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Abstract

We derive efficient and reliable goal-oriented error estimations, and devise adaptive mesh pro-

cedures for the finite element method that are based on the localization of a posteriori estimates.

In our previous work [SIAM J. Sci. Comput., 42(1), A371–A394, 2020], we showed efficiency and

reliability for error estimators based on enriched finite element spaces. However, the solution of

problems on a enriched finite element space is expensive. In the literature, it is well known that

one can use some higher-order interpolation to overcome this bottleneck. Using a saturation as-

sumption, we extend the proofs of efficiency and reliability to such higher-order interpolations.

The results can be used to create a new family of algorithms, where one of them is tested on

three numerical examples (Poisson problem, p-Laplace equation, Navier-Stokes benschmark), and

is compared to our previous algorithm.

1 Introduction

Goal-oriented error estimation using adjoints was established in [8, 9], and is a current research topic

as attested in many studies. Recent developments include Fractional-Step-θ Galerkin formulations

[39], a partition-of-unity variational localization [44], phase-field fracture problems [50], surrogate con-

structions for stochastic inversion [36], general adaptive multiscale modeling [41], model adaptivity

in multiscale problems [34], multigoal-oriented error estimation with balancing discretization and it-

eration errors [20], nonstationary, nonlinear fluid-structure interaction [25], realizations on polygonal

meshes using boundary-element based finite elements [49], realizations using the finite cell method [46],

error estimation for sea ice simulations [37], discretization error estimation in computer assisted surgery

[18], and a unifying framework with inexact solvers covering discontinuous Galerkin and finite volume
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approaches [35]. An open-source framework for linear, time-dependent, goal-oriented error estimation

was published in [32]. Abstract convergence results of goal-oriented techniques were studied in [30]

and [26]. A worst-case multigoal-oriented error estimation was carried out in [47]. Recently, using a

saturation assumption, e.g., [5, 13, 17, 26], two-side error estimates, namely efficiency and robustness

of the adjoint-based error estimator, could be shown [21].

In most realizations, an adjoint problem is used in order to determine sensitivities that enter the

error in a single target functional [9, 42] or multiple quantities of interest [20, 22, 28]. In [20, 42],

balancing of discretization and nonlinear iteration errors for single and multiple goal functionals was

considered, respectively. However, for nonlinear problems, sensitivity weights in the primal and adjoint

variable are necessary. These weights must be of higher-order. Otherwise they yield zero sensitivities,

and, therefore, the entire error estimator vanishes. The most straightforward way is to use higher-

order finite element spaces [9]. A computationally cheaper approach based on low-order finite elements

and then a patch-wise higher-order interpolation was suggested as well in the early stages [9] and

combined in an elegant way to a weak localization in [12]. Rigorous proofs of effectivity measured in

mesh-dependent norms, in which the true error and the estimator satisfy a common upper bound, were

established in [44]. Therein, saturation assumptions where not required, but the results of effectivity

are weaker than in our recent work [21]. More specifically, in [21], the adjoint problem is solved in

a higher-order space and then interpolated into the low-order space for calculating the interpolation

error. For this procedure, two-side error estimates are proven, while using the previously mentioned

saturation assumption.

The objective of this paper is now the other way around, namely efficiency proofs (under saturation

assumptions) for interpolations from low-order finite element spaces into higher-order spaces, which are

not present in the literature to date. We establish results when both the primal and adjoint problems

are computed only in low-order finite element spaces. To this end, two additional error terms will be

introduced. The resulting error estimator holds for nonlinear PDEs and nonlinear goal functionals,

and accounts for the discretization error, nonlinear iteration error and the interpolation error. These

derivations lead to a novel adaptive algorithm that works at low computational cost in goal-oriented

frameworks. Our theoretical and algorithmic developments are then substantiated with the help of

several numerical tests. It is known that the saturation assumption may be violated for transport or

convection-dominated problems. We provide one numerical test in which this is the case. Furthermore,

linear and nonlinear problem configurations are considered to cover most relevant classes of stationary,

nonlinear settings.

The outline of this paper is as follows: In Section 2, an abstract setting for the DWR method is

introduced. Then, in Section 3, the DWR approach with general approximations is stated. A discussion

of all terms of the newly proposed error estimator is provided in Section 4. Based on these findings, an

adaptive algorithm is designed in Section 5. Several numerical tests with linear PDEs and linear goal

functionals, nonlinear settings, and a stationary Navier-Stokes configuration are carried out in Section

6. We summarize our results in Section 7.
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2 An abstract setting and the dual weighted resiudal method

In this section, we briefly introduce the notation and the settings that we consider in this work. These

are similar to our previous studies [20, 21].

2.1 An abstract setting

Let U and V be reflexive Banach spaces, and let A : U 7→ V ∗ be a nonlinear mapping, where V ∗

denotes the dual space of the Banach space V . We consider the problem: Find u ∈ U such that

A(u) = 0 in V ∗. (1)

This problem will be refereed as the primal problem. As mapping we have in mind some (possibly)

nonlinear partial differential operator. Furthermore, we consider finite dimensional subspaces of Uh ⊂
U and Vh ⊂ V . In this work, Uh and Vh are finite element spaces . This leads to the following finite

dimensional problem: Find uh ∈ Uh such that

A(uh) = 0 in V ∗h . (2)

We assume that the problem (1) as well as the finite dimensional problem (2) are solvable. Further

conditions will be imposed when needed. However, we do not aim for the solution u. The goal is

to obtain one characteristic quantity (quantity of interest) J(u) ∈ R, i.e., a functional evaluation,

evaluated at the solution u ∈ U , where J : U 7→ R.

2.2 The dual weighted residual method

In this section, we briefly review the Dual Weighted Residual (DWR) method for nonlinear problems.

This work was extended to balance the discretization and iteration errors in [38, 42, 43].

This paper forms together with our previous works [20, 21] the basis of the current study. Since

the DWR method is an adjoint based method, we consider the adjoint problem: Find z ∈ V such that

(
A′(u)

)∗
(z) = J ′(u) in U∗, (3)

where A′(u) and J ′(u) are the Fréchet-derivatives of the nonlinear operator and functional, respectively,

evaluated at the solution of the primal problem u. In the following sections, we require a finite

dimensional version of (3) that reads as follows: Find zh ∈ Vh such that

(
A′(uh)

)∗
(zh) = J ′(uh) in U∗h .

Similarly to the findings in [9, 21, 42, 43], we obtain an error representation in the following theorem:

Theorem 2.1. Let us assume that A ∈ C3(U, V ) and J ∈ C3(U,R). If u solves (1) and z solves (3)

for u ∈ U , then the error representation

J(u)− J(ũ) =
1

2
ρ(ũ)(z − z̃) +

1

2
ρ∗(ũ, z̃)(u− ũ)− ρ(ũ)(z̃) +R(3),

3



holds true for arbitrary fixed ũ ∈ U and z̃ ∈ V , where ρ(ũ)(·) := −A(ũ)(·), ρ∗(ũ, z̃)(·) := J ′(u) −
A′(ũ)(·, z̃), and the remainder term

R(3) :=
1

2

∫ 1

0

[
J ′′′(ũ+ se)(e, e, e)−A′′′(ũ+ se)(e, e, e, z̃ + se∗)− 3A′′(ũ+ se)(e, e, e)

]
s(s− 1) ds,

(4)

with e = u− ũ and e∗ = z − z̃.

