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Abstract: In this paper, we develop a new immersed finite element method (IFEM) for two-phase incompress-
ible Stokes flows. We allow the interface to cut the finite elements. On the noninterface element, the stan-
dard Crouzeix–Raviart element and the P0 element pair is used. On the interface element, the basis functions
developed for scalar interface problems (Kwak et al., An analysis of a broken P1-nonconforming finite element
method for interface problems, SIAM J. Numer. Anal. (2010)) are modified in such a way that the coupling
between the velocity and pressure variable is different. There are two kinds of basis functions. The first kind
of basis satisfies the Laplace–Young condition under the assumption of the continuity of the pressure variable.
In the second kind, the velocity is of bubble type and is coupled with the discontinuous pressure, still satisfy-
ing the Laplace–Young condition. We remark that in the second kind the pressure variable has two degrees
of freedom on each interface element. Therefore, our methods can handle the discontinuous pressure case.
Numerical results including the case of the discontinuous pressure variable are provided. We see optimal con-
vergence orders for all examples.

Keywords: Immersed Finite Element Method, Crouzeix–Raviart Finite Element, Two-Phase Stokes Problems,
Laplace–Young Condition
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1 Introduction

Recently, there have emerged many unfitted grid methods to solve interface problems involving interface
between two materials. The extended finite element method (XFEM) [4, 5, 8, 21, 26, 27, 29] is one of the pop-
ular methods to solve for interface/crack problems based on uniform grids. Some additional basis functions
constructed by truncating the shape function along the interfaces are added to the trial/test spaces. Thus, the
number of degrees of freedom increase near the interface. For Stokes interface problems, Gross and Reusken
proposed a method that adopt an XFEM enrichment of the pressure space, incorporating functions that are
discontinuous at the interface in [9, 10, 28].

Meanwhile, Hansbo et al. introduced a so-called cut-FEM, combining XFEM and Nitche’s method for elliptic
interface problems [3, 11]. For the Stokes interface problem, an iso P2-P1 element based cut-FEM-type method
was proposed [12] where ghost penalty stabilization is used near the interface to avoid instabilities. Also, Wang
and Chen introduced the P1-nonconforming based cut-FEM method for Stokes interface problems [31], where
stabilization terms defined on the transmission edges are used to ensure stability condition. However, all of the
methods mentioned above require additional degrees of freedom than the nodal basis functions.
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On the other hand, Z. Li et al. [22, 23] introduced the immersed finite element method (IFEM) for elliptic
problems, where the basis functions are modified to satisfy the flux-type continuity conditions along the inter-
face. The advantage of this scheme is that it does not require additional basis functions. Since then, the error
estimates for IFEMs were developed for various elliptic interface problems, see [6, 14, 19, 24] and references
therein. The Crouzeix–Raviart P1-nonconforming based IFEMs [19] were used to solve elasticity interface prob-
lems in [18]. Also, IFEMs have been applied to various problems, including plasma particle simulation, electric
field simulation in composite materials, electroencephalography, fluid-structure interaction, multiphase flows
in porous media, elasticity, and Poisson–Boltzmann equation [13, 15, 17, 20, 25, 30, 32].

For Stokes equations, Adjerid et al. [1, 2] introduced the immersed discontinuous finite element method,
which uses modified Q1/Q0 basis functions in the frame work of discontinuous Galerkin methods. The velocity
and pressure variables are modified on the interface element so that the basis functions satisfy Laplace–Young
condition (see details in [1, 2]). An IFEM based on P1/Q1 nonconforming elements is introduced in [16], where
themodification process is similar to [1, 2].We remark that the pressure variable in the immersed finite element
(IFE) space of [1, 2] or [16] uses the average (on each element) as degrees of freedom on the interface element.
Clearly, these elements cannot approximate the pressure variable in general.

