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1 Introduction
The development and analysis of numerical methods for partial differential equations (PDEs) is under con-
stant progression, driven, on the onehand, bymathematical curiosity and, on the other hand, by the practical
needs of the computational sciences and engineering. For the latter, the role of mathematics is to provide
reliable tools to the engineers which prevent failure of numerical simulation.

For these reasons, the biennial RMMM conferences bring together scientists developing reliablemethods
for mathematical modeling. The topics of the conference include applied and numerical analysis, methods
for the control of modeling and numerical errors, algorithmic aspects, challenging applications, and novel
discretization methods for the numerical approximation of PDEs.

The 9th edition of the conference took place on September 9–13, 2019 at TUWien, Vienna, Austria. This
special issue collects selected works from participants of RMMM 2019 that are related to their presentations.
The overall focus is aswide as theneeds formathematics in computational PDEs, addressing aposteriori error
control [2, 5] and adaptivity [1, 3, 7, 8], reliable methods for space-time problems [3, 4, 12], non-standard
numerical discretizations [2, 4, 6, 9], and iterative solvers and optimal preconditioning [7, 8, 10, 11].

2 Non-Standard Discretizations
The work [2] of Carstensen and Nataraj gives an overview on (optimal) a priori and a posteriori error analysis
for the nonconforming Crouzeix–Raviart andMorley FEM, including counterexamples on the role of the data
oscillations in best approximation estimates. As model problems serve the 2D Poisson problem as well as the
2D biharmonic problem,which are treated in onemathematical framework. The key argument in the analysis
is a (conforming) companion operator being defined as a right-inverse of the (nonconforming) interpolation
operator with additional benefits like L2-orthogonality. In particular, the authors advertise the use of the
companion operator as a paradigm shift in the numerical analysis of nonconformingmethods to circumvent,
amongst others, (discrete) Helmholtz and Hodge decompositions in the a posteriori error analysis.

The work [9] of Kreuzer, Verfürth, and Zanotti considers a discontinuous Galerkin (dG) approach for the
discretization of the incompressible Stokes equations. For the Stokes equation, dG discretizations have the
advantage that the canonical polynomial spaces (of order ℓ for the velocity resp. ℓ − 1 for the pressure) are
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automatically inf-sup stable. The proposed new method is proved to be quasi-optimal and pressure-robust
(i.e., the approximation quality of the velocity field is independent of a possibly large pressure error). The
key tool is a new reconstruction operator that maps discontinuous polynomial test functions to conform-
ing test functions. This new operator particularly preserves the discrete divergence and thus maps discretely
divergence-free test functions to exactly divergence-free test functions. With the help of this operator, the
authors are able to derive quasi-optimal andpressure robust error estimates that are also valid for non-smooth
right-hand sides, which are admissible to the continuous formulation.

The work [6] of Führer, García Vera, and Heuer derives an ultra-weak variational formulation of the
Timoshenko beambendingmodelwith various boundary conditions, combining clamped, simply supported,
and free ends. The unknowns of the novel formulation, which is proved to be well-posed, are the trans-
verse deflection and the bendingmoment. In the limit case of vanishing thickness, the proposed formulation
reduces, as expected, to the Euler–Bernoulli model. Then, a discontinuous Petrov–Galerkin (DPG) discretiza-
tion is proposed and it is proved that themethod is locking-free and quasi-optimal, uniformly in the thickness
of the beam.

3 Space-Time Discretizations
One key concern of numerical schemes is the preservation of mathematical structure of the PDE on the
discrete level. The work [4] of Egger, Habrich, and Shashkov presents and analyzes a general framework
for the numerical approximation of evolution problems that allows to preserve an underlying dissipative
Hamiltonian or gradient structure exactly. In particular, it is shown that using the right canonical form on
the abstract level, the Galerkin discretization in space combined with a Petrov–Galerkin discretization in
time preserves the relevant energy/dissipation identities. For instance, the given framework applies to the
equations of magneto-quasistatics that arise in the eddy current approximation of the Maxwell equations,
the Cahn–Hilliard equation that models the phase separation in binary fluids, or constrained Hamiltonian
systems that arise in the modeling of multibody dynamics.

The work [12] of Zank considers a space-time discretization of parabolic evolution equations in the set-
ting of anisotropic space-time Sobolev spaces. While classical discretizations of evolution problems rely on
time marching schemes, the benefits of space-time methods are that they have the potential for space-time
adaptivity as well as parallelization. One possible way to obtain a variational space-time formulation with
well-posed conformingGalerkin discretization (without any CFL condition) relies on amodifiedHilbert trans-
form. Having recalled this framework, the work discusses possible numerical realizations of this modified
Hilbert transform. A new series expansion based on the Legendre chi function allows to compute the entries
of the space-time Galerkin matrix up to machine precision, independently of the mesh-size.