Proof. The proof is given in [20].

For the arbitrary elements ũ and z̃, we think of approximations to the discrete solutions uh and zh.

The resulting error estimator reads as

η =
1

2
ρ(ũ)(z − z̃) +

1

2
ρ∗(ũ, z̃)(u− ũ) + ρ(ũ)(z̃) +R(3).

This error estimator is exact, but it still depends on the unknown solutions u and z. Therefore, it

is not computable. To obtain a computable error estimator, one can replace the exact solutions u

and z by an approximate solution on enriched finite dimensional spaces U (2)
h and V

(2)
h . This was

already discussed in [4, 9]. Some efficiency and reliability results for this replacement are discussed

in [21]. Other replacements will be covered by the theory in this work. This includes (patch-wise)

reconstructions as suggested in [4, 9, 12] .

3 DWR error estimation using general approximations

In this key section, the DWR estimator is augmented to deal with general approximations such as

interpolations. The latter allow for a very cost-efficient realization of the DWR estimator for both

linear and nonlinear problems. These improvements are significant. However, it turns out that the

governing proofs have the same structure as in Section 3 in our previous work [21]. Therein, it was

assumed that the solutions on enriched spaces are known.

In the current work, we consider that we just have some arbitrary approximations in the enriched

spaces. Examples how this is done are by inaccurate or accurate solves on the enriched space or (patch-

wise) higher-order interpolation operators [4, 9]. We show efficiency and reliability for an alternate

form of the error estimator using some saturation assumption for the goal functional on two different

kind of approximations. In other words, this means that the approximations in the enriched spaces

deliver a more accurate result in the quantity of interest than the approximation of uh.

3.1 Results on discrete spaces

Let ũ(2)
h ∈ U

(2)
h be some arbitrary but fixed approximation of the primal problem: Find u(2)

h ∈ U
(2)
h such

that A(u
(2)
h ) = 0 in (V

(2)
h )∗, and z̃(2)

h ∈ V (2)
h be an approximation to the discretized adjoint problem :

Find z(2)
h ∈ V

(2)
h (A′(u(2)

h ))∗(z
(2)
h ) = J ′(u

(2)
h ) in (U

(2)
h )∗.
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Theorem 3.1. Let us assume that A ∈ C3(U, V ) and J ∈ C3(U,R), and let ũ ∈ U and z̃ ∈ V be

arbitrary but fixed. If ũ(2)
h ∈ U

(2)
h and z̃(2)

h ∈ V (2)
h are some approximations of u and z, then the error

representation

J(ũ
(2)
h )− J(ũ) =

1

2
ρ(ũ)(z̃

(2)
h − z̃) +

1

2
ρ∗(ũ, z̃)(ũ

(2)
h − ũ)− ρ(ũ)(z̃)

− ρ(ũ
(2)
h )(

z̃
(2)
h + z̃

2
) +

1

2
ρ∗(ũ

(2)
h , z̃

(2)
h )(ũ

(2)
h − ũ) + R̃(3)(2)

holds. In this error representation, the new terms in comparison to [21] are

ρ(ũ
(2)
h )(

z̃
(2)
h + z̃

2
) and

1

2
ρ∗(ũ

(2)
h , z̃

(2)
h )(ũ

(2)
h − ũ).

Furthermore, we have ρ(ũ)(·) := −A(ũ)(·) and ρ∗(ũ, z̃)(·) := J ′(u)−A′(ũ)(·, z̃) as usual. Finally, the

remainder term is given by

R̃(3)(2) :=
1

2

∫ 1

0
[J ′′′(ũ+ se)(e, e, e)−A′′′(ũ+ se)(e, e, e, z̃ + se∗)− 3A′′(ũ+ se)(e, e, e)]s(s− 1) ds,

with e = ũ
(2)
h − ũ and e∗ = z̃

(2)
h − z̃.

Proof. The proof is an extension of [42]. First we define a general approximation x := (ũ
(2)
h , z̃

(2)
h ) ∈

X := U × V and x̃ := (ũ, z̃) ∈ X. Assuming that A ∈ C3(U, V ) and J ∈ C3(U,R), we know that the

Lagrange functional, which is given by

L(x̂) := J(û)−A(û)(ẑ) ∀(û, ẑ) =: x̂ ∈ X,

belongs to C3(X,R). This allows us to derive the following identity

L(x)− L(x̃) =

∫ 1

0
L′(x̃+ s(x− x̃))(x− x̃) ds.

Using the trapezoidal rule∫ 1

0
f(s) ds =

1

2
(f(0) + f(1)) +

1

2

∫ 1

0
f ′′(s)s(s− 1) ds,

with f(s) := L′(x̃+ s(x− x̃))(x− x̃), cf. [42], we obtain

L(x)− L(x̃) =
1

2
(L′(x)(x− x̃) + L′(x̃)(x− x̃)) +R(3).

From the definition of L, we observe that

J(ũ
(2)
h )− J(ũ) =L(x)− L(x̃) +A(ũ

(2)
h )(z̃

(2)
h )−A(ũ)(z̃)

=
1

2
(L′(x)(x− x̃) + L′(x̃)(x− x̃)) +A(ũ

(2)
h )(z̃

(2)
h )−A(ũ)(z̃) + R̃(3)(2).

It holds

L′(x)(x− x̃) + L′(x̃)(x− x̃) =J ′(ũ
(2)
h )(e)−A′(ũ(2)

h )(e, z̃
(2)
h )︸ ︷︷ ︸

=ρ∗(ũ
(2)
h ,z̃

(2)
h )(ũ

(2)
h −ũ)

−A(ũ
(2)
h )(e∗)

+ J ′(ũ)(e)−A′(ũ)(e, z̃)︸ ︷︷ ︸
=ρ∗(ũ,z̃)(ũ

(2)
h −ũ)

− A(ũ)(e∗)︸ ︷︷ ︸
=ρ(ũ)(z̃

(2)
h −z̃)

.
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Further manipulations and rewriting, together with

−1

2
A(ũ

(2)
h )(e∗) +A(ũ

(2)
h )(z̃

(2)
h ) = A(ũ

(2)
h )(−1

2
z̃

(2)
h +

1

2
z̃ + z̃

(2)
h )) = A(ũ

(2)
h )(

z̃
(2)
h + z̃

2
),

yield

J(ũ
(2)
h )− J(ũ) =

1

2

(
ρ∗(ũ

(2)
h , z̃

(2)
h )(ũ

(2)
h − ũ)−A(ũ

(2)
h )(e∗) + ρ(ũ)(z̃

(2)
h − z̃) + ρ∗(ũ, z̃)(ũ

(2)
h − ũ)

)
+A(ũ

(2)
h )(z̃

(2)
h ))−A(ũ)(z̃) + R̃(3)(2)

=
1

2

(
ρ∗(ũ

(2)
h , z̃

(2)
h )(ũ

(2)
h − ũ) + ρ(ũ)(z̃

(2)
h − z̃) + ρ∗(ũ, z̃)(ũ

(2)
h − ũ)

)
+A(ũ

(2)
h )(

z̃
(2)
h + z̃

2
))︸ ︷︷ ︸

=−ρ(ũ
(2)
h )(

z̃
(2)
h

+z̃

2
)

+A(ũ)(z̃) + R̃(3)(2).

