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Abstract:Magnetic fields generated by normal or superconducting electromagnets are used to guide and focus
particle beams in storage rings, synchrotron light sources, mass spectrometers, and beamlines for radiotherapy.

The accurate determination of the magnetic field by measurement is critical for the prediction of the particle

beam trajectory and hence the design of the accelerator complex. In this context, state-of-the-art numerical

field computation makes use of boundary-element methods (BEM) to express the magnetic field. This enables

the accurate computation of higher-order partial derivatives and local expansions of magnetic potentials used

in efficient numerical codes for particle tracking. In this paper, we present an approach to infer the boundary

data of an indirect BEM formulation from magnetic field measurements by ensemble Kálmán filtering. In this

way, measurement uncertainties can be propagated to the boundary data, magnetic field and potentials, and to

the beam related quantities derived fromparticle tracking.We provide results obtained from realmeasurement

data of a curved dipole magnet using a Hall probe mapper system.

Keywords: Boundary Element Methods, Particle Accelerator Magnets, Bayesian Inference, Data Assimilation,
Magnetic Measurements

MSC 2010: 45Q05, 35Q62, 35Q61

1 Introduction

Static magnetic fields generated by electromagnets are used in particle accelerators to guide and focus particle

beams. Studying the dynamics of the beam is indispensable in the design and operational phase of an accelerator

complex and requires the accurate mathematical modeling of the magnetic fields. Preferably, the field model is

an exact magneto-static solution obeying Maxwell’s equations.

Hybrid models combine first principles modeling and data-driven modeling to improve the predictive

accuracy while preserving the underlying physical relationships. In this way, the differences between the

magnet model and the real physical object can be incorporated in the numerical field simulation and particle

tracking while preserving the underlying physical nature.

Classically, the integrated field in an accelerator magnet is expressed by eigenfunctions of the Laplace

equation in polar coordinates, so called field harmonics. It is common practice to measure the field harmon-

ics by rotating induction-coil systems and to use the measurement results in particle tracking simulations.

This approach combines first principles with measurement data and may therefore be regarded as a classical

example of hybrid modeling.

The advantages of this method are far-reaching. One can exploit scaling laws derived from field harmonics

to reconstruct the field based on measurements on a single radius while still maintaining an exact magneto-
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static solution. Moreover, sensor systems can be designed particularly for themeasurement of certainmultipole

components and specializedmeasurement equipment allows for the accurate determination ofmultipole errors

even under the influence of mechanical vibration and shaft deformation [43].

In high energy physics, the particle beams are often contained in straight cylindrical vacuum chambers.

In such cases the theory of field harmonics can be extended to three-dimensional cylindrical coordinates by

generalized-gradients (see [36, Chapter 6], [37] and [47, Section 1.3.2]).

The motion of charged particles in the accelerator is computed numerically in particle tracking codes. The

treatment of two-dimensional field harmonics is well established [47, Chapters 2 and 3]. The treatment of fringe

fields and field inhomogeneities using generalized gradients was studied in [46], [34] and [5]. A more general

and efficient approach based on a finite-element formulation was developed in [41].

In energy storage rings, beamlines for radiotherapy, mass spectrometers but also detector magnets, the

fringe fields in the magnet ends give a relevant contribution to the equations of motion and particles might

occupymore complex geometric domains. Hence,more general expressions for themagnetic field in the vacuum

chamber are required. Boundary-element methods have been proposed as a fieldmodel to provide local expan-

sions of the magnetic vector potential in the vicinity of a reference trajectory; [2, 10]. The local field description

may be based on a Taylor approximation or an expansion into solid harmonics. An approach for the efficient

treatment of such field descriptions in particle tracking is found in [48].

The quantitative characterization of uncertainties in model parameters due to random input data is the

main objective of uncertainty quantification. Deterministic approaches for the uncertainty quantification for

boundary-elementmethodswith randomright-hand sides are found in [8] and the references therein.Moreover,

in [6] an approach for the shape inversion of a random scatterer, based on noisymeasurement data is presented.

This article follows up on the advances of [21], but extends the analysis in four ways:∙ Amore general field representation by means of an indirect boundary-element method is adopted in order

to cope with more general beamlines in particle accelerators and detectors.∙ The efficiency of the Bayesian inference is enhanced by an ensemble Kálmán filter, where the statistics of

the boundary data is expressed by means of an ensemble of state vectors. This approach is well known in

the discipline of data assimilation, where the propagation of the full covariance matrix becomes infeasible

due to the high dimension of the state space (see [4]).∙ As rotating induction-coil measurements are tailored to cylindrical domains, a more flexible Hall probe

mapper system is used, which allows us to sample the field locally within a larger class of physical domains.

We derive a realistic noise model for this particular measurement system, which includes the effect of

position errors and vibrations.∙ An iterative learning algorithm is proposed that uses the spatial distribution of uncertainty in the pre-

dicted field to explore the spatial domain. This makes the inference of boundary data more effective, since

measurements in regions with low uncertainty are reduced.

Section 2 of this paper covers the indirect boundary element method, employing a double layer potential that

yields a "lightweight" physical representation for the magnetic vector potential. Section 3 then turns to the eval-

uation of measurement data, which is suffering from uncertainties. In Section 4 we give details about a real

world application to which the partial results of Section 5 will be applied. Particularly, we consider the use-case

of the field qualitymeasurement of a strongly-curved dipolemagnet. Themain result of Section 5 is an ensemble

Kálmán filter for the inference of boundary data. It bypasses the need for the propagation of the full posterior

covariance matrix and thus enables the efficient uncertainty quantification.

2 The Indirect Double Layer Potential Formulation

Consider an open and simply connected Lipschitz domainΩ in the air gap, or vacuum chamber of an accelerator

magnet, with boundary ∂Ω. The domain is assumed to be free of magnetic sources in a way that the field is

governed by the magneto-static equations

div B = 0, curlH = 0 (2.1)
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for the magnetic flux density B and the magnetic field H . In this case, the Laplace equation

div grad ϕm = 0 (2.2)

holds for the magnetic scalar potential ϕm, in Ω, which is defined via B = −μ0 grad ϕm. Boundary integral equa-
tions can be derived from the Gauss integral theorem to represent the potential ϕm in Ω accordingly. Here we

focus on the indirect representation formula, by using a double-layer potential

ϕm(r) = − ∫
∂Ω

n(r) ⋅ gradr u∗(r, r) ν(r) dr := (Wν)(r), r ∈ Ω. (2.3)

The vector n is an outward directed unit vector, u∗(r, r) = 1

4π |r − r| is the Green’s function of free space,

gradr denotes the gradient operator acting on r, and the density function ν ∈ H 1

2 (∂Ω) is the boundary data.
For a discussion on direct and indirect boundary integral equations see [35, Chapter 1]. The problem setting is

illustrated in Figure 1 (left).