The work [3] of Dubuis, Picasso, and Wittwer considers a PDE system, which couples the Navier–Stokes
equations with the Newton laws describing themotion of a rigid body within an incompressible viscous fluid
under the action of gravity. Numerical simulations of such systems face several difficulties because of possible
collisions between the rigid body and the container boundary. The paper proposes an error indicator driven
adaptive space-time algorithm, which makes it possible to compute quasi-collisions with high accuracy. The
algorithm is validated numerically by simulating an analytical result, namely the non-collision in finite time
for a rigid smooth disk falling toward a bottom wall in an incompressible Newtonian fluid.

4 Analysis of Adaptive Methods
An important aspect of adaptive algorithms is the overall computational cost due to the inherent cumulative
nature (since any solution depends on the full adaptive history and computation). The work [7] of Giani,
Grubišić, Heltai, and Mulita considers the interplay of adaptive mesh-refinement with an algebraic iterative
eigenvalue solver. More precisely, the inexact algebraic iterative eigenvalue solvers on previous mesh levels
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are used to design an efficient solver on the last adaptively refined mesh. The astonishing observation of the
proposed S-AFEM algorithm is that it is enough to smooth out only the high frequency error of the numerical
approximation in order for the computed a posteriori error estimator to generate a sequence of quasi-optimal
meshes. Overall, the computational costs for adaptive mesh refinement are thus greatly reduced, because no
intermediate discrete solutions appear to be necessary to drive the mesh-refinement.

Many practically relevant PDEs are nonlinear so that the numerical approximation usually relies on an
appropriate linearization of the discrete equations. The work [8] of Heid, Praetorius, and Wihler considers
strongly-monotone elliptic PDEs. Based on an a posteriori error estimator, the authors formulate an adaptive
iterative linearized finite element method (AILFEM), which steers the adaptive mesh-refinement (to resolve
possible singularities of the unknown solution) aswell as the linearization so that in each step only one linear
system is solved. Under natural assumptions, it is proved that the proposed AILFEM algorithm leads to linear
convergence in each step with optimal rates with respect to the computational cost. Numerical experiments
underline the theory and show that AILFEM leads to optimal decay of the error with respect to the measured
computational time.

In many situations, the relevant output of a numerical simulation is not the (accurate approximation of
the) solution u of a PDE, but rather a functional value Q(u) of some goal functional (also called quantity of
interest). The work [5] of Endtmayer, Langer, andWick proposes a new algorithm for the dual weighted resid-
ual method for goal-oriented FEM. Theweights of the a posteriori error estimator are computed by comparing
the primal and dual solution from the ansatz space with the corresponding ones from a higher order ansatz
space. To lower the computational cost, the algorithm substitutes the solution of primal and dual problem in
the higher-order space by an interpolation of the corresponding solutions from the lower-order space in some
steps, based on an a posteriori criterion. For this procedure, the authors derive lower and upper bounds for
the goal error. The newmethodology is validated by considering a variety of model problems like the Poisson
problem, a (regularized) p-Laplacian, and the Navier–Stokes problem.

A related question is addressed in the work [1] of Becker, Innerberger, and Praetorius, which is con-
cerned with the thorough convergence analysis of a goal-oriented adaptive algorithm. Considering a slightly
simpler model problem than [5], namely a general linear and elliptic PDE and a quadratic goal-functional,
the work formulates an adaptive strategy which steers the linearization of the goal-functional as well as the
localmesh-refinement for the discretization of the primal and the (linearized) dual problem. Under canonical
assumptions on the a posteriori error estimators (which aremet, for instance, for standard residual error esti-
mators), it is proved that the adaptive strategy leads to linear convergence with respect to the adaptive level
and, eventually, also to optimal convergence rates with respect to the number of the degrees of freedom.

5 Solvers and Preconditioning
The work [10] of Miraci, Papež, and Vohralik proposes an adaptive geometric multigrid method for the
iterative solution of systems arising from the discretization of linear symmetric elliptic PDEs. First, using one
V-cycle (“full-smoothing” substep) the proposed adaptive multigrid solver chooses adaptively the optimal
step-size as well as the type of smoothing per level (weighted restricted additive or additive Schwarz), gener-
alizing previous work of the authors. Second, another V-cycle (“adaptive-smoothing” substep) concentrates
smoothing only to marked regions with (estimated) high error identified through a bulk-chasing criterion.
The authors prove that the complete multigrid algorithm yields a uniform and p-robust contraction. More-
over, the proposed solver comes with a built-in a posteriori error estimator which provides a lower and upper
bound for the unknown algebraic solver error (with known constant 1 for the lower bound).

Finally, the work [11] of van Venetië and Stevenson deals with the definition and analysis of precondi-
tioners for problems involving operators of negative orders as met, e.g., in the boundary element method for
weakly-singular integral operators. The work combines the ideas of an abstract framework developed by the
authors and a stable multilevel splitting to obtain a preconditioner whose evaluation is of linear complexity.
The result appears to be the first preconditioner based on the concept of operator preconditioning that can
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be applied in linear complexity and yields uniformly bounded condition numbers on locally refined meshes
for the class of problems under consideration. For symmetric operators like the Laplace single-layer inte-
gral operator, this ensures that, e.g., the preconditioned conjugate gradient solver is uniformly contractive
independently of the mesh.
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