These last statements prove the assertion.

Remark 3.2. If we use the solutions of the adjoint and the primal problem on the enriched spaces for

computing z̃(2)
h and ũ(2)

h , respectively, then

ρ(ũ
(2)
h )(

z̃
(2)
h + z̃

2
) = 0 and

1

2
ρ∗(ũ

(2)
h , z̃

(2)
h )(ũ

(2)
h − ũ) = 0.

Remark 3.3. A practial choice for z̃(2)
h and ũ(2)

h is, that we can construct higher-order interpolations

from z̃h and ũh. This allows to compute all subproblems with low-order finite elements and the error

estimator can be constructed in a cheap way. Under a saturation assumption we prove some results for

this well known interpolation techniques.

Theorem 3.1 motivates the following choice of the error estimator.

η̃(2) :=
1

2
ρ(ũ)(z̃

(2)
h −z̃)+

1

2
ρ∗(ũ, z̃)(ũ

(2)
h −ũ)−ρ(ũ)(z̃)−ρ(ũ

(2)
h )(

z̃
(2)
h + z̃

2
)+

1

2
ρ∗(ũ

(2)
h , z̃

(2)
h )(ũ

(2)
h −ũ)+R̃(3)(2).

(5)

3.2 Two-sided estimates for DWR using a saturation assumption

In the upcoming lemma, we derive two-sided bounds (efficiency and reliablity) for the error estimator

η̃(2) defined by (5).

Lemma 3.4. If the assumptions of Theorem 2.1 are fulfilled, then the computable error estimator η̃(2)

can be bounded from below and above as follows:

|J(u)− J(ũ)| − |J(u)− J(ũ
(2)
h )| ≤ |η̃(2)| ≤ |J(u)− J(ũ)|+ |J(u)− J(ũ

(2)
h )|.

Proof. We proof the bounds in the same way as in [21]. We know that |η| = |η̃(2) − (η̃(2) − η)|, and
therefore, we can conclude that

|η| − |η − η̃(2)| ≤ |η̃(2)| ≤ |η|+ |η − η̃(2)|.

The statement of the lemma follows with the identities, η − η̃(2) = J(u) − J(ũ) − J(ũ
(2)
h ) + J(ũ) =

J(u)− J(ũ
(2)
h ) and η = J(u)− J(ũ).
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In the sequel, we impose a saturation assumption, which is a common assumption in hierarchical

based error estimation [6, 7, 10, 48]. Even if the solutions of the primal and adjoint problem in the

enriched spaces are used, the saturation assumption may be violated as shown in [10, 21].

However, for particular problems, quantities of interest and refinements, it is possible to show the

saturation assumption [1, 2, 5, 13, 16, 17, 23, 27]. It heavily depends on the quantity of interest, the

finite dimensional spaces and the problem. We impose the following assumption, which is a slight

generalization to [21].

Assumption 1 (Saturation assumption for the goal functional). Let ũ(2)
h be an arbitrary, but fixed

approximation in U (2)
h , and let ũ be some approximation in Uh. Then we assume that

|J(u)− J(ũ
(2)
h )| < bh|J(u)− J(ũ)|

for some bh < b0 and some fixed b0 ∈ (0, 1).

Remark 3.5. For gradient based functionals like the flux, one can use recovering techniques to re-

construct the gradient as in [33]. Here, under certain conditions, the saturation assumption can be

shown.

Remark 3.6. If J(u) is just a point evaluation and the given point is a node in the mesh, then

|J(u)−J(ũ
(2)
h )| = |J(u)−J(ũ)| in the case of higher-order interpolation as used in [4, 9, 42]. Therefore,

the saturation assumption is never fulfilled. If the given point is not on the grid, then |J(u)− J(ũ
(2)
h )|

converges to |J(u)− J(ũ)| provided that the mesh is locally refine around the evaluation point.

Theorem 3.7. Let the Assumption 1 be fulfilled. Then the computable error estimator η̃(2) is efficient

and reliable, i.e.

ch|η̃(2)| ≤ |J(u)− J(ũ)| ≤ ch|η̃(2)| and c|η̃(2)| ≤ |J(u)− J(ũ)| ≤ c|η̃(2)|,

where ch := 1/(1 + bh), ch := 1/(1− bh), c := 1/(1 + b0), and c := 1/(1− b0).

Proof. The proof follows from the estimates given in the proof of Lemma 3.4 and simple computations.

We follow the same steps as in the proof of Theorem 3.3 in [21].

Following [21, 42], we consider the practical discretization error estimator

η̃
(2)
h :=

1

2
ρ(ũ)(z̃

(2)
h − z̃) +

1

2
ρ∗(ũ, z̃)(ũ

(2)
h − ũ), (6)

that corresponds to the theoretical discretization error estimator

ηh :=
1

2
ρ(ũ)(z − z̃) +

1

2
ρ∗(ũ, z̃)(u− ũ).

Lemma 3.8. Let ηh and η̃(2)
h be as defined above, and let ũ ∈ U and z̃ ∈ V be arbitrary but fixed.

Furthermore, we assume that A ∈ C3(U, V ) and J ∈ C3(U,R). If ũ(2)
h ∈ U

(2)
h and z̃(2)

h ∈ V
(2)
h are some

7



approximations to u ∈ U and z ∈ V , respectively, then, for the approximations ũ(2)
h and z̃(2)

h from the

enriched spaces U (2)
h and V (2)

h , the following estimates

|J(u)− J(ũ
(2)
h )| − |R(3) − R̃(3)(2)| − |η̃

z̃
(2)
h

| − |η̃
ũ
(2)
h

| ≤ |ηh − η̃
(2)
h |,

|ηh − η̃
(2)
h | ≤ |J(u)− J(ũ

(2)
h )|+ |R(3) − R̃(3)(2)|+ |η̃

z̃
(2)
h

|+ |η̃
ũ
(2)
h

|,
(7)

and

|J(u)− J(ũ)| − |ρ(ũ)(z̃)| − |R(3)| ≤ |ηh| ≤ |J(u)− J(ũ)|+ |ρ(ũ)(z̃)|+ |R(3)| (8)

hold. Here, R(3) is defined in (4), R̃(3)(2) is from Theorem 3.1, and we have

η̃
ũ
(2)
h

:= −ρ(ũ
(2)
h )(

z̃
(2)
h + z̃

2
), η̃

z̃
(2)
h

:=
1

2
ρ∗(ũ

(2)
h , z̃

(2)
h )(ũ

(2)
h − ũ).

