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We consider systems of ordinary differential equations with multiple scales
in time. In general, we are interested in the long time horizon of a slow
variable that is coupled to solution components that act on a fast scale. Al-
though the fast scale variables are essential for the dynamics of the coupled
problem, they are often of no interest in themselves. Recently we have pro-
posed a temporal multiscale approach that fits into the framework of the
heterogeneous multiscale method and that allows for efficient simulations
with significant speedups. Fast and slow scales are decoupled by introducing
local averages and by replacing fast scale contributions by localized periodic-
in-time problems. Here, we generalize this multiscale approach to a larger
class of problems but in particular, we derive an a posteriori error estimator
based on the dual weighted residual method that allows for a splitting of
the error into averaging error, error on the slow scale and error on the fast
scale. We demonstrate the accuracy of the error estimator and also its use
for adaptive control of a numerical multiscale scheme.

1 Introduction

We are interested in the efficient approximation of dynamical systems with multiple
scales in time. Such problems appear in various applications such as material damage
mechanics [19], astrophysics [5] or cardiovascular settings [13, 18]. Although multiscale
problems are extensively studied in literature, see e.g. [6, 20], most works focus on prob-
lems where the multiscale character is in space but not in time. The heterogeneous
multiscale method (HMM) [9, 8, 1, 10] is a very general framework and easily applied
to temporal multiscale dynamics. Here, fast and slow problems are decoupled by means
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of an averaging that gives an effective equation for the slow dynamics. The feedback
between both scales is realized by localized fine scale problems that have to be approxi-
mated in every time step of the slow problem.

In [12, 18] we have developed such a multiscale approach with applications to medical
flow problems, where the slow scale describes the growth of a stenosis and where the
fast problem is the oscillatory dynamics coming from heart driven blood flow. For
decoupling the scales local periodic-in-time solutions describing the fast dynamics are
introduced and have to be solved once in each time step of the slow problem. An a
priori error estimate for this multiscale scheme has been shown for a simple problem
based on the Stokes equation. Numerically, significant acceleration and a reduction of
the computational time by a factor of up to 10 000 is observed as compared to fully
resolved simulations.

Algorithmically such multiscale schemes are complex, as they are based on multiple
discretization schemes for slow and fast scales and as they require careful control of the
transmission operator that carries information between these scales. Time step sizes
must be chosen for the slow and the fast scale and further, tolerances must be defined
to control the approximation quality all problems that are involved in the multiscale
approach. If one or both of the scales are described by partial differential equations it
is also necessary to control the spatial discretization parameters.

Here, we will derive and discuss an a posteriori error estimator based on the dual
weighted residual method [3] for estimating functional errors that cover all error con-
tributions coming from discretization and multiscale approximation. By splitting and
localizing the error estimator to the various components, an adaptive multiscale scheme
is realized that allows to optimally balance the different error contributions. The concept
of goal oriented error estimation is chosen, since it allows for a uniform handling of tem-
poral [25] and spatial discretization errors [2] but also of truncation errors coming from
the violation of conformity by the non-exact solution of sub problems [15] and finally it
also allows to include the multiscale error which can be considered as a kind of model
error [4]. Since the design of the error estimator is complex and involves a staggered
approach with adjoint and tangent problems on both scales, we restrict the presentation
to a system of ordinary differential equations to keep the notation and discussion as brief
as possible.

In the next section we describe the problem under consideration and we briefly sum-
marize the multiscale approximation scheme as introduced in [12]. Then, Section 3 casts
the multiscale scheme into a temporal Galerkin formulation that will act as basis for the
error estimator derived in Section 4. Numerical examples are discussed in Section 5 and
finally, we summarize in a short conclusion.

2 Model problem and multiscale approximation

We consider a system of ordinary differential equations.

Problem 1 (Model Problem). On I = [0, T ] find y : I → Rc and u : I → Rd with
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c, d ∈ N such that

y′(t) = εf
(
y(t), u(t)

)
, u′(t) = g

(
t, y(t), u(t)

)
(2.1)

with y(0) = y0 ∈ Rc and u(0) = u0 ∈ Rd and the scale separation parameter 0 < ε� 1.
We will call y(t) the slow component and u(t) the fast component of the problem.

Let the following assumptions hold.

Assumption 2 (Slow Scale). Let f be continuous on I ×Rc ×Rd, bounded

‖f(y, u)‖ ≤ CA2.2 ∀(y, u) ∈ Rc ×Rd, (2.2)

and Lipschitz and differentiable with respect to y and u, such that

‖f(y, u)− f(Y, u)‖ ≤ CA2.3‖y − Y ‖ ∀y, Y ∈ Rc, ∀u ∈ Rd

‖f(y, u)− f(y, U)‖ ≤ CA2.3‖u− U‖ ∀u, U ∈ Rd, ∀y ∈ Rc.
(2.3)

Remark 3 (Separation of temporal scales). By the boundedness of f , it holds

‖y′(t)‖ ≤ CA2.2 · ε, ‖y(t)‖ ≤ CA2.4 for t ∈ [0, T ], (2.4)

with CA2.4 = CA2.2 · ε · T + ‖y0‖. We define

Xc := {y ∈ Rc, ‖y‖ ≤ CA2.4}.

On the fast scale problem we impose the following assumptions.

Assumption 4 (Fast Scale). Let g be continuous on I ×Rc ×Rd and Lipschitz

‖g(t, y1, u)− g(t, y2, u)‖ ≤ CA2.5‖y1 − y2‖ for all y1, y2 ∈ Xc, (2.5)

uniform in t ∈ I and u ∈ Rd. We assume that g is differentiable with respect to y ∈ Rc
and u ∈ Rd with a Jacobian ∇ug whose eigenvalues all have negative real part

− λA2.6 := sup{Re(λ), λ is Eigenvalue of ∇ug
(
t, y, u

)
} < 0, (2.6)

uniform in t ∈ [0, T ] and y ∈ Xc. Finally, let g be 1-periodic in time

g(t, y, u) = g(t+ 1, y, u) ∀(t, y, u) ∈ R×Rc ×Rd (2.7)

and we assume that for each y ∈ Xc there exists a unique periodic-in-time solution to

u′y(t) = g
(
t, y, uy(t)

)
t ∈ IP := [0, 1], uy(0) = uy(1), (2.8)

which is bound by
max
t∈IP
‖uy‖ ≤ CA2.9, (2.9)

with a constant CA2.9 = C(CA2.4). Finally, we assume that for all y1, y2 ∈ Xc and the
corresponding periodic-in-time solutions uy1 , uy2 : [0, 1]→ Rd it holds

sup
t∈IP
‖uy1(t)− uy2(t)‖ ≤ CA2.10‖y1 − y2‖. (2.10)
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Remark 5 (Scope of applications). In Section 5 we will discuss specific systems of
differential equations that meet this assumptions. The examples considered in [12] and
[18] also fit into the frame of assumptions given above. In particular for nonlinear
equations, like the Navier-Stokes equations which are considered in [18], the existence of
time-periodic solutions can only be shown under very strict assumptions on the problem
data, with limitations to small Reynolds numbers [14]. Hence, in particular (2.8)-(2.10)
will be difficult to validate in most application cases. Also, (2.6) calls for a damping
behavior of the fast scale problem and is here used to obtain uniqueness of solutions.
Considering the Navier-Stokes equations this also calls for bounds on the problem data.
In Section 5 we will present a simple test case where all assumptions can be validated.

The multiscale scheme for the efficient approximation of Problem 1 is based on [12]
and on the following averaged multiscale problem.

Problem 6 (Averaged Multiscale Problem). On I = [0, T ] find Y : I → Rc such that

Y ′(t) = ε

∫ t+1

t
f
(
Y (t), uY (t)(s)

)
ds, Y (0) = y0, (2.11)

and where uY (t)(·), for each Y (t) ∈ Rc, is given as the solution to the periodic-in-time
micro problem

d

ds
uY (t)(s) = g

(
s, Y (t), uY (t)(s)

)
in IP = [0, 1], uY (t)(1) = uY (t)(0). (2.12)

Defining a fast scale feedback operator F : Rc → Rc by

F(Y ) :=

∫ t+1

t
f
(
Y (t), uY (t)(s)

)
ds, (2.13)

with uY (t) given by (2.12), the averaged multiscale problem can be written as

Y ′(t) = εF
(
Y (t)

)
, Y (0) = y0, (2.14)

and the fast scale problem is formally removed. This problem notation is basis for the
numerical multiscale method to be described in Section 3. We will discretize (2.14) with
very large time steps, and, in each time step Yn−1 7→ Yn, the fast scale feedback operator
F(·) must be evaluated in the approximations Yn−1 and Yn. The clue in the design of
this multiscale approach is the introduction of locally periodic-in-time micro solutions
uY (t)(·). This allows to formally decouple the microscale from the macroscale. F(Yn)
can be approximated without requiring any initial values that might have to be obtained
from the previous macro step solution Yn−1.