Remark 1. The boundary ∂Ω often matches the magnet poles or the vacuum chamber while particle beams

with large acceptance may occupy most of the available space. Bringing the sensor close to the boundary is
a non-trivial task and dedicated measurement equipment needs to be designed. We will therefore focus on the

inference of the boundary data ν from measurements within the domain Ω. This has the disadvantage that the

inverse source problem is ill-conditioned. The Bayesian framework is used in Section 5 to derive a regularization

technique based on a prior field solution.

One benefit of the field representation by ν is that amagnetic vector potential A, defined via B = curlA, is acces-
sible by means of the vectorial single-layer potential Ṽ acting on the surface current density s := −n × gradr ν,

A = μ0 ∫
∂Ω

u∗(r, r)s(r) dr := (Ṽs)(r). (2.4)

This follows from the definition of the magnetic vector potential and the equivalence of the double layer and

eddy ring [28].

Remark 2. Although the boundary data ν in the indirect representation formula is fictitious, evaluating (2.3)

always yields an exact magneto-static solution, i.e., (2.1) holds in Ω for B and H (see [35, Section 1.1]).

2.1 Discretization

In boundary-element methods (BEM), the boundary data is approximated by locally supported basis functions

on a boundarymesh. The algorithms presented in this paper have been implemented in C++ using the Boundary

Element Based Engineering Library (BEMBEL) [7]. This enables a discretization of ∂Ω bymeans of non-uniform

rational basis spline (NURBS) parameterizations as proposed in [9]. NURBS parameterizations are commonly

used in computer-aided design and enable the exact representation of a large class of geometries. For an iso-

geometric approach the boundary data ν is approximated in the finite-dimensional space Vh ⊂ H 1

2 (∂Ω), which
is spanned by patchwise tensor product basis-splines of degree p (see for example [3]). This yields the approx-
imated boundary data νh and surface current density sh in terms of the N degrees of freedom νk . A tensor

product basis-spline of degree p = 3 is shown in Figure 1 (right), together with the resulting surface current den-
sity for some given ν over sixteen elements. In the following, the vector of degrees of freedom for the discretized

double-layer potential will be denoted as the state vector ν = (ν1 , . . . , νN)T ∈ ℝN .
The normal component of the magnetic flux density n ⋅ B is proportional to the Neumann trace, i.e.,

n ⋅ B = −μ0n ⋅ grad ϕm, where μ0 = 4π ⋅ 10−7 Vs/Am is the vacuum permeability. For Lipschitz domains this

holds almost everywhere on ∂Ω.
The component n ⋅ B provides the Neumann data for the computation of the state vector ν. To this end,

we apply the Neumann trace operator to the double layer potential in (2.3), which results in the hypersingular
integral operator, denoted as D : H 1

2 (∂Ω)→ H− 12 (∂Ω) (see [35, p. 6]). Following a Galerkin discretization scheme
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Figure 1: Left: A domain Ω, its boundary ∂Ω and the outward directed unit vector n in the air gap of an electromagnet. Right: A tensor
product basis spline of degree p = 3, defined over sixteen square elements. The vector field illustrates the resulting surface current
density s.

for D, we derive the linear equation system
Dν = f , (2.5)

where [D]k,l = −μ0⟨φk , (Dφl)⟩∂Ω + ⟨φk , φl⟩∂Ω and [f ]k = ⟨φk , n ⋅ B⟩∂Ω . (2.6)

The k-th tensor product basis-splines is denoted by φk . The explicit definition of these functions in the iso-

geometric framework is given in [3]. Practically we use the representation⟨φk , (Dφl)⟩∂Ω = 1

4π
∫
∂Ω

∫
∂Ω

curl∂Ωφk(r) ⋅ curl∂Ωφl(r)|r − r| dr dr , (2.7)

where

curl∂Ωφ(r) = n(r) × gradr φ̃(r) for r ∈ ∂Ω (2.8)

is the vectorial surface curl and φ̃ is extending φ locally into the neighborhood of ∂Ω (see [35, Section 1.1]).

The regularization term ⟨φk , φl⟩∂Ω is introduced as a cure to the null space of D (see [35]) such that [D]k,l
is positive definite.

Remark 3. Inmany applications, amagnet simulation based on the finite elementmethod (FEM) provides a low
order approximation of B in the vacuum chamber. Low order FEM approximations are not useful for particle

tracking (see for instance the discussions in [15] and [2]), but they can be used to evaluate the Neumann data

n ⋅ B on the domain boundary to compute the state vector ν. We can then use (2.4) for the smooth evaluation of

the magnetic vector potential in the vicinity of the particle beam. Similar approaches have been developed for

the efficient, but accurate force calculation in electrical machines [31].

Remark 4. Given a low order FEM solution, we can evaluate B on a point cloud in the vicinity of the domain

boundary. From this point cloud, the normal component n ⋅ B can be evaluated by linear interpolation. The

accuracy of this interpolation can be controlled by the resolution of the point cloud, and it is limited by the

accuracy of the finite element solution.

We can derive an equation for the evaluation of B at the position r, by taking the curl of (2.4)

B(r, ν) = −μ0 curl N∑
n=1 νn ∫∂Ω u∗(r, r) curl∂Ωφn(r) dr , (2.9)

where φn is the n-th tensor product basis spline on the boundary mesh.
The Aubin–Nitsche formalism allows to derive point-wise error estimates for the evaluation of the dis-

cretized boundary integral equations (see [45, Theorem 12.8], [38, Example 4.2.15]). As it will be relevant for the

upcoming discussions, we provide the result for the indirect Neumann problem in Theorem 1.
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Theorem 1. For the solution of the Neumann problem, using the indirect double-layer potential, and assuming
a sufficiently smooth boundary, there holds the point-wise estimate [9, Theorem 7.1]|(Wν)(r) − (Wνh)(r)| ≲ c(r)h2p+1 , r ∈ Ω, (2.10)

where νh is the approximated stream function using B-splines of polynomial degree p, and h is a mesh parameter,
which is often identified with the maximum edge length of all boundary elements.

The constant c(r) decreases rapidly with increasing distance of r to the boundary. This is known as the smooth-
ing property in boundary element methods.

2.2 A Local Expansion for Particle Tracking

In particle beam dynamics the motion of a relativistic particle is usually expressed in so called phase-space

coordinates. The momentum variables in phase-space coordinates are more abstract and differ from the ones

used in classical mechanics, but this has the advantage that certain invariants of motion are conserved for

a passage of the particle through a static magnetic field (see [47, Chapter 2]).