Proof. The inequality (8) was already proven in [21]. From Theorem 2.1 and Theorem 3.1, we get the

identities

J(u)− J(ũ) =
1

2
ρ(ũ)(z − z̃) +

1

2
ρ∗(ũ, z̃)(u− ũ)︸ ︷︷ ︸

ηh

+ρ(ũ)(z̃) +R(3),

and

J(ũ
(2)
h )− J(ũ) =

1

2
ρ(ũ)(z̃

(2)
h − z̃) +

1

2
ρ∗(ũ, z̃)(ũ

(2)
h − ũ)︸ ︷︷ ︸

η̃
(2)
h

+η̃
ũ
(2)
h

+ η̃
z̃
(2)
h

+ ρ(ũ)(z̃) + R̃(3)(2).

If we substract the equations from above, then we obtain

J(u)− J(ũ
(2)
h ) = ηh − η̃

(2)
h +R(3) − R̃(3)(2) − η̃

ũ
(2)
h

− η̃
z̃
(2)
h

.

From this equality, we conclude (7) by using triangle inequality.

Remark 3.9. Indeed a refined analysis yields the inequalities

|J(u)−J(ũ
(2)
h )|−|R(3)−R̃(3)(2)−η̃

ũ
(2)
h

−η̃
z̃
(2)
h

| ≤ |ηh−η̃
(2)
h | ≤ |J(u)−J(ũ

(2)
h )|+|R(3)−R̃(3)(2)−η̃

ũ
(2)
h

−η̃
z̃
(2)
h

|.

Similar as in [21], we can now show the following result:

Lemma 3.10. If the conditions of Lemma 3.8 are fulfilled, then the inequalities

|η̃(2)
h | − γ(A, J, ũ(2)

h , z̃
(2)
h , u, ũ, z̃) ≤ |J(u)− J(ũ)| ≤ |η̃(2)

h |+ γ(A, J, ũ(2)
h , z̃

(2)
h , u, ũ, z̃)

are valid, where

γ(A, J, ũ(2)
h , z̃

(2)
h , u, ũ, z̃) := |J(u)− J(ũ

(2)
h )|+ |R(3)−R̃(3)(2)|+ |η̃

z̃
(2)
h

|+ |η̃
ũ
(2)
h

|+ |ρ(ũ)(z̃)|+ |R(3)|. (9)

Proof. The proof follows the same idea as in the proof of Lemma 3.8 in [21].
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3.3 Computable error estimator under a strengthend saturation assumption

Under a strengthened saturation assumption, the results from above can also be derived for the dis-

cretization error estimator η̃(2)
h . We suppose the following:

Assumption 2 (Strengthened saturation assumption for the goal functional). Let ũ(2)
h be an arbitrary,

but fixed approximation in U (2)
h , and let ũ be some approximation. Then the inequality

γ(A, J, ũ(2)
h , z̃

(2)
h , u, ũ, z̃) < bh,γ |J(u)− J(ũ)|,

holds for some bh,γ < b0,γ with some fixed b0,γ ∈ (0, 1), where γ(·) is defined in (9).

Remark 3.11. Assumption 2 implies Assumption 1. However, if vice versa, Assumption 1 holds,

then Assumption 2 is fulfilled up to higher-order terms (|R(3) − R̃(3)(2)|, |R(3)|), and by the parts

|ρ(ũ)(z̃)|, η̃
ũ
(2)
h

, η̃
z̃
(2)
h

which can be controlled by the accuracy of the approximations. In particular,

if the approximation ũ
(2)
h in the enriched space coincides with the finite element solution u

(2)
h , i.e.

u
(2)
h = ũ

(2)
h , then η̃

ũ
(2)
h

= 0. If the same condition, i.e. z(2)
h = z̃

(2)
h , is fulfilled for the adjoint problem,

then η̃
z̃
(2)
h

= 0.

Theorem 3.12. Let Assumption 2 be satisfied. Then the practical error estimator η̃(2)
h , defined in (6),

is efficient and reliable, i.e.

ch,γ |η̃
(2)
h | ≤ |J(u)− J(ũ)| ≤ ch,γ |η̃

(2)
h | and cγ |η̃

(2)
h | ≤ |J(u)− J(ũ)| ≤ cγ |η̃(2)

h |,

with the positive constants ch,γ := 1/(1+bh,γ), ch,γ := 1/(1−bh,γ), cγ := 1/(1+b0,γ), cγ := 1/(1−b0,γ).

Proof. The proof follows the same steps as in [21]. The result can be derived from Lemma 3.10 and

Assumption 2. For further information, we refer to the proof in [21].

3.4 Bounds of the effectivity indices

As in [21] we derive bounds for the effectivity indices Ieff and Ieff,h which are defined by

Ieff :=
|η̃(2)|

|J(u)− J(ũ)|
and Ieff,h :=

|η̃(2)
h |

|J(u)− J(ũ)|
, (10)

respectively. The quantities η̃(2) and η̃(2)
h are defined as in (5) and (6). We then obtain:

Theorem 3.13 (Bounds on the effectivity index). Let us assume that A ∈ C3(U, V ) and J ∈ C3(U,R),

and let ũ ∈ U and z̃ ∈ V be arbitrary, but fixed. Then the following two statements are true:

1. If Assumption 1 is fulfilled, then Ieff ∈ [1− b0, 1+ b0], and if additionally bh → 0, then Ieff → 1.

2. If Assumption 2 is fulfilled, then Ieff,h ∈ [1 − b0,γ , 1 + b0,γ ], and if additionally bh,γ → 0, then

Ieff,h → 1.

Proof. The bounds immediately follow from Lemma 3.4 and Assumption 1, and Lemma 3.10 and

Assumption 2.

9



Remark 3.14. In practice, the efficiency indices

Ieff,R :=
|η̃(2)
h − ρ(ũ)(z̃) + R̃(3)(2)|
|J(u)− J(ũ)|

and Ieff,h almost coincide.

Remark 3.15. In this section, we omit errors coming from inexact data approximation and numerical

quadrature.

4 Separation of the error estimator parts

In this section, we briefly describe the different parts of the error estimator. The error estimator, which

is derived in the previous section, consists of five parts. The first three parts η̃(2)
h , ηk, η

(2)
R were already

discussed in [21]. We will now focus on the fourth and fifth part, which are novel. For completeness of

presentations, we give a short recap about the other parts.

Proposition 4.1. We split η̃(2) defined in (5) into the following five parts η̃(2)
h , ηk, η

(2)
R , η̃

ũ
(2)
h

, and

η̃
z̃
(2)
h

:

η̃(2) :=
1

2
ρ(ũ)(z̃

(2)
h − z̃) + 1

2
ρ∗(ũ, z̃)(ũ

(2)
h − ũ)︸ ︷︷ ︸

:=η̃
(2)
h

− ρ(ũ)(z̃)︸ ︷︷ ︸
:=ηk

+ R̃(3)(2)︸ ︷︷ ︸
:=η

(2)
R

−ρ(ũ(2)
h )

(
z̃
(2)
h + z̃

2

)
︸ ︷︷ ︸

:=η̃
ũ
(2)
h

+ ρ∗(ũ
(2)
h , z̃

(2)
h )

(
ũ
(2)
h − ũ
2

)
︸ ︷︷ ︸

:=η̃
z̃
(2)
h

.