In the following we will show that this averaged multiscale problem has a solution and
we will show that this solution Y (t) is close to the original solution y(t).
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2.1 Analysis of the multiscale error

Given the above listed assumptions on the slow and the fast scale, we can show that the
solution to the multiscale problem, Problem 6 is close to the resolved original solution.
The following theorem is a generalization of [12, Lemma 10] to a more general class of
equations.

Theorem 7 (Multiscale error). Let Assumptions 2 and 4 hold. There exists a unique
solution Y (t) to Problem 6. Let

(
y(t), u(t)

)
be the solution to Problem 1. It holds

max
t∈[0,T ]

‖y(t)− Y (t)‖ = O(ε).

Proof. Let Y1, Y2 : I → Xc be given. For the right hand side of Problem 6, given in the
form (2.14) it holds

‖F(Y1(t))−F(Y2(t))‖ ≤
∫ t+1

t
‖f
(
Y1(t), uY1(t)(s)

)
− f

(
Y2(t), uY2(t)(s)

)
‖ ds

≤ CA2.3
∫ t+1

t
‖Y1(t)− Y2(t)‖+ ‖uY1(t)(s)− uY2(t)(s)‖ ds

≤ CA2.3(1 + CA2.10)‖Y1(t)− Y2(t)‖.

Hence, the problem is Lipschitz and a unique solution exists. The bound ‖Y (t)‖ ≤
CA2.2 · ε · t shows that this solution exists on all I = [0, T ].

To start with, we introduce the average

Ȳ (t) :=

∫ t+1

t
y(s) ds.

For this average it holds

‖y(t)− Ȳ (t)‖ ≤
∫ t+1

t
‖y(t)− y(s)‖ ds =

∫ t+1

t
‖
∫ s

t
y′(r) dr‖ ds ≤ CA2.2

2
ε. (2.15)

The remaining error w(t) := Ȳ (t)− Y (t) is governed by

w′(t) = ε

∫ t+1

t
f
(
y(s), u(s)

)
− f

(
Y (t), uY (t)(s)

)
ds, w(0) =

∫ 1

0
y(s) ds− y0, (2.16)

where the initial value is estimated with help of (2.15)

‖w(0)‖ ≤
∫ 1

0
‖y(s)− y(0)‖ds ≤ CA2.2

2
ε. (2.17)

To estimate w(t) we split the right hand side of (2.16) into

f
(
y(s), u(s)

)
− f

(
Y (t), uY (t)(s)

)
=
(
f
(
y(s), u(s)

)
− f

(
Y (t), u(s)

))
+
(
f
(
Y (t), u(s)

)
− f

(
Y (t), uY (t)(s)

))
. (2.18)
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Then, Lipschitz continuity of f(·) gives

‖w′(t)‖ ≤ CA2.3ε
∫ t+1

t

(
‖y(s)− Y (t)‖+ ‖uY (t)(s)− u(s)‖

)
ds. (2.19)

The first term is bounded by introducing ±Ȳ (t)∫ t+1

t
‖y(s)− Y (t)‖ ds ≤

∫ t+1

t
‖y(s)− Ȳ (t)‖ ds+ ‖Ȳ (t)− Y (t)‖

≤
∫ t+1

t

∫ t+1

t
‖y(s)− y(r)‖dr ds+ ‖w(t)‖

=

∫ t+1

t

∫ t+1

t
‖
∫ s

r
y′(t) dt‖ dr ds+ ‖w(t)‖ ≤ CA2.2

3
ε+ ‖w(t)‖

(2.20)

To bound the second term in (2.19) we introduce ±uy(s)(s)∫ t+1

t
‖uY (t)(s)− u(s)‖ ds ≤

∫ t+1

t
‖uY (t)(s)− uy(s)(s)‖+ ‖uy(s)(s)− u(s)‖ ds (2.21)

Here, the first term is bounded with help of (2.10) and (2.15)∫ t+1

t
‖uY (t)(s)− uy(s)(s)‖ ds ≤ CA2.10

∫ t+1

t
‖Y (t)− y(s)‖ ds

≤ CA2.10
(
‖Y (t)− Ȳ (t)‖+ ‖Ȳ (t)− y(t)‖+

∫ t+1

t
‖y(t)− y(s)‖ds

)
≤ CA2.10

(
‖w(t)‖+ CA2.2ε

)
.

(2.22)

The second term in (2.21), ‖uy(s)(s)− u(s)‖, is more subtle to estimate. It measures
the difference between the fully dynamic solution u(s), evolving around the slow scale
y(s) to the isolated periodic-in-time solutions for each y(s) fixed. For better readability
we move the estimate of this term to the separate Lemma 8 which shows∫ t+1

t
‖uy(s)(s)− u(s)‖ds ≤ CA2.27 · ε. (2.23)

Combining this with (2.17)-(2.22) gives

‖w′(t)‖ ≤ CA2.3ε
((

1 + CA2.10
)
‖w(t)‖+

(CA2.2
3

+ CA2.10 + CA2.27
)
ε
)
, (2.24)

where ‖w(0)‖ ≤ CA2.2
2 ε. Using [7, Sec. 3] we can estimate ‖w(t)‖ by the solution to the

differential equation with the corresponding right hand side

‖w(t)‖ ≤
(

1 + exp
(
CA2.3(1 + CA2.10)ε · t

))(
CA2.2 + CA2.10 + CA2.27

)
ε, (2.25)

which for t = O(ε−1) is bound by

‖Ȳ (t)− Y (t)‖ ≤ CA2.26ε, (2.26)
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with a constant CA2.26 = C(CA2.2, CA2.3, CA2.10, CA2.27). Finally, the claim of the theo-
rem follows by combining (2.15) and (2.26)

‖y(t)− Y (t)‖ ≤ ‖y(t)− Ȳ (t)‖+ ‖Ȳ (t)− Y (t)‖ ≤ CA2.3
2

ε+ CA2.26ε.

It remains to prove estimate (2.23), the difference between the dynamically evolving
fast scale solution and the local periodic-in-time solutions. This lemma is close to [12,
Lemma 9].

Lemma 8. Let y ∈ C1(I;Xc) be given such that y(0) = y0 and ‖y′(t)‖ ≤ CA2.2 · ε. Let
uy(t)(s) be the family of periodic-in-time fast scale solutions for y(t) fixed and let u(t) be
the dynamic solution to

u′(t) = g
(
t, y(t), u(t)

)
, u(0) = uy(0)(0).

There exists a constant CA2.27 := C(CA2.2, CA2.10, λA2.6) such that

‖u(t)− uy(t)(t)‖ ≤ CA2.27 · ε. (2.27)

Proof. For the periodic-in-time solutions it holds

d

dt
uy(t)(t) = u′y(t)(t) +

duy(t)

dy(t)
(t)︸ ︷︷ ︸

=:Duy(t)(t)

y′(t),

and the difference v(t) := u(t)− uy(t)(t) is governed by

v′(t) = g
(
t, y(t), u(t)

)
− g
(
t, y(t), uy(t)(t)

)
−Duy(t)(t)y′(t),

and, since g is differentiable, it holds

v′(t) = ∇yg
(
t, y(t), γ(t)

)
v(t)−Duy(t)(t)y′(t),

where γ(t) ∈ Ru is an intermediate between u(t) and uy(t)(t). Since v(0) = uy(0)(0) −
uy(0)(0) = 0 it holds

v(t) =

∫ t

0
Φ(s)Duy(s)(s)y

′(s) ds, Φ(t) = exp
(
∇yg

(
t, y(t), γ(t)

)
· t
)
,

such that

‖v(t)‖ ≤ CA2.2ε
∫ t

0
Φ(s) ds · sup

s∈[0,t]
|Duy(s)(s)| ≤ sup

s∈[0,t]
|Duy(s)(s)| ·

CA2.2
λA2.6

ε, (2.28)

Using that all eigenvalues of ∇yg have a negative real part. To estimate Duy(t) we first
note that g is differentiable with respect to y ∈ Rc such that

Du′y(t) = ∇ug
(
t, y, uy(t)

)
Duy(t) +∇yg

(
t, y, uy(t)

)
.