From the Euler–Lagrange formalism, the equations of motion result in Hamilton’s equations

dq
dt
= ∂H
∂p

,
dp
dt
= −∂H

∂q
, (2.11)

where z := (qT , pT )T expresses the phase space coordinates, with q denoting the particles coordinate vector

and p its canonical momentum. In the absence an electric field the Hamiltonian H is defined as

H := c√(p − qA)2 + m2c2 , (2.12)

where c denotes the velocity of light, q the particle charge and m its mass. Hamilton’s equations (2.11) may be

formulated as an ordinary differential equation system of the type

d

dt
z = f (t, z). (2.13)

Its solution bynumerical integration for a given initial condition is themain objective of single particle tracking.¹

Due to the partial derivatives
∂H
∂q , the spatial derivatives of themagnetic vector potential ∂iAj for i, j ∈ x, y, z

are involved on the right-hand side of (2.13). A useful field model must therefore provide A, as well as its spatial
derivatives of first order. Approaches for numerical integration of (2.13)may use explicit or implicit higher order

Runge–Kutta schemes [19] or also Lie-algebraic methods [48].

In principle one could apply the representation formula (2.4) directly in the numerical integration scheme.

The spatial derivatives can be computed by differentiating the Green’s function u∗ analytically and evaluating
the resulting integral equation numerically. This, however, requires the repeated integration over the whole

boundary ∂Ω for each particle at each position, which is not known a-priori.

More efficient approaches have been proposed, using local expansions of the magnetic vector potential

around a reference trajectory by either Taylor approximations [11] or the fitting ofA by solid harmonic functions

within intercepting spheres [2].

Using Taylor expansions makes it necessary to impose (2.1) to recover a magneto-static solution. This is

implied byusing the solid harmonic functions.We therefore follow the approachdeveloped in [2], but in contrast

to fitting A on the surfaces of spheres, we make use of a local expansion of the Green’s function according to

Theorem 2 for the computation of the local harmonic expansion. This allows us to derive analytical bounds for

the truncation errors and also the fast calculation of the local expansion for an ensemble of state vectors.

1 Usually one performs a change of coordinates to obtain a formulation in terms of the path length as the independent variable.
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Theorem 2 ([29, Section 3.4]). Consider a point r0 ∈ ℝ3 and the two difference vectors r − r0 = (r, θ, φ) and
r − r0 = (r , θ , φ), given in spherical coordinates. For r < r, the expansion of the Green’s function is

u∗(r, r) ≈ 1

4π‖r − r‖ = 1

4π

∞∑
l=0 l∑

m=−l 1

2l + 1 rl

rl+1 Ym
l (θ, φ)Ym

l (θ , φ)∗ , (2.14)

where Ym
l : ℝ2 → ℂ is the spherical harmonic function of order l and degree m, and ( ⋅ )∗ denotes the complex

conjugate.

The functions rlYm
l and Ym

l /rl+1 are the regular and irregular solid harmonic functions, which are eigensolu-
tions of the Laplace equation.

By Theorem 2, the magnetic vector potential may be expanded at the position rj , according to

A(r) ≈ AL(r) := L∑
l=0 l∑

m=−lmm
l (rj)rlYm

l (θ, φ) with ‖r − rj‖ < min
r∈∂Ω ‖r − rj‖. (2.15)

This expansion is valid inside the largest sphere with center rj , which does not enclose any part of the domain
boundary.

The evaluation position r − rj is expressed in spherical coordinates (r, θ, φ) and the moments mm
l (rj) are

given by

mm
l (rj) := μ0 1

2l + 1 ∫
∂Ω

s(r)Ym
l (θ , φ)∗
rl+1 dr , (2.16)

where r − rj = (r , θ , φ). It is possible to assemble the integral (2.16) for the basis functions used for the

approximation of νh . In this way, the moments can be evaluated rapidly by matrix vector products for an

ensemble of state vectors.

Themomentsmm
l (rj) can be computed for J points rj along a reference trajectory. The particle tracking can

then be performed on (2.15) and it requires only the evaluations of the solid harmonics rlYm
l (θ, φ). As the solid

harmonics are eigensolutions of the Laplace equation, evaluating the truncated sum in (2.15) yields an exact

magneto-static solution.

Remark 5. The approach based on Theorem 2 can also be applied to other field representations based on inte-

gral formulations, such as BEM-FEM coupling or volume integral methods.

Theorem 3. The error in the truncation AL is bounded by|A(r) − AL(r)| ≤ C
R − r( rR)L

with
C := μ0

4π
∫
∂Ω

|s(r)| dr , (2.17)

where R := minr∈∂Ω ‖r − rj‖ and r < R.
Proof. The truncation error is given by the coefficients l ≥ L + 1. From the addition theorem of the spherical

harmonic functions (see [50, equation (14.30.9)]) we deduce that 4π2l + 1 l∑
m=−l Ym

l (θ , φ)∗Ym
l (θ, φ) ≤ 1.

Moreover, with r ≤ R for all r ∈ ∂Ω and the triangle inequality we find that|A(r) − AL(r)| ≤ C ∞∑
l=L+1 rl

Rl+1 = C
R − r( rR)L

with C according to (2.17). In the last equation we have used the closed form of the geometric series∞∑
l=L+1 cl+1 = cL+1

1 − c
for |c| < 1.
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Figure 2: Truncation error for the evaluation of the magnetic vector potential over the ratio r/R. Dashed: Theoretical bound. Solid:
Observed error in a numerical experiment.

The truncation error for the evaluation of A in Ω can be controlled by means of the truncation parameter L as
well as the number of expansion positions J. This is conceptually equivalent to p and h refinement in boundary
and finite element methods.

Figure 2 shows the theoretical bounds for the truncation error as a function of the ratio
r
R and also the trun-

cation errors observed in a numerical experiment. The rates of the theoretical bounds meet our observations,

but the absolute values are pessimistic. However, this is uncritical, since the truncation error |A(r) − AL(r)| can
be computed for a given L. In this way L can be adjusted for an adaptive expansion.

3 The Hall Probe Mapper System

The Hall probe mapper system is shown in Figure 3 (left). It uses the stages of a coordinate measuring machine

(CMM) to manipulate the position of a three-axes Hall sensor in the magnetic field. The system allows for

a distance triggered acquisition of theHall voltages during the stagemovement. This improves the requiredmea-

surement duration compared to measurements in start-stop mode, but also causes the mapper arm to vibrate

due to perturbations of the stage motion in the μm range.

Amathematical model for three axes Hall probemeasurements is now derived. This mathematical model is

coupled with the boundary integral equation for the magnetic flux density B, which yields the so-called obser-
vation operatorH : ν → ỹ. It maps a state vector ν to a predicted measurement vector ỹ. Finally, a realistic noise
model will be derived, which includes the impact of positioning perturbations due to mapper-arm vibrations.