If the approximations u(2)
h ∈ U

(2)
h and z̃

(2)
h ∈ V

(2)
h are the solutions of the primal and the adjoint

problem, respectively, then η̃(2) coincides with the error estimator from [21], and the fourth and the

fifth terms are zero.

The first part η̃(2)
h : Following [20, 21, 42], η̃(2)

h is related to the discretization error. We use the

partition of unity approach developed in [44] to localize η̃(2)
h . Here the weak form of the estimator part

can be used without applying integration by part.

The second part ηk: The part ηk = ρ(ũ)(z̃) measures the iteration error; cf. [20, 21, 42].

The third part η(2)
R : The third part R(3)(2) is of higher order, and is often neglected in the literature.

In [21], we observed in several carefully designed studies that this part is indeed neglectable.

The fourth part η̃
ũ
(2)
h

: The forth part η̃
ũ
(2)
h

is a measure of the approximation quality of ũ(2)
h . If

ũ
(2)
h solves the (discrete) primal problem on the enriched space U (2)

h , then we obtain that η̃
ũ
(2)
h

= 0.

The quantity indicates whether the problem needs to be solved with higher accuracy or the current

approximation work sufficiently well. To this end, adaptive stopping criteria for both nonlinear and

linear solvers can be designed as in [19, 20, 21, 38, 42, 43].
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The fifth part η̃
z̃
(2)
h

: The fifth and last part η̃
z̃
(2)
h

provides a quantity to estimate the approximation

quality of z̃(2)
h . In contrast to the fourth part, the fifth part η̃

z̃
(2)
h

= 0 if z̃(2)
h solves the (discrete) adjoint

problem on the enriched space V (2)
h . The quantity indicates whether we should solve the problem more

accurate or it is fine to keep the current approximation. This can be used in an adaptive stopping rule

criteria for the linear solver similar to [24, 38, 43].

5 Algorithms

Based on the error estimator discussed in Proposition 4.1, we now design an adaptive algorithm. We

would like to mention that this is just one realization of several classes of algorithms, which can be

constructed with this idea. Let us start with the initial mesh T 1
h and the corresponding finite element

spaces V 1
h , U

1
h , U

1,(2)
h and V 1,(2)

h , where U1,(2)
h and V 1,(2)

h are the enriched finite element spaces. For

the resulting adaptively refined meshes T `h , with ` ≥ 2, we consider the following finite element spaces:

V `
h , U

`
h, U

`,(2)
h and V `,(2)

h , where U `,(2)
h and V `,(2)

h are the enriched finite element spaces. To this end,

we design Algorithm 1.

Algorithm 1

1: Start with some initial guess u1
h, ` = 1, and some choice of cz, cu ∈ R.

2: Solve the primal problem: Find u`h ∈ U `h such that A(u`h)(v`h) = 0 for all v`h ∈ V `
h , using some

nonlinear solver.

3: Solve the adjoint problem: Find z`h ∈ V `
h such that A′(u`h)(z`h, v

`
h) = J ′(u`h)(v`h) for all v`h ∈ U `h,

using some linear solver.

4: Compute the interpolations u`,(2)
h = I

(2)
u u`h ∈ U

`,(2)
h and z`,(2)

h = I
(2)
z z`h ∈ V

`,(2)
h .

5: Compute the error estimators η̃(2)
h , ηk, η

(2)
R , η̃

z̃
(2)
h

, η̃
ũ
(2)
h

using ũ(2)
h = z

`,(2)
h , z̃(2)

h = z
`,(2)
h , ũ = u`h, and

z̃ = z`h.

6: if |η̃
z̃
(2)
h

| > cz|η̃(2)
h − ηk + η

(2)
R | then

7: Solve the adjoint problem on the enriched spaces: Find z
`,(2)
h ∈ V

`,(2)
h such that

A′(u`,(2)
h )(z

`,(2)
h , v

`,(2)
h ) = J ′(u

`,(2)
h )(v

`,(2)
h ) for all v`,(2)

h ∈ U `,(2)
h , using some linear solver.

8: Go to Step 5.

9: if |η̃
ũ
(2)
h

| > cu|η̃(2)
h − ηk + η

(2)
R | then

10: Solve the primal problem on the enriched spaces: Find u
`,(2)
h ∈ U

`,(2)
h such that

A(u
`,(2)
h )(v

`,(2)
h ) = 0 for all v`,(2)

h ∈ V `,(2)
h , using some nonlinear solver.

11: Go to Step 5.

12: if |η̃(2)
h − ηk + η

(2)
R |+ |η̃z̃(2)h

|+ |η̃
ũ
(2)
h

| < TOL then

13: Algorithm terminates with final output J(u`h).

14: Localize error estimator
˜
η

(2)
h , and η(2)

R and mark elements.

15: Refine marked elements:T `h 7→ T
`+1
h , ` = `+ 1.

16: Go to Step 2

Remark 5.1. We use the same interpolations as discussed in [4, 9]. For further information, we refer
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the reader to [4]; see pp. 43-44.

Remark 5.2. In Step 2, we use a Newton method with adaptive stopping rule using the estimator

part ηk. The initial guess for the Newton method was the solution on the previous grid. For further

information about this Newton method we refer to [21]. The arising linear systems were solved by

means of the direct solver UMFPACK [15]. However, iterative solvers could also be used, where the

ideas from [42, 43] can be exploited.

Remark 5.3. One can also use |η̃h| instead of |η̃h−ηk+η
(2)
R |. Indeed, in [21], it was observed that |η(2)

R |
is of higher-order, and ηk can be controlled by the choice of the accuracy of the solver. Furthermore, it

is sufficient to use the localized η̃(2)
h instead of η̃(2)

h and η(2)
R .

Remark 5.4. It is not required that the problems in Step 2 and Step 3 are solved accurate. An estimate

for this error is ηk, which is perturbed by higher order terms.

Remark 5.5. In Step 3, we use a Newton method with an adaptive stopping role that is based on the

estimator part ηk. We take the solution from the previous grid as initial guess for the Newton iteration.

We refer the reader to [21] for further information about this Newton method.

Remark 5.6. If the problems in Step 10 and Step 7 are solved exactly, then η̃
z̃
(2)
h

= η̃
ũ
(2)
h

= 0. Therefore,

the ‘if ’ conditions in Step 6 and 9 are false.

Remark 5.7. The localization and marking techniques in Step 14 coincide with those presented in

[21]. For more information on the localization, we refer to [44].

Remark 5.8. In Step 6 and 9, we used the constants cu = cz = 0.5. In general, one should choose

these constants from the interval (0, 0.5].

Remark 5.9. For the choices cu < 0 and cz < 0, the resulting algorithm coincides with the algorithm

presented in [21]. Here the enriched problem needs to be solved at each level without any interpolations.