7



This equation is linear in Duy(t) such that a unique solution exists. Given two periodic
solutions uY1 and uY2 and using (2.10) we can bound the derivative Duy(t) by estimating

|uY1(t)− uY2(t)|
|Y1 − Y2|

≤ CA2.10, (2.29)

uniform in Y1, Y2 ∈ Rd. Hence, combining (2.28) and (2.29)

‖u(t)− uy(t)(t)‖ ≤
CA2.2CA2.10

λA2.6
ε. (2.30)

Theorem 7 is the analytical basis for the following numerical approximation scheme.
We have shown that the solution to the averaged multiscale problem, Problem 6 is close
to the solution of the original model problem. The numerical scheme will be based on the
approximation of the averaged equation in Problem 6 using large time steps K, which
are by far larger than the micro scale. For evaluating the right hand side, we will have to
evaluate the transfer operator F

(
Y (t)

)
. This will require the solution of a periodic-in-

time micro problem. Here a small time step k � K must be employed. In [12] we have
further given an a priori error estimator for the numerical discretization of the averaged
multiscale method and, in [12, Theorem 18] we have shown that the multiscale scheme
converges with second order, O(ε2K2 + k2), if both averaged macro scale problem and
periodic micro problem are discretized with second order time stepping schemes.

2.2 Variational formulation

We conclude by defining the variational formulation of the averaged multiscale problem
which will be the basis for the Galerkin discretization and the a posteriori error estimator.

Problem 9 (Variational formulation of the multiscale problem). Find Y ∈ X such that

A(Y,Φ) = 0 ∀Φ ∈ Y,

A(Y,Φ) :=

∫ T

0

(
Y ′(t)− εF

(
Y (t)

))
· Φ(t) dt, F(Y ) :=

∫ 1

0
f
(
Y, uY (s)

)
ds

(2.31)

where
X := {Φ ∈ H1(I;Rc), Φ(0) = y0}, Y := L2(I;Rc), (2.32)

and where, for a fixed value Y ∈ Rc, the periodic fast scale solutions uY are defined on
IP = [0, 1] by

uY ∈ Vπ : B(Y ;uY ;φ) :

∫ 1

0

(
u′Y (t)− g

(
t, Y, uY (t)

)
φ(t) dt = 0 ∀φ ∈ W, (2.33)

with test and trial spaces defined as

Vπ := {φ ∈ H1(IP ;Rd), φ(0) = φ(1)}, W := L2(IP ;Rd). (2.34)
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3 Discretization and Solution

Discretization of (2.14) is based on a temporal Galerkin scheme of Problem 9. For general
literature on temporal Galerkin formulations we refer to [27, 11]. Both long term and
short term problem are discretized with continuous and piecewise linear functions using
piecewise constant test functions with possible discontinuities at the discrete time steps.
This results in a time stepping scheme which is of second order and which is, up to
numerical quadrature, equivalent to the trapezoidal rule. We introduce the partitioning
IK of I = [0, T ] by

0 = T0 < T1 < · · · < TN = T, Kn := Tn − Tn−1, In := (Tn−1, Tn] (3.1)

and define the discrete subspaces

XK := {Ψ ∈ C(Ī)c : Ψ
∣∣
In
∈ P 1(In;Rc), n = 1, . . . , N, Ψ(0) = y0} ⊂ X

YK := {Φ ∈ L2(I;Rc) : Φ
∣∣
In
∈ P 0(In;Rc), n = 1, . . . , N} ⊂ Y,

(3.2)

where we denote by P r(I) = span{1, t, . . . , tr} the space of polynomials up to degree r ∈
N. Likewise, for discretization of the micro problems (2.33) we introduce partitionings
IPn of IP = [0, 1] by defining

0 = t0n < t1n < · · · < tMn
n = 1, kn := tmn − tm−1n , IPn,m := (tm−1n , tmn ]. (3.3)

While we allow for different micro discretizations in each macro step n = 1, . . . , N , we
assume that each of them is uniform with step size kn. We introduce

Vπk;n := {φ ∈ C(IP ;Rd) : φ
∣∣
IPn,m
∈ P 1(IPn,m)d, m = 1, . . . ,Mn, φ(1) = φ(0)} ⊂ Vπ,

Wk;n := {φ ∈ L2(IP ;Rd) : φ
∣∣
IPn,m
∈ P 0(IPn,m)d, m = 1, . . . ,Mn} ⊂ W.

(3.4)
Mostly, we will skip the index n if we refer to these micro spaces. Discretization is ac-
complished by restricting trial and test functions to the discrete function spaces XK ,YK
and Vπk;n,Wk;n, respectively.

For general right hand sides f(·) and g(·), the integrals appearing in the variational
formulations (2.31) and (2.33) cannot be evaluated exactly, since the trial spaces XK
and Vπk;n are piecewise linear and these functions are potentially nonlinear. Instead,
we numerically approximate them with a summed two-point Gaussian quadrature rule,
which we define by∫

IK

f(t) dt :=

N∑
n=1

Kn

2

(
f
(
T̄n −

Kn√
12

)
+ f

(
T̄n +

Kn√
12

))
, T̄n :=

Tn−1 + Tn
2

. (3.5)

Integration on each micro partitioning IPn is defined in the same spirit. This quadrature
rule is of fourth order, see [26], and it guarantees the additional higher order consistency
error O(εK4 + k4n) in contrast to all other error terms which are of order two. Hence
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from here on we will neglect the conformity error coming from numerical quadrature on
both scales.

Altogether, the fully discrete multiscale solution is described by the following problem
formulation:

Problem 10 (Discretized variational formulation of the multiscale problem).
Find YK,k ∈ XK such that

Ak(YK,k,Φ) = 0 ∀Φ ∈ YK ,

Ak(Y,Φ) :=

∫ T

0

(
Y ′(t)− εFk

(
Y (t)

))
· Φ(t) dt, Fk(Y ) :=

∫ 1

0
f
(
Y, uk;Y (s)

)
ds

(3.6)

where XK ,YK are given in (3.2). For t ∈ In and Y = Y (t) ∈ Rc fixed, the discrete
periodic fast scale solution uk;Y ∈ Vπk;n is defined by

uk;Y ∈ Vπk;n : B(Y ;uk;Y ;φk) = 0 ∀φk ∈ Wk;n, (3.7)

where the function spaces Vπk;n and Wk;n are given in (3.4) and B(·) in (2.33).

Remark 11 (Efficiency of Galerkin discretizations). The approximation of Galerkin
time discretizations with high order quadrature rules (the approach that we describe)
causes additional effort since at least two evaluations of all nonlinear operators and
functions are required in each step. The closely related trapezoidal rule would only require
one evaluation. However, the consistency error between the Galerkin approach and the
trapezoidal rule is of the same order such that both approaches must be considered as
separate discretization schemes. In [16, 17] we have demonstrated how the more efficient
trapezoidal rule can be used for solving the problem while including the consistency error
within the error estimator. It shows that the quadrature error is indeed of the same (or
even higher) order than further contributions to the error estimator.

We conclude by summarizing the algorithmic realization of the multiscale process.
The discrete variational formulation (3.6) decouples into separate time steps on In =
[Tn−1, Tn]. On each interval it remains to solve a nonlinear problem for Yn ∈ P 1(In;Rc)

Yn(Tn) · Φn − ε
∫ Tn

Tn−1

Fk
(
Yn(t)

)
dt · Φn = Yn−1(Tn−1) · Φn ∀Φn ∈ P 0(In;Rc). (3.8)

Here, the integral is approximated by a two point Gaussian quadrature rule. In each
quadrature point it is necessary to solve the periodic in time micro problem for Yn,q =
Yn(χn,q), χn,q ∈ In being, for q = 1, 2, the two Gauss points. The corresponding solutions
uYn,q(t) are given by (3.7) and their approximation requires the solution of a periodic
problem, see Remark 12.

