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Abstract: In their article “Coupling at a distance HDG and BEM”, Cockburn, Sayas and Solano proposed

an iterative coupling of the hybridizable discontinuous Galerkin method (HDG) and the boundary element

method (BEM) to solve an exterior Dirichlet problem. The novelty of the numerical scheme consisted of using

a computational domain for the HDGdiscretizationwhose boundary did not coincidewith the coupling inter-

face. In their article, the authors provided extensive numerical evidence for convergence, but the proof of

convergence and the error analysis remained elusive at that time. In this article we fill the gap by proving the

convergence of a relaxation of the algorithm and providing a priori error estimates for the numerical solution.
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Dedicated to the memory of Francisco-Javier Sayas

1 Introduction

The goal of this article is to conclude the work started by Cockburn, Sayas and Solano in the article Coupling
at a distance [7], where an iterative solutionmethod for a classic exterior elliptic problemwas introduced. The

proposed scheme amounted to a Schur complement-style algorithm that alternates between a Hybridizable

Discontinuous Galerkin Method (HDG) for an interior problem and the Boundary Element Method (BEM) for

an exterior problem. At the time of publication, the novelty of the method resided in the use of non-touching
grids for the discretization of each of the two problems. The ready availability of two separate, uncoupled,
codes for each of the discretization methods and the eagerness to show the viability of such a non-touching

coupling led to the choice of an iterative alternating procedure – even though the problem in question is in

fact linear.

When [7] was published, the technique for transferring information between the two grids had only been

recently incorporated into the HDG literature [8] and, despite the fact that convincing numerical evidence of

convergence at an optimal rate was provided, a rigorous analysis of the coupled scheme proved elusive at
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the time. A few years after Coupling at a distance appeared, a method for the analysis of HDG discretizations

involving the transfer technique – that we now like to call the transfer path method – was developed in [5]

for interior elliptic problems. Since then, both the transfer technique and the analysis method have been suc-

cessfully employed for the study of linear [21, 32, 33], and non-linear [22, 24, 25, 27, 28] interior problems,

as well as problems with interfaces [23, 31], however the analysis of the HDG-BEM coupling had fallen by

the wayside and remained unfinished.

The current special issue honoring Francisco-Javier Sayas, one of the co-authors of the original article,

seemed like the perfect venue for the missing analysis. In that sense, the present communication shall not

be considered a novel contribution, but rather the conclusion, long overdue, of the original work, an after-

note to the original work Coupling at a distance. With that in mind, we will stick to the iterative alternating

procedure proposed in [7], even if a more efficient monolithic approach where the HDG and BEM discrete

systems – along with the discrete coupling terms – are solved simultaneously is possible. The study of such

amonolithic schemeapplied to non-linear problems is the subject of ongoingwork thatwill be communicated

in a separate publication [26].

The method proposed in [7], rather than approaching the problem as a single coupled unit, follows the

spirit of domain decomposition methods. It relies on an iterative approximation of a Dirichlet to Neumann

mapping through the independent solution of an interior and an exterior problem that communicate through

theirDirichlet andNeumann traces. Since these twoproblemsaredealtwith independent solvers,wewill ana-

lyze their discretizations separately. After establishing thewell posedness of the independent discretizations,

we will then prove that, at the discrete level, the alternating solution of an interior Dirichlet and (with HDG)

an exterior Neumann problem (with BEM) converges to the solution of the original unbounded problem. This

latter result constitutes the main contribution of this article.

We will describe the problem setting and its reformulation as a system of coupled interior/exterior prob-

lemsat the continuous level in Section2. Thediscretizationsof the interior problemand theboundary integral

formulation for the exterior problem are described respectively in Sections 3 and 4. Finally, in Section 5, we

show that it is possible to define a relaxation of the iterative process presented in [7], alternating between the

solution of the interior and the boundary problems, that converges to the solution of the original problem.

2 Continuous Formulation

2.1 Problem Setting

Consider a bounded domain Ω
0
⊂ ℝ2 that has a smooth parametrizable boundary that will be denoted by

Γ
0
:= ∂Ω

0
. We will denote the unbounded complement of its closure by

Ω

c
0

:= ℝ2 \ Ω
0
.

In this section, we will be concerned with the analysis of a discretization for the following diffusion problem:

∇ ⋅ qtot = f in Ω

c
0

, (2.1a)

qtot + κ∇utot = 0 in Ω

c
0

, (2.1b)

utot = u
0

on Γ
0
, (2.1c)

utot = O(1) as x →∞. (2.1d)

The function f will be taken to be compactly supported and square integrable on Ω

c
0

. The diffusion coefficient

κ is a strictly positive matrix-valued function such that, denoting the identity matrix is as I, the difference
(I − κ) is compactly supported in Ω

c
0

. This condition implies that outside of supp(I − κ) equations (2.1a) and
(2.1b) in fact coincide with Poisson’s equation. We will also require that there exist positive constants κ and
κ such that, for any component function κij of κ it holds that

κ ≤ κij(x) ≤ κ for all x ∈ Ω.
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Figure 1: Left: The artificial boundary Γ splits the domain of definition of problem (2.1) into an unbounded region Ωext and
a bounded annular domain Ω. Right: The computational domain Ωh is discretized by an un-fitted triangulation (blue), with
boundary Γh ∪ Γ0,h.

The Dirichlet boundary data u
0
will be considered to be an element of the trace space H 1

2 (Γ
0
). The radiation

condition at infinity (2.1d) is equivalent to assuming that there is a constant u∞ such that u = u∞ + O(|x|−1)
(see [18]).

2.2 Interior and Exterior Problems

To deal with the unboundedness of the domain, later on we will make use of an integral representation

that will reduce the computations to a bounded domain. To this avail, we introduce an artificial, smoothly

parametrizable interface Γ enclosing Ω
0
, the support of f and the support of (I − κ). We will also require that

Γ ∩ Γ
0
= ⌀. The domain interior to Γ will be denoted Ω, while the unbounded complementary region will be

denoted Ω
ext
. The boundary of Ω will be denoted as ∂Ω and consists of two disjoint components: the artificial

boundary Γ and the original problemboundary Γ
0
, so that ∂Ω = Γ ∪ Γ

0
. Wewill denote the unit normal vector

to ∂Ω, pointing in the direction of Ω
ext

for points in Γ and in the direction of Ω
0
for points in Γ

0
, by n. This

geometric decomposition, depicted in Figure 1, splits our region of interest into two disjoint domains and

allows us to rewrite the problem (2.1) in terms of an interior and an exterior problem coupled by continuity

conditions at the artificial boundary Γ.

Since we aim to use an integral equation formulation, for the exterior problem we will prefer a second

order formulation and will eliminate qext from the system. We will represent the solutions to (2.1) as the

superposition

utot = u + uext and qtot = q + ∇uext,

where the functions u and q are supported in Ω, while uext is supported in Ω
ext
. The pair (u, q) satisfies the

interior problem

∇ ⋅ q = f in Ω, (2.2a)

q + κ∇u = 0 in Ω, (2.2b)

u = g on Γ, (2.2c)

q ⋅ n = λ on Γ, (2.2d)

u = u
0

on Γ
0
. (2.2e)

On the other hand, the exterior function uext satisfies

−∆uext = 0 in Ω
ext
, (2.3a)

uext = g on Γ, (2.3b)

∇uext ⋅ n = −λ on Γ, (2.3c)

utot = O(1) as |x| → ∞. (2.3d)

Above, the boundary value g ∈ H 1

2 (Γ) corresponds to the trace of utot over the artificial boundary Γ, while
λ ∈ H− 12 (Γ) is the value of the normal flux. These two functions are unknown at this point and will have to be
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retrieved as part the solution process. However, the knowledge of g (resp. λ) is enough to fully determine the

solution to (2.2) or (2.3) considered as independent problems – as long as the equation containing λ (resp. g)
is removed from the system. This observation will motivate the alternating solution scheme to be described

in Section 5.

2.3 Boundary Integral Formulation for the Exterior Problem

Wewill now reformulate (2.3) as a boundary integral equation. To do that, wewill make use of some standard

results from potential theory; we refer the reader interested in further details to the classic references [13, 18]

for a comprehensive account, or to [12] for a more concise treatment.

We start by introducing the single layer and double layer potentials defined respectively for η ∈ H 1

2 (Γ),
μ ∈ H− 12 (Γ) and x ∈ ℝ2 \ Γ as

Sμ(x) := ∫
Γ

G(x, y)μ(y) dΓy (single layer),

Dη(x) := ∫
Γ

∂n(y)G(x, y)η(y) dΓy (double layer),

where G(x, y) is the Green function for Poisson’s equation. The functions defined by these two potentials

satisfy equation (2.3a), and the following jump conditions:

[[Sμ]] := 0, [[∇Sμ]] := μ, [[Dη]] := −η, [[∇Dη]] := 0,

where the jump operator is defined for y ∈ Γ and scalar and vector functions v and v respectively as

[[v]] := lim
ϵ→0
(v(y − ϵn) − v(y + ϵn)) and [[v]] := lim

ϵ→0
(v(y − ϵn) − v(y + ϵn)) ⋅ n(y). (2.4)

In a similar fashion we can define the average operators as

{{v}} := 1
2

lim

ϵ→0
(v(y − ϵn) + v(y + ϵn)) and {{v}} := 1

2

lim

ϵ→0
(v(y − ϵn) + v(y + ϵn)) ⋅ n(y), (2.5)

and use them to define the following boundary integral operators:

Vμ := {{Sμ}}, K󸀠μ := {{∇(Sμ)}}, Kη := {{Dη}} and Wη := −{{∇(Dη)}}.

We are now in a position to recast the exterior problem (2.3) in terms of boundary integral equations. To that

avail, we will represent uext in Ω
ext

as

uext = Dg − Sλ + u∞ (2.6)

and extend it by zero for x ∈ Ω. The constant u∞ captures the far field behavior of the function and will have

to be determined. Since uext ≡ 0 in Ω, by applying the integral operators above to the integral representa-

tion (2.6), the boundary condition (2.3b) leads to

{{uext}} = 1
2

g = Kg − Vλ + 1
2

u∞,

giving rise to the integral equation

(
1

2

−K)g = −Vλ + 1
2

u∞. (2.7a)

To ensure that uext = u∞ as |x| → ∞, we must impose the additional restriction

⟨λ, 1⟩
Γ
= 0. (2.7b)

Equation (2.7a)will be used as part of the alternating schemedescribed in Section 5,where an approximation

of λ will be produced by a numerical solution of the interior problem (2.2) and the density g solving (2.7a)
will be then used as the Dirichlet datum for (2.2).
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Therefore, if Γ has two continuous derivatives and λ ∈ H− 12 (Γ) is problem data satisfying the constraint

(2.7b), then the unique solvability of equation (2.7) and continuous dependence onproblemdata follow from

standard results in boundary integral equations (see, for instance [14, Section 6.4]). Moreover, there exists

a constant c > 0, depending only on Γ and the norms of (1
2

−K)−1 and V, such that

‖g‖
1/2,Γ ≤ c‖λ‖−1/2,Γ . (2.8)

Moreover, from this estimate and the representation formula (2.6), it follows that there exists C
BIE
> 0 such

that

‖uext‖
Ω
≤ C

BIE
‖λ‖−1/2,Γ + |u∞|. (2.9)

2.4 Variational Formulation for the Interior Problem

In this subsection, wewill study the interior Dirichlet boundary value problem obtained from (2.2) by remov-

ing (2.2d) altogether and considering that the boundary trace g, appearing in (2.2c), is known. This yields

the problem

∇ ⋅ q = f in Ω, (2.10a)

κ−1q + ∇u = 0 in Ω, (2.10b)

u = ξ
0

on ∂Ω. (2.10c)

Above, the source term f ∈ L2(Ω) and the Dirichlet boundary data ξ
0
∈ H 1

2 (∂Ω) is given by

ξ
0
=
{
{
{

u
0

on Γ
0
,

g on Γ.

