration as internal smoother, indi-
cated with GMG∞(Jacobi(1)), where the ∞ is there to indicate that we
iterate until convergence to a tolerance of 10−12), and SA-PINVIT based
on the application of three iterations of the same v-cycle algorithm.

same eigenvalue, while circle markers identify A-PINVIT and squares ones identify
SA-PINVIT.

In this case, the difference in the mesh sequences between A-PINVIT and SA-
PINVIT using one GMG v-cycle as smoothing step is visible (see top and center plots
in Figure 8), even though the convergence of the eigenvalues is essentially the same.

Notice how introducing local refinement breaks the symmetry of the eigenvalue prob-
lem. A mesh generated by a global marking strategy does not need to be symmetric
(unless the marking strategy is designe to enforce the symetry structurally) and so
there is no reason for a given eigenvector approximation to be mesh symmetric. This
effect is particularly explicit in the case of a double eigenvalue and an iterative method
which uses random starts or restarts, such as Arnoldi or Krylov-Schur. However, the
subspace spanned by a collection of eigenvectors associated to a multiple eigenvalue
or a tight cluster of eigenvalues will be stable with respects to the perturbations intro-
duced by refinement. Furthermore the subspaces spannd by the approximate eigenvec-
tors and the true egenvectors will be close in terms of the subspace angles. Note that
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Figure 7. Error in the first six lowermost eigevnalues for SA-PINVIT
vs A-PINVIT, dumbbell problem in 2D. The estimator is computed
w.r.t. the first eigenvalue and eigenvector pair. The comparison shows
pure A-PINVIT (using as preconditioner a geometric multigrid v-cycle
iteration with one cycle of Jacobi iteration as internal smoother, indi-
cated with GMG∞(Jacobi(1)), where the ∞ is there to indicate that we
iterate until convergence to a tolerance of 10−12), and SA-PINVIT based
on the application of three iterations of the same v-cycle algorithm.

small subspace angle does not imply any mesh symmetry in the preasymptotic regime.
In Figure 1 we present highly accurate eigenvector approximations computed by our
algorithm from the finite element space of 106 degrees of freedom. On can observe the
nodal lines marking the expected symmetries of the dumbbell. This indicates that the
symmetries will be achieved asymptotically.

The difference in the grids is still there, but not noticeable, between PINVIT and
SA-PINVIT when using three steps of GMG v-cycles. The computational cost for this
test case is presented in Figure 9, where two GMG v-cycles are used for SA-PINVIT,
showing a speedup of about three in the total computational cost, where the largest
saving is clearly in the intermediate solution steps.

4.3. Fichera corner in three dimensions. A more challenging test case is given by
a three-dimensional version of the Fichera corner, where we extrude the two dimen-
sional L-shaped domain along the z−direction. Similarly to what we did in the two
dimensional case, we apply the error estimator on the first eigenfunction/eigenvalue
pair, and we plot the error in the first six lowermost eigenalues in Figure 10. In
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Figure 8. Mesh pattern comparison on the dumbbell problem in 2D,
with ten adaptive refinements. Top: full A-PINVIT (27.414 cells on
final level), center: SA-PINVIT with GMG1(Jacobi1) (27.972 cells on
final level), bottom: SA-PINVIT with GMG3(Jacobi1) (27.318 cells on
final level). The plot shows higher levels of refinement in red, in the
intermediate step number five.

the three-dimensional case, the convergence of the eigenvalues is much more oscillat-
ing, and while the computational saving in the intermediate stage is similar to the
two dimensional case, the overall computational cost in this case is dominated by the
ESTIMATE-MARK-REFINE steps, rather than by the solution stages (see Figure 11).
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Figure 9. Computational cost of A-PINVIT and SA-PINVIT for the
dumbbell problem in 2D. The timing is in seconds, and the dimension
of the problem goes to O(106) degrees of freedom.
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Figure 10. Error in the first six lowermost eigevnalues for SA-PINVIT
vs A-PINVIT, Fichera corner problem in 3D. The estimator is computed
w.r.t. the first eigenvalue and eigenvector pair. The comparison shows
pure A-PINVIT (using as preconditioner a geometric multigrid v-cycle
iteration with one cycle of Jacobi iteration as internal smoother, indi-
cated with GMG∞(Jacobi(1)), where the ∞ is there to indicate that we
iterate until convergence to a tolerance of 10−12), and SA-PINVIT based
on the application of three iterations of the same v-cycle algorithm.

A comparison of the mesh sequences in the three-dimensional case is difficult to
visualize. We show a snapshot of the grid resulting from four steps of SA-PINVIT
iteration in Figure 12.
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Figure 11. Computational cost of A-PINVIT and SA-PINVIT for the
Fichera corner problem in 3D. The timing is in seconds, and the dimen-
sion of the problem goes to O(106) degrees of freedom.