3.1 The Observation Operator

The voltages measured by Hall sensors can have complicated dependencies on the three components of the

magnetic flux density. These stem from planar Hall effects and geometric imperfections, but also from non-

linearity errors of the sensor transfer function. Calibration techniques allow for the characterization of planar

and axial Hall effects by rotating the sensor in a reference field. This gives rise to the sensitivity function

si(B) = L∑
l=0 l∑

m=−l cl,mi |B|lYm
l (θ(B), φ(B)), (3.1)
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with the complex calibration coefficients cl,mi ∈ ℂ, where cl,mi = −(cl,−mi )∗, and the spherical harmonic func-

tions Ym
l . The angles θ(B) and φ(B) denote the polar and azimuth angles of the B field in a sensor coordinate

system (see Figure 3 (a)). We have introduced the index i ∈ {0, 1, 2} to distinguish the three Hall sensors involved
in a three component measurement. The sensors do not need to be aligned with any of the magnet coordinate

axes. Their misalignment is encoded in the coefficients cl,mi . Moreover, the three sensors cannot be mounted

at exactly the same spot. For this reason, the positions of the three Hall sensors are denoted by rm + oi , where
rm is a measurement position (usually the position measured by the linear encoders) and the vectors oi denote
the displacements of the Hall sensors with respect to this position. Typically, the displacements between the

sensors are in themm range. The absolute sensor position and orientation can be identified by measurements

in calibration magnets and is therefore assumed to be given.

Remark 6. In case of a linear Hall sensor, the sensitivity function si may be expressed by means of the orien-
tation vector ni , and the zero field offset voltage U0,i such that si(B) = ni ⋅ B + U0,i . In this case all coefficients

with l > 1 vanish in (3.1). Whereas the offset voltage U0,i is encoded in the l = 0 term, the projection ni ⋅ B is

encoded in the terms c1,mi |B|Ym
1
.

To establish the observation operator, we define the three Hall voltages by

Ui(rm) := si(B(rm + oi)), i ∈ {0, 1, 2}, (3.2)

and sort the measurement vector according to the scheme ỹ = (U0(r1), . . . , U0(rM), U1(r1), . . . , U2(r1), . . . )T ,
consideringMmeasurement positions. Them-th row of the observation operatorH : ℝN → ℝ3M×N is computed
by [H(ν)]m+iM = si(B(rm + oi , ν)) (3.3)

for i ∈ {0, 1, 2} and B(r, ν) according to (2.9).
Remark 7. One benefit of the indirect double layer potential formulation is that the observation operator

imposes a magneto-static solution without the necessity to solve a linear equation system. To see this, we con-

sider, as an alternative, a field model based on a finite element approximation. The coefficients x ∈ ℝN of this

approximation are related to the boundary data b by means of a linear equation system Ax = Pb, where A
is a sparse Galerkin matrix and P : b → x is a sparse extension operator (see [12]). The observation operator

for measurements within the domain needs to be constructed on the approximation space. We denote this

evaluation operation by the matrix S. In case of a linear sensor, it therefore follows the observation operator
H = SA−1P (see [21]). Due to the sparsity of A it is usually much more effective, to solve this equation for multi-

ple right-hand sides than performing a direct inversion. Whenever the right-hand side b changes, the solution
of a sparse linear equation system of size N × N is required to evaluate the measurement operation.

3.2 The Noise Model

For the uncertainty quantification, a noise model is needed which represents the real measurement data. We

therefore follow the guide to the expression of uncertainty inmeasurement (GUM) [49]. It proposes to introduce

input quantities to the measurement equation (3.3), in order to model the relevant physical phenomena, which

are perturbing the measurements. Then, the uncertainty in the measurands is quantified by means of a first

order Taylor approximation of the measurement equation with respect to the input quantities. This procedure

is justified as long as the values of the input quantities are small deviations from zero.

In case of the Hall probe mapper system, the measurements are mostly affected by perturbations of the

sensor position and orientation, due to the vibration of the mapper arm. We therefore include five degrees of

freedom for each measurement position as input quantities. Three displacements, denoted as wx , wy and wz ,

and two rotations φx and φy². The input quantities are illustrated in Figure 3. All input quantities are collected
into the 5M-dimensional vector of mechanical perturbations d.

2 A third possible rotation is neglected as no axial rotation has been observed for the Hall probe mapper system.
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Figure 3: Left: The Hall probe mapper system. It uses the stages of a coordinate measuring machine (C) to manipulate the position of
a three axes Hall sensor (A) within an accelerator magnet. The sensor is mounted on an arm (B). The stage position is measured by linear
encoders (D). Right: (a) A Hall sensor and a local coordinate system (u, v, w). The angles θ and φ are the polar and azimuth angles in the(u, v, w) coordinates. (b) Input quantities for modeling the mechanical perturbations of the sensor position. These perturbations occur
due to position errors and arm vibrations.

The mechanical perturbations are caused by random perturbations of the stage motion and are there-

fore not deterministic. However, the vibrations of the mapper arm lead to correlations between the measur-

ing positions. These correlations have been determined by optical measurements in the machine setup. This

yields a statistical model for the mechanical perturbations, which is of the type d ∼ N(0, Σd), with a covariance
matrix Σd .

As proposed in the GUM, the impact on the measurement vector y is determined by means of a first order
Taylor approximation. To this end, we introduce the rotation matrix M(φx , φy) ∈ ℝ3×3, which describes the

rotations around the transversal axis³. We then substitute B → M(φx , φy) ⋅ B and oi → oi + (wx , wy , wz)T in
(3.3) and derive the resulting expressionswith respect to the input parameterswx , wy , wz , φx and φy . This yields
the five sensitivity matrices ∂H j ∈ ℝM×N for j ∈ {wx , wy , wz , φx , φy}. Collecting the vectors ∂H jν in the matrix
∂H(ν) = (diag(∂Hwxν), . . . , diag(∂Hφyν)) ∈ ℝM×5M , the Taylor approximation can be denoted by

ỹ ≈ H(ν) + ∂H(ν)d. (3.4)

Thematrices ∂H j are fully populated andmight occupy a largememory. For the estimation of themeasurement

noise, the computation of the products ∂H jν with an accuracy in the percent range is tolerable. To this end, the
matrix vector products can be computed on low rank approximation saving a considerable amount of memory.

In this context fast multipole methods are particularly effective, since all five matrix vector products are using

the same upward and downward pass operations [17].

3 Assuming without loss of generality that the mapper arm is aligned with respect to the z-axis.
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Proposition 1. With the Gaussian model for the mechanical perturbations d ∼ N(0, Σd), a Gaussian model for
the electronic noise y ∼ N(ỹ, Σy) and a given state vector ν, the noise model is given by

y ∼ N(ỹ, R(ν)) = N(ỹ, =: R(ν)⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∂H(ν)Σd∂H(ν)T⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

mechanical noise

+ Σy⏟⏟⏟⏟⏟⏟⏟
electronic noise

). (3.5)

Proof. The electronic noise is assumed to be additive, such that y = ỹ + ϵy, with ϵy ∼ N(0, Σy), and uncorrelated
to d, this means E(ϵydT ) = 0. It follows from the linearity of the expected value function that E(y) = H(ν), and

E((y − E(y))(y − E(y))T ) = E(yyT ) − E(y)E(y)T= E((H(ν) + ∂H(ν)d + ϵy)(H(ν) + ∂H(ν)d + ϵy)T ) − (H(ν))(H(ν))T= ∂H(ν)E(ddT )∂H(ν)T + E(ϵyϵTy ) = ∂H(ν)Σd∂H(ν)T + Σy .

