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Abstract

We consider standard tracking-type, distributed elliptic optimal control
problems with L? regularization, and their finite element discretization. We
are investigating the L? error between the finite element approximation w,p
of the state u, and the desired state (target)  in terms of the regularization
parameter o and the mesh size h that leads to the optimal choice o = h?. Tt
turns out that, for this choice of the regularization parameter, we can devise
simple Jacobi-like preconditioned MINRES or Bramble-Pasciak CG methods
that allow us to solve the reduced discrete optimality system in asymptotically
optimal complexity with respect to the arithmetical operations and memory
demand. The theoretical results are confirmed by several benchmark problems
with targets of various regularities including discontinuous targets.
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1 Introduction

Let us consider the optimal control problem: Find the optimal state u, and the
optimal control z, such that the cost functional

Tlugn) = 5 [ fuole) =@ do+ 3 [ @) do (11)

is minimized subject to the elliptic boundary value problem
—Au, =2, inQ, and wu,=0 ondQ, (1.2)

where o > 0 denotes the regularization parameter, % is the given desired state that is
nothing but the target which we want to reach, and  C R? (d =1,2,3) denotes the
computational domain that is assumed to be bounded with Lipschitz boundary 0f2.
This optimal control problem has a unique solution u, € H}(2) and 2z, € L*(Q),
where we use the usual notation for Sobolev and Lebesgue spaces; see, e.g., [111, 20].
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This solution can be determined by solving the optimality system consisting of the
state (primal) problem (L2)), the gradient equation

Pet 0z, =0 inQ, (1.3)
and the adjoint problem
—Ap,=up,—u inQ, p,=0 ondd (1.4)

for determining the co-state (adjoint) p,. The control z, can be eliminated by
means of the gradient equation (I3]) that results in the so-called reduced optimality
system which is the starting point for our analysis in Section 2l At that point we
mention that there are many publications on elliptic optimal control problems such
as ([LI)—(L2), their numerical solution, and their application to practical problems,
where often additional constraints, e.g., box constraints imposed on the control,
are added. We refer to the monographs [IT], 20] for more detailed information on
optimal control problems of that kind.

In this paper, we are interested to derive regularization error estimates of the
form [[u, —Wl|L2() and [[ugen — || £2(q) in terms of the relaxation parameter ¢ and
the finite element mesh size h. Optimal control problems without state or control
constraints correspond to the solution of inverse problems with Tikhonov regular-
ization in a Hilbert scale; see [12] for related regularization error estimates. In [I3]
we have given regularization error estimates for |lu, — @l 12(q) when considering
both the regularization in L?(Q), and in the energy space H 1(Q2). The order of
the convergence rate in the relaxation parameter ¢ does not only depend on the
regularity of the given target, but also on the choice of the regularization. In the
case of the energy regularization, we have analyzed the finite element discretization
of the reduced optimality system in [T0]. When combining both error estimates, this
results in the choice p = h? to ensure optimal convergence of the approximate state
Uon to the target w. This optimal choice of the regularization parameter also allows
the construction of preconditioned iterative solution methods which are robust with
respect to the regularization parameter o = h2, and the finite element mesh size h.
In this work we will derive related regularization and finite element error estimates
in the case of the L? regularization which will result in the optimal choice o = h?.
This optimal choice of p allows us to construct robust and, at the same time, very
efficient iterative solvers based on diagonal, i.e. Jacobi-like preconditioners. The
discretization of the reduced optimality system leads to large-scale systems of finite
element equations with symmetric, but indefinite system matrices for determining
the nodal vectors for the finite element approximations to the optimal state u,
and optimal co-state (adjoint) p,. Iterative solvers for such kind of saddle point
systems are extensively studied in the literature. We refer the reader to the sur-
vey paper [I], the monograph [4], and the more recent papers [14] and [I5] for a
comprehensive overview on saddle point solvers. Using an operator interpolation
technique, Zulehner proposed a block-diagonal preconditioner for the symmetric
and indefinite discrete reduced optimality system that is robust with respect to the
regularization parameter ¢ [22]. The diagonal blocks of the preconditioner are of
the form M, + o'/?K;, and o 1 (My, + gl/QK), where M}, and K}, denote the mass
and the stiffness matrices, respectively. Replacing now My, + 0'/2K}, by some p -
robust multigrid or multilevel preconditioner as proposed in [16] and [9], this finally
leads to a robust and efficient preconditioner for the MINRES solver [17]. Surpris-
ingly, for the optimal choice o = h* of the regularization parameter, the matrix
M, + 0'/2K;, is spectrally equivalent to the mass matrix My, and, therefore, well-
conditioned. Now, replacing M, + 0'/2K}, by some diagonal approximation of the
mass matrix, we get a robust and really very cheap preconditioner for MINRES.
The same observation lead to robust and asymptotically optimal preconditioners
for the Bramble-Pasciak CG [2].