On the other hand, if we choose cu = cz = ∞, then we never solve the enriched problem, and always

use interpolations. This leads to a similar approach as in [42].

6 Numerical examples

In this section, we discuss three different problems. We also vary the goal functionals. More precisely,

the first example deals with the Poisson equation and the average of the solution over the computational

domain Ω as simple linear model problem and quantity of interest, respectively. In the second test, we

use a regularized p-Laplace equation, and in the third example, we consider a stationary Navier-Stokes

benchmark problem. The programming code is based on the finite element library deal.II [3].

For the first two examples, we use continuous bi-linear (Qc1) finite elements for Vh = Uh, and

continuous bi-quadratic (Qc2) finite elements for V (2)
h = U

(2)
h in sense of Ciarlet [14]. In the final

example, we use the same configuration as in [21], i.e., the finite element spaces Vh = Uh and V
(2)
h = U

(2)
h

are based on [Qc2]2 ×Qc1 and [Qc4]2 ×Qc2 finite elements, respectively.
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We use the following abbreviations for the error estimators used in Algorithm 1: new: cu = cz = 0.5,

full: cu = cz = −1, and int: cu = cz = ∞ (=10100) in the numerical experiments. The choice

cu = cz = −1 means that we always solve the primal and adjoint problems. Therefore, for this case,

the algorithm coincides with the algorithm presented in [21] (up to the starting point of the Newton

iteration). If we have cu = cz = ∞, then this results in the case where we always use higher-order

interpolation to the approximate u− uh and z − zh as done in [9].

6.1 Poisson equation

In the first example, we consider the Poisson equation on the unit square Ω = (0, 1)2. The problem

formally reads as: Find u ∈ H1(Ω) such that −∆u = 1 in Ω and u = 0 on ∂Ω. The exact solution is

given by

u(x, y) =

(
2

π

)4 ∞∑
k=0

∞∑
l=0

sin
(
(2k + 1)πx

)
sin
(
(2l + 1)πy

)
(2k + 1)(2l + 1)

(
(2k + 1)2 + (2l + 1)2

) .
The quantity of interest is given by J(u) =

∫
Ω udx. The evaluation at the solution yields

J(u) =

(
2

π

)6 ∞∑
k=0

∞∑
l=0

1

(2k + 1)2(2l + 1)2
(
(2k + 1)2 + (2l + 1)2

)
=

1

12
− 31

2π
ζ(5) +

(
2

π

)5 ∞∑
k=0

1

(2k + 1)5
(
e(2k+1)π + 1

) ≈ 0.03514425373878841,

where ζ is the Riemann zeta function.
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0.85
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0.95

1
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1.1

0 5 10 15 20 25
`

Ieff,h(new)
Ieff,h (full)
Ieff,h (int)

1

Figure 1: Effectivity indices for the Poisson equation.

When we compare the errors in our quantity of interest for new, full, int, we observe that, for all

three choices, we obtain almost the same error in comparison to the degrees of freedom (DOFs); cf.

Figure 2. Furthermore, we see from Figure 3 that Algorithm 1 always decides to solve the primal
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problem on the enriched space on each level. However, the adjoint problem is never solved on the

enriched space. If we compare the effectivity indices shown in Figure 1, then we observe that, for new

and full, the effectivity indices almost coincide. If we only use interpolation, then the result is slightly

worse.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1 10 100 1000 10000 100000
`

Error (new)
Error (full)
Error (int)

Figure 2: Error vs DOFs for the Poisson equation.
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Figure 3: Poisson equation: ratio of solves up to level `. Here, z` describes the number of enriched

adjoint solves needed up to level `, and u` describes the number of enriched primal solves needed up

to level `
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6.2 Regularized p-Laplace equation

In the second numerical example, we consider the regularized p-Laplace equation with ε = 10−10 and

p = 4. The computational domain Ω is a slit domain given by Ω = (−1, 1)2 \{0}× (−1, 0) as visualized

in Figure 4. The given problem reads as: Find u ∈W 1
p (Ω) such that

−div((|∇u|2 + ε2)
p−2
2 ∇u) = 1 in Ω, and u = 0 on ΓD, (|∇u|2 + ε2)

p−2
2 )∇u · ~n = 0 on ΓN .

The boundary conditions are visualized in the left subfigure of Figure 4. We impose Neumann and

homogeneous Dirichlet boundary conditions on the left side and on the right side of the slit, respectively.

In the right subfigure of Figure 4, a plot of the solution is given. Even for the p = 4, similarities

to the distance function, which is the first eigenfunction of the p-Laplacian for p = ∞, described in

[11, 31], are visible.

xP

(0,−1)(−1,−1) (1,−1)

(−1, 1) (1, 1)

(0,0)

ΓDΓN

Ω

Figure 4: The domain Ω with boundary conditions (left) and the solution of the problem (right).

6.2.1 Integral evaluation

As first quantity of interest, we again consider J(u) =
∫

Ω u(x)dx ≈ 0.71755. We observe in Figure 5

that we obtain a similar error for either solving the adjoint and primal problem each time (Error(full)),

for using the interpolation on each level (Error(int)), and for Algorithm 1 (Error(new)).

As already noticed in [21], we observe higher-order convergence of the remainder term. The rate

is approximately in the order of O(DOFs−
3
2 ). For the errors and additionally the error estimator η(2)

h ,

which is plotted for Algorithm 1, the order of convergence is approximately O(DOFs−1).

In Figure 6, the number of solves in the enriched space using Algorithm 1 divided by the number of

solves in the enriched space using the algorithm given in [21] is shown. We conclude that, on the first

seven levels, the same solves as from [21] are required. Then Algorithm 1 decides that we just have to

solve either the primal or the adjoint problem on the enriched space, and use the interpolation in the

other. After level ` = 15 only interpolation is used. Going back to Figure 5, we observe that, on the

levels ` = 8− 12, the error for just using interpolation is slightly worse than for the other approaches.

However, on finer levels this effect does not appear anymore. Excellent effectivity indices are observed
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as visualized in Figure 7. For the full estimater, we observe almost no differences to the other versions

proposed. In the case of Algorithm 1, the efficiency index Ieff is approximately equal to 1.25 when

using interpolation only.

If we compare the different meshes, which are visualized in Figure 8, then we detect that, even

after 28 adaptive refinements, we end up in almost coinciding meshes.
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1e-07

1e-06

1e-05

0.0001

0.001
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0.1

1

10 100 1000 10000 100000
DOFs

Error (new)
Error (full)
Error (int)

|η(2)R |
|η(2)h |

O(DOFs−1)
O(DOFs−

3
2 )

Figure 5: p-Laplace for p = 4, ε = 10−10: Integral evaluation: Error and error estimators versus DOFs.
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Figure 6: p-Laplace for p = 4, ε = 10−10: Integral evaluation: ratio of solves up to level `. Here, z`
describes the number of enriched adjoint solves needed up to level `, and u` describes the number of

enriched primal solves needed up to level `.
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Figure 8: The resulting meshes on level ` = 29 for: solving always the enriched spaces (left), using

Algorithm 1 (middle), using interpolations on all levels (right).
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Ieff (new)
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Figure 7: p-Laplace for p = 4, ε = 10−10: Integral evaluation: Effektivity idices.