Remark 8. Both covariance matrices for mechanical and electronic noise, Σd and Σy have been estimated

from measurement data in the characterization phase of the Hall probe mapper system. Whereas optical mea-

surements of the mapper arm were used to estimate Σd , the signal noise covariance Σy was estimated from

measurements in a zero Gauss chamber, insulating the probe from external fields. It was found that covari-

ances in the electronic noise are negligible for sampling frequencies in the 10 − 100 Hz range. This implies that
the electronic noise can be modeled by means of a diagonal covariance matrix Σy . The matrix Σd is sparse, as

correlations between mapper moves can be neglected.

4 Magnetic Measurements and the Prior Field Solution

It is possible to obtain the boundary data from a numerical field simulation. This procedure was described

in detail in Section 2. The following section aims at deriving a hybrid model, that combines the first principle

modeling (see Section 2) with data drivenmodeling, based onmeasurements [25]. In this context, it is important

to consider the measurement uncertainties described in the previous section.

The inference of boundary data from measurements leads to the concept of Bayesian inference. Before

going into detail, we will give an example for the practical application of our approach. The theoretical consid-

erations of the next section are applied to this practical example.

We consider the problemof determining the field quality in a curved dipolemagnet, shown in Figure 4 (left).

It is a spare magnet for in the Extra Low ENergy Antiproton ring (ELENA) [32]. The design of these magnets was

associated with several challenges due to the low working range in terms of magnetic flux density in the iron

yoke, also the tough field quality requirements in combination with a small bending radius of only ∼ 1m [39].

We consider a curved domain of interest Ω, which is covering the magnet’s air gap and fringe field region.

This domain is shown in Figure 4 (right) together with a boundarymesh used for the numerical approximation.

Some parameters related to the domain of interest can be found in Table 1.

A numerical field simulation of the magnet is available by means of a lowest order finite element solution

using the software Opera 3D and it is used to construct a prior BEM approximation. We will see in Section 5 how

this field solution can be incorporated as a prior for the hybrid model.

Magnet Parameters
Min/Max Gap Height Pole Width Mean Radius of Curvature Bending Angle Good Field Region (x × y)

75/76mm 200mm 0.927m 60 deg 44 × 66mm
Boundary Parameters

Height Width Length (z) Number of Elements Number of DoFs
70mm 200mm 1680mm 8576 13402

Table 1: Geometric parameters of the magnet and the domain of interest.
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in V sm−
Figure 4: Left: The ELENA bending dipole magnet. Right: The measurement data UHall as a point cloud, the boundary mesh as well as the
mean of the prior boundary data μ0E(ν0), determined from a numerical field simulation.

We make use of the approach discussed in Remark 4 and perform h, p-refinement until the difference
in n ⋅ B, between the FEM and BEM solution converges to 2 units in 10 000. The resulting approximation space

requires N = 13 402 cubic (p = 3) basis-splines on an irregular mesh, with increased resolution in the fringe

fields, where the field decays most rapidly. The boundary mesh was constructed manually using the NURBS

package in Octave [44]. It is shown as a contour plot in Figure 4 (right).

Remark 9. It should benoted that the role of the FEMsolution is to provide an initial guess for theNeumanndata

and its smoothness in the fringe field region. As it is the case for themagnet under consideration, standard tools

for magnet design use low-order finite element methods, with a considerably lower convergence compared to

a higher-order BEM formulation. Approximation errors in the process of fitting theNeumanndata are negligible

with respect to the engineering bias due to manufacturing tolerances, as well as uncertainties in geometric and

material properties (see Figure 8 (left)). This engineering bias must be corrected by magnetic measurements.

TheHall probemapper system is configured to sample the field along the domain boundary. Due to the thickness

of the supporting structure and also the sensor housing, it is not possible to sample the n ⋅ B component at the

boundary ∂Ω directly. For this reason the system is sampling the field along the boundary of a smaller domain,

inscribed in Ω. We denote this measurement domain by ΩM .

At this point we need to be careful not to distribute measurements too close to the boundary ∂Ω. This is due
to the fact that even if we consider an exact numerical integration, the constant c(r) in Theorem 1 approaches

infinity for the limit ‖r − r‖→ 0, r ∈ ∂Ω.
The absolute values for the approximation error depend on the smoothness of the solution and cannot be

determined a priori. A-posteriori error estimates for boundary element methods are found in [26]. As we are

generating a boundary mesh based on a given FEM approximation, the approximation errors can be estimated

by computing the difference between the BEM and FEM solutions in the vicinity of the boundary. In the example

presented in this work, approximation errors are found to fall below 2 units in 10 000, within a distance of 8mm.

For this reason, the mapper system is set up to maintain this distance for all measurements.

We can exploit the physical relations imposed by the field model and place measurements only at the

boundary of the measurement domain ΩM . In this way, we needO(1/h2meas)measurement positions, to achieve
a resolution hmeas. To further increase efficiency, we acquire the Hall voltages on-the-fly, as the stages of the

mapper system move. In this way the measurement duration scales linearly with respect to the desired mea-

surement resolution O(1/hmeas), as measurements along the scanning direction are fast. However, this also

causes the mapper arm to vibrate, due to small imperfections in the stage motion. For the uncertainty quantifi-

cation it is therefore crucial to consider the noise model we have developed in Section 3.2. The resulting move

sequence is shown in Figure 5.

The Hall probe mapper is equipped with a calibrated three axes Hall sensor, hosting an electronic board

for signal conditioning. We are therefore working with a linear model for the sensitivity function s, with L < 2
in (3.1) (see Remark 6).
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Figure 5: The measurement procedure. The Hall probe mapper is moving along the domain boundary in a rectangular spiral.
Measurements are taken for all moves along the x and y axes. With a distance trigger to launch the acquisition of the Hall voltages,
we obtain a point cloud of measurement positions. An example is shown in Figure 4 (right).

5 Measurement Postprocessing

In order to update our prior assumptions on the boundary data, which were obtained from the first principle

modeling discussed in Section 2, we follow the Bayesian viewpoint where the state vector ν is considered as

a randomvariable. In thisway the uncertainty in ν can be interpreted bymeans of a probability density function
(pdf) p(ν) : ℝN → ℝ. This provides themathematical framework to incorporate prior knowledge about the state
vector ν and makes the practical application more flexible, since small and incomplete data sets leading to ill-
posed inverse problems can be handled. In addition, the pdf p(ν) can be updated whenever new data becomes

available. This establishes the basis for iterative learning schemes.