To derive the weak formulation of this system, we test (2.10a) with an arbitrary w ∈ L2(Ω) and (2.10b) with
v ∈ H(div; Ω), integrate by parts and incorporate (2.10c) leading to

(∇ ⋅ q, w)
Ω
= (f, w)

Ω
,

(κ−1q, v)
Ω
− (u, ∇ ⋅ v)

Ω
= −⟨v ⋅ n, ξ

0
⟩∂Ω ,

where ( ⋅ , ⋅)
Ω
and ⟨ ⋅ , ⋅⟩∂Ω denote the L2-inner products over Ω and ∂Ω, respectively. From the three preceding

equations, we arrive at the variational problem:

Problem. Find (q, u) ∈ H(div; Ω) × L2(Ω) such that

Ã(q, v) + B̃(v, u) = F̃
1
(v) for all v ∈ H(div; Ω), (2.11a)

B̃(q, w) = F̃
2
(w) for all w ∈ L2(Ω), (2.11b)

where the bilinear forms Ã : H(div; Ω) × H(div; Ω) → ℝ, B̃ : H(div; Ω) × L2(Ω) → ℝ, and the functionals

F̃
1
: H(div; Ω) → ℝ and F̃

2
: L2(Ω) → ℝ are defined by

Ã(q, v) := (κ−1q, v)
Ω
,

B̃(q, w) := −(w, ∇ ⋅ q)
Ω
,

F̃
1
(v) := −⟨ξ

0
, v ⋅ n⟩∂Ω ,

F̃
2
(w) := −(f, w)

Ω
.

The well-posedness of (2.11) follows from standard arguments of Babǔska–Brezzi theory [11, Section 2.4]

and the solution satisfies

‖q‖
div,Ω
+ ‖u‖

0,Ω
≤ C

stab
κ

1

2 (‖f‖
0,Ω
+ ‖ξ

0
‖
1/2,∂Ω) = Cstabκ

1

2 (‖f‖
0,Ω
+ ‖g‖

1/2,Γ + ‖u0‖1/2,Γ
0

). (2.12)
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We will, however, not solve the problem as stated above and instead will consider a slightly different

version posed in a subdomain. This approach, known as the transfer path method will be described in detail
in Section 3.2, and will require us first to discuss the geometric setting of the discretization, which we will do

next.

3 HDG Discretization of the Interior Problem

3.1 Geometric Setting and Notation

The Computational Domain. Wewill consider a family of polygonal subdomains Ωh ⊂ Ω that approximate Ω

in the sense that the Lebesgue measure μ(Ω \ Ωh) → 0, as h → 0. We will refer to any such Ωh as a computa-
tional domain and will triangulate Ωh by a shape-regular triangulation Th as depicted in Figure 1. A generic

element in Th will be denoted by T and themesh parameter hwill be defined as diameter of a circle inscribing

an element T ∈ Th. The set ∂Th := ⋃{∂T : T ∈ Th}, will be referred to as the skeleton of the triangulation. The
set of edges, e, of Th will be denoted by Eh and we will distinguish between those edges lying entirely in the
computational boundary

E∂h := {e ∈ Eh : e ∩ ∂Ωh = e},

and those that are either interior or have at most their endpoints in the computational boundary

E∘h := {e ∈ Eh : e ∩ ∂Ωh ̸= e}.

We will refer to the former as boundary edges and to the latter as interior edges. Note that Eh = E∂h ∪ E
∘
h.

Just as theboundary associated to the continuousproblem (2.2) has two separate connected components,

the boundary of the computational domain can be split as ∂Ωh = Γh ∪ Γh,0, where

Γh := {e ∈ E∂h : d(e, Γ) ≤ d(e, Γ0)} and Γh,0 := {e ∈ E∂h : d(e, Γ0) < d(e, Γ)}.

We will require that the computational domain Ωh and the triangulation Th satisfy the following local
proximity condition: for any point in the computational boundary ∂Ωh, theminimumdistance between x and
the boundary ∂Ω = Γ ∪ Γ

0
should be, at most, of the same order of magnitude as the diameter of the smallest

triangle T ∈ Th, such that x ∈ T. In view of this condition, the process of mesh refinement should not be

understood as a sequence of finer triangulations for a fixed computational domain Ωh. Instead, as the mesh

diameter h → 0, the process involves the passage through a sequence of pairs domain/triangulation (Ωh , Th)
that satisfy the local proximity condition and exhaust the original domain Ω as the refinement progresses.

We refer the reader to [24], where this condition is discoursed in more detail, and to [28] where an algorithm

for building a sequence {(Ωh , Th)}h is described.

Mesh-Dependent Subspaces and Inner Products. For the discrete formulation we will have introduce the

following mesh-dependent inner products:

(u, w)Th := ∑
T∈Th
∫
T

uw for all u, w ∈ L2(Th),

(q, v)Th := ∑
T∈Th
∫
T

q ⋅ v for all q, v ∈ L2(Th),

⟨u, w⟩∂Th := ∑
T∈Th
∫
∂T

uw for all u, w ∈ L2(∂Th),

⟨u, w⟩∂Th\Γh := ∑
T∈Th
∑

e⊆∂T\Γh
∫
e

uw for all u, w ∈ L2(∂Th),

⟨u, w⟩∂Th\Γh,0 := ∑
T∈Th
∑

e⊆∂T\Γh,0
∫
e

uw for all u, w ∈ L2(∂Th).
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These inner products induce mesh-dependent norms that will be denoted, respectively, by

‖w‖
Ωh := (w, w)

1

2

Th
, ‖w‖∂Th := ⟨w, w⟩

1

2

∂Th and ‖w‖
Γh := ⟨w, w⟩

1

2

∂Th\Γh .

The finite-dimensional discontinuous polynomial subspaces that will be used for discretization, for k ≥ 0,
are given by

Vh := {v ∈ L2(Th) : v|T ∈ [ℙk(T)]2 for all T ∈ Th},
Wh := {w ∈ L2(Th) : w|T ∈ ℙk(T) for all T ∈ Th},
Mh := {μ ∈ L2(Eh) : μ|T ∈ ℙk(F) for all F ∈ Eh},

whereℙk(T) denotes the space of polynomials of degree at most k defined in T ∈ Th. Similarly,ℙk(e) denotes
the space of polynomials of degree at most k defined over a edge e ∈ Eh.

Extension Patches and Extrapolation. Since the discrete spaces are defined only over the elements of the

triangulation we will need to define a way to compute our approximations in the region Ω \ Ωh between the
boundary and the computational boundary. To this purpose, we will tessellate this region as follows:

∙ Let x
1
and x

2
be the endpoints of a boundary edge e ∈ ∂Ωh.

∙ Let x
1
and x

2
be the corresponding points in ∂Ω – as determined by the mapping (3.1).

∙ Let σ
1
and σ

2
be the straight segments connecting x

1
to x

1
and x

2
to x

2
.

We will refer to the open region of Ω \ Ωh delimited by e, σ
1
and σ

2
and the segment of ∂Ω connecting

x
1
to x

2
as an extension patch and will denote it by Texte . It is clear that for every e ∈ Γh there is one and only

one such Texte (this justifies subindex in the notation) and that

Ω \ Ωh = ⋃
e∈Γh

Texte .

It also follows from this construction that for every Texte there is only one element Te in the triangulation
such that Kexte ∩ Te = e. We will use this fact to define an extrapolation operator that will extend the value of

the piecewise polynomial functions defined on Te onto the corresponding extension patch Texte , thus extend-

ing functions the discrete spaces above into the full domain Ω. With this in mind, we will define the values

of polynomial function p on Texte by extrapolating the values of the corresponding polynomial from Te, and
will denote its as Ep(x) for any x ∈ Texte .

For a given domain Ωh and corresponding triangulation Th, the usual notion of the exterior normal vec-

tor is well defined for almost all points in the boundary, with the possible exception of the vertices of the

triangulation. We will define the exterior normal vector to the computational domain, nh in the usual man-

ner, and extend the definition to nh(x) = t(x), where t(x) := x−x
|x−x| , for those vertices for which the standard

normal vector is not well defined. On the other hand, we will define the unit normal vector exterior to each
element T ∈ Th as nh, which will coincide with the exterior normal nh on element edges belonging to the

computational boundary Γh.

Finally, for every edge e ∈ E∂h we will denote the ratio between its distance to the boundary and the

diameter, hTe , of its parent element as

re :=
d(e, ∂Ω)
hTe

,

and will define the boundary proximity parameter as
Rh := max

e∈E∂
h

re ,

and will assume for this work that the family of admissible domains and triangulations (Ωh , Th) is such that:
(1) Rh → 0 as h → 0,

(2) ‖nh − n‖∞ = o(h
1

2 ) as h → 0, where the normal nh should be understood as coinciding with σ for those

points in which the standard normal vector is not defined.

3.2 Transferal of Boundary Conditions

Having introduced all the necessary geometric concepts we can now return to the interior problem (2.10)

which we will now pose in a polygonal computational domain Ωh ⊂ Ω satisfying the admissibility require-
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ments discussed in the previous subsection. In addition, we will need to define a bijective¹ mapping

ϕ : ∂Ωh → ∂Ω, x 󳨃→ x (3.1)

assigning a point x ∈ ∂Ω to every point x ∈ ∂Ωh.
For any fixed computational domain Ωh, the solution pair to (2.11) satisfies the related problem

∇ ⋅ q = f in Ωh , (3.2a)

κ−1q + ∇u = 0 in Ωh , (3.2b)

u = φq
0

on ∂Ωh , (3.2c)

where the boundary condition φq
0

can be calculated by integrating equation (2.10b) along a path connecting

∂Ω to ∂Ωh. More precisely, if we denote the distance between x and x by l(x), and by t the unit vector x−x
|x−x| ,

the boundary conditions on Γh can be expressed in terms of the flux q and the trace of u on ∂Ω, as

φq
0

(x) := ξ
0
∘ ϕ(x) +

l(x)

∫
0

κ−1q(x + t(x)s) ⋅ t(x) ds for all x ∈ ∂Ωh . (3.3)

Note that the required bijectivity of ϕ(x) implies that t can not be tangent to a boundary edge. Thus, the

solution of (2.11) also satisfies the abstract formulation

A(q, v) +AT(q, v) +B(v, u) = F1
(v) for all v ∈ H(div; Ωh),

B(q, w) = F
2
(w) for all w ∈ L2(Ωh),

where the bilinear formsA : H(div; Ωh) × H(div; Ωh) → ℝ,B : H(div; Ωh) × L2(Ωh) → ℝ, and the function-
als F

1
: H(div; Ωh) → ℝ and F

2
: L2(Ωh) → ℝ are defined by

A(q, v) := (κ−1q, v)
Ωh ,

AT(q, v) := ∑
e⊂∂Ωh
∫
e

(

l(x)

∫
0

κ−1q(x + t(x)s) ⋅ t(x))v(x) ⋅ nh ds dSx ,

B(q, w) := −(w, ∇ ⋅ q)
Ωh ,

F
1
(v) := −⟨ξ

0
∘ ϕ, v ⋅ nh⟩∂Ωh ,

F
2
(w) := −(f, w)

Ωh .