In this paper, we develop a new P1-nonconforming based IFEM for Stokes interface problems where mod-
ification of basis functions are different from that in [1] or [16]. On the interface element, we construct two
kinds of basis functions for the velocity variables. First kind is related to the continuous pressure. Second
kind is of bubble type in the sense that velocity variables has vanishing averages on the edges, and it satisfies
the Laplace–Young condition for discontinuous pressure. In this way, we construct velocity basis on interface
element which is less coupled to pressure basis compared with [1] or [16]. Another aspects of our IFE space is
that the pressure basis has two degrees of freedom on the interface element so that it can handle the discontinu-
ity of pressure variable. For the bilinear form, we add stabilization terms across edges as in [12, 18] to make the
system stable. The numerical examples including the case of the discontinuous pressure variable are provided.
We see optimal convergence rates for both the pressure and velocity variables.

The rest of the paper is organized as follows.Wedescribe an incompressible Stokes interface problem in Sec-
tion 2 and develop IFEM for the Stokes problems in Section 3. Numerical experiments are reported in Section 4
and the conclusion follows in Section 5.

2 A Model Problem

Let Ω be a connected polygonal domain inℝ2 which is divided into two subdomains Ω+ and Ω− by a C2 interface
Γ = ∂Ω+ ∩ ∂Ω− (see Figure 1). We assume that subdomains are filled with two incompressible fluids of different
viscosities. The equation describing the steady-state of such fluids is given by

− div σ = f in Ω+ ∪ Ω− , (2.1a)
σ(u, p) = 2μϵ(u) − pI in Ω+ ∪ Ω− , (2.1b)
divu = 0 in Ω+ ∪ Ω− , (2.1c)

u = g on ∂Ω (2.1d)

with the interface conditions

[[u]]Γ = 0 on Γ, (2.2a)
[[σ(u, p) ⋅ n]]Γ = 0 on Γ, (2.2b)

where ϵ(u) = 1
2 (∇u + ∇u

T ) is the strain tensor, the vector f is a body force, μ > 0 is a piecewise constant function
of the viscosity

μ =
{
{
{

μ+ in Ω+ ,
μ− in Ω− ,
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Ω−

Ω+

Γ

Figure 1: A domain Ω with an interface Γ.

and n is the outward unit normal vector to Γ. For the simplicity, we may assume g = 0. The bracket [[ ⋅ ]]Γ means
the jump across the interface

[[u]]Γ := u|Ω− − u|Ω+ .
We use standard Sobolev space notations (see Section 4). Multiplying v ∈ H1

0(Ω)2 to the left-hand side of
equation (2.1a), we get by Green’s formula

∑
s=+,−
(−2μ ∫

Ωs

∑
i,j

∂ϵij(u)
∂xj

vi + ∫
Ωs

∑
i

∂p
∂xi

vi)

= ∑
s=+,−
∫
Ωs

(2μϵ(u) : ϵ(v) − ∫
Ωs

p div v) dx + ∑
s=+,−
( ∫
∂Ωs

(pn − 2μϵ(u)n) ⋅ v).
(2.3)

Using the jump conditions (2.2a) and (2.2b), we obtain the following variational formulation of problem (2.1a)
and (2.1c): Find the velocity u ∈ (H1

0(Ω))2 and the pressure p ∈ L
2
0(Ω) satisfying

a(u, v) − b(v, p) = (f , v) for all v ∈ H1
0(Ω)

2 , (2.4a)
b(u, q) = 0 for all q ∈ L20(Ω), (2.4b)

where
a(u, v) := ∑

s=+,−
∫
Ωs

2μϵ(u) : ϵ(v) dx,

b(u, p) := ∑
s=+,−
∫
Ωs

p divu dx.

3 An IFEM Based on the Crouzeix–Raviart Element

Let {Th} be a any structured triangulations of Ω by the triangles of maximum diameter h. We allow the grid
to be cut by the interface. We call an element T ∈ Th an interface element if the interface Γ passes through the
interior of T , otherwise we call it a noninterface element. Let TIh be the collection of all interface elements.