6.2.2 Point evaluation

In this part, we consider the point evaluation J(u) = u(xP ) ≈ 0.04501097 as quantity of interest,

where the point xP = − 9
10(1, 1) is also visualized in Figure 4. Inspecting Table 1, we observe that

lim`→∞ Ieff = 0 due to the local refinement around the evaluation point as mentioned in Remark 3.6.

Furthermore, Table 1 shows that the effectivity indices Ieff,h and Ieff , defined in (10), are both

better for Algorithm 1 than for using interpolation on every level. It is a bit surprising that the

efficiency indices Ieff,h perform equally well. Moreover, z` and u` show that Algorithm 1 decides to

solve the enriched problems on several levels.

In comparison with the algorithm proposed in our previous work [21], we save five times solving

the primal problem on the enriched space, and 1 adjoint problem on the enriched space. In Figure 9,
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we observe that heavy refinement occurs around our evaluation point.

The position of the point was motivated by the singularity in the distance function, which is the

first eigenfunction of the p-Laplacian for p = ∞; see [11, 31]. This singularity is also refined by our

strategy, provided that it is sufficiently close to our point. The errors in the point evaluation are similar

for interpolation and the new Algorithm 1.

Table 1: p-Laplace for p = 4, ε = 10−10: Point evaluation: In the first part of the table, the levels are

given. In the second part, we have the results for Algorithm 1, and in the third the results for using

the interpolation on every level. |V `
h | gives the DOFs in the finite element space, and |V `,(2)

h | gives the
number of elements in the corresponding enriched space. The values z` and u` describe the number of

enriched solves required up to level `. In the third part, z` and u` are not presented since z` = u` = 0.

new int

` |V `
h | |V

`,(2)
h | Ieff,h Ieff z` u` Error |V `

h | |V
`,(2)
h | Ieff,h Ieff Error

1 27 85 0.55 0.61 1 1 3.07E-02 27 85 0.18 0.29 3.07E-02

2 36 117 0.56 0.84 1 2 1.94E-02 36 118 0.48 0.78 1.95E-02

3 53 180 0.78 0.81 2 3 3.28E-03 53 180 1.12 1.41 3.28E-03

4 69 240 0.81 1.17 3 3 2.02E-03 69 240 0.55 1.17 2.02E-03

5 93 334 0.82 0.84 4 4 7.44E-04 93 334 0.85 1.21 7.44E-04

6 120 441 0.61 0.80 5 5 3.12E-04 123 453 1.75 0.66 3.25E-04

7 154 575 0.65 0.84 6 6 2.68E-04 167 626 1.33 0.45 1.55E-04

8 201 760 0.83 0.81 7 7 1.26E-04 215 815 0.58 0.45 1.55E-04

9 258 985 0.48 0.72 8 8 4.63E-05 275 1 051 0.78 0.02 1.09E-04

10 332 1 279 0.56 0.86 9 9 6.20E-05 356 1 370 0.69 0.03 6.28E-05

11 448 1 734 0.71 0.80 11 10 2.17E-05 468 1 810 0.78 0.06 2.86E-05

12 578 2 247 0.51 0.64 13 11 8.21E-06 602 2 334 0.61 0.02 3.04E-05

13 739 2 884 1.52 0.87 13 12 1.31E-05 790 3 082 0.71 0.04 1.59E-05

14 940 3 670 0.64 0.87 14 13 8.58E-06 1 014 3 973 1.18 0.07 8.74E-06

15 1 206 4 727 2.32 0.44 15 13 1.47E-06 1 300 5 109 0.54 0.12 5.60E-06

16 1 549 6 096 1.03 0.23 16 13 1.26E-06 1 701 6 696 1.76 0.17 1.45E-06

17 1 993 7 855 0.95 0.88 17 14 1.58E-06 2 196 8 658 2.52 0.09 1.58E-06

18 2 561 10 120 77.10 31.99 18 14 1.13E-08 2 831 11 181 1.52 0.09 1.60E-06

19 3 310 13 092 1.61 0.43 19 14 5.03E-07 3 642 14 419 3.94 0.41 4.01E-07

20 4 274 16 939 1.13 0.90 20 15 3.05E-07 4 728 18 734 922.58 54.95 1.16E-09

21 5 462 21 679 2.09 1.00 20 16 5.74E-07 6 089 24 164 2.98 0.03 2.72E-07

22 7 105 28 206 0.53 0.78 21 17 6.91E-08 7 913 31 433 3.16 0.02 2.01E-07

23 9 111 36 203 1.12 1.07 22 18 1.90E-07 10 237 40 698 2.93 0.02 1.57E-07

24 11 760 46 780 1.07 1.07 23 19 9.13E-08 13 214 52 569 2.08 0.05 1.53E-07

25 15 228 60 614 1.06 1.07 24 20 1.08E-07 17 122 68 164 1.41 0.02 1.80E-07
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Figure 9: p-Laplace for p = 4, ε = 10−10: Point evaluation: Mesh on level ` = 25.

6.3 Navier-Stokes benchmark problem

We now consider the stationary NS-benchmark problem NS2D-11; see [45]. The computational domain

Ω is given by (0, H)× (0, 2.2) \ B, where H = 0.41, and B := B 1
20

(0.2, 0.2) is nothing but a circle with

center at (0.2, 0.2) and radius 1
20 . The problem reads as follows: Find u := (u, p) ∈ [H1(Ω)]2 × L2(Ω)

such that

−ν∆u+ (u · ∇)u−∇p =0 in Ω,

∇ · u =0 in Ω,

u =0 on Γno-slip,

u =û on Γinflow,

ν
∂u

∂~n
− p · ~n =0 on Γoutflow,

where ν = 10−3. The boundary parts are given by Γoutflow := ({x = 2.2} ∩ ∂Ω) \ ∂({x = 2.2} ∩ ∂Ω),

Γinflow := {x = 0} ∩ ∂Ω, and Γno-slip := ∂Ω \ (Γinflow ∪ Γoutflow).

The inflow is described by û(x, y) := (3w(y)/10, 0) with w(y) = 4y(H − y)/H2. The pressure is

uniquely determined due to the do-nothing condition prescribed on Γoutflow; see [29]. Our quantity of

interest is given by the lift which is defined as

J(u) := 500

∫
∂B

[
ν
∂u

∂~n
− p~n

]
· ~e2 ds(x,y),

where ~e2 = (0, 1). The reference value J(u) = 0.010618948146 was taken from [40].
1http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark1_re20.html
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In the numerical simulations, we observed that the ‘if’ conditions (Step 6-7 and Step 9-10) in Algo-

rithm 1 were entered, possibly multiple times, resulting in a significant improvement of the effectivity

indices. In Table 2, these evaluations have the following correspondences to the previous algorithm:

1. Step 1 (Table 2) =̂ Step 4 (Alg. 1). For the computation of the estimators, we use u`,(2)
h =

I
(2)
u u`h ∈ U

`,(2)
h and z`,(2)

h = I
(2)
z z`h ∈ V

`,(2)
h .