To solve (3.8), we use an approximate Newton scheme. We approximate the Jacobian
by neglecting the derivatives of the transfer operator F with respect to the micro solution,
i.e. we approximate

∇̃Y F(Y )(δY ) :=

∫ 1

0
∇Y f

(
Y, uY (s)

)
· δY ds,
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and do not consider the partial derivative ∇uf(Y, uY )∇Y uy which would require the
approximation of a further periodic in time tangent problem. Numerical tests have
shown that this approximation does not strongly worsen the convergence rate of the
Newton scheme.

Remark 12 (Approximation of periodic solutions). In each Gaussian quadrature point
χn,q ∈ [Tn−1, Tn], periodic-in-time micro problems uk;Yn,q(t) must be computed for the
fixed slow scale variable Yn,q := YK(χn,q). These are approximated until the periodicity
mismatch ‖uk;Yn,q(1) − uk;Yn,q(0)‖ < tolP . This can either be done by simply letting
the dynamic problem run into a cyclic state or by using different acceleration schemes,
see [24, 22].

4 Error estimation

We follow the framework of the dual weighted residual estimator (DWR) introduced in [2,
3]. We are interested in functional outputs J : X → R of the long scale problem. We aim
at estimating the functional error J(y)−J(YK,k) between the analytic solution y(t) given
by (2.1)-(5.2) and the fully discrete multiscale approximation defined in Problem 10. In
between, we must consider several approximation steps:

1. The averaging error (EA) introduced by deriving the averaged model problem,
Problem 6

J(y)− J(YK,k) =
(
J(y)− J(Y )

)︸ ︷︷ ︸
(EA)

+
(
J(Y )− J(YK,k)

)︸ ︷︷ ︸
(ED)

,

and the remaining discretization error (ED), which is further split.

2. The error from Galerkin discretization (EG) of the averaged long term problem

J(y)− J(YK,k) =
(
J(y)− J(Y )

)︸ ︷︷ ︸
(EA)

+
(
J(Y )− J(YK)

)︸ ︷︷ ︸
(EG)

+
(
J(YK)− J(YK,k)

)︸ ︷︷ ︸
(EF)

which also reveals (EF), the error coming from discretizing the fast scale problem.

By YK we define the solution to the semidiscrete problem, which is discrete in terms of
the long scale, e.g. YK ∈ XK , but which is based on the analytic transfer operator F .
This intermediate solution will enter the estimate as an analytical tool only.

While the averaging error (EA) is bound by the a priori estimate in Theorem 7, the
remaining errors (ED) = (EG) + (EF) can be formulated as residual errors of a non
conforming Galerkin formulation. Non conformity comes from the approximation of the
transfer operator F by Fk. As outlined above, we have neglected the error coming from
Gaussian quadrature since it is negligible.

The general framework of the dual weighted residual error estimator for such a non
conforming discretization is discussed in [3, Section 2.3] or [21, Theorem 8.7]. An appli-
cation to the multiscale scheme will require a nested application of the DWR method

11



to also take care of the error coming from approximating the transfer operator F which
implicitly depends on the fast scale contributions. We state the main result.

Theorem 13 (DWR estimator for the long term problem). Let I = [0, T ] and let
y ∈ C1(I;Rc) be the solution to (2.1)-(5.2) and YK,k ∈ XK be the fully discrete solution
to Problem 10. Let tolP > 0 be the tolerance for the approximation of the temporal
periodicity in all micro problems, i.e. ‖uY (1)− uY (0)‖ < tolP . Let J : X → R be three
times differentiable. It holds

J(y)− J(YK,k) = −1

2
Ak(YK,k, Z − iYZ)

+
1

2

(
J ′(YK,k)(Y − iXY )−A′k(YK,k)(ZK,k, Y − iXY )

)
+

1

2
ε

∫ T

0
ηπ
(
YK,k(t)

)
·
(
Z(t) + ZK,k(t)

)
ds

+O(tolP ) +O(ε) +O(εk2 + k4 +K4) +R(3)
K +R(3)

k , (4.1)

where iX : X → XK is the nodal interpolation into the space of piecewise linear polynomi-
als and iY : Y → YK is the projection to the piecewise constants, Z ∈ Y and ZK,k ∈ YK
are the adjoint solutions to A′(Y )(Φ, Z) = J ′(Y )(Φ) for all Φ ∈ X 0 and ΦK ∈ X 0

K ,
respectively. X 0 and X 0

K differ from X and XK in the sense that homogeneous initial
values are realized. The fast scale error ηπ(YK,k) is given by

ηπ(Y ) := O(tolP ) +
1

2

(
G(zY − iWzY )−B(uk;Y , zY − iWzY )

)
+

1

2

(
Jπ
′
(uk;Y )(u− iVu)−B′(uk;Y )(u− iVu, zk;Y )

)
(4.2)

and the adjoint micro scale solutions zY ∈ W and zk;Y ∈ Wk are defined for each fixed

Y by B′(uY )(φ, zY ) =
∫ 1
0 ∇uf

(
Y, uY (s)

)
φ(s) ds for all φ ∈ Vπ and φk ∈ Vπk , respectively.

iV : Vπ → Vπk and iW : W → Wk are interpolation operators. By R(3)
K and R(3)

k we
denote remainders which are of third order in the error.

Proof. The proof follows by combining Theorem 7, Lemma 14, 15 and Remark 16. De-
tails on the adjoint problems are given in Section 4.2.

4.1 Derivation of the error estimator

The averaging error (EA) J(y) − J(Y ) is estimated by a priori arguments. Given a
differentiable functional J(y) it holds with Theorem 7 that

|(EA)| = |J(y)− J(Y )| = |J ′(ζ)(y − Y )| ≤ ‖J ′(ζ)‖ · ‖y − Y ‖ = O(ε),

where ζ is an intermediate between y and Y . We turn our attention to the Galerkin
error (EG) estimating J(Y )− J(YK,k).

12



Lemma 14 (DWR estimator of the averaged long term problem).
Let Y ∈ X be the solution to Problem 9 and YK,k ∈ XK be the solution to Problem (10),
Z ∈ Y and ZK,k ∈ YK the adjoint solutions to (4.11). It holds

J(Y )− J(YK,k) = R(3)
K (Y − YK,k, Z − ZK,k)

+
1

2

(
J ′(YK,k)(Y − iXY )−A′k(YK,k)(ZK,k, Y − iXY )−Ak(YK,k, Z − iYZ)

)
+

1

2

(
[A′k −A′](YK,k)(ZK,k, Y − YK,k) + [Ak −A](YK,k, Z + ZK,k)

)
, (4.3)

where R(3)
K is of third order in the primal and adjoint discretization error.

Proof. We introduce one Lagrangian for the continuous and the semidiscrete model and
one for the fully discrete model

L(Y,Z) := J(Y )−A(Y,Z), Lk(Y,Z) := J(Y )−Ak(Y,Z).

For the solutions Y ∈ X and YK,k ∈ XK it holds for all Z ∈ Y and ZK ∈ YK that

J(Y )− J(YK,k) = L(Y,Z)− Lk(YK,k, ZK)

= L(Y,Z)− L(YK,k, ZK)︸ ︷︷ ︸
=(Ea)

+L(YK,k, ZK)− Lk(YK,k, ZK)︸ ︷︷ ︸
=(Eb)

. (4.4)

The first part (Ea) is a standard DWR term, which by defining x := (Y, Z) and xK,k :=
(YK,k, ZK), is approximated by writing the difference as integral over its derivative and
by approximation with the trapezoidal rule, compare [3, Proposition 2.1]

(Ea) = L(x)− L(xK,k) =
1

2

(
L′(x)(x− xK,k) + L′(xK,k)(x− xK,k)

)
+R(3)

K (x− xK,k),

where the remainder R(3)
K (x− xK,k) is of third order in the error. The relation

L′(x)(δx) = J ′(Y )(δY )−A′(Y,Z)(δY )−A(Y, δZ)

shows that it holds L′(x)(δx) = L′(Y, Z)(δY, δZ) = 0 for the analytical solutions Y,Z ∈
X×Y and for all δx = (δY, δZ) ∈ X×Y. We neglect the remainderR(3) and approximate

(Ea) ≈ 1

2

(
J ′(YK,k)(Y − YK,k)−A′(YK,k)(ZK,k, Y − YK,k)−A(YK,k, Z − ZK)

)
. (4.5)

The forms A(·, ·) and A′(·)(·, ·) are based on the non-discrete transfer operator F . The
discrete primal and adjoint solutions YK,k ∈ XK and ZK ∈ YK are however defined by
using the discrete form Ak(·, ·). We insert ±Ak and ±A′k in (4.5) such that we can apply
Galerkin orthogonality to introduce interpolations iX : X → XK and iY : Y → YK

(Ea) ≈ 1

2

(
J ′(YK,k)(Y − iXY )−A′k(YK,k)(ZK,k, Y − iXY )−Ak(YK,k, Z − iYZ)

)
+

1

2

(
[A′k −A′](YK,k)(ZK,k, Y − YK,k) + [Ak −A](YK,k, Z − ZK)

)
.