Beyond the difference in the domain of definition, the system above differs from the original problem (2.11)

in the presence of the term AT , introduced by the transfer of boundary condition. The well posedness of

problems of this formwas established in [20]. On the interest of brevity, we shall not repeat the argument here

and instead will now discuss the discretization of this problem along with that of the integral equation (2.7).

3.3 Discrete Variational Formulation

Having defined all the required notation, we can now state the HDG discretization of (2.10) which, for

Dirichlet data ξ
0
∈ H 1

2 (∂Ω), seeks an approximation (qh , uh , ûh) ∈ Vh ×Wh ×Mh satisfying

(κ−1qh , v)Th − (uh , ∇ ⋅ v)Th + ⟨ûh , v ⋅ nh⟩∂Th = 0, (3.4a)

(∇ ⋅ qh , w)Th + ⟨τuh , w⟩∂Th − ⟨τûh , w⟩∂Th = (f, w)Th , (3.4b)

⟨μ, q̂h ⋅ nh⟩∂Th\∂Ωh = 0, (3.4c)

⟨ûh , μ⟩∂Ωh = ⟨φ
qh
0

, μ⟩∂Ωh , (3.4d)

1 As numerous numerical experiments have shown [8, 9, 27, 28], the algorithm is robust with respect to the particular choice

for this mapping, so long as distance between x and its corresponding x remains comparable to the local mesh diameter. In this

article we will limit ourselves to consider solely those computational domains Ωh for which such a mapping exists.
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for any test (v, w, μ) ∈ Vh ×Wh ×Mh. Following [8], the approximate boundary data on ∂Ωh appearing on
the right-hand side of (3.4d) is given by

φqh
0

(x) := ξ
0
∘ ϕ(x) +

l(x)

∫
0

κ−1Eqh(x + t(x)s) ⋅ t(x) ds for x ∈ ∂Ωh , (3.4e)

where E denotes the extrapolation operator. The numerical flux in the normal direction q̂h ⋅ nh is defined as

q̂h ⋅ nh = qh ⋅ nh + τ(uh − ûh) on ∂Th , (3.5)

where τ stabilization function. Throughout this analysis we will only require 0 < τ ≤ τ < ∞, where τ denotes
the maximum value of τ.

Note that the terms ⟨ûh , v ⋅ nh⟩∂Th and ⟨τûh , w⟩∂Th , given in (3.4a) and (3.4b), respectively, can be split
into the contributions of the interior edges and of the boundary edges as

⟨ûh , v ⋅ nh⟩∂Th = ⟨ûh , v ⋅ nh⟩∂Th\∂Ωh + ⟨φ
qh
0

, v ⋅ nh⟩∂Ωh ,
⟨τûh , w⟩∂Th = ⟨τûh , w⟩∂Th\∂Ωh + ⟨τφ

qh
0

, w⟩∂Ωh .

Replacing now the numerical flux (3.5) in (3.4c) results in

⟨μ, qh ⋅ nh⟩∂Th\∂Ωh + ⟨μ, τ(uh − ûh)⟩∂Th\∂Ωh = 0.

In order to apply known results from functional analysis, we rewrite the numerical trace ûh in terms of

averages and jumps. For this, we use the equation (3.4c) and separate the term featuring ûh as

0 = ⟨μ, qh ⋅ nh⟩∂Th\∂Ωh + ⟨μ, τuh⟩∂Th\∂Ωh − ⟨μ, τûh⟩∂Th\∂Ωh

= ∑
T∈Th
∑

e∈∂T\∂Ωh
∫
e

(μqh ⋅ nh + τμuh − τμûh)

= ∑
e∈E∘

h

∫
e

([[qh]]μ + 2τ{{uh}}μ − 2τûhμ)

= ∫

E∘
h

([[qh]] + 2τ{{uh}} − 2τûh)μ for all μ ∈ Mh .

Above, we have used the fact that the hybrid variable ûh is single valued, and the average {{ ⋅ }} and jump [[ ⋅ ]]
operators are defined for every edge e in a fashion analogous to (2.4) and (2.5). Then, taking as test function

μ = [[qh]] + 2τ{{uh}} − 2τûh ∈ Mh

in the expression above, we deduce that

ûh =
1

2

τ−1[[qh]] + {{uh}} on E∘h .

We make use of this identity to obtain

⟨ûh , v ⋅ nh⟩∂Th\∂Ωh = ⟨ûh , [[v]]⟩E∘
h
=
1

2

⟨τ−1[[qh]], [[v]]⟩E∘
h
+ ⟨{{uh}}, [[v]]⟩E∘

h

and

⟨τûh , w⟩∂Th\∂Ωh = 2⟨τ{{w}}, ûh⟩E∘
h
= ⟨[[qh]], {{w}}⟩E∘

h
+ 2⟨τ{{w}}, {{uh}}⟩E∘

h
.

In this way, replacing the definition of φqh
0

– see (3.4e) – in (3.4a) and (3.4b), together with the foregoing

identities, we obtain that (3.4) is equivalent to finding (qh , uh) ∈ Vh ×Wh such that

Ah(qh , v) +AT(qh , v) +Bh(v, uh) = F1,h(v) for all v ∈ Vh , (3.6a)

BT(qh , w) +Bh(qh , w) − Ch(uh , w) = F2,h(w) for all w ∈ Wh , (3.6b)
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where the bilinear formsAh : Vh × Vh → ℝ,Bh ,BT : Vh ×Wh → ℝ ,Ch : Wh ×Wh → ℝ, and the functionals
F
1,h : Vh → ℝ and F

2,h : Wh → ℝ are defined by

Ah(qh , v) := (κ−1qh , v)Th +
1

2

⟨τ−1[[qh]], [[v]]⟩E∘
h
, (3.7a)

AT(q, v) := ∑
e⊂∂Ωh
∫
e

(

l(x)

∫
0

κ−1q(x + t(x)s) ⋅ t(x))v(x) ⋅ nh ds dSx , (3.7b)

Bh(qh , w) := −(w, ∇ ⋅ qh)Th + ⟨[[qh]], {{w}}⟩E∘
h

(3.7c)

BT(qh , w) := ∑
e⊂Ωh
∫
e

τ(
l(x)

∫
0

κ−1qh(x + t(x)s) ⋅ t(x))w(x) ds dSx , (3.7d)

Ch(uh , w) := ⟨τuh , w⟩∂Th − 2⟨τ{{uh}}, {{w}}⟩E∘
h
, (3.7e)

F
1,h(v) := −⟨ξ0 ∘ ϕ, v ⋅ nh⟩∂Ωh , (3.7f)

F
2,h(w) := −(f, w)Th − ⟨τξ0 ∘ ϕ, w⟩∂Ωh . (3.7g)

The unique solvability of the scheme (3.6) will be proved by an energy argument. To that end, for e ∈ ∂Ωh
and v ∈ L2(Texte ), it is convenient to define the following norm on the extension patch Texte :

|||v|||e := (∫
e

l(x)

∫
0

|v(x + st(x))|2 ds dSx)
1

2

.

This norm is equivalent to the standard L2(Texte )-norm as shown first in [20] for the two-dimensional and

later extended to three dimensions in [21]. That is, there exist positive constants Ce
1

and Ce
2

, independent of h,
such that

Ce
1

|||v|||e ≤ ‖v‖Texte
≤ Ce

2

|||v|||e . (3.8)

This equivalence holds true under certain conditions on the transferring vectors t(x) (cf. [20, 21])) ensur-
ing, roughly speaking, that they cannot deviate too much from the vector normal to e.

We also introduce the element-wise constants

Ce
ext

:=
1

√re
sup

χ∈Vk

|||χ|||e
‖χ‖Te

and Ce
inv

:= h⊥e sup

χ∈Vk

|||∇χ|||Te
‖χ‖Te

, (3.9)

where Vk := {p ∈ [ℙk(Texte ∪ Te)]2 : p ̸= 0}. These constants are independent of h, but depend on the polyno-
mial degree k and the mesh regularity parameter as shown in [5].

We now proceed to derive an energy inequality that will lead to the well-posedness of (3.6).

Lemma 1. Let αh = Rhκ−1(κ − κ
1

2 h 1

2 τ
1

2 ) and βh = κ−1κ
1

2 Rhh
1

2 τ
1

2 . It holds

(1 − αh)‖κ−
1

2 qh‖20,Ωh + (1 − βh)‖τ
1

2 uh‖2∂Ωh + ‖τ
1

2 (uh − {{uh}})‖2∂Th\∂Ωh + ‖τ
− 1
2 [[qh]]‖2E∘

h

≲ ‖κ
1

2 h−
1

2 ξ
0
∘ ϕ‖2∂Ωh + ‖f‖0,Ω‖uh‖0,Ωh . (3.10)

Proof. By taking v = qh and w = uh in (3.6), and subtracting the resulting expressions we obtain

‖κ−
1

2 qh‖20,Ωh +
1

2

‖τ−
1

2 [[qh]]‖2E∘
h
+AT(qh , qh) +BT(qh , uh) + Ch(uh , uh)

= −⟨ξ
0
∘ ϕ, qh ⋅ nh⟩∂Ωh − (f, uh)Th − ⟨τξ0 ∘ ϕ, uh⟩∂Ωh . (3.11)

First of all, after performing algebraic calculations, we observe that C is a semi-definite operator from

Wh ×Wh toℝ. In fact,

Ch(uh , uh) = ⟨τuh , uh⟩∂Th − 2⟨τ{{uh}}, {{uh}}⟩E∘
h
= ‖τ

1

2 (uh − {{uh}})‖2∂Th\∂Ωh + ‖τ
1

2 uh‖2∂Ωh . (3.12)

We will now obtain a lower bound for the non-positive terms of left-hand side of (3.11). In this direction, the

operatorAT can be bounded as follows. Let e ∈⊂ ∂Ωh and x ∈ e. By the Cauchy–Schwarz inequality and the
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definition in (3.9),

l(x)