Let the collection of all the edges of T ∈ Th be denoted byEh .We denote the set of edges cut by the interface Γ
by EIh , its complement is denoted by E

N
h . Even though the interface Γ is a curve in general, we replace for the

simplicity of presentation, the part of interface in T by the line segment connecting the intersection points
with ∂T . Therefore, the interface Γ is assumed to be polygonal for the rest of the paper.

3.1 Construction of IFEM Basis for Stokes Interface Problem

For the noninterface elements, we use the classical Crouzeix–Raviart element [7] for the velocity variable which
consists of piecewise linear polynomials whose degrees of freedom are the average value along each edge. In
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Figure 2: A typical interface triangle.

other words, for T ∈ Th\TIh , let Nh(T) denote the linear space spanned by the six Lagrange basis functions,
ϕi = (ϕi1 , ϕi2)T , i = 1, . . . , 6,

Nh(T) = span{ϕi ∈ (P1)2 :
1
|ej|
∫
ej

ϕi1 = δij , j = 1, 2, 3,
1
|ej|
∫
ej

ϕi2 = δi−3,j , j = 4, 5, 6}. (3.1)

We define the pressure space Mh(T) ≡ P0(T) to be the space of constant on T .
Now,we consider the interface elements.We adopt the broken P1-nonconforming finite element introduced

in [18, 19] for the velocity. For the pressure we use two pieces of piecewise constant function for the interface
element. An important property of the IFEM basis is that it should satisfy the Laplace–Young condition (2.2b)
at least weakly. For that purpose, we shall construct two kinds of basis functions: The first kind is unrelated to
the pressure; the second kind is coupled with pressure. We assume the three vertices are given by A1 = (0, 1),
A2 = (0, 0), A3 = (1, 0) (see Figure 2). For any interface element T ∈ TIh in general position, all the construc-
tions to be presented below carries over through affine equivalence. Let DE be the line segment connecting
the intersections of the interface and the edges of a triangle T . This line segment divides T into two parts T+
and T−.

We describe the first type. We set, for i = 1, 2, . . . , 6,

ϕi(x, y) =

{{{{{
{{{{{
{

ϕ+i (x, y) = (
ϕ+i1
ϕ+i2
) = (

a+1 + b
+
1 x + c

+
1 y

a+2 + b
+
2 x + c

+
2 y
) , (x, y) ∈ T+ ,

ϕ−i (x, y) = (
ϕ−i1
ϕ−i2
) = (

a−1 + b
−
1 x + c

−
1 y

a−2 + b
−
2 x + c

−
2 y
) , (x, y) ∈ T− ,

(3.2)

and require these functions satisfy the six degrees of freedom (3.1), the continuity condition (2.2a), and the
Laplace–Young condition with zero pressure along the interface Γ ∩ T . In other words, let

N̂h(T) = span{ϕs
i ∈ (P1(T

s))2 , s = +, −, satisfying (3.4) below}, (3.3)

where
1
|ej|
∫
ej

ϕi1 = δij , j = 1, 2, 3, (3.4a)

1
|ej|
∫
ej

ϕi2 = δi−3,j , j = 4, 5, 6, (3.4b)

[[ϕi]]Γ = 0, (3.4c)
[[2μσ(ϕi , 0) ⋅ n]]Γ = 0. (3.4d)

We state a proposition regarding the existence and uniqueness of the basis functions.
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Proposition 3.1. The function ϕ̂ in (3.2) is determined uniquely by conditions (3.4).

Proof. The proof can be found in [18].