(4.6)
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The notation [Ak − A](Y, Z) := Ak(Y, Z) − A(Y, Z) is introduced for brevity. In (4.4),
the second error component (Eb) is a conformity error and given as

(Eb) = [Ak −A](YK,k, ZK).

Together with (4.6) we obtain the postulated result.

The second line of (4.3) is the standard residual representation of the DWR error
estimator. Given a reconstruction of the weights Y −iXY and Z−iYZ it can be evaluated
numerically, we refer to Section 4.2 for details. The third line in (4.3) combines two
conformity errors coming from the replacement of the transfer operator F by its discrete
counterpart Fk. These terms will be discussed in the following paragraphs.

Lemma 15 (Primal conformity error). Let the assumptions of Theorem 13 hold. For
the primal conformity error it holds

[Ak−A](YK,k, Z+ZK,k) = ε

∫ T

0
ηπ
(
YK,k(t)

)
·
(
Z(t)+ZK,k(t)

)
dt+ε

∫ T

0
R(3)
k

(
YK,j(t)

)
dt,

where ηπ(Y ) is defined in (4.2) and where R(3)
k is a remainder of third order in the error.

Proof. For ease of notation we introduce Z̃ := Z + ZK.k. This term does not carry any
convergence properties and the full order of convergence must be reconstructed from the
difference of the two forms [Ak −A]. Subtracting (2.31) from (3.6) gives

[Ak −A](YK,k, Z̃) = ε
N∑
n=1

∫ Tn

Tn−1

(
F
(
YK,k(t)

)
−Fk

(
YK,k(t)

))
Z̃(t). (4.7)

For the evaluation of this term we use a nested application of the DWR estimator, since
the difference between the fast scale influences uY and uk;Y enters implicitly.1

Now, let t ∈ [0, T ] be fixed and Y := YK,k(t). We introduce

Jπ(uY ) :=

∫ 1

0
f
(
Y, uY (s)

)
ds (4.8)

such that F
(
YK,k(t)

)
− Fk

(
YK,k(t)

)
= Jπ(uY ) − Jπ(uk;Y ), where by uY we denote the

continuous periodic micro solution to (2.33) and by uk;Y the discrete solution to (3.7),
which satisfies the periodicity approximately, i.e. ‖uk;Y (1)− uk;Y (0)‖ < tolP . With the
solution zk;Y ∈ Wk to the adjoint micro problem

B′(uk;Y )(ψk, zk;Y ) = Jπ
′
(uY )(ψk) ∀ψk ∈ Vπk

1A practical evaluation of this error term will require numerical quadrature of the integrals on the right
hand side, e.g. by the 2-point Gauss rule. The error term F

(
YK,k(t)

)
− Fk

(
YK,k(t)

)
must hence be

approximated in two points in each time step [Tn−1, Tn].

14



we estimate in the usual DWR way, see Lemma [3, Section 2.3],

Jπ(uY )− Jπ(uk;Y ) = R(3)
k (uk;Y )(uY − uk;Y , zY − zk;Y )− 1

2
B(uk;Y , zY − iWzY )

+
1

2

(
Jπ
′
(uk;Y )(uY − iVuY )−B′(uk;Y )(uY − iVuY , zk;Y )

)
+O(tolP ), (4.9)

where the tolP -term arises from the disturbed Galerkin orthogonality. To clarify the
impact of the approximated tolerance we give a sketch: assume that uπk;Y (t) is the fully
periodic solution, strictly satisfying uπk;Y (1) = uπk;Y (0). Then,

B(uk;Y ;φK,k) = B(uπk;Y , φK,k)︸ ︷︷ ︸
=0

+B(uk;Y − uπk;Y , φK,k)

⇒
∣∣B(uk;Y , φK,k)

∣∣ ≤ c ‖uk;Y − uπk;Y ‖L∞(IP ) ‖φK,k‖L∞(IP ) ≤ c tolP ‖φK,k‖L∞(IP ),

where we estimated the periodicity error ‖uπk;Y −uk;Y ‖ ≤ tolP by the imposed threshold.
Details on the adjoint solution zY = zY ∈ W and its discretization zk;Y ∈ Wk enter-

ing (4.9) are discussed in Section 4.2.

Remark 16. The adjoint consistency error arising in Lemma 14 can be estimated as∣∣∣[A′k −A′](YK,k)(Y − YK,k, ZK,k)∣∣∣
≤ ε

∫ T

0

∣∣∣(F ′k(YK,k(t))−F ′(YK,k(t))) · (Y (t)− YK,k(t)
)
· ZK,k(t)

∣∣∣ dt
≤ εT‖ZK,k‖L∞(I)‖F ′k

(
YK,k

)
−F ′

(
YK,k

)
‖L∞(I)‖Y − YK,k‖L∞(I) (4.10)

In [12] we have shown a second order error estimator for the primal error in a comparable
multiscale setting

‖Y − YK,k‖L∞(I) = O
(
ε+ ε2K2 + k2

)
.

The first term in (4.10) is bounded, since the adjoint problem A′(Y )(Φ, Z) = J ′(Y )(Φ),
going backward in time, is equivalent to

−Z ′(t)− εF ′
(
Y (t)

)
Z(t) = 0, Z(T ) = 1 ⇒ Z(t) = exp

(
ε

∫ t

T
F ′
(
Y (s)

)
ds
)
,

which is bounded for 0 ≤ εt ≤ εT = O(1), since the adjoint transfer operator F ′(Y ) is
bounded. The remaining term in (4.10) measures the discretization error in the adjoint
fast scale problem. With arguments similar to those used in the proof to Lemma 15,
second order convergence in k can be shown. Overall, the adjoint consistency error is of

higher order
∣∣∣[A′k −A′](YK,k)(Y − YK,k, ZK,k)∣∣∣ = O

(
εk2 + ε2k2K2 + k4

)
.
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Figure 1: Reconstructing a higher order approximation from the discrete solutions. By

i
(2)
X (left) we piecewise quadratic reconstruction on the mesh with twice the

mesh spacing and by i
(1)
Y (right) the linear reconstruction on the same mesh.

4.2 Adjoint problems and evaluation of the error estimator

The error estimator (4.1) depends on the adjoint solution Z ∈ Y and also on the adjoint
micro scale solutions zY ∈ W. We shortly sketch the steps required to approximate
these adjoint solutions, as the multiscale framework will require a nested approach. For
Y ∈ X given, Z ∈ Y is defined as solution to∫ T

0

(
Ψ′(t)− ε∇Y F

(
Y (t)

)
(Ψ(t))

)
· Z(t) dt = J ′(Y )(Ψ) ∀Ψ ∈ X . (4.11)

The derivative of the transfer operator is given by

∇Y F(Y )(Ψ) =

∫ 1

0

(
∇Y f

(
Y (t), uY (s)

)
+∇uf

(
Y (t), uY (s)

)(
DY uY (s)

))
Ψ(t) ds. (4.12)

While the first part involving the derivative in direction of Y is directly accessible, eval-
uation of the second term requires a further tangent solution DyuY ∈ Vπ, the derivative
of the time periodic solution uY (s) with respect to Y . It is given as the solution to

B′(uY )(DY uY , φ) = 0 ∀φ ∈ W. (4.13)

Finally, to estimate the conformity error introduced by replacing the transfer operator
F by its discrete counterpart a further adjoint micro scale solution zY ∈ W, given by
the following periodic in time problem must be solved

B′(uY )(ψ, zY ) = Jπ
′
(uY )(ψ) ∀ψ ∈ Vπ, (4.14)

where Jπ(uY ) =
∫ 1
0 f(Y, uY (s)) ds.