∫
0

κ−1qh(x + t(x)s) ⋅ t(x) ds ≤ l(x)
1

2 |||κ−1qh|||e ≤ h
1

2

Te reκ
−1κ

1

2 Ce
ext

‖κ−
1

2 qh‖Te ,

where we have used the bound l(x) ≤ hTe re. Then, by the discrete trace inequality, we have

−AT(qh , qh) ≤ |AT(qh , qh)| ≲ κ−1κ
1

2 ∑
e⊂∂Ωh

h
1

2

Te rh‖κ
− 1
2 qh‖e‖qh ⋅ nh‖e

≲ Rhκ−1κ‖κ−
1

2 qh‖2Ωh . (3.13)

The same arguments yield to

−BT(qh , uh) ≤ |BT(qh , uh)| ≲ κ−1κ
1

2 Rhh
1

2 τ
1

2 ‖κ−
1

2 qh‖0,Ωh‖τ
1

2 uh‖0,∂Ωh

≤ κ−1κ
1

2 Rhh
1

2 τ
1

2 (
1

2

‖κ−
1

2 qh‖20,Ωh +
1

2

‖τ
1

2 uh‖2
0,∂Ωh). (3.14)

Therefore, combining the above estimates and (3.11), we deduce that

(1 − Rhκ−1κ − κ−1κ
1

2 Rhh
1

2 τ
1

2 )‖κ−
1

2 qh‖20,Ωh + (1 − κ
−1κ

1

2 Rhh
1

2 τ
1

2 )‖τ
1

2 uh‖2∂Ωh
+ ‖τ−

1

2 [[qh]]‖2E∘
h
+ ‖τ

1

2 (uh − {{uh}})‖2∂Th\∂Ωh
≲ |⟨ξ

0
∘ ϕ, qh ⋅ nh⟩∂Ωh | + |(f, uh)Th | + |⟨τξ0 ∘ ϕ, uh⟩∂Ωh |.

Finally, the result follows by the discrete trace inequality applied to the boundary terms on the right-hand

side, Young’s inequality and the definition of αh and βh.

Corollary 1. The HDG scheme (3.6) is well-posed for h sufficiently small.

Proof. Let f ≡ 0 and ξ
0
= 0. By (3.10) we obtain that qh = 0. Moreover, since τ > 0, we have that uh = 0 on

the boundary Ωh and uh = {{uh}} on ∂Th; therefore uh is continuous. These facts, together with (3.6b) lead to

0 = −(uh , ∇ ⋅ v)Th + ⟨[[v]], uh⟩E∘
h
= (∇uh , v) for all v ∈ Vh .

Thus, taking v = ∇uh we conclude that uh = 0 since it vanishes at the boundary.

The energy estimate in Lemma 1 provides the stability bound for the vector-valued unknown qh. On the other
hand, the stability for the scalar approximation uh can be obtained by a duality argument that we omit since

it is not need it for the analysis of the coupled problem. We refer the reader to the proof of [5, Lemma 3.5] or

the proof of [33, Theorem 3.1] for details regarding the duality argument employed in this type of unfitted

HDGmethods. Therefore, it is possible to conclude that there is a constant C
HDG
> 0, independent of h, such

that

J(qh , uh) + ‖uh‖Ωh ≤ CHDG(‖f‖Ωh + ‖κ
1

2 h−
1

2 ξ
0
∘ ϕ‖∂Ωh ), (3.15)

where, for convenience of notation of the forthcoming analysis, we have denoted

J(qh , uh) := (‖κ−
1

2 qh‖2Ωh + ‖τ
1

2 uh‖2∂Ωh + ‖τ
1

2 (uh − {{uh}})‖2∂Th\∂Ωh + ‖τ
− 1
2 [[qh]]‖2E∘

h
)
1

2

. (3.16)

Having established the well posedness of the discrete formulation, in the following section we will study

the behavior of the discretization error.

3.4 A Priori Error Analysis

To establish a priori error bounds for the HDG discretization, we will make use of a tool introduced by

Francisco-Javier Sayas, Jay Gopalakrishnan and Bernardo Cockburn in [4]. The idea is to use a projection,

known as theHDGprojection, to decompose the discretization into a component involving the approximation

properties of the discrete spaces Vh andWh, and another component involving the error introduced by pro-

jecting into these spaces. The HDG projection over Vh ×Wh, denoted byΠ(q, u) := (Πv
q, Π

w
u), is the unique
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element-wise solution pair of

(Π
v
q, v)T = (q, v)T for all v ∈ [ℙk−1(T)]e , (3.17a)

(Π
w
u, w)T = (u, w)T for all w ∈ ℙk−1(T), (3.17b)

⟨Π
v
q ⋅ n + τΠ

w
u, μ⟩e = ⟨q ⋅ n + τu, μ⟩e for all μ ∈ ℙk(e), (3.17c)

for every element T ∈ Th, and e ⊂ ∂T. The approximation properties of Π are stated in Section 6. Using this

projection we can then define

εq := ΠVq − qh , εu := ΠWu − uh and Iq := q − ΠVq, Iu := u − ΠWu,

whereΠV is theHDGprojector ontoVh, and ΠW is theHDGprojector ontoWh. The terms εq and εu are known
as the projections of the errors and the terms Iq and Iu are the errors of the projections. The full discretization
error can then be split as

q − qh = εq + Iq and u − uh = εu + Iu .

We will now show that the scheme (3.6) is consistent and the discretization error is driven solely by the

approximation properties of the discrete spaces, as encoded by Iq, and Iu. We start by noting that from (3.6a)

and the decompositions above, it follows that

Ah(q − εq − Iq , v) +AT(q − εq − Iq , v) +Bh(v, u − εu − Iu) = F1,h(v) for all v ∈ Vh . (3.18)

However, since q and u satisfy (2.10) in a distributional sense, we have that q ∈ H(div; Ωh) and therefore

[[q]] = 0 in E∘h. This also implies that u ∈ H1(Ωh) since ∇u = −κ−1q ∈ L2(Ωh). Hence,

Ah(q, v) +AT(q, v) +Bh(v, u) − F1,h(v) = (κ−1q, v)Th + ∑
e⊂∂Ωh
∫
e

(

l(x)

∫
0

κ−1q(x + t(x)s) ⋅ t(x))v(x) ⋅ nh ds dSx

+ ⟨[[v]], {{uh}}⟩E∘
h
− (u, ∇ ⋅ v)Th + ⟨ξ0 ∘ ϕ, v ⋅ nh⟩∂Ωh

= (κ−1q, v)Th + ⟨[[v]], {{u}}⟩E∘
h
− (u, ∇ ⋅ v)Th + ⟨u, v ⋅ nh⟩∂Ωh ,

where in the last equality we have used the fact that q satisfies the transfer equation (3.3) and u satisfies

(3.2c). Then, by integrating by parts and considering equation (3.2b), we obtain that

Ah(q, v) +AT(q, v) +Bh(v, u) − F1,h(v) = ⟨[[v]], {{u}}⟩E∘
h
− ⟨u, v ⋅ nh⟩∂Th + ⟨u, v ⋅ nh⟩∂Ωh = 0.

Analogously, from (3.6b) we have

BT(q − εq − Iq , w) +Bh(q − εq − Iq , w) − Ch(u − εu − Iu , w) = F2,h(w). (3.19)

Analyzing the terms above that involve q ∈ H(div; Ωh) and u ∈ H1(Ωh), and using again the facts that q
satisfies the transfer equation (3.3) and u satisfies (3.2c), it is easy to verify that

BT(q, w) +Bh(q, w) − Ch(u, w) − F2,h(w) = −⟨τu, w⟩∂Th + 2⟨τu, {{w}}⟩E∘
h
+ ⟨τu, w⟩∂Ωh = 0.

Putting these arguments together it follows from (3.18) and (3.19) that the scheme is consistent and the

following error equations for (εq , εu) ∈ Vh ×Wh hold for all (v, w) ∈ Vh ×Wh:

Ah(εq , v) +AT(εq , v) +Bh(v, εu) = −Ah(Iq , v) −AT(Iq , v) +Bh(v, Iu),
BT(εq , w) +B(εq , w) − C(εu , w) = −BT(Iq , w) −Bh(Iq , w) + Ch(Iu , w).

Now, by the orthogonality properties of the HDG projection (3.17), we deduce that

Ah(Iq , v) +Bh(v, Iu) = (κ−1Iq , v)Th

and

−Bh(Iq , w) + Ch(Iu , w) = 0.
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In this way, we conclude that the projection of the errors (εq , εu) ∈ Vh ×Wh satisfy, for all (v, w) ∈ Vh ×Wh,

Ah(εq , v) +AT(εq , v) +Bh(v, εu) = G1(v), (3.21a)

BT(εq , w) +B(εq , w) − C(εu , w) = G2(w) (3.21b)

with

G
1
(v) := −(κ−1Iq , v)Th −AT(Iq , v)

and

G
2
(w) := −BT(Iq , w).

Theorem 1. For h sufficiently small, there holds

‖κ−
1

2 (q − qh)‖Ωh ≲ ‖κ−
1

2 Iq‖
Ωh + (Rhκ−2κ + τ)

1

2 ‖κ−
1

2 Iq‖
Ω

c
h
. (3.22)

Moreover, under elliptic regularity it holds

‖u − uh‖Ωh ≲ (h + (hτ
1

2 + h
1

2 )Rh)‖κ−
1

2 Iq‖
Ωh + (h

1

2 τ
1

2 Rh + 1)‖Iu‖Ωh + Rh(τ
1

2 + h
1

2 )‖h∂t(Iq ⋅ t)‖Ωch . (3.23)

Proof. By proceeding exactly as in the proof of Lemma 1, but in the context of the equation of the projection

of the errors (3.21), for h sufficiently small, we deduce that

J(εq , εu) ≲ |G
1
(εq)| + |G

2
(εu)|,

where we recall the definition of J in (3.16). In order to bound the terms on the right-hand side, we employ

the Cauchy–Schwarz and discrete trace inequalities and obtain that

|G
1
(εq)| ≤ ‖κ−

1

2 Iq‖
Ωh‖κ−

1

2 εq‖
Ωh + κ−1 ∑

e⊂∂Ωh
|||Iq|||e‖l

1

2 εq ⋅ n‖e

≲ (‖κ−
1

2 Iq‖2
Ωh
+ Rhκ−2κ ∑

e⊂∂Ωh
|||Iq|||2e)

1

2

‖κ−
1

2 εq‖2
Ωh

where we have also used the fact that l(x) ≲ Rhh for all x ∈ ∂Ωh. Similarly,

|G
2
(εu)| ≤ ( ∑

e⊂∂Ωh
|||τ

1

2 Iq|||2e)
1

2

‖τ
1

2 εu‖∂Ωh .

Therefore, by combining the above inequalities, we obtain

J(εq , εu)2 ≲ ‖κ−
1

2 Iq‖2
Ωh
+ (Rhκ−2κ + τ) ∑

e⊂∂Ωh
|||Iq|||2e

and (3.22) follows by the fact that ‖κ− 12 (q − qh)‖Ωh ≤ ‖κ−
1

2 Iq‖
Ωh + J(εq , εu) and the norm equivalence (3.8).

On the other hand, by a duality argument ([5, Lemma 3.9]), it is possible to derive that

‖εu‖
Ωh ≲ (h + (hτ

1

2 + h
1

2 )Rh)‖κ−
1

2 Iq‖
Ωh + τ

1

2 h
1

2 Rh‖Iu‖Ωh + Rh(h
1

2 + τ
1

2 )‖h∂t(Iq ⋅ t)‖Ωch ,

which implies (3.23).