The remainder of the paper is organized as follows. In Section[2] we derive the L?
error estimate between the exact state solution u, of the optimal control problem for
fixed ¢ and the desired state @ in terms of the regularization parameter o, whereas, in
Section 3] the same estimates are derived for a finite element approximation u,, to
u. Section Ml is devoted to the construction and analysis of fast and robust iterative
solvers. Section [B] presents and discusses numerical results for typical benchmark
problems. Finally, in Section Gl we draw some conclusions, and give an outlook on
some future research topics.

2 Regularization error estimates

When using the gradient equation ([3]) to eliminate the control z,, the variational
formulation of the primal Dirichlet problem (2] is to find u, € H}(Q2) such that

1
E(pg, v)r2(q) + (Vg Vo) o) =0 forallv € H&(Q), (2.1)

while the variational formulation of the adjoint problem (I4) is to find p, € H}(£2)
such that

<Vpg, Vq>L2(Q) = <’U,g —u, Q>L2(Q) for all ¢ € H& (Q) (22)

While unique solvability of the coupled variational formulation (1) and (22 is
well established, our particular interest is in estimating the regularization error
llug — | £2(q) which depends on the regularity of the target . As already discussed
in [I3], we can prove the following result:

Lemma 1. Let (uy,p,) € HE(Q) x HE(Q) be the unique solution of the coupled
variational formulation 1) and Z2). When assuming @ € L?(Q) only, this gives

lug = @ll 20y < [l L2(0)- (2.3)
Forw € HY(Q) there holds
lug = Ul 20y < 0* ||Vl 20 (2.4)
Moreover, if uw € H}(Q) satisfies Au € L?(S2), then
lug =Tl 220y < 0" || AT| 20 (2.5)

Proof. When considering the variational formulation (2.2]) for ¢ = u,, and @2.I)) for
v = p, this gives

_ 1
(g — T, ug)r2(0) = (Vpo, Vtg) 12(0) = 7 (Pos Po) L2(02)5

i.e., we can write
1 2 2 — — _ _
2 1Pollz2(0) + lwe — UllT2q) = (W — e, W r2(0) < lue — UllL2(o) |l L2(0),

and therefore, ([23]) follows.
Next we consider the case @ € H}(Q2). Then we can use ([2.2)) for ¢ = u, —u and
1) for v = p, to obtain

g =Tl 7o) = (o =T up =W r2) = (VDo V(e — ) 12(0)
1
0

= (Vpg, V) 12(0) — (Vpe, V) L2(0) = (Pos Po) L2 () — (VDo, V) L2 ()5



ie.,
[ug = Tl|72 () + = ||Pg||L2(sz —(Vpo, V) 12(0) < VDol z2(0) VT 22(02)-  (2.6)
Now, using ([2.2)) for ¢ = p, this gives

VDol F2(0) = (VPor Vo) L2() = (U — s po) 12 (0) < Nt = Tll L2 [Poll L2 ()

and hence,
o = 320y < llug = Tll ot IPoll oty 1V 220
follows, i.e.,
o = T2 < lIPoll oty IVl (2.7)

Moreover, ([2.6) then implies

1Poll720) < elVPollz I VEllL2 ()

1/2 1/2 —
< ollug = T35 g Ipell o) Vo)
< QHpQ”L2 Q)HVUHL2(Q
ie.,
IPell 20y < 0*/* IV 20

Now, (2.4) follows when using (2.71).
Finally we assume u € Hg(Q) satisfying Au € L?(€2). As in the derivation of