In the following, we denote by y the vector of the measurement data. To make the difference between the
actual measurement data y and the model prediction ỹ apparent, we add a superscript tilde to the latter vector.

Central to Bayesian inference is Bayes’ rule of probability

p(ν|y)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
posterior

∝ p(y|ν)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
likelihood

p(ν)⏟⏟⏟⏟⏟⏟⏟
prior

, (5.1)

which states that the posterior pdf p(ν|y) for ν, given the measurement data y, is proportional to the product
of the likelihood function p(y|ν) and a prior pdf p(ν).

The likelihood function is derived by coupling the statistical model for the measurement noise with the

numerical model for the measurement operation by means of the observation operator H . A Gaussian noise

model was derived explicitly for the Hall probe mapper system in Section 3. The likelihood function follows

after substituting the observation operator H(ν) for ỹ, and considering the result as a function of ν.
The impact of mechanical vibrations and positioning errors depends on the magnetic field, and therefore

the state vector ν. This is encoded in the covariancematrix R(ν).With the noisemodel according to (3.5), the sen-

sor noise is Gaussian for a given ν. However, the posterior pdf p(ν|y), is not a Gaussian distribution as R depends

on ν. One possibility to accommodate this has been presented in [25], where the mechanical perturbations d
have been considered as additional parameters. The posterior can then be split into Gaussian conditionals, and

samples are drawn by Gibbs sampling.

In this work, we will make use of the prior state vector estimated from the numerical magnet simulation.

The inference frommeasurement data aims to correct small differences in ν. This justifies estimating the noise
covariance matrix R with a prior for ν. Particularly we will use the expected value E(νj−1) to estimate the noise
covariance matrix by R(E(νj−1)), for the j-th Bayesian update. In this way we avoid the additional iteration over
the mechanical perturbations d, which yields a considerable reduction of computational complexity. In the
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following, the resulting covariance matrix will be denoted by R, neglecting the dependency on ν. However, the
domains of validity of this simplification have so far not been determined explicitly and should be investigated

in future research.

5.1 The Kálmán Filter

The update step of a linear Kálmán filter is derived from the posterior under the assumption of a linear obser-

vation operatorH and normal distributions for likelihood and prior. Denoting the prior pdf by p(ν) ∼ N(ν0 , Q0
),

the posterior takes on the form p(ν|y) ∼ N(ν1 , Q1
), with the posterior covariance matrix

Q
1
= (HTR−1H + Q−1

0
)−1 (5.2)

and the expected value

Q−1
1
ν1 = HTR−1y + Q−1

0
ν0 . (5.3)

A well-established alternative representation for ν1 and Q
1
is

Q
1
= (IN×N − KH)Q

0
, (5.4)

ν1 = ν0 + K(y − Hν0), (5.5)

where IN×N ∈ ℝN×N is an identity matrix and K ∈ ℝN×N is the Kálmán gain

K := Q
0
HT(HQ

0
HT + R)−1 . (5.6)

This follows from the Sherman–Morrison–Woodbury formula [40].

Both formulations require a matrix inversion to compute the posterior covariance matrix Q
1
. There are

circumstances where this inversion is problematic. This for instance is the case in a high-dimensional setting,

where H can only be stored in a compressed format, such as a fast multipole matrix. Other compression pos-

sibilities would involve H/H2 matrices [9] or tensor decompositions [22]. Moreover, in some circumstances, the

observation operator H might require the inversion of a matrix itself (see Remark 7), although this is not the

case for the indirect double-layer potential formulation according to (2.3). For these reasons it can be of advan-

tage to use Theorem 4 to compute an ensemble of K state vectors νk and estimate the covariance matrix from
these samples.

Theorem 4. The solution νk
1
of the linear equation system(HTR−1H + Q−1
0
) νk

1
= HTR−1y + Q−1

0
ν0 + (HTR− 12 , L−1)ϵk , ϵk ∼ N(0, IM+N), (5.7)

is a sample from the Gaussian distribution N(ν1 , Q1
) with ν1 and Q

1
according to (5.3) and (5.2). The matrix L

denotes the Cholesky factorization of the matrix Q
0
= LLT such that Q−1

0
= L−TL−1.

Proof. Again we make use of the linearity of the expected value function, to show that

E(νk
1
) = Q

1
(HTR−1y + Q−1

0
)ν0 = ν1 ,

and

E((νk
1
− E(νk

1
))(νk

1
− E(νk

1
))T ) = E(νk

1
νk,T
1
) − E(νk

1
)E(νk

1
)T= ν1νT1 + Q1

(HTR−1H + Q−1
0
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=Q−1

1

Q
1
− ν1νT1 = Q1

.

Remark 10. The noise covariance matrix R ∈ ℝM×M may be of high dimension, but sparse, since the mea-

surements between the moves are uncorrelated. We make use of the Cholesky module for sparse matrices

(SimplicialLLT) implemented in the Eigen C++ library [18] for the factorization according to R = R 1

2 (R 1

2 )T , where
R

1

2 is lower triangular. The term R−1H can then be computed efficiently by backward substitution.
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Approximating the posterior covariancematrix by an ensemble of K state vectorswith K ≪ N can be considered

as a compression technique to reduce the computational effort significantly. This advantage is further enhanced

by the use of fast algorithms for the computations of the products Hν, e.g., the fast multipole method.
In Figure 6, we illustrate the posterior covariance matrix approximated for different ensemble sizes K and

also the case of a direct inversion of Q−1
1
. In this caseM = 4093measurement positions were takenwith the Hall

probe mapper system. The finite sampling size introduces sampling errors, which appear as spurious correla-

tions. This is a well-known phenomenon in ensemble methods (see [14]). However it is not harmful for the field

evaluation inside the domain, particularly in the vicinity of the particle beam, because details in the matrix

Q
1
are smoothed out when evaluating the boundary integral equation. This is shown in Figure 7, where the

uncertainty in the evaluation of By evaluated along a reference trajectory is shown.

Remark 11. The convergence of the posterior covariancematrix for K →∞ is studied in [27]. It is shown in [24]

and [16] that, without further treatment, the required ensemble size to obtain a bounded error growth of the

covariance matrix, is proportional to the square of the system dimension. As a treatment, covariance-shrinking

inverse matrix (LU) K = K =

log |[Q ]i,j| −
− .