Now, we define the global IFE space N̂h for the velocity variable to be the set of all functions satisfying

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

ϕ|T ∈ Nh(T) if T is a noninterface element,
ϕ|T ∈ “Nh(T) if T is an interface element,

∫
e

ϕ1|T1 = ∫
e

ϕ1|T2 if e is the common edges of T1 and T2 ,

∫
e

ϕ2|T1 = ∫
e

ϕ2|T2 if e is the common edges of T1 and T2 ,

∫
e

ϕ = 0 if e ∈ ∂T is a part of the boundary ∂Ω.

We also need the usual space of piecewise constant for all T for pressure:

Mh,0 = {ph ∈ L20(Ω) : ph|T ∈ P0(T) for all T ∈ Th}.

However, the space N̂h × Mh,0 cannot satisfy the interpolation property for the pressurewhen pressure variable
is discontinuous across the interface.

Now, we describe the second type of basis functions. Given a typical interface element T , we take ϕE(x, y)
as in (3.2) and set the piecewise constant pressure as

pE(x, y) =
{
{
{

p+ , (x, y) ∈ T+ ,
p− , (x, y) ∈ T− ,

(3.5)

and require the pair (ϕE , pE) satisfy the following conditions:

1
|ej|
∫
ej

ϕE1 = 0, j = 1, 2, 3, (3.6a)

1
|ej|
∫
ej

ϕE2 = 0, j = 1, 2, 3, (3.6b)

[[ϕE]]Γ = 0, (3.6c)
[[2μϵ(ϕE) ⋅ n]]Γ = [[pE ⋅ n]]Γ . (3.6d)

This is a system of twelve equations in fourteen unknowns. We add the following equations:

p+ = 1 on T+ , (3.7a)
p− = 0 on T− . (3.7b)

The fourteen conditions (3.6)–(3.7) lead to a system of linear equations in fourteen unknowns asℓ , b
s
ℓ , c

s
ℓ , ps ,

ℓ = 1, 2, s = +, −.

Proposition 3.2. Systems (3.6)–(3.7) have a unique solution pair (ϕE , pE).

Proof. For each pE = (p+ , p−) satisfying (3.7a)–(3.7b), the system of equations (3.6a)–(3.6d) is exactly the same
as (3.4a)–(3.4d) with modified right-hand side. Hence the existence proof is the same.

Changing the role of p+ and p− in (3.7a)–(3.7b), we obtain another enriched pair of functions for the interface
element T . If p+ = 1 on T+ and p− = 0 on T− in (3.7), we denote the pair as (ϕE+

T , pE+T ). On the other hands, if
p+ = 0 on T+ and p− = 1 on T−, we denote the pair as (ϕE−

T , pE−T ). We name the set of such pairs as Eh(T), i.e.,

Eh(T) := span{(ϕE+
T , pE+T ), (ϕE−

T , pE−T )}.
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By combining N̂h × Mh and the above bubble-type pairs, we define the immersed finite element space Ψh
for Stokes equation to be set of pairs of functions (ϕ, ψ) satisfying

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

(ϕ, ψ)|T ∈ Nh(T) × Mh(T) if T is a noninterface element,
(ϕ, ψ)|T ∈ N̂h(T) × {0} ⊕ Eh(T) if T is an interface element,

∫
e

ϕ1|T1 = ∫
e

ϕ1|T2 if e is the common edges of T1 and T2 ,

∫
e

ϕ2|T1 = ∫
e

ϕ2|T2 if e is the common edges of T1 and T2 ,

∫
e

ϕ = 0 if e ∈ ∂T is a part of the boundary ∂Ω,

ψ ∈ L20(Ω).

We give some remarks regarding the proposed space.

Remark 3.1. The spaceΨh is not equal to the IFE space proposed in [16]. Consider a typical interface element T .
The pressure variable ofΨh has degrees of freedomon each subregion T s (s = +, −), while the pressure variable
in IFE space of [16] has one (average) degree of freedom on the whole T . An advantage of our scheme is that one
can handle discontinuous pressure (see next section).

We give a lemma regarding the satisfaction of Laplace–Young condition.