Corollary 2. If (q, u) ∈ Hk+1(Ω) × Hk+1(Ω) and τ is of order one, then

‖κ−
1

2 (q − qh)‖Ωh + ‖u − uh‖Ωh ≲ hk+1(|q|k+1,Ω + |u|k+1,Ω). (3.24)

Moreover, if (q, u) ∈ H1(Ω) × H1(Ω), then

J(q − qh , u − uh) ≲(κ−
1

2 + τ−
1

2 h
1

2 + 1)|q|
1,Ω
+ (τ

1

2 + 1)τ
1

2 |u|
1,Ω

. (3.25)

Proof. The first inequality follows from the approximation properties of the HDG projection stated in Sec-

tion 6. On the other hand,

J(q − qh , u − uh) ≤ J(εq , εu) + J(Iq , Iu) ≲ ‖κ−
1

2 Iq‖
Ωh + (Rhκ−2κ + τ)

1

2 ‖κ−
1

2 Iq‖
Ω

c
h
+ J(Iq , Iu).
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But, using the approximation estimates (6.1), we have

J(Iq , Iu)2 = ‖κ−
1

2 Iq‖2
Ωh
+ ‖τ

1

2 Iu‖2∂Ωh + ‖τ
1

2 (Iu − {{Iu}})‖2∂Th\∂Ωh + ‖τ
− 1
2 [[Iq]]‖2

E∘
h

≲ (κ−1 + τ−1h−1)h2|q|2
1,Ω

+ (τ + 1)τh2|u|2H1(Ω) + h
2|∇ ⋅ q|2

1,Ω

and (3.25) follows.

4 BEM Discretization of the Exterior Problem

For the discretization of the integral equation (2.7) wewill take advantage of the fact that the parametrization

of artificial boundary Γ is smooth and does not intersect with the support of the source term. It is a standard

result in potential theory that these two conditions imply that the densities λ and g are both C∞, which allows
for a simple, spectrally convergent discretization using interpolating trigonometric polynomials – an idea

that had been implemented in [19] coupled with the finite element method over curved triangulations. For

two-dimensional problems, an exhaustive account of the theory of periodic boundary integral equations and

their approximation can be found in themonograph by Saranen and Vainikko [29]. Here wewill present only

those basic results that will be used for the coupled formulation that will be described later.

If we let y be a 2π-periodic, C∞ parametrization of Γ such that |y󸀠( ⋅ )| > 0 and t ̸= s ∈ [0, 2π) implies that

y(t) ̸= y(s), then the integral operators appearing in (2.7) can be written in parametric form as

Vg(x(t)) =
2π

∫
0

V(s, t)λ ∘ y(s)|y󸀠(s)| ds and Kg(x(t)) =
2π

∫
0

K(s, t)φ ∘ y(s)|y󸀠(s)| ds,

where the integral kernels are the two-dimensional Green function for the minus Laplacian and its normal

derivative, namely

V(s, t) := − 1
2π log |y(s) − y(t)| and K(s, t) := 1

2π
(y(s) − y(t)) ⋅ n(y(s))
|y(s) − y(t)|2

.

The idea is then to discretize the parameterization of Γ into 2n equispaced points t
0
, . . . , t

2n−1 ∈ [0, 2π) and
use these points as interpolation nodes to collocate equation (2.7a). Due to the periodicity, it is natural to use

trigonometric polynomials as a basis, and we will now introduce two spaces of trigonometric polynomials

𝕋n := {
n
∑
j=0
aj cos(jt) +

n−1
∑
j=1
bj sin(jt) : aj , bj ∈ ℝ} and 𝕋0n := {λn ∈ 𝕋n :

2π

∫
0

λn ds = 0}.

For real numbers p ≤ q and any function λ ∈ Hq(0, 2π) the space𝕋n has the approximation property (see [3])

‖λ − Pλ‖Hp(0,2π) ≤ (
n
2

)
p−q
‖λ‖Hq(0,2π),

where P is the L2 projector onto 𝕋n. The Lagrangian basis for interpolation in 𝕋n is given by

Lj(t) :=
1

2n(1 + 2
n−1
∑
k=1

cos(k(t − tj)) + cos(n(t − tn))) for j = 0, 1, . . . , 2n − 1.

These functions can be used to build the basis for 𝕋0n, which is given by the set

{Lj − L0 : j = 0, 1, . . . , 2n − 1}.

If we denote byℚ0n the interpolation operator over 𝕋
0

n, the following estimate holds (see [29]) for q > 1

2

and

0 ≤ p ≤ q:
‖u − ℚ0nu‖Hp(0,2π) ≤ cq(

n
2

)
p−q
‖u‖Hq(0,2π),
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where

cq = (1 +
∞
∑
j=1

1

j2q
).

Therefore, if λ : Γ → ℝ is known, the discrete version of problem (2.7) becomes that of finding gn such that

gn ∘ y|y󸀠( ⋅ )| ∈ 𝕋0n, and
2π

∫
0

(
1

2

gn −Kgn)(y(s))ψ(s) ds = −
2π

∫
0

(Vλ)(y(s))ψ(s) ds for all ψ ∈ 𝕋0n . (4.1)

Note that the term involving the constant u∞ drops out of the formulation when testing with ψ ∈ 𝕋0n. To
determine u∞ we go back to (4.1) and notice that we can define an approximation un∞ to u∞ by testing with

any ϱ ∈ 𝕋n \ 𝕋0n. Setting ϱ = 1 then leads to

un∞ :=
1

2π(
2π

∫
0

(Vλ)(y(s)) ds +
2π

∫
0

(
1

2

gn −Kgn)(y(s)) ds).

Hence, we first solve (4.1) for λn and then fix the value of un∞ by means of the definition above. It is

clear that as the approximation λn converges, the value of un∞ will converge as well. Pertaining the well-

posedness of the discrete integral equation, it is pointed out that (as shown in [29, Sections 6.3–6.5]) the

periodic operator V is a Fredholm operator of index 0 over the periodic space

H−
1

2

0

(0, 2π) := {λ ∈ H−
1

2 (0, 2π) :
2π

∫
0

λ ds = 0},

from which the unique solvability of (4.1) follows. Moreover, for a Galerkin approximation of (4.1) it can be

shown [29, Theorem 9.4.1] that the following error estimate holds:

‖g − gn‖Hp(0,2π) ≤ cqnp−q‖g‖Hq(0,2π) for q − p > 1
2

.

Combining this approximation result with the stability estimate (2.8) and the boundedness of the single layer

operator V, we arrive at

‖g − gn‖Hp(0,2π) ≤ Cq,Vnp−q‖λ‖Hq(0,2π) for q − p > 1
2

.

5 Iterative Coupled Procedure

In Coupling at a distance, the authors proposed an iterative method to find the solution to the original prob-

lem (2.1) by alternating between the solutions of the interior and exterior problems using HDG and spectral

BEM respectively. The idea can be traced back to [6] and involves using the Dirichlet trace of u over the artifi-
cial boundary as the unknown coupling variable and alternating between the solution of an interior and an

exterior problem.

We start by observing that, from the discrete version of the transmission condition (2.2d)

2π

∫
0

qh(x(s)) ⋅ n(x(s))η(s) ds +
2π

∫
0

λn(x(s))η(s) ds = 0 for all η ∈ 𝕋0n ,

the Neumann trace of the exterior problem can be written in terms of its interior counterpart as

λn = −P(qh ⋅ n), (5.1)

whereP : Vh → 𝕋0n, is the L2-projector onto the space ofmean zero trigonometric polynomials. This suggests

the following iterative strategy: given an initial g
0
∈ H 1

2 (Γ), it can be used as Dirichlet datum for the HDG

solver which will produce a solution pair (qh , uh) to the interior problem (2.2). The flux qh obtained in this
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fashion can then be transformed, using (5.1), into the Neumann datum for the exterior problem (2.3) and

the process continues until the successive solutions have stabilized. Note that n is the normal vector of the

artificial boundary Γ (rather than the normal vector of the computational boundary Γh, which is denoted

by nh) hence, the approximation obtained on the computational domain Ωh must be first extrapolated to Γ

and then projected onto 𝕋0n .
This algorithm amounts to a Schur complement strategy where the Dirichlet-to-Neumann map (DtN) for

the interior problem is approximated via HDG, and the Neumann-to-Dirichlet mapping (NtD) for the exterior

problem is approximated via spectral BEM. As we have shown in the previous sections, both of these prob-

lems are uniquely and stably solvable, therefore, it remains to show that the iterated composition of these

mappings will converge, and that the limits will in fact be the discrete Dirichlet and Neumann traces over Γ

of the solution to (2.1).

To explain the procedure at the continuous level we start by fixing f ∈ L2(Ω) and u
0
∈ H 1

2 (Γ
0
), and defin-

ing the mapping T : H 1

2 (Γ) → H 1

2 (Γ) that associates to g ∈ H 1

2 (Γ) the function Tg ∈ H 1

2 (Γ) given by the fol-

lowing two-step process:

Step 1: Solve the interior Dirichlet boundary value problem

∇ ⋅ q = f in Ω,

q + κ∇u = 0 in Ω,

u = g on Γ,

u = u
0

on Γ
0
.

(5.2a)

Step 2: Solve the boundary integral equation

(
1

2

−K)Tg = −V(q ⋅ n) on Γ. (5.2b)

We can then summarize the algorithm as, staring from an initial boundary datum g
0
∈ H 1

2 (Γ), generating
a sequence of updates by gn+1 = Tgn. The iterative process is continued until the relative change between

consecutive iterations falls below a prescribed tolerance. An essentially equivalent idea (where the problems

in the two domains are dealt with in PDE form) has been known to the domain decomposition community for

awhile; it can be tracedback at least to [1],where itwas used as precondition stepwithin a Schur complement

algorithm todetermine theDirichlet trace along Γ of the solution. The convergence of this straightforward idea

depends on specific properties of the domains and can not be ensured in general, however a relaxed version

of the method was proposed in [10, 16] and proven to be convergent in [17].

What we will show in this section is that, as the distance between Γ and Γh tends to zero, the conver-

gence of this procedure is not affected by the introduction of boundary integral equation and the transfer of

boundary information between the non-touching grids.

5.1 Continuous Problem

5.1.1 Fixed Point Operator and Relaxation

We start by introducing the space of admissible Neumann traces for the exterior problem at the continuous

level

X := {μ ∈ H−
1

2 (Γ) : langleμ, 1⟩
Γ
= 0}.