The a posteriori error estimator presented in Theorem 13 cannot be evaluated exactly
since it depends on the unknown exact solutions Y ∈ X and Z ∈ Y. Further, several
higher order remainders appear, which are simply omitted. To approximate primal and
dual residuals weights Y − iXY and Z− iYZ and also to approximate the sum of contin-
uous and discrete adjoint solution Z +ZK,k we use the usual reconstruction mechanism
that is based on computing YK,k ∈ XK and ZK,k ∈ YK and applying a higher order
interpolation by reinterpreting the piecewise linear function YK,k as piecewise quadratic
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and the piecewise constant function ZK,k as piecewise linear. Fig. 1 illustrates this pro-
cedure. We ensure that all macro meshes have a patch structure: two adjacent intervals
I2n−1 and I2n each have the size K2n−1 = K2n. The micro meshes are uniform.

This reconstruction of the weights must be considered a computational tool for approx-
imating the functional error. It cannot however give rigorous upper and lower bounds.
For general details on this reconstruction we refer to [3, 23] and in particular to [16] in
the context of temporal Galerkin schemes.

5 Numerical examples

Problem 17. On I = [0, T ] with T = 6 · 105 find y ∈ C1(I) and u ∈ C2(I) such that

y′(t) = εf
(
y(t), u(t)

)
, y(0) = 0,

u′′(t) +
1

2
u′(t) + γ(y(t))u(t) = sin(2πt), u(0) = u0, u

′(0) = u′0,
(5.1)

with the scale separation parameter ε = 10−6 and

f(y, u) :=
1

(1 + y)(1 + 64u2)
, γ(y) :=

(
4π2 + 32(y − 1)

)
. (5.2)

As functional of interest we consider the slow scale component at final time T

J(y) = y(T ).

We produce reference values for the functional output J(y) = y(T ) by resolved simu-
lations based on a direct discretization of Problem 17 with the trapezoidal rule using a
small time step size k over the full period of time I = [0, T ]. Extrapolating k → 0 shows
the experimental order of convergence O(k2.0015) and for all further comparisons we set
the reference value to

J(yref ) := 1.08704164. (5.3)

We first show that this problem fits into the framework introduced in Section 2.

Lemma 18. Problem 17 satisfies Assumptions 2 and 4.

Proof. For f(t, y) it holds |f(t, y)| ≤ 1 and, for y, Y ∈ Rc

∣∣f(y, u)− f(Y, u)
∣∣ =

|Y − y|
|1 + y| · |1 + Y | · |1 + 64u2|

≤ |y − Y |,

as well as ∣∣f(y, u)− f(y, U)
∣∣ =

64|u+ U | · |u− U |
|1 + y| · |1 + 64u2| · |1 + 64U2|

≤ 8|u− U |,

which shows boundedness and Lipschitz continuity with CA2.2 = 1 and CA2.3 = 8.
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Next we reformulate the microscale problem as a first order system in v(t) :=
(
u1(t), u2(t)

)
,

with u1(t) = u(t) and u2(t) = u′(t)(
u1
u2

)′
(t) =

(
0 1

−γ(y) −3
5

)(
u1(t)
u2(t)

)
+

(
0

sin(2πt)

)
=: G

(
t, y, v(t)

)
(5.4)

The Jacobian ∇uG has the eigenvalues λ1/2 = − 3
10 ±

√
9−100γ(y)

10 , which for the specific

choice of γ(y) have strictly negative real part with λA2.6 = 3
10 . This shows that there

exists a unique solution which is bound by the initial values and the right hand side
g(t) = sin(2πt)

‖v(t)‖ ≤ C
(
‖v(0)‖+

1

λA2.6

)
, (5.5)

with a constant C = C(y) which depends on the eigenvectors of ∇uG, hence on y ∈ Xc.
Furthermore, for y ∈ Xc fixed there exists a unique periodic solution, since, for each
initial value the difference v(t + 1) − v(t) will decay to zero. We will denote such a
periodic solution by vy(t). And since this solution is also reached for the initial v(0) = 0,
estimate (5.5) gives

‖vy(t)‖ ≤ C
1

λA2.6
. (5.6)

Having two such periodic solution v1(t) and v2(t) belonging to the parameters y1, y2 ∈ Xc

satisfy

v′1(t)− v′2(t) =

(
0 1

−γ(y1) −3
5

)(
v1(t)− v2(t)

)
+

(
0 0

γ(y1)− γ(y2) 0

)
v2(t).

Considered as equations for the difference v1(t)−v2(t) this corresponds to problem (5.4)
with g(t) replaced by the periodic function

(
γ(y1)− γ(y2)

)
v2(t) such that (5.6) yields

‖v1(t)− v2(t)‖ ≤
C

λA2.6
sup
t∈IP
‖v2(t)‖ · ‖γ(y1)− γ(y2)‖ ≤

32C2

λ2A2.6
‖y1 − y2‖.

5.1 Convergence of the multiscale algorithm

We start by analyzing the convergence of the multiscale scheme by running simulations
with different but uniform time step sizes for K and k specified by

Ki = 100 000 · 2−i, kj = 0.1 · 2−j , i, j ∈ {0, 1, 2, 3, 4, 5}. (5.7)

In Fig. 2 we show convergence with respect to the small time step size k (left) and with
respect to the large time step size K (right). In both cases second order convergence
is obtained as long as the step size under investigation is dominant. Furthermore, the
results show that the range of chosen step sizes (5.7) is balanced with a slight dominance
of the small scale error depending on k. The raw data is also given in Table 1.
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(a) Refinement of the micro scale step k.
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(b) Refinement of the macro scale step K.

Figure 2: Error with respect to the small step size k and the large step size K. Left:
each line represents a fixed value of K. Right: each line takes k fixed.
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Figure 3: Error estimator ηK,k and the parts η(EG) and η(EF) that make it up. Left: fixed
macro step size K = 50 000, and right: fixed micro step size k = 0.00625.

5.2 Evaluation of the error estimator

Next, we analyze the quality of the a posteriori error estimator derived in the previous
section. We will show that this error estimator is accurate in predicting J(y)−J(YK,k) for
the complete range of step sizes shown in (5.7). The smallest step sizes reach Kmin =
2 500 and kmin = 0.003125 such that the discretization error O(ε2K2 + k2) will still
dominate the averaging error O(ε). The tolerance for reaching periodicity is set to
tolP = 10−9. The raw values indicating J(yref ) − J(YK,k), overall error estimator ηK,k
and its splitting into discretization error η(EG), primal conformity error (fine scale error)
η(EF) adjoint conformity error (which is of higher order) η(EF)′ are shown in Table 1.
Finally, we also present the efficiency of the error estimator by indicating the effectivity
index

effK,k = 100% ·
ηK,k

J(yref )− J(YK,k)
. (5.8)

Values above 100% show an overestimation of the error, values below 100% an underes-
timation. The results collected in Table 1 however show a highly robust estimation for
all combinations of small and large step sizes.
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k K J(yref )− J(YK,k) ηK,k η(EG) η(EF) η(EF)′ effK,k

0.1

100000 4.52 · 10−2 2.81 · 10−2 2.74 · 10−3 2.55 · 10−2 −1.77 · 10−4 62.1%
50000 4.26 · 10−2 2.75 · 10−2 7.71 · 10−4 2.68 · 10−2 −3.36 · 10−5 64.6%
20000 4.19 · 10−2 2.77 · 10−2 1.30 · 10−4 2.76 · 10−2 −5.30 · 10−6 66.3%
10000 4.18 · 10−2 2.79 · 10−2 3.29 · 10−5 2.79 · 10−2 −1.23 · 10−6 66.9%
5000 4.17 · 10−2 2.81 · 10−2 8.28 · 10−6 2.81 · 10−2 −3.07 · 10−7 67.2%
2500 4.17 · 10−2 2.81 · 10−2 2.08 · 10−6 2.81 · 10−2 −7.67 · 10−8 67.4%

0.05

100000 1.34 · 10−2 9.64 · 10−3 3.12 · 10−3 6.52 · 10−3 −9.50 · 10−6 71.7%
50000 1.06 · 10−2 7.90 · 10−3 8.99 · 10−4 7.00 · 10−3 −2.56 · 10−6 74.8%
20000 9.74 · 10−3 7.45 · 10−3 1.51 · 10−4 7.30 · 10−3 −2.70 · 10−7 76.5%
10000 9.63 · 10−3 7.44 · 10−3 3.83 · 10−5 7.41 · 10−3 −6.62 · 10−8 77.3%
5000 9.60 · 10−3 7.47 · 10−3 9.64 · 10−6 7.46 · 10−3 −1.63 · 10−8 77.8%
2500 9.59 · 10−3 7.48 · 10−3 2.42 · 10−6 7.48 · 10−4 −4.05 · 10−9 78.0%