Lemma 3.3. For any pair of functions (ϕ, ψ) inΨh , we have [[σ(ϕ, ψ) ⋅ n]]Γ = 0.

Proof. It suffices to consider interface element only. Suppose (ϕ, ψ) is any pair of basis functions inΨh and let T
be any interface element. We can decompose it as

(ϕ, ψ)|T = (v0 , 0) + (vE , ψ),

where v0 ∈ N̂0
h(T) and v

E is velocity part of pairs Eh(T), i.e., (vE , ψ) ∈ Eh(T). Then

[[σ(ϕ, ψ) ⋅ n]]T∩Γ = [[σ(v0 , 0) ⋅ n]]T∩Γ + [[σ(vE , ψ) ⋅ n]]T∩Γ = 0,

by the definitions of the space N̂0
h and Eh . This completes the proof.

The Associated Variational Form

We define the associated variational form for problem (2.1). For this purpose, we let

Hh(Ω) := (H1
0(Ω))

2 + (velocity part ofΨh).

We define two bilinear forms

ah(u, v) := ∑
T∈Th

( ∫
T∩Ω− 2μϵ(u) : ϵ(v) dx + ∫T∩Ω+ 2μϵ(u) : ϵ(v) dx) + ∑e∈EN

h

γ
|e| ∫

e

[[u]]e[[v]]e ds, (3.8)

bh(u, ψ) := − ∑
T∈Th

( ∫
T∩Ω− ψ divu dx + ∫T∩Ω+ ψ divu dx), (3.9)

where u, v ∈ Hh(Ω) and ψ ∈ L2(Ω). Here, [[⋅]]e denotes the jump along the edge e and γ is some positive param-
eter. We remark that we need stability terms in ah( ⋅ , ⋅ ) to ensure a coercivity property as in [18].

Finally, we propose IFEM scheme for Stokes problem: Find (uh , ph) inΨh such that

ah(uh , vh) − bh(vh , ph) = (f , vh),
bh(uh , qh) = 0

for all (vh , qh) inΨh .
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4 Numerical Results

In this section, we present numerical examples. The errors in L2 and H1 norms for the velocity and pressure
variables are reported on a rectangular domain. The numerical simulations are carried out on uniform triangu-
lation Th by right triangles having size h = h0 ⋅ 2−k (k = 1, 2, . . .) for some h0. We define the interface as the zero
set of some level function L(x, y)which is used to separate sub-domains, i.e., Ω− = {(x, y) ∈ Ω : L(x, y) < 0} and
Ω+ = {(x, y) ∈ Ω : L(x, y) > 0}. We consider three problems. In first two examples, some known exact solutions
are given to satisfy the Laplace–Young condition. In particular, we consider the case of discontinuous pressure
variable in Example 4.1. In the third example, we consider a driven cavity benchmark problem.

In all the examples, we choose penalty parameter γ = 20μ in (3.8). In Example 4.1 and Example 4.2 we
observe the optimal orders of error.

Example 4.1. In this example, the interface is given by zero sets of L(x, y) = x + y − r = 0 with r = −0.1. The
parameters are μ− = 10 and μ+ = 0.1. Exact solutions are

u =
{{
{{
{

((x + y − r)e(x+y−r)2 + y2 , −(x + y − r)e(x+y−r)2 + x2)T on Ω+ ,

(
μ+(ex+y−r − 1) + μ−y2

μ− , μ
−x2 − μ+(ex+y−r − 1)

μ− )
T

on Ω− .

p = {
p0 on Ω+ ,
2(μ+ − μ−)(x + y) + p0 on Ω− ,

where p0 = 5.220703125.

The errors in L2 andH1 norms for uh and L2 error for ph are reported in Table 1.We observe that both variables
converge in optimal orders. The graphs of uh,1, uh,2 and ph are shown in Figure 3.