−

j

i

Figure 6: Elements of the posterior covariance matrix in logarithmic scale. See Section 4 for details about the experiment. Here
M = 4093measurement positions were collected. Left: The covariance matrix was computed from direct inversion of the matrix Q−11
using the LU-solver implemented in Eigen [18]. Center and right: The covariance matrix was approximated from K = 7000 and 1000
samples νk . The approximation is visible by sampling errors, i.e. spurious covariances.

matrix inv.
K =
K =s

standard deviations in By(s) in mT

path length s in m

E(By(s)) ± σ in T

Figure 7: Uncertainty in the field reconstruction along a reference trajectory s, measured in three standard deviations. The
reconstruction is based on the covariance matrices given in Figure 6. Top: (blue) The uncertainty is evaluated by the normal
transformation HQ1HT , where Q1 was computed by direct inversion and H is the observation operator for By . (orange and green): The
covariance matrix is approximated from K = 7000 and 1000 samples. It is found that the approximation of the covariance matrix
according to Figure 6 is not harmful for the uncertainty quantification at the reference trajectory. This is due to the smoothing property
of the boundary integral equation. Bottom: The red line shows the mean value of By(s). The red contour illustrates the uncertainty,
whereas, for better visualization, the standard deviation was multiplied by a factor 300.
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and tapering methods are applied in sampling based Kálmán filtering (see the discussions in [16] and the ref-

erences therein). Absolute estimates for the optimal ensemble sizes K are problem dependent. Some studies

have been performed in [33] and [14]. Evidence has shown that a small ensemble, typically of size K = 100, is
sufficient for many applications in the geosciences [4]. In the following, we choose K = 1000 because it yields
the required reduction in computational complexity and memory, to perform the analysis on standard desktop

computers. Moreover, Figure 7 provides evidence that the sampling errors are not harmful for the uncertainty

quantification along the reference particle trajectory.

5.2 The Ensemble Kálmán Filter

The equations for the Kálmán filter require the inverse of the prior covariance matrix Q
0
to be accessible.

In a high-dimensional setting they are therefore only applicable for simple prior covariance models, such as

identity or sparse matrices, but also the covariance matrix which will be presented in Section 5.3.

In the case of the ensemble Kálmán filter, the prior and posterior covariance matrices are represented by
ensembles of state vectors. In this way a significant reduction of computational complexity can be achieved.

Similarly to (5.7) the ensemble Kálmán filter is based on a randomized linear equation system. The proof

for the following statement is completely analogous to the one provided for Theorem 4 and it is found in [13].

Proposition 2. The state vector νk
1
with

νk
1
= νk

0
+ K(yk − Hνk

0
) (5.8)

where yk ∼ N(y, R) and νk
0
∼ N(ν0 , Q0

), is a sample from the posterior distribution p(ν|y) ∼ N(ν1 , Q1
), with ν1

and Q
1
according to (5.4) and (5.5).

The following equations summarize the analysis step of the ensemble Kálmán filter as they are well known

in the field of data assimilation (see for instance [4], [13] or [14]). The ensemble Kálmán filter follows from

Proposition 2 after estimating the mean and covariance of the prior ν0 according to

E(ν0) ≈ 1K K∑
k=1 νk0 , Q

0
≈ UUT

K − 1 with U = V0 − E(ν0)I1×K . (5.9)

The update step can then be performed directly on the ensemble V0 := (ν10 , . . . , νK0 ) ∈ ℝN×K and the datamatrix
Y := (y1 , . . . , yK) ∈ ℝ3M×K , via the equations

V1 = V0 + 1

K − 1U(HU)TP−1(Y − HV0), P := 1

K − 1HU(HU)T + R ∈ ℝ3M×3M . (5.10)

The matrix V1 = (ν11 , . . . , νK1 ) stores the posterior ensemble. The statistics of the posterior distribution can be
computed from the sampled mean and covariance of the posterior ensemble (see (5.9)).

In the case of a non-linear observation operator H , or when the observation operator is available in com-
pressed form only, a matrix-free implementation is possible. One therefore defines the matrices HV0 and HU
according to

HV0 := (H(ν10), . . . , H(νK0 )), (5.11)

HU := (H(ν1
0
) − E(H(ν1

0
)), . . . , H(νK

0
) − E(H(νK

0
))), (5.12)

where

E(H(νk
0
)) := 1

N

K∑
k=1H(νk0 ). (5.13)

Remark 12. Working with a nonlinear observation operator in ensemble Kálmán filtering comes with approx-

imation errors, as the true nonlinear update is fitted with a Gaussian model. In complex high-dimensional

problems of data assimilation, the ensemble Kálmán filter is still popular, as it is often the only way to per-

form approximate inference, and alternative techniques can only be applied to highly simplified versions of

the original problem [23].
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In this work the ensemble Kálmán filter is used to update the prior ensemble V0 in regions of themagnet where

the remaining uncertainty is large. Compared to the dimension of the state vector N , less measurements are
used for such local updates. The P matrix is therefore of a size M ≪ N . For high-dimensional updates M ≫ N ,
it is shown in [30] how to reformulate P to obtain a linear complexity in M.

5.3 The Prior

Due to the smoothing property of the boundary integral equation, the inverse problem is ill-conditioned. To

ensure a numerically stable solution we derive a regularization term which is based on a prior field solution. It

is now shown how mean ν0 and covariance Q
0
of a Gaussian prior p(ν) ∼ N(ν0 , Q0

) can be computed from a

numerical field simulation.

From (2.5) we derive the randomized indirect Neumann problem:

Dν0 = f + ϵp , ϵ ∼ N(0, δ− 12 IN×N). (5.14)

The process noise ϵp is used to impose uncertainty in the field simulation. From the linearity of the expected

value function it follows

ν ∼ N(D−1f⏟⏟⏟⏟⏟⏟⏟⏟⏟=: ν0 , δ−1D−1D−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=:Q
0

), (5.15)

due to the symmetry of D.
Equation (5.15) provides a Gaussian prior p(ν), with covariancematrix Q

0
= δ−1D−1D−1. In this context, the

discretized hypersingular operator D already provides the square root of matrix Q−1
0
. It therefore ties in nicely

with equation (5.7). As an alternative to (5.7) it is possible to solve (5.14) for K realizations of ϵk
p
to generate an

initial ensemble and use it for the ensemble Kálmán filter.

The regularization parameter δ controls the impact of the prior. Since Q−1
0
= δDD, all terms related to the

prior in (5.7) vanish for δ → 0. It then holds a proportionality relation between the likelihood and the posterior.

This prior is not informative and itmay be considered as choosing a sufficiently flat pdf such that p(ν) ≈ constant
in Bayes rule (5.1).

On the other hand, the prior state vector ν0 is recovered in the limit δ →∞. This can be seenwhen dividing
(5.7) by δ and substituting Q−1

0
= δDD such that(δ−1HTR−1H + DD) νk

1
= δ−1HTR−1y + DDν0 + (δ−1HTR− 12 , δ− 12 D)ϵk

p
→
δ→∞ DD νk

1
= DDν0 . (5.16)

The parameter δ has the same role as the ridge parameter in the Tikhonov regularization. Different approaches
have been developed for its selection (see for instance [1, Chapter 1]). In the following we make use of a set of

validation measurements, providing us with the vector y
val
∈ ℝ3Mval and we select δ according to

δ = argmin
δ∗ ϵ(δ∗) := argmin

δ∗ 1√3Mval

‖y
val
− E(Hvalνδ∗ )‖, (5.17)

where νδ∗ is computed from (5.16) using δ = δ∗, Hval is the observation operator for the validation set and E( ⋅ )
is the expected value function. By this definition ϵ is the root-mean-squared (RMS) error between the predicted
mean and the validation measurements.