The Dirichlet to Neumann mapping for the interior problem is then defined as

S
1
: H

1

2 (Γ) → X, g 󳨃→ Ξ − (qg ⋅ n)|
Γ
, , (5.3)

where qg is the first component of (qg , ug), the unique solution of (2.11) having g and u
0
as Dirichlet bound-

ary data on Γ and Γ
0
, respectively, and source term f , and Ξ is a correction function defined in [7, Section 4.3].
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Dropping this correction from the analysis does not change the estimates and we will do so for simplicity. We

can deduce a stability estimate for S
1
as follows. From the trace inequality for functions inH(div; Ω), and the

continuous dependence (2.12), we know that there exists a positive constant CS
1

such that

‖S
1
g‖−1/2,Γ ≤ CS

1

κ
1

2 (‖f‖
0,Ω
+ ‖g‖

1/2,Γ + ‖u0‖1/2,Γ
0

) for all g ∈ H
1

2 (Γ).

Similarly, we can define the Neumann to Dirichlet map for the exterior problem as

S
2
: X → H

1

2 (Γ), λ 󳨃→ gλ|
Γ
,

where gλ is the unique solution of (2.7) having λ as Neumann boundary data on Γ. Moreover, from the

continuous dependence (2.8), there exists a positive constant CS
2

such that

‖S
2
λ‖

1/2,Γ ≤ CS
2

‖λ‖−1/2,Γ for all λ ∈ X.

The iterative procedure consists on the alternated application of these mappings, and is thus described

by the repeated application of the operator

T : H
1

2 (Γ) → H
1

2 (Γ), g 󳨃→ Tg := (S
2
∘ S

1
)g,

which, by the arguments given above, satisfies the stability estimate

‖Tg‖
1/2,Γ ≤ CS

2

CS
1

κ
1

2 (‖f‖
0,Ω
+ ‖g‖

1/2,Γ + ‖u0‖1/2,Γ
0

) for all g ∈ H
1

2 (Γ).

As mentioned earlier, the simple iterative process described in previous section is not convergent in

general. However this drawback can be overcome by the introduction of an additional relaxation step and

a relaxation parameter ω ∈ (0, 1), resulting in:

Step 1: Solve the interior Dirichlet boundary value problem

∇ ⋅ qn = f in Ω,

qn + κ∇un = 0 in Ω,

un = gn−1 on Γ,

un = u
0

on Γ
0
.

(5.4a)

Step 2: Solve the boundary integral equation

(
1

2

−K)g̃ = −V(qn ⋅ n) on Γ. (5.4b)

Step 3: Update the Dirichlet trace

gn = ωg̃ + (1 − ω)gn−1. (5.4c)

We will denote the operator mapping a trace g to the update defined by the relaxed process described

above by Tω : H 1

2 (Γ) → H 1

2 (Γ), and note that Tω = ωT + (1 − ω)I, where I is the identity operator. The fol-
lowing simple observation will be key in our analysis.

Lemma 2. Assume that g ∈ H 1

2 (Γ) is a fixed point of the relaxed operator Tω (i.e. Tωg = g). Then g is also a fixed
point of the unrelaxed operator T.

Proof. If g is a fixed point of Tω, it follows that g = Tωg = ωTg + (1 − ω)g. A simple calculation shows that

this implies that Tg = g.

5.1.2 Contraction Property of Tω

Wewill now show that the relaxed mapping is indeed a contraction and therefore, by the observation above,

the operator T has indeed a fixed point. To do so, we will adapt the ideas applied by Marini and Quarteroni

in [17], where they dealt with a primal formulation involving only PDE formulations in the two subdomains.
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Weare interested in showing that the repeated application of the operator Tω is a contraction.With this in

mind, we observe that the difference between successive applications Tnωg and Tn+1ω g will be associated with
the solution to an interior boundary value problemwith source term f = 0 and boundary condition u

0
= 0 on

Γ
0
. With these two ideas in mind we associate to every ξ ∈ H 1

2 (Γ) the function qξ ∈ H(div; Ω) satisfying the
interior boundary value problem

{
(κ−1qξ , v)

Ω
− (uξ , ∇ ⋅ v)

Ω
= −⟨v ⋅ n, ξ⟩

Γ
for all v ∈ H(div, Ω),

(v, ∇ ⋅ qξ )
Ω
= 0 for all v ∈ L2(Ω).

(5.5)

Theproblemabove is a particular instance of (2.11),whichhas been shown to beuniquely solvable. Recalling

that ∂Ω = Γ ∪ Γ
0
, the first equation implies that the trace of uξ over Γ

0
vanishes. With this in mind it is easy

to check that qξ = 0 if and only if ξ = 0 from which it follows that qξ = qψ implies ξ = ψ. We will use this

mapping and the fact that κ is symmetric and positive definite positive to define the inner product over H 1

2 (Γ)

((ξ, ψ)) := (κ−1qξ , qψ)
Ω
= (κ−1qψ , qξ )

Ω
for all ξ, ψ ∈ H̃

1

2 (Γ). (5.6)

This induces a norm over H 1

2 (Γ) given by
|||ξ||| := ((ξ, ξ))

1

2
.

Moreover, from the definition of qϕ and qψ, it follows that

((ξ, ψ)) = −⟨ξ, qψ ⋅ n⟩
Γ
= −⟨ψ, qξ ⋅ n⟩

Γ
. (5.7)

Lemma 3. The following estimates hold for g ∈ H 1

2 (Γ):

|||g|||2 ≤ κκ CS1‖g‖
2

1/2,Γ , (5.8)

((g, Tg)) ≤ −c‖Tg‖2
1/2,Γ , (5.9)

|||Tg||| ≤
CS

1

κ
cκ |||g|||, (5.10)

|||g||| ≤ C
PS
σ‖Tg‖

1/2,Γ . (5.11)

Proof. The first estimate follows readily from the definition of the inner product (( ⋅ , ⋅ )) in (5.6), and the

stability estimate for the interior problem

|||g|||2 = ((g, g)) = ‖κ−
1

2 qg‖2
Ω

≤
CS

1

κ
cκ ‖g‖

2

1/2,Γ .

For (5.9) we start from (5.7) andmake use of the fact that, by construction, Tg satisfies the boundary integral
equation (5.2b), leading to

((g, Tg)) = ⟨Tg, qg ⋅ n⟩
Γ
= −⟨Tg,V−1(1

2

−K)Tg⟩
Γ

. (5.12)

Using now the representation V−1(1
2

−K) =W + (1
2

−K󸀠)V−1(1
2

−K), it is possible to show [30] that there

exists a positive constant c such that

c‖g‖2
1/2,Γ ≤ ⟨g,V

−1(
1

2

−K)g⟩
Γ

. (5.13)

Combining the last two expressions, we arrive at (5.9). Inequality (5.10) follows readily from (5.8) and (5.9)

as follows:

|||Tg|||2 ≤ CS
1

κ
κ ‖Tg‖

2

1/2,Γ ≤ −
CS

1

κ
cκ ((g, Tg)) ≤

CS
1

κ
cκ |||g||||||Tg|||.

Finally, we will use the fact that qg and g are linked by the interior problem (5.5) as follows:

|||g|||2 = ((g, g)) = (κ−1qg , qg)
Ω
= −⟨qg ⋅ n, g⟩

Γ
(by (5.5) with v = qg)

= ⟨V−1(
1

2

−K)Tg, g⟩
Γ

(by (5.2b))

≤ C
PS
‖Tg‖

1/2,Γ‖g‖1/2,Γ
≤ C

PS
σ‖Tg‖

1/2,Γ|||g|||,
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where in the last inequality we have appealed to an argument from [15, 17] pointing to the existence of

a positive constant σ such that
‖g‖

1/2,Γ ≤ σ|||g|||, (5.14)

and the constant C
PS
follows from the continuity of the Poincaré–Steklov operator V−1(1

2

−K).

Using the estimates from the previous lemma, we can now compute

|||Tωg|||2 = ω2|||Tg|||2 + (1 − ω)2|||g|||2 + 2ω(1 − ω)((g, Tg))
≤ ω2|||Tg|||2 + (1 − ω)2|||g|||2 − 2ω(1 − ω)c‖Tg‖2

1/2,Γ (by (5.9))

≤ (
ωCS

1

κ
cκ )

2

|||g|||2 + (1 − ω)2|||g|||2 − 2ω(1 − ω)c‖Tg‖2
1/2,Γ (by (5.10))

≤ (
ωCS

1

κ
cκ )

2

|||g|||2 + (1 − ω)2|||g|||2 − 2ω(1 − ω)c
(σC

PS
)2
|||g|||2 (by (5.11))

= Ĉ(ω)|||g|||2,

where we have defined

Ĉ(ω) := ((
ωCS

1

κ
cκ )

2

+ (1 − ω)2 − 2ω(1 − ω)c
(σC

PS
)2
) = ((

CS
1

κ
cκ )

2

+
2c
(σC

PS
)2
+ 1)ω2 − 2(1 +

c
(σC

PS
)2
)ω + 1.

We note that the quantity Ĉ(ω) is a continuous function of the relaxation parameter ω that attains its mini-

mum value for

ω = ωm :=
1 + c
(σC

PS
)2

1 + 2c
(σC

PS
)2 +

CS
1

cκ

∈ (0, 1).

This implies that Ĉ(ω) is a decreasing function of ω within the interval (−∞, ωm). Therefore, since Ĉ(0) = 1,
we conclude that there exists ω∗ > 0 such that for every ω ∈ (0, ω∗) it holds that 0 < Ĉ(ω) < 1. Combining

this argument with Lemma 2, we have thus proven the following

Theorem 2. There exists ω∗ > 0 such that, for any value of the relaxation parameter ω ∈ (0, ω∗), the mapping
Tω is a contraction. As a consequence, the iterative procedure described by the problems (5.4) converges to the
functions q, u, g satisfying problems (5.2).

5.2 Discrete Problem

We will follow the main ideas introduced for the analysis of the continuous counterpart, but we will have to

adapt them to account for the additional challenges posed by the discretization and the transfer technique.