0.025

100000 6.39 · 10−3 5.07 · 10−3 3.28 · 10−3 1.78 · 10−3 2.80 · 10−6 79.3%
50000 3.36 · 10−3 2.86 · 10−3 9.41 · 10−4 1.92 · 10−3 7.57 · 10−8 85.2%
20000 2.51 · 10−3 2.16 · 10−3 1.58 · 10−4 2.00 · 10−3 3.70 · 10−8 86.3%
10000 2.38 · 10−3 2.07 · 10−3 4.01 · 10−5 2.03 · 10−3 1.04 · 10−8 87.0%
5000 2.35 · 10−3 2.06 · 10−3 1.01 · 10−5 2.05 · 10−3 2.67 · 10−9 87.5%
2500 2.35 · 10−3 2.06 · 10−3 2.53 · 10−6 2.05 · 10−3 6.71 · 10−10 87.7%

0.0125

100000 4.68 · 10−3 3.80 · 10−3 3.32 · 10−3 4.74 · 10−4 1.12 · 10−6 81.1%
50000 1.61 · 10−3 1.46 · 10−3 9.53 · 10−4 5.09 · 10−4 9.70 · 10−8 90.9%
20000 7.46 · 10−4 6.92 · 10−4 1.60 · 10−4 5.32 · 10−4 2.22 · 10−8 92.7%
10000 6.23 · 10−4 5.79 · 10−4 4.06 · 10−5 5.39 · 10−4 5.86 · 10−9 93.1%
5000 5.92 · 10−4 5.53 · 10−4 1.02 · 10−5 5.43 · 10−4 1.48 · 10−9 93.4%
2500 5.84 · 10−4 5.47 · 10−4 2.56 · 10−6 5.44 · 10−4 3.72 · 10−10 93.7%

0.00625

100000 4.26 · 10−3 3.46 · 10−3 3.33 · 10−3 1.22 · 10−4 3.16 · 10−7 81.2%
50000 1.17 · 10−3 1.09 · 10−3 9.55 · 10−4 1.31 · 10−4 3.37 · 10−8 92.5%
20000 3.09 · 10−4 2.98 · 10−4 1.60 · 10−4 1.37 · 10−4 7.13 · 10−9 96.2%
10000 1.86 · 10−4 1.80 · 10−4 4.07 · 10−5 1.39 · 10−4 1.86 · 10−9 96.9%
5000 1.55 · 10−4 1.50 · 10−4 1.02 · 10−5 1.40 · 10−4 4.70 · 10−10 97.2%
2500 1.47 · 10−4 1.43 · 10−4 2.57 · 10−6 1.40 · 10−4 1.18 · 10−10 97.4%

0.003125

100000 4.15 · 10−3 3.37 · 10−3 3.34 · 10−3 3.11 · 10−5 8.27 · 10−8 81.2%
50000 1.07 · 10−3 9.90 · 10−4 9.56 · 10−4 3.34 · 10−5 9.58 · 10−9 92.8%
20000 2.00 · 10−4 1.95 · 10−4 1.61 · 10−4 3.48 · 10−5 1.98 · 10−9 97.6%
10000 7.64 · 10−5 7.60 · 10−5 4.07 · 10−5 3.53 · 10−5 5.14 · 10−10 99.5%
5000 4.55 · 10−5 4.58 · 10−5 1.03 · 10−5 3.55 · 10−5 1.30 · 10−10 100.7%
2500 3.77 · 10−5 3.82 · 10−5 2.57 · 10−6 3.57 · 10−5 3.25 · 10−11 101.3%

Table 1: Functional error J(YK,k) − J(yref ) and error estimator ηK,k for different step
sizes for the large scale and small scale problem. η(EG), η(EF) and η(EF)′ are the
contributions of the estimator effK,k the effectivity, compare (5.8). All values
are rounded to the first three relevant digits.
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The analysis of the different contribution shows that η(EG) indicates the long term
error depending mostly on K and η(EF) indicates the short term error depending on k,
both converging with order two. The adjoint consistency error η(EF)′ shows higher order

convergence O(εk2+ε2k2K2+k4) as stated in Remark 16 and hence, it can be neglected.
For K = 50 000 fixed and varying k and for k = 0.00625 fixed and varying K respec-

tively, Figure 3 shows the separation of the error estimator into long term and short
term influences each. These results motivate to use η(EF) and η(EG) for controlling an
adaptive procedure to find an optimally balanced discretization K, k.

5.3 Adaptive control

We write the error estimator as a sum over the subdivisions of the long time horizon
I. By doing this we can quantify the error contribution of each subdivision. For the
error contribution of element In = (Tn−1, Tn], the error contribution is comprised of two
parts. The error discretization of the averaged long term problem

ηn(EG) := −1

2
Ak|In(YK,k, Z − iY Z)

+
1

2

(
J ′|In(YK,k)(Y − iXY )−A′k|In(YK,k)(ZK,k, Y − iXY )

)
(5.9)

and the error discretization of the fast scale problem.

ηn(EF) :=
1

2
ε

∫
In

ηπ
(
YK,k(t)

)
·
(
Z(t) + ZK,k(t)

)
ds. (5.10)

We introduce the following method for refining macro scale and micro scale:

Algorithm 19 (Adaptive refinement). Let an initial subdivision I
(1)
K into N (1) macro

steps be given with uniform but possibly distinct partitions I
P,(1)
n for each subdivision

n = 1, . . . , N (l). Let β ∈ R with β ≈ 1. Iterate for l = 1, 2, . . .

1. Compute ηn(EG) and ηn(EF) for each n = 1, . . . , N (l).

2. Calculate the average

η̄(l) :=
1

N (l)

N(l)∑
n=1

(
|ηn(EG)|+ |η

n
(EF)|

)
(5.11)

3. For each n = 1, . . . , N (l): if |ηn(EG)|+ |η
n
(EF)| > β · η̄(l), we refine this cell:

a) If |ηn(EG)| > β|ηn(EF)| we refine In = (Tn−1, Tn] into two intervals (Tn−1, T
∗
n ]

and (T ∗n , Tn] where T ∗n is the midpoint of In. I
P,(l)
n is kept for both new steps.

b) If |ηn(EF)| > β|ηn(EG)| refine the subdivision I
P,(l)
n by cutting the step size in half.

c) Otherwise refine In and IPn according to 3.a) and 3.b).
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Figure 4: Absolute values of the error estimator |ηn(EG)|+ |η
n
(EF)| for all macro steps before

(left) and after (right) the sixth step of adaptive refinement. The bold line
indicates the refinement threshold for iteration 6, the dashed line indicates
iteration 7.

We illustrate the functionality of Algorithm 19 starting with I
(1)
K with K = 50 000 and

k = 0.05 on each I
P,(1)
n .

In Figure 4 we discuss the sixth refinement step of Algorithm 19 in detail. The upper

figure shows the error estimator η
(6)
K,k and its partitioning into η(EG) and η(EF) for each of

the 12 macro steps (there has been no refinement of K in the first 5 iterations). The bold
line indicates the tolerance for refinement, i.e. β · η̄(6) for β = 1.2. Three steps exceed

this limit and will be refined. In I
(6)
2 and I

(6)
12 the micro scale error is dominating and

Step 3.b) is applied, in I
(6)
8 the dominance of the macro scale error leads to a refinement

on the K-scale according to Step 3.a). To keep the patch structure of the macro mesh

we also refine I
(6)
7 . The resulting discretization and the error estimator in the next step

is shown in the lower plot.
The adaptive algorithm roughly balances the error contributions coming from macro

error and micro error over the first couple of steps, see Fig. 5c for details. In Fig. 5a we
further plot the effectivity index (5.8) on this sequence of adaptively refined meshes and
show that the error estimator still gains accuracy for increased resolution in k and K.

Refinement in Algorithm 19 is based on the absolute values of the local error contri-
butions |ηn(EF)| and |ηn(EG)| and we introduce the indicator index

indK,k :=

N∑
n=1

|ηn(EG)|+ |η
n
(EF)|

|J(yref )− J(YK,k)|
. (5.12)

Figs. 5b and 5d show values close to one and suggest no significant overestimation,
neither in the complete error or in the single parts.