2. Step 2 (Table 2) =̂ Step 6-7 (Alg. 1). For the computation of the estimators, we use

u
`,(2)
h = I

(2)
u u`h ∈ U

`,(2)
h and z`,(2)

h as the solution of the linear problem: Find z`,(2)
h ∈ V `,(2)

h such

that A′(u`,(2)
h )(z

`,(2)
h , v

`,(2)
h ) = J ′(u

`,(2)
h )(v

`,(2)
h ).

3. Step 3 (Table 2) =̂ Step 9-10 (Alg. 1). For the computation of the estimators, we use u`,(2)
h

as the solution of the non-linear problem Find u`,(2)
h ∈ U `,(2)

h such that A(u
`,(2)
h )(v

`,(2)
h ) = 0 and

z
`,(2)
h as in the previous executed step.

4. Step 4 (Table 2) =̂ Step 6-7 (Alg. 1). For the computation of the estimators, we use u`,(2)
h

as the solution of the non-linear problem: Find u`,(2)
h ∈ U `,(2)

h such that A(u
`,(2)
h )(v

`,(2)
h ) = 0, and

z
`,(2)
h as the solution of the linear problem: Find z`,(2)

h ∈ V `,(2)
h such that A′(u`,(2)

h )(z
`,(2)
h , v

`,(2)
h ) =

J ′(u
`,(2)
h )(v

`,(2)
h ).

Table 2 shows that we almost always improve the effectivity step by step. We notice that Ieff
does not depend on the choice of z(2)

h since it coincides for Step 1 and Step 2 as well as for Step 3 and

Step 4 provided that these steps are executed. Furthermore, we observe that, in certain meshes, the

use of interpolation leads to very bad effectivity indices. However, Algorithm 1 improves this during

the adaptive process, although the saturation assumption is not fulfilled. The saturation assumption

is also not fulfilled if u(2)
h is the exact discrete solution of the enriched space as shown in [21].

In Figure 11, we monitor a similar quality of the effectivity indices for new and full. Here we

observe that the interpolation error estimator delivers a worse result. The resulting meshes for ` = 20

are shown in Figure 10. Here also the meshes of new and full are more similar. This is not surprising

since we perform more enriched solves. For the error, which is discussed in Figure 12, a particular

conclusion could not be determined.
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1
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100

0 5 10 15 20 25
`

Ieff,h(new)
Ieff,h(full)
Ieff,h (int)

0.01

0.1

1

10

100

0 5 10 15 20 25
`

Ieff (new)
Ieff (full)
Ieff (int)

Figure 11: Navier-Stokes benchmark problem: Effektivity indices.
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Table 2: Navier-Stokes benchmark problem: Evolution of the effectivity indices during the exectuion

of Algorithm 1. In Step 1, we use higher-order interpolation to approximate z(2)
h and u(2)

h . If Step 2

is executed, then we update z(2)
h by solving the adjoint problem where u(2)

h is the interpolation. After

executing Step 3, we replace the interpolation of u(2)
h by the solution of primal problem on the enriched

space. In Step 4, z(2)
h and u

(2)
h are the solutions of the primal and adjoint problem on the enriched

spaces, respectively. The sign X means that this step is not executed. Lines 6 and 9 of Algorithm 1

decide whether a step is execuded or not.

Step 1 (interpolation) Step 2 (compute z(2)
h ) Step 3 (compute u(2)

h ) Step 4 (compute z(2)
h )

` Ieff,h Ieff,R Ieff Ieff,h Ieff,R Ieff Ieff,h Ieff,R Ieff Ieff,h Ieff,R Ieff

1 1.71 1.69 1.92 X X X 2.23 2.2 1.55 X X X

2 1.28 1.28 0.24 1.13 1.13 0.24 0.79 0.79 0.78 X X X

3 1.52 1.52 0.15 1.13 1.13 1.15 0.86 0.86 0.85 X X X

4 0.66 0.66 0.88 0.80 0.80 0.88 X X X X X X

5 0.45 0.45 0.11 X X X 0.72 0.72 1.00 X X X

6 0.41 0.41 0.31 0.88 0.88 0.31 1.01 1.01 0.99 X X X

7 0.89 0.89 0.67 X X X X X X X X X

8 0.41 0.45 0.85 2.17 2.21 0.85 1.54 1.58 1.60 X X X

9 2.81 2.81 2.86 0.71 0.71 2.86 0.75 0.75 0.74 X X X

10 3.42 3.42 0.86 1.34 1.34 0.86 1.10 1.10 1.06 X X X

11 4.20 4.20 0.18 0.70 0.70 0.18 1.08 1.08 1.08 X X X

12 5.72 5.72 1.92 0.68 0.68 1.92 1.33 1.33 1.35 X X X

13 3.49 3.49 0.40 0.62 0.62 0.40 X X X X X X

14 5.11 5.11 1.63 X X X 5.97 5.97 0.38 0.38 0.38 0.38

15 2.16 2.16 1.61 X X X 1.99 1.99 0.94 0.94 0.94 0.94

16 1.50 1.50 1.70 1.29 1.29 1.70 X X X X X X

17 6.25 6.24 1.95 1.30 1.29 1.95 1.59 1.58 1.58 X X X

18 109.0 109.2 10.3 6.71 6.88 10.3 2.17 2.34 2.27 X X X

19 47.7 47.7 4.75 5.35 5.35 4.75 X X X X X X

20 231.0 231.0 2.87 X X X 226.4 226.4 2.93 2.95 2.93 2.93

21 20.7 20.7 14.1 X X X 2.10 2.09 2.10 X X X
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Figure 10: Navier-Stokes benchmark problem: The corresponding meshes for ` = 20 and new(top),

full(middle), int(bottom).
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Figure 12: Navier-Stokes benchmark problem: Errors versus DOFs

7 Conclusions

We derived adaptive algorithms for computationally attractive low-order finite elements and interpola-

tions to realize goal-oriented a posteriori error estimation using the DWR approach. Using saturation

assumptions, we rigorously proved two-side error estimates showing the efficiency and robustness.
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These findings were supported by means of three numerical tests. Therein, the newly suggested error

estimator was compared to the full estimator and a version in which only interpolations are used. For

linear problems (Example 1), all three variants coincide with respect the error behaviour. For nonlinear

problems (Example 2), differences can be observed. In the last numerical test (Example 3), a fluid-flow

example was considered. Here, the PDE is semi-linear, but due to the convection term, the saturation

assumption is not always fulfilled. This could be observed in terms of bad effectivity indices every

now and then. Moreover, in the last example, the mechanism of our proposed adaptive algorithm is

highlighted because the switch from interpolations to enriched spaces in some iterations significantly

improves the effectivity indices. In future work, we plan to apply this algorithm to other applications,

in particular, to multiphysics problems.
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