In Figure 8 (right), the validation error ϵ(δ∗) is shown in a logarithmic scale, for two scenarios. The results
have been obtained from the application discussed in Section 4. Whereas only M = 4093 measurements have
been collected in the first scenario, in the second one, we have taken measurements at M = 16 324 positions.
The validation errors saturate at (3M)− 12 ‖y

val
− Hval(ν0)‖2 for δ →∞ in both cases. This is the RMS error of the

prior field solution. On the other hand, the rank of the matrix HTR−1H determines the validation errors for

δ → 0. For the caseM = 4093 this matrix is rank-deficient, while for the second scenario, more data is available
and ϵ(δ∗) saturates at themaximum likelihood solution. The values for δ∗ minimizing the validation errors are
found in Table 2. A-priori estimates for δ that avoid the validation set are discussed in [1, Chapter 1].
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Figure 8: Left: Prediction of |B| along the x-axis in the magnet center, for different values of the regularization parameters, compared to
a validation measurement, here M = 4093. Right: The validation error over δ∗ in logarithmic scale for both scenarios.
Scenario Moves M Measurement Resolution hmeas Measurement Duration Regularization Parameter δ

1 281 4093 24mm 0.5 h 5.2 ⋅ 10−2
2 562 16324 6mm 2 h 2.4 ⋅ 10−3

Table 2: Parameters related to the initialization measurement.

5.4 Design of Experiment

Design of experiment is about determining the minimum amount of measurements required to meet the

accuracy requirements. As we have seen in the previous section, the number of measurements, their spatial

distribution and also the prior E(ν0) determine the matrix HTR(E(ν0))−1H , which is equivalent to the inverse
of the posterior covariance matrix for δ = 0.

Using the procedure developed in the previous sections, we are capable to propagate the measurement

uncertainty down to beam related quantities by particle tracking. In the following, we consider the trajectory of

a proton with momentum P0 = 100MeV/c, for a single passage through the magnet as the quantity of interest.
This trajectory is illustrated in Figure 9, which shows the solution of (2.13) for a reference particle using an

explicit, fourth-order Runge–Kutta scheme for the numerical integration (see [20, Chapter 2]).

Remark 13. The explicit Runge–Kutta scheme is not symplectic, meaning that the Hamiltonian H, which is an
invariant ofmotion, is not preserved by the numerical integration scheme.With the expression for themagnetic

vector potential by means of (2.4), it is possible to use symplectic numerical integrators for multi-turn particle

simulations, which are preserving the Hamiltonian by design (see [20, Chapter 6]). A comprehensive study of

different numerical integration schemes is found in [42]). The use of spherical harmonics in symplectic particle

tracking has been presented in [2]. The chosen procedure serves to illustrate the potential of our method. More

detailed analyses of the numerical integration are planned for future publications.

We have calculated the trajectory for K = 1000 ensembles of the posterior, based on the ensemble generated

from the scenarioM = 16324. The uncertainty in the fringe field region results in 3 standard deviations of 51 μm
for the prediction of the x-coordinate at the exit of the magnet. For comparison, a constant deviation in the

vertical flux density By of one unit in 10 000 with respect to the maximum field, gives a total deviation in the

trajectory radius of 108 μm. The uncertainty of 51 μm is therefore acceptable for many applications.

In contrast to the posterior covariancematrix, the validation error cannot be determined a-priori. It mainly

origins from locations in the fringe fields, where the spatial resolution of 6mm is not sufficient to properly

resolve the differences between prior and posterior. As a mitigation measure, update measurements are taken
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Figure 9: Prediction of the particle trajectory for different stages of the ensemble Kálmán filter. The deviations from the mean trajectory
were amplified by a factor of 1000 for better visualization. The deviations are representing the uncertainty in the particle trajectory due to
the measurement uncertainty in the fringe fields. First M = 16324measurements were taken with the Hall probe mapper system and the
trajectory was evaluated from K = 1000 samples from the posterior (V1). Update measurements in the left and right-hand side of the
magnet (gray) were performed to reduce the validation error and also the precision in the particle trajectory. This yields the ensembles
V200 and V400. A proton with momentum P0 = 100MeV/c is considered. This corresponds to the injection energy of the ELENA ring.

Prior V0 Initialization V1 Updates Left V200 Updates Right V400

ϵ in mV 37.01 5.04 3.86 2.01
Equivalent B in mT 7.40 1.00 0.77 0.401

Table 3: RMS validation errors.

at these positions. In order to avoid moving the stages back and forth between the left and the right-hand side

of the magnet, both sides of the magnet are treated individually.

The initial ensemble is updated move-by-move, using the equations of the ensemble Kálmán filter with

K = 1000. We denote the posterior ensemble of update j by V j . We have performed a total of J = 400 update
measurements equally distributed between left and right-hand side. These updates provide uswith the posterior

ensembles V200 and V400, which are the results after treating the left and right-hand side of the magnet.

Table 3 gives the resulting validation errors. Bymeans of the ensemble Kálmánupdates, the validation error

was reduced by a factor 2.5. As a side effect, more measurement data increases the precision in the prediction

of the particle trajectory. This is shown in Figure 9, where we have added the trajectories evaluated from the

posterior ensembles V200 and V400.

6 Conclusion

We have developed an approach that improves the performance of Hall probe field mapping in several aspects:

The measurement duration to obtain a three-dimensional field map could be reduced from O(1/h3
meas
) to

O(1/hmeas). This could be achieved by using a boundary element method for the field reconstruction based on
measured boundary data and taking the measurements on-the-fly, while moving the stages of the Hall probe

mapper system. The last aspect unfortunately has the consequence that vibrations and position errors become

unavoidable. These errors are most harmful in the fringe field region. For this reason a rigorous treatment
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of these effects was proposed and it was shown how to propagate the uncertainties all the way to the predic-

tion of the particle beam trajectory. Moreover, it was shown how successive Bayesian updates can be selected

efficiently, in order to improve the precision of the model predictions.

To achieve these goals we have used an iso-geometric boundary-element method based on an indirect

double-layer potential formulation. In terms of applicability, we emphasized the scalability of the algorithms

and presented a method for efficient evaluation of the integral equation along the reference trajectory.

For the inference of boundary data from magnetic measurements we have made use of ensemble Kálmán

filter, which provides us with an efficient compression technique of the posterior covariance matrix. This yields

a significant reduction in computational complexity.
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