[256) we have
g — Tl Z2(0) = (VDo Vtig) 12(0) — (VDg, V) 12(0)-
Now, using integration by parts, inserting p, = —o0z,, and using z, = —Au,, this
gives
o — ﬂ”%?(sz) = —(pg, Aug)r2(Q) + (Po, AT) L2 (1)
= 0(z0, Aug)r2(0) — 0 (20, AU) 12(q)
—0 (Auy, AU9>L2(Q) + 0 (Auy, Amm(ﬂ),

ie.,
llue — ﬂ||%2(sz) to ||Aug||%2(sz) = 0 (Auy, AT) 12(0) < 0| AupllL2(0)|AT| 20
and hence,
[Aupll 2y < 1AT L2()s e = Tll72() < 0 ATF2 (0,
ie., (23] follows. O

Note that the regularization error estimates of Lemma [I] were already given in
[13, Theorem 4.1]. But in particular the proof of (Z4]) is a bit different to that of [13],
resulting in an improved constant, and (Z3]) is new. In addition to regularization
error estimates in L2(£)) we also need to have related estimates in H3 () when
assuming u € HJ ().

Lemma 2. Let (uy,p,) € Hg(Q) x HY(Q) be the unique solution of the coupled
variational formulation 21)) and 22)). When assuming u € HE (), this gives

[V (ue = @) L2(0) < IV L2(0).- (2.8)
Moreover, if uw € H}(Q) satisfies Au € L?(S2), then
1/4

IV (ug = W)l L2@) < 0/ | AT 12(q)- (2.9)



Proof. Due to the assumption w € HJ(£2) we can use v = u, — U as test function in
@1) and ¢ = p, in ([22) to obtain
_ 1 _ 1
(Vug, V(ug =) 12(0) = =5 (Por g =) 12(0) = 5 (VDo: Vop) 12(9);

i.e., we have

1 _ o
E vaQ”%?(Q) + 1V (ue - “)”%2(9) = (Vu, V(T - up))r2(0)

IN

IVl L2 [V (4o = )| 20

from which we conclude (2.8)).
On the other hand, when assuming u € H{ () satisfying Au € L?((2), and when
applying integration by parts, we also have

1 _ _ _
E vaQ”%?(Q) + 1V (u, — “)”%2(9) = (V, V(T —up))r2(0)
= (AT, upy — ) 2(0) < [|AT|L2(0)l|ue — Ul L2(0)-

Finally, using (2.5]), this gives

IV (ug = )1 72(0) < AT 20 lue — Tl L2 (0) < 0'/? 1AT]|7 20,

ie., ([Z9) follows. O

3 Finite element error estimates

For the numerical solution of the coupled variational formulation (Z1]) and (22) we
first introduce the transformation p,(z) = /0 p,(x), i.e., we consider the variational
formulation to find (u,,p,) € Ha(Q) x H}(Q) such that

1
ﬁ (Do) 2() + (Vg VU) [2(q) = 0 forallv € H& (Q), (3.1)

and

1

— <Vﬁg, VQ>L2(Q) + <’u9, q>L2(Q) = ﬁ<ﬂ7 q>L2(Q) for all qE H& (Q) (32)

1
Ve
Let Vi, = SH(Q) N HY(Q) = span{pn i }n, = span{ps}n”, be the finite element
space of piecewise linear and continuous basis functions which are defined with
respect to some admissible decomposition of the computational domain €2 into shape
regular and globally quasi-uniform simplicial finite elements of mesh size h. For
simplicity, we omit the subindex h from the basis functions ¢ ;. The Galerkin
variational formulation of (BI)) and (B.2)) is to find (up, Pen) € Vi, X Vi, such that

1

ﬁ <ﬁgh, 'Uh>L2(Q) + (Vugh, VU}L>L2(Q) =0 forallv, € V},, (3.3)

and

- 1 1
— (VPohs Van) 12(Q) + —= (Uoh, n) 12(0) = NG (@, qn)12(q) for all gy € Vi, (3.4)

7
The mixed finite element scheme [B3) and [B:4) has obviously a unique solution.
Indeed, choosing the test function vy, = p,p, in B3) as well as gn, = u,p in (B34, and
adding both equations, we see that p,;, and u,, must be zero for the homogeneous
equations (@ = 0). Now uniqueness always yields existence in the linear finite-
dimensional case. So, the corresponding system of algebraic equation also has a
unique solution and vice versa; see also Section [l
Now we are in a position to formulate the main result of this section.