To measure the computational effort on locally refined discretizations we count the
overall number of time steps to be computed in the macro and the micro problem:

E
(l)
K,k :=

N(l)∑
n=1

(
1 +

1

k
(l)
n

)
. (5.13)

We do not take into account that multiple iterations are required within the Newton
solver and that multiple cycles must be repeated for finding a periodic solution. The
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(a) Effectivity of the error estimator.
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(b) Effectivity of the error indicators.
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(c) Balancing of micro and macro errors.
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(d) Effectivity of the partial indicators.
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Figure 5: Performance on adaptive meshes: Effectivity (5.8) (top/left), indicator-
effectivity (5.12) (right) and trend towards balancing error contributions (bot-
tom/right).

(a) Error plotted over the effort (5.13).
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(b) Error over the cumulative effort.

Cum. Steps

|J
(c
)
−

J
(C

K
,
k
)|

Adaptivity

Naive Ref.

105104103102

10−2

10−3

10−4

Figure 6: Comparison of the accuracy on uniform mesh refinement (alternately in micro
and macro problem) and adaptive meshes.

computation of the dual solution requires roughly the same effort, since the scheme runs
backwards in time and also calls for the solution of periodic in time micro problem. With
these solutions one can compute the error estimator. Figure 6 shows the error J(yref )−
J(YK,k) on sequences of adaptive and uniform meshes plotted over the effort (5.13).
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Figure 7: Solution Y (t) of Problem 17 (left) and Problem 20 (right).

Adaptivity gives a slight advantage for the adaptive discretization. Since the regularity
of the solution is very high, significant local effects cannot be expected.

5.4 Test case with pronounced local behavior

As a second test case we consider the following slightly modified problem that shows
a more pronounced dependency of the slow scale on the fast scale solution. Here, we
expect a larger benefit of local mesh adaptivity. Fig. 7 shows the averaged slow scale
solution Y (t) for both test cases.

Problem 20. On I = [0, 106] find y ∈ C1(I) and u ∈ C2(I) such that

y′(t) = εf
(
y(t), u(t)

)
, y(0) = 0,

u′′(t) +
1

2
u′(t) + γ(y(t))u(t) = sin

(
2πt
)
, u(0) = u0, u

′(0) = u′0,

with the scale separation parameter ε = 10−6 and

f
(
y(t), u(t)

)
:=

tanh
(
500u(t)2 − 5

)
+ 1.01

1 + y(t)
, γ(y) := 20 tanh

(
− 10y(t) + 6

)
+ 21.

Similar to Lemma 18 we can show that this problem also falls into the general frame-
work discussed in this paper. The proof follows that of Lemma 18 line by line.

Lemma 21. Problem 20 satisfies Assumptions 2 and 4.

Again we produce reference values for the functional output J(y) = y(106) by resolved
simulations based on a direct discretization of Problem 20 with the trapezoidal rule using
a small time step size k over the full period of time I = [0, 106]. Extrapolating k → 0
shows the experimental order of convergence O(k2.0014) as expected and for further
comparisons we set the reference value to

J(yref ) := 0.59223654. (5.14)

The solution to this problem alters its character at t ≈ 4.5 ·105, see Fig. 7. Due to the
sigmoid nature of f(y, u) in the second argument we have a sudden decay in the rate of
change of Y . The contributions to the error are also concentrated around this point of
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Figure 8: Absolute values of the error estimator |ηn(EG)|+ |η
n
(EF)| for all macro steps before

(left) and after (right) the third step of adaptive refinement. The bold line
indicates the refinement threshold for iteration 3, the dashed line indicates
iteration 4.

(a) Balancing of micro and macro errors.
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(b) Effectivity of the partial indicators.
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Figure 9: Performance on adaptive meshes: Indicator-effectivity (5.12) (right) and trend
towards balancing contributions (left).

interest. For this case we illustrate the functionality of Algorithm 19 starting with I
(1)
K

with K = 50 000 and k = 0.05 on each I
P,(1)
n .

In Fig. 8 the third refinement step is shown. In the upper graph we see the contribu-
tions to the error estimator from the subdivisions of I after two refinement steps. The
error still concentrates around the point of interest but due to the refinement of the
adjacent patches, the estimator values are already better balanced. As in Fig. 4, the
bold line indicates the tolerance for refinement and for all subdivisions where the total
contribution to the error estimator is above this threshold, either k or K is refined. The
results of refinement are presented in the right graph. Comparing the bold line to the
dotted line shows that there is an improvement in the value for the error.

We can see that the error parts η(EG) and η(EF) tend to balance, see Fig. 9a. This is
intuitive since refinement is done on the dominant error term of a subdivision according
to Algorithm 19. Figure 9b shows that the partial indicators reasonably approximate the
error estimator in this case even though the sign of the estimator can and does change
on different subdivisions and during refinement. This shows that contributions of one
sign dominate in this case but this is not always guaranteed. In the rare case of the
positive and negative contributions to the error estimator cancelling each other out, the
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error estimator can fail to give an accurate representation of the error.
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(a) Error plotted over the effort (5.13).
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(b) Error over the cumulative effort.

Figure 10: Comparison of the accuracy on uniform and adaptive meshes.

For this problem our algorithm speeds up performance significantly. According to
Fig. 10a, to achieve a similar error of around 5 · 10−5, we need only around one tenth
of the effort. The cumulative effort, see Fig. 10b, is also of similar magnitude. This
can be explained by the unequal distribution of η(EG) and especially η(EF), see Fig. 8.

By uniform refinement of I and IP we cannot alleviate this phenomenon. However our
error estimator is able to identify sections of I that need to be treated on a finer scale
and also sections, where IP needs to be subdivided with a smaller k compared to other
sections. Local refinement then gives a better distribution of the computing resources
to calculate the solution Y (t). Since the dependency on the slow scale is not uniform in
this problem, we are able to gain efficiency with adaptive refinement unlike in the first
numerical example.

To conclude we compare in Table 2 the effort, measured in time-steps of the micro-
problem to be solved, for the fully resolved simulation of the original problem with the
multiscale approach based on uniform meshes and on adaptive meshes. To measure
the effort we must multiply the cumulative effort listed above by 2, to account for the
additional effort for solving the adjoint problem and also by 5, which accounts for the
number of cycles required to find the periodic state. In each case we show the results
for the choice of discretization parameters where the error is below 5 · 10−5. By using
the multiscale scheme the effort is reduced by about 1 : 400, although we must solve
adjoint solutions and although the approximation of the local periodic solutions requires
multiple cycles in each macro step. If we further employ adaptive mesh refinement the
effort is reduced by 1 : 2 800. The adaptive multiscale scheme has the further advantage
of giving an estimate on the discretization error.

6 Conclusion

We have presented an a posteriori error estimator for a temporal multiscale scheme of
HMM type that has recently been introduced [12]. This multiscale scheme is based on
separating micro and macro scale by replacing the micro scale influences by localized
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Approach Error k K Micro-steps

Resolved simulation 3.43 · 10−5 1
200 – 200 000 000

Multiscale (uniform) 4.24 · 10−5 1
160 6 250 513 800

Multiscale (adaptive) 1.16 · 10−5 1
320 12 500 71 360

Table 2: Comparison of the effort for the resolved simulation, the multiscale scheme
based on uniform and adaptive discretizations measured in the number of overall
steps of the micro problem to be solved.

periodic in time solutions. The resulting scheme calls for the solution of one such periodic
micro problem in each macro step.

The error estimator is based on the dual weighted residual method for estimating errors
in goal functionals. The adjoint problem entering the error estimator has a structure
similar to the primal one: each adjoint macro time step requires the solution of a periodic
micro problem. In addition, to incorporate the error of the periodic in time micro scale
problems, a further adjoint micro problem must be solved in each macro step. The
resulting error estimator allows for a splitting of the local error contributions into micro
scale and macro scale influences. We have shown very good efficiency of the estimator
for a wide range of discretization parameters.

Based on the splitting into micro scale errors and macro scale errors an adaptive re-
finement loop is presented that allows to optimally balance all discretization parameters.

For the future it remains to extend this setting to temporal multiscale problems in-
volving partial differential equations as discussed in [12, 18] that will add the further
complexity of finding optimal spatial discretization parameters for macro and micro
problems.
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