5.2.1 Discrete Fixed Point Operator and Relaxation

In this subsectionwe construct the discrete counterpart of the operators defined in Section 5.1.1. To that end,

we let

Xh := {μ ∈ L2(Γ) : ∀e ∈ E∂h , μ|Γe = (Eph ⋅ n)|Γe with ph ∈ [ℙk(Te)]2},

and define the discrete version of the operator S
1
(cf. (5.3)) as

Sh : ℙk(E∂h) → Xh , gh 󳨃→ Shgh := (Eqgh ⋅ n)|Γ ,

where qgh is the first component of (qgh , u
g
h), the unique solution of (3.6) having gh and u0 as Dirichlet bound-

ary data on Γ and Γ
0
, resp., and source term f . Moreover, by (3.15), we have that

J(qgh , u
g
h) ≤ CHDG(‖f‖0,Ωh + ‖κ

1

2 h−
1

2 u
0
‖
Γ
0

+ ‖κ
1

2 h−
1

2 gh ∘ ϕ‖Γ).
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On the other hand, consider a mesh edge e ∈ E∂h and recall the bijective mapping ϕ, defined in (3.1); we will
denote the image of an edge e ⊂ Γh under ϕ by Γe := ϕ(e). Now, by considering [2, Lemma 4], it is possible

to deduce that there exists a non-negative constant C
Γe , independent of h, such that

‖Eqgh ⋅ n‖Γe ≤ CΓeC
e
ext

Ce
2

h−
1

2

e ‖q
g
h‖Te . (5.15)

Therefore, the above two estimates imply that there exists CSh > 0, independent of h, such that

‖Shgh‖0,Γ ≤ CShh−
1

2 (‖f‖
0,Ωh + ‖κ

1

2 h−
1

2 u
0
‖
Γ
0

+ ‖κ
1

2 h−
1

2 gh ∘ ϕ‖Γ). (5.16)

Similarly, the discrete version of the operator S
2
is given by

Sn : 𝕋0n → 𝕋0n , λn 󳨃→ Snλn := g0n ,

where g0n is the unique solution of the equation (4.1) with Neumann data λn, and satisfies

‖Snλn‖1/2,Γ = ‖g0n‖1/2,Γ ≤ CBEM‖λn‖−1/2,Γ . (5.17)

We can now define the discrete analogue to the operator T from Section 5.1.1 as

Th,n : 𝕋0n →,𝕋0n , g0n 󳨃→ Th,ng0n := Sn ∘ ℚ0n ∘ Sh ∘ Πh ∘ (g0n ∘ ϕ),

where Πh andℚ0n are the L2-projections into ℙk(E∂h) and 𝕋
0

n, respectively.

5.2.2 Contraction Property of T h,n

We define the discrete version of (5.6). For φ, ψ ∈ 𝕋0n,

((φ, ψ))h := Ah(q
φ
h , q

ψ
h ) + Ch(u

φ
h , u

ψ
h ) (5.18)

where (qφh , uφ) and (q
ψ
h , uψ) are the solutions to (3.6) with source term f = 0, u

0
= 0 on Γ

0
and boundary

data over Γ given by φ and ψ, respectively. This is, in fact, an inner product on 𝕋0n. In order to see that, first
let us note that Ch is a semi-definite positive operator from Wh ×Wh (cf. (3.12)). Therefore, if ((ψ, ψ))h = 0,
then qψh = 0 and C(uψh , u

ψ
h ) = 0. Moreover, by (3.12) we have that u

ψ
h is single-valued and vanishes on the

boundary. Thus, considering all this information, from (3.6b) we have that

⟨τuψh , w⟩∂Th − 2⟨τu
ψ
h , {{w}}⟩E∘

h
= −⟨τψ ∘ ϕ, w⟩

Γ
for all w ∈ Wh .

Now, expressing the integral over ∂Th in terms of summation over edges and recalling that uψh = {{u
ψ
h }} and

uψh = 0 on the boundary, we deduce that the right-hand side of the expression above must vanish for all

w ∈ Wh. In particular, taking w = 1 it follows that

0 = −⟨τψ ∘ ϕ, 1⟩∂Ωh = −⟨τψ, 1⟩Γ .

Therefore, since τ is positive and ψ ∈ 𝕋0n, we must have ψ = 0. This inner product induces the norm

|||φ|||h := ((φ, φ))
1

2

h

and we notice that

|||φ|||2h = |||φ|||
2 +

1

2

‖τ−
1

2 [[qφh ]]‖
2

Eo
h
+ Ch(u

φ
h , u

φ
h ) ≥ |||φ|||

2

. (5.19)

We now establish the relationship between the discrete norm ||| ⋅ |||h, the continuous norms in H 1

2 (Γ)
and L2(Γ).

Lemma 4. Let gn ∈ 𝕋0n. There holds
‖gn‖Γ ≤ ‖gn‖1/2,Γ ≤ σ|||gn|||h . (5.20)
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Proof. Let gn ∈ 𝕋0n. By employing (5.14) we have ‖gn‖2
1/2,Γ ≤ σ

2|||gn|||2 ≤ σ2|||gn|||2h, where in the last inequality
we made use of (5.19). The second inequality follows by the characterization of the H 1

2 -norm in terms of the

Fourier coefficients of the function and, the fact that the parametrization of Γ is smooth, and the fact that gn
is a trigonometric polynomial (see, for instance, [29]).

The following identity and the one in the subsequent corollary establish the connection between the inner

product (( ⋅ , ⋅ ))h, defined through the interior problem, and the exterior problem. This will play a key role in

deriving the discrete analogue of (5.12).

Lemma 5. Let φ, ψ ∈ 𝕋0n. There holds

((φ, ψ))h = −⟨φ,V−1ℚ0n(
1

2

−K)Sn(ℚ0n(q
ψ
h ∘ ϕ
−1))⟩

Γ

− ⟨(Id − ℚ0n)(V
−1φ,Vℚ0n((q

ψ
h ∘ ϕ
−1) ⋅ n)⟩

Γ

− ⟨φ, (qψh ∘ ϕ
−1) ⋅ (nh − n)⟩Γ + ⟨τφ ∘ ϕ, u

ψ
h ⟩Γh −AT(q

φ
h , q

ψ
h ) +BT(q

φ
h , u

ψ). (5.21)

Proof. Let φ, ψ ∈ 𝕋0n. By the definition of ((φ, ψ))h and equations (3.6) satisfied by (q
φ
h , uφ) and (q

ψ
h , uψ), it

is possible to deduce the identity

((φ, ψ))h = F1,h(q
ψ
h ) − F2,h(uψ) −AT(q

φ
h , q

ψ
h ) +BT(q

φ
h , u

ψ)

= −⟨φ ∘ ϕ, qψh ⋅ nh⟩Γh + ⟨τφ ∘ ϕ, u
ψ
h ⟩Γh −AT(q

φ
h , q

ψ
h ) +BT(q

φ
h , u

ψ).

Now, since ϕ is a bijective mapping, we write the first term of the right-hand side as follows:

−⟨φ ∘ ϕ, qψh ⋅ nh⟩Γh = −⟨φ, (q
ψ
h ∘ ϕ
−1) ⋅ nh⟩Γ

= −⟨φ, (qψh ∘ ϕ
−1) ⋅ n⟩

Γ
− ⟨φ, (qψh ∘ ϕ

−1) ⋅ (nh − n)⟩Γ

= −⟨φ,ℚ0n((q
ψ
h ∘ ϕ
−1) ⋅ n)⟩

Γ
− ⟨φ, (qψh ∘ ϕ

−1) ⋅ (nh − n)⟩Γ ,

where we have added and subtracted nh and used the fact that φ ∈ 𝕋0n in the last step. We now conveniently

rewrite the first term on the right-hand side. More precisely, since V is invertible and self-adjoint,

⟨φ,ℚ0n((q
ψ
h ∘ ϕ
−1) ⋅ n)⟩

Γ
= ⟨V−1φ,Vℚ0n((q

ψ
h ∘ ϕ
−1) ⋅ n)⟩

Γ

= ⟨ℚ0n(V
−1φ),Vℚ0n((q

ψ
h ∘ ϕ
−1) ⋅ n)⟩

Γ
+ ⟨(Id − ℚ0n)(V

−1φ),Vℚ0n((q
ψ
h ∘ ϕ
−1) ⋅ n)⟩

Γ
,

where we added and subtractedℚ0n(V
−1φ). Then, takingℚ0n(V−1φ) as a test function in (4.1) Neumann data

λ := ℚ0n(q
φ
h ∘ ϕ
−1) and unique solution gλ := Sn(ℚ0n(q

ψ
h ∘ ϕ
−1)), we have that

⟨φ,ℚ0n((q
ψ
h ∘ ϕ
−1) ⋅ n)⟩

Γ
= ⟨ℚ0n(V

−1φ), (1
2

−K)gλ⟩
Γ

+ ⟨(Id − ℚ0n)(V
−1φ,Vℚ0n((q

ψ
h ∘ ϕ
−1) ⋅ n)⟩

Γ

= ⟨φ,V−1ℚ0n(
1

2

−K)gλ⟩
Γ

+ ⟨(Id − ℚ0n)(V
−1ψ,Vℚ0n((q

ψ
h ∘ ϕ
−1) ⋅ n)⟩

Γ
,

Gathering all the above identities, we obtain (5.21).

In the particular case of a circular interface Γ, the integral operators applied to trigonometric polynomials

are also trigonometric polynomials. Therefore, we have the following identity.

Corollary 3. Let us suppose that Γ is a circular interface. For φ, ψ ∈ 𝕋0n, there holds

((φ, ψ))h = −⟨φ,V−1(
1

2

−K)Sn(ℚ0n(q
ψ
h ∘ ϕ
−1))⟩

Γ

− ⟨φ, (qψh ∘ ϕ
−1) ⋅ (nh − n)⟩Γ

+ ⟨τφ ∘ ϕ, uψh ⟩Γh −AT(q
φ
h , q

ψ
h ) +BT(q

φ
h , u

ψ). (5.22)

We recall that the interface Γ has been introduced artificially and its shape can be chosen to facilitate compu-

tations. In particular, all the boundary integrals can be explicitly computed in the case of a circular interface.

This actually the case of the numerical examples reported in [7]. From now on, for the sake of simplicity of

the exposition, we will consider Γ is a circular interface.
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The next lemma provides a discrete version of the inequalities presented in Lemma 3. To that end, let us

first notice that the solution u of (2.11) is actually in H1(Ω). In addition, if we assume that q ∈ H1(Ω), we
have the following stability estimate:

‖q‖
1,Ω
+ ‖u‖

1,Ω
≤ C

stab
κ

1

2 (‖f‖
0,Ω
+ ‖g‖

1/2,Γ + ‖u0‖1/2,Γ
0

). (5.23)

Lemma 6. Let gn ∈ 𝕋0n and assume (5.23) holds true. We have that

|||gn|||2h ≤ C0(τ)‖gn‖
2

1/2,Γ , (5.24)

where
C
0
(τ) := C(κ−

1

2 + τ−
1

2 + 1 + (τ
1

2 + 1)τ
1

2 )(C
stab

κ
1

2 + 1) + τ

and
((gn , Th,ngn))h ≤ −c‖Th,ngn‖2

1/2,Γ + C1(h, τ)|||gn|||
2

h (5.25)

with
C
1
(h, τ) := C(Rhκ−1κ + κ−1κ

1

2 Rhh
1

2 τ
1

2 + σh−
1

2 κ
1

2 ‖(nh − n)‖∞,Γ).
Moreover,

|||Th,ngn|||2h ≤ C0(τ)c
−1(C

0
(τ)c−1 + C

1
(h, τ))|||gn|||2h (5.26)

and
|||gn|||2h ≤ C

2

PS

σ2|||Th,ngn|||2h + C1(h, τ)σ
2|||gn|||2h . (5.27)

Proof. To prove (5.23), we start by using the definition of the norm ||| ⋅ |||h to compute

|||gn|||2h = ‖κ
− 1
2 qgnh ‖

2

Ωh
+
1

2

‖τ−
1

2 [[qgnh ]]‖
2

E∘
h
+ ‖τ

1

2 (ugnh − {{u
gn
h }})‖

2

∂Th\∂Ωh + ‖τ
1

2 ugnh ‖
2

∂Ωh .