Figure 3: Plots of uh,1 (left), uh,2 (right) and pressure (bottom) for Example 4.1.
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1
h ‖u − uh‖0 Order ‖u − uh‖1,h Order ‖p − ph‖0 Order

20 9.643×10−1 1.691×101 1.726×101

21 3.181×10−1 1.600 1.111×101 0.605 5.569×100 1.632
22 9.137×10−2 1.800 5.846×100 0.927 1.564×100 1.832
23 2.834×10−2 1.689 3.030×100 0.948 5.559×10−1 1.492
24 7.897×10−3 1.843 1.550×100 0.967 2.615×10−1 1.088
25 2.076×10−3 1.928 7.839×10−1 0.984 1.279×10−1 1.031
26 5.317×10−4 1.965 3.941×10−1 0.992 6.351×10−2 1.010
27 1.345×10−4 1.983 1.976×10−1 0.996 3.169×10−2 1.003

Table 1: L2 and H1 errors for the velocity and pressure variables of Example 4.1.

Example 4.2. The interface is the zero set of L(x, y) = x2 + y2 − r2 with r = 0.31. The parameters are μ− = 1 and
μ+ = 100. The exact solutions are

u =
{{{{
{{{{
{

(
1
μ+ 2(x

2 + y2 − r2)y, − 1μ+ 2(x
2 + y2 − r2)x)

T
on Ω+ ,

(
1
μ− 2(x

2 + y2 − r2)y, − 1μ− 2(x
2 + y2 − r2)x)

T
on Ω− ,

p = 100xy.

Errors for uh and ph are reported in Table 2. We see the optimal convergence. The graphs of the vector field
and the pressure variable are shown in Figure 4.

Example 4.3 (Driven Cavity). We consider a well-known driven cavity problem. The following Dirichlet bound-
ary condition is imposed: u = [0, 1] on y = 1 and u = [0, 0] if x = −1, x = 1 or y = −1. The interface is the zero
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Figure 4: Plots of velocity field (left) and pressure (right) for Example 4.2.

1
h ‖u − uh‖0 Order ‖u − uh‖1,h Order ‖p − ph‖0 Order

20 2.009×10−1 1.398×100 3.724×101

21 1.313×10−2 3.935 1.185×10−1 3.560 1.983×101 0.910
22 8.338×10−3 0.655 1.331×10−1 −0.168 1.024×101 0.953
23 3.063×10−3 1.445 6.676×10−2 0.995 5.159×100 0.989
24 1.233×10−3 1.313 4.384×10−2 0.607 2.591×100 0.994
25 2.945×10−4 2.066 1.948×10−2 1.170 1.295×100 1.001
26 7.415×10−5 1.990 8.895×10−3 1.131 6.472×10−1 1.000
27 1.844×10−5 2.008 4.064×10−3 1.130 3.235×10−1 1.001

Table 2: L2 and H1 errors for the velocity and pressure variables of Example 4.2.
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Figure 5: Graphs of the velocity field (left) and the pressure variable (right) for Example 4.3.

set of L(x, y) = x2 + y2 − 0.42 and the parameters are μ− = 1 and μ+ = 100. Finally, we let the forcing vector
f = (0, 1)T on the right-hand side of (2.1a). The graphs of the vector field and the pressure variable are shown
in Figure 5. We see that there is no spurious oscillation near the interface for both the velocity and pressure
variable.

5 Conclusion and Future Work

In this work, we have developed a new IFEM for Stokes interface problems by modifying Crouzeix–Raviart
element. We introduce two kinds of basis functions in such a way that the coupling between the velocity and
pressure variable is different. First basis functions are constructed under the assumption of the continuity of
the pressure variable. In the second kind, a bubble-type velocity variable is coupled with the discontinuous
pressure variable. In each case, basis functions satisfy the Laplace–Young condition. Also, the pressure variable
has two degrees of freedom on each interface element. Therefore, our methods can handle the discontinuous
pressure case. We observe optimal convergence rates for all numerical examples.
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