Theorem 1. Let (upn,Don) € Vi X Vi, be the unique solution of the coupled finite
element variational formulation B3) and B4l). Assume that the underlying finite
element mesh is globally quasi-uniform such that an inverse inequality in V}, is valid,
and consider o = h*. For u € H}(Q) then there holds the error estimate

luon —llL20) < ch[ulm (). (3.5)

Foru € HYH(Q)NH?*(Q), and if the domain Q is either smoothly bounded or convez,
then we also have

||’U,Qh _E”L2(Q) < ch? |E|H2(Q)- (36)
Proof. For given (p,v) € H(2) x HE() define (¢pn,¥n) € Vi x Vi as unique
solutions satisfying the variational formulations

1 1
NG (nsvn)r2(@)+(Veon, Von)r2) = NG (Y, vn) L20)+ Vo, Vup) 12y, Yo € Vi,
and

1 1
—(Vibn, VQh>L2(Q)+7 (Onyqn) 20y = —(Vp, th>L2(Q)+7 (@ an)L2(2) qn € Vh-

When using an inverse inequality in V},, this gives
1
\/@ [UnllZa () + 1VYRlZ2 @)

1 -2 2 1 -2 2
76 +erh™ ) llenllzeaio) + NG +erh™ ) Wnllz2q)

lenlZz) + 1VenllZa o)
(2 (©)

f

IN

_ [1 1
= (14 ek Va) [ llonliae + ol
_ [ 1
= (1 +erh™? \/5) %<Sﬁhv<ﬁh>L2(Q) = (Vn, Vor) r2(q)
1
+(Ven, Vibn) 2(0) + %Wlh, wh>L2(Q):|
_ (1
= (1 +erh? \/5) \/—<80 sen)re@) — VU, Von) L2 ()
Vo, Vibn) r2(0) WJ Vn)L2(@ ]
() \/— ()
L 1 ,
< (1 erh™ve) | 2 lellalionlae + 190l Vol
1
IVl 2@ I VYrllz ) + Nz ||¢||L2(Q)||¢h||L2(Q)]

IN

. ) 1/2
(1+ernve) [ 2 600y + V60

1
7 lelZ20) + 1VellT2(0) + 77
1 2 2 1 2 2 Yz
7B lenllzz) + IVenlliz ) + 7z l¥nllz20) + IVYRlZ20)| -
Hence,

lenlliz() + IVerlZai) + —= 1¥nlliz ) + IIVz/fhlliz(m

1
\/_

lellZ2i) + IVelliz@) + —=

\F

< (1+enva) [ 80y + 19l |-

Ve f



In fact, the Galerkin projection (@, %) — (¢n,¥y) is bounded, and in particular for
0 = h* we therefore conclude Cea’s lemma, i.e., for arbitrary (vs,qn) € Vi x Vi, we
have

h=? llue — thH%?(Q) + [V (up — Um)”%?(ﬂ)
+h72 1Dy = Ponllzz(0) + IV (B = Don) 1220

< e [072 lup = vnl 32y + 19 (g = o) 320
2By — anll3ao) + IV — an) 3oy -

For w € H{}(2) we can consider v, = W), being a suitable approximation, e.g.,
Scott—Zhang interpolation [3]. Then, using (4], this gives, recall o = h?,

IN

[wo — TnllL2(n) lug — @l L2y + |7 — Tnll L2(0)

IN

91/4 |ﬂ|H1(Q) + chlalm @ < ch |E|H1(Q)-
Moreover, now using (28], we also have
[V (ue = Tn)l|20) < IV(ug = @) L2) + V(@ = Tn) |2y < (1 +¢) [V L2(0) -

Correspondingly, let ¢, = II,p, be some suitable approximation, e.g., again the
Scott—Zhang interpolation. Then,

- - - 1
1P — Unpoll2() < ch||VDollL2) = ch NG VpollL2(q) -

From (22)), and using duality we first have
IVDollZ2(q) = (