However, since ugn ∈ H1(Ω) and qgn ∈ H(div, Ω) it follows that

|||gn|||2h ≤ ‖κ
− 1
2 (qgnh − q

gn )‖2
Ωh
+
1

2

‖τ−
1

2 [[qgnh − q
gn ]]‖E∘

h

+ ‖τ
1

2 ((ugnh − u
gn ) − {{ugnh − u

gn }})‖2∂Th\∂Ωh
+ ‖τ

1

2 (ugnh − u
gn )‖2∂Ωh + ‖κ

− 1
2 qgn‖2

Ωh
+ ‖τ

1

2 ugn‖2∂Ωh
= J(q − qh , u − uh) + ‖κ−

1

2 qgn‖2
Ωh
+ ‖τ

1

2 ugn‖2∂Ωh (by (3.16))

= J(q − qh , u − uh) + ‖κ−
1

2 qgn‖2
Ωh
+ ‖τ

1

2 ugn‖2∂Ωh (by (2.12))

≤ C(κ−
1

2 + τ−
1

2 h
1

2 + 1)|q|
1,Ω
+ (τ

1

2 + 1)τ
1

2 |u|
1,Ω
+ ‖κ−

1

2 qgn‖2
Ωh
+ ‖τ

1

2 ugn‖2∂Ωh (by (3.25))

≤ C(κ−
1

2 + τ−
1

2 h
1

2 + 1 + (τ
1

2 + 1)τ
1

2 )(C
stab

κ
1

2 + 1)‖gn‖2
1/2,Γ + τ‖gn‖

2

Γ

(by (5.23)),

which implies (5.24).

Now, let φ, ψ ∈ 𝕋0n. By the previous Corollary 3, the Cauchy–Schwarz inequality and the continuity prop-
erties of the operators AT and BT (cf. (3.13) and (3.14)), and denoting by C a generic positive constant

independent of the discretization parameters, we can deduce that

((φ, ψ))h ≤ −⟨ψ,V−1(
1

2

−K)Sn(ℚ0n(q
φ
h ∘ ϕ
−1))⟩

Γ

− ⟨ψ, (qφh ∘ ϕ
−1) ⋅ (nh − n)⟩Γ

+ CRhκ−1κ‖κ−
1

2 qφh ‖Ωh‖κ
− 1
2 qψh ‖Ωh + Cκ

−1κ
1

2 Rhh
1

2 τ
1

2 (
1

2

‖κ−
1

2 qφh ‖
2

Ωh
+
1

2

‖τ
1

2 uψh ‖
2

∂Ωh)

≤ −⟨ψ,V−1(1
2

−K)Sn(ℚ0n(q
φ
h ∘ ϕ
−1))⟩

Γ

− ⟨ψ, (qφh ∘ ϕ
−1) ⋅ (nh − n)⟩Γ

+
1

2

C(Rhκ−1κ + κ−1κ
1

2 Rhh
1

2 τ
1

2 )(|||φ|||2h + |||ψ|||
2

h).

For the second term on the right-hand side we have that

−⟨ψ, (qφh ∘ ϕ
−1) ⋅ (nh − n)⟩Γ ≤ ‖ψ‖Γ‖q

φ
h ∘ ϕ
−1‖

Γ
‖(nh − n)‖∞,Γ

≤ ‖ψ‖
Γ
h−

1

2 κ
1

2 ‖κ−
1

2 qφh ‖Ωh‖(nh − n)‖∞,Γ

≤ σh−
1

2 κ
1

2 ‖(nh − n)‖∞,Γ|||φ|||h|||ψ|||h ,
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where in the last inequality we employed (5.20) and the definition of ||| ⋅ |||h. Hence,

((φ, ψ))h ≤ −⟨ψ,V−1(
1

2

−K)Sn(ℚ0n(q
φ
h ∘ ϕ
−1))⟩

Γ

+
1

2

C(Rhκ−1κ + κ−1κ
1

2 Rhh
1

2 τ
1

2 + σh−
1

2 κ
1

2 ‖(nh − n)‖∞,Γ)(|||φ|||2h + |||ψ|||
2

h). (5.28)

Now, by setting

φ = gn and ψ = Th,ngn = Sn(ℚ0n(q
gn
h ∘ ϕ

−1))

and recalling that (( ⋅ , ⋅ ))h is symmetric, (5.28) implies (5.25).

On the other hand, (5.25) implies

‖Th,ngn‖2
1/2,Γ ≤ c

−1|||g0n|||h|||Th,ngn|||h + c−1C1(h, τ)|||gn|||2h . (5.29)

Then, by (5.24) and Young’s inequality, we obtain

|||Th,ngn|||2h ≤ C0(τ)‖T
h,ngn‖2

1/2,Γ ≤ C0(τ)c
−2|||gn|||2h + |||T

h,ngn|||2h + c
−1C

1
(h, τ)C

0
(τ)|||gn|||2h

and (5.26) follows.

Finally, taking gn = ψ = φ in (5.28), the definition of C
1
(h, τ) and (5.20), we obtain

|||gn|||2h ≤ −⟨gn ,V
−1(

1

2

−K)Sn(ℚ0n(q
gn
h ∘ ϕ

−1))⟩
Γ

+ C
1
(h, τ)‖gn‖2

Γ

= −⟨gn ,V−1(
1

2

−K)Th,ngn⟩
Γ

+ C
1
(h, τ)‖gn‖2

Γ

≤ C
PS
σ‖gn‖1/2,Γ|||Th,ngn|||h + C1(h, τ)σ2|||gn|||2h

≤ C
PS
σ2|||gn|||h|||Th,n|||h + C1(h, τ)σ2|||gn|||2h

≤
1

2

|||gn|||2h +
1

2

C2
PS

σ2|||Th,ngn|||2h + C1(h, τ)σ
2|||gn|||2h ,

which implies (5.27).

Similarly to the case of the operator Tω, we define the operator

Th,nω : 𝕋0n → 𝕋
0

n , g0n 󳨃→ Th,nω g0n := ωTh,ng0n + (1 − ω)g0n .

We can now use the previous lemmas to prove the main result of this communication, namely the con-

vergence of the iterative procedure.

Theorem 3. If the mesh parameter h is small enough, it is possible to find values of the relaxation parameter
ω in the interval (0, 1) for which the discrete operator Th,nω is a contraction. Therefore, the iterative procedure
(5.4) converges.

Proof. Let gn ∈ 𝕋0n. By employing the estimates in Lemma 6,

|||Th,nω gn|||2h = ω
2|||Th,ngn|||2h + (1 − ω)

2|||gn|||2h + 2ω(1 − ω)((gn , T
h,ngn))h

≤ ω2C
0
(τ)c−1(C

0
(τ)c−1 + C

1
(h, τ))|||gn|||2h + (1 − ω)

2|||gn|||2h
− 2cω(1 − ω)‖Th,ngn‖2

1/2,Γ + 2ω(1 − ω)C1(h, τ)|||gn|||
2

h

≤ ω2C
0
(τ)c−1(C

0
(τ)c−1 + C

1
(h, τ))|||gn|||2h + (1 − ω)

2|||gn|||2h
− 2cω(1 − ω)C

0
(τ)|||Th,ngn|||2h + 2ω(1 − ω)C1(h, τ)|||gn|||

2

h .

where in the last inequality we made use of (5.24). Then, by (5.27),

|||Th,nω gn|||2h ≤ ω
2C

0
(τ)c−1(C

0
(τ)c−1 + C

1
(h, τ))|||gn|||2h + (1 − ω)

2|||gn|||2h − 2cω(1 − ω)C0(τ)C
−2
PS

σ−2|||gn|||2h
+ 2cω(1 − ω)σ−2C

0
(τ)C−2

PS

C
1
(h, τ)|||gn|||2h + 2ω(1 − ω)C1(h, τ)|||gn|||

2

h

= Ĉh,n(ω)|||gn|||2h ,
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where

Ĉh,n(ω) := ω2C
0
(τ)c−1(C

0
(τ)c−1 + C

1
(h, τ)) + (1 − ω)2 − 2cω(1 − ω)C

0
(τ)C−2

PS

σ−2

+ 2cω(1 − ω)C
0
(τ)C−2

PS

σ−2C
1
(h, τ) + 2ω(1 − ω)C

1
(h, τ).

Analogously to the analysis of the continuous operator, we observe that Ĉh,n(ω) is of the form

Ĉh,n(ω) = αω2 + βω + 1

with

α := 1 + (C0(τ)c )(
C
0
(τ)
c + C1(h, τ)) + 2(

cC
0
(τ)

(C
PS
σ)2
(1 − C

1
(h, τ)) − C

1
(h, τ)),

β := −2(1 − C
1
(h, τ))( cC0(τ)

(C
PS
σ)2
+ 1).

The extreme value for Ĉh,n(ω) is attained at

ω = ωm := −
β
2α .

Since C
1
(h, τ) vanishes as h → 0, for a fine enoughmesh it will hold that α > 0 and β < 0. Therefore, ωm will

belong to the interval (0, 1) and will in fact be a minimizer of Ĉh,n. Moreover, since Ĉh,n(0) = 1 and Ĉh,n is
decreasing in (0, ωm) ⊂ (0, 1), we conclude that it is possible to choose ω ∈ (0, 1) such that Th,nω is contrac-

tive. For these values of ω, the convergence of the iterative process (5.4) follows from Banach’s fixed-point

theorem.

We note that for the case of a fitted geometry (i.e. whenever Ω ≡ Ωh) the distance parameter Rh = 0. This
implies that C

1
(h, τ) = 0 and then

Ĉh,n(ω) = ((1 + τc )
2

+
2c(1 + τ)
(C

PS
σ)2
+ 1)ω2 − 2(1 +

c(1 + τ)
(C

PS
σ)2
)ω + 1,

in coincidence with the continuous case. Above, the presence of the parameter τ stems from the discretiza-

tion, while the absence of factors involving κ is due to the choice of discrete norms.

6 HDG Projection

Given constants lu , lq ∈ [0, k], T ∈ Th and apair of functions (q, u) ∈ H1+lq (T) × H1+lu (T), by [4] there is a con-
stant C > 0 independent of T and τ such that

‖Π
v
q − q‖T ≲ h

lq+1
T |q|lq+1,T + h

lu+1
T τ∗T |u|lu+1,T , (6.1a)

‖Π
w
u − u‖T ≲ hlu+1T |u|lu+1,T +

hlq+1T
τmax

T
|∇ ⋅ q|lqT , (6.1b)

where τ∗T := max τ|∂T\F∗ and F∗ is a face of T at which τ|∂T is maximum. As is customary, the symbol | ⋅ |Hs is
to be understood as the Sobolev seminorm of order s ∈ ℝ. Now, in the context of the unfitted HDG method,

the projection errors in Ω

c
h satisfies ([5, Lemma 3.8])

‖Π
v
q − q‖

Ω

c
h
≲ R

1

2

h ‖Πv
q − q‖

Ωh + hlq+1|q|lq ,Ωh .
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