Figure 12. Local refinement after four cycles for SA-PINVIT itera-
tion for the Fichera corner problem in 3D. Part of the grid is left as a
transparent wireframe to show the internal local refinements.

4.4. Dumbbell in three dimensions. Similarly to what we did for the Fichera
corner, we study now the three dimensional version of the dumbbell problem presented
in Section 4.2. In this case, the convergence is even more oscillatory (Figure 13). This
is the most challenging problem for SA-PINVIT, since local refinement breaks the
symmetry of the problem, and leads to a mixing of the first two eigenpairs along the
refinement paths.

This is a known challenge of the design of cluster robust mesh refinement strategies.
Namely, in the case of multiple or tightly clustered eigenvalues, one needs to devise
basis independent error estimators. One of the consequences of this feature of the
eigenvalue problem in the presence of multiple eigenvalues is that when using algebraic
algorithms based on random starts and restarts (Arnoldi, Krylov Schur, ...) one might
get a different basis of the eigenspace associated with the same multiple eigenvalue in
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every new run of an algorithm on applied on the same input matrices. Instead an error
estimator should depend on the subspace spanned by approximate eigenvectors, see [7,
38]. However, such marking strategies flag many elements for refinement and as such
would produce overly fine meshes. This goes directly against the very principle behind
the design of the current algorithm. Therefore we have opted to let the multiplicity, or
near multiplicity, be resolved asymptotically rather than resorting to the use of a safer
but more aggressive subspace dependent mesh refinement strategy. On the dumbbell
example, we clearly see an echo of the challenge faced by the estimator in the presence
of a tight cluster or eigenvalues. This is precisely the reason for choosing the dumbbell
as a benchmark example.

This is evident from the local refinement pattern, as shown in Figure 15. A possible
explanation for the large oscillations in the convergence of the eigenvalues in Figure 13
is given by the fact that, while advancing with the local refinement, the first two
eigen pairs exchange their relative order, and the estimator is applied to a different
eigenfunction w.r.t. what was done in the previous refinement cycle, resulting in a loss
of performance on the desired eigenfunction.

Such difficulty is also evident in the overall computational cost presented in Fig-
ure 14, where it is clear that the last solution does not benefit at all from the final
prolongation of the solution from the intermediate SA-PINVIT steps. This numerical
experiments exposes an area where it is necessary to improve the SA-PINVIT algo-
rithm: very close but distinct eigenvalues may interchange during local refinement,
and it requires that the whole block of close eigenvalues is taken into account when
implementing a refinement strategy, or the benefit of SA-PINVIT may get lost due to
an excessive cost in the last (finest) iteration, as Figure 14 suggests.

5. Concluding remarks

In this paper we present an eigensolver designed for AFEM spaces aimed to increase
the efficiency of an algorithm when applied to a sequence of locally refined meshes.
The method which we proposed is motivated by the work on inexact inverse iteration
solvers in numerical linear algebra and recent work in the perturbed iterative meth-
ods and on smoothed-AFEM for source problems. Following work on inexact inverse
iteration we see that such perturbed hybrid iterative methods converge under very
mild assumptions on the control of the residuals of the intermediate inexact solvers
(convergence of residual norms to zero, see [65]).

The performed experiments demonstrate that we achieve quasi-optimal convergence
rates. We have explicitly shown the intricate relationship between various stages of the
adaptive process (Setup, Intermediate solves, First and last solves, Estimate-Mark-
Refine). The experiments were designed to push the boundary and ascertain the
influence of the spectral separation on various stages of the process (these effects were
more pronounced for problems with broken symmetries and in 3D). The change of the
relative significance of the cost of various stages has been compared for, in this respect,
challenging 2D and 3D experiments.
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Figure 13. Error in the first six lowermost eigevnalues for SA-PINVIT
vs A-PINVIT, dumbbell problem in 3D, finite element degree equal to
1. The estimator is computed w.r.t. the first eigenvalue and eigenvector
pair. The comparison shows pure A-PINVIT (using as preconditioner a
geometric multigrid v-cycle iteration with one cycle of Jacobi iteration
as internal smoother, indicated with GMG∞(Jacobi(1)), where the ∞
is there to indicate that we iterate until convergence to a tolerance of
10−12), and SA-PINVIT based on the application of three iterations of
the same v-cycle algorithm.
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Figure 14. Computational cost of A-PINVIT and SA-PINVIT for the
dumbbell problem in 3D, with finite element degree equal to 1. The
timing is in seconds, and the dimension of the problem goes to O(106)
degrees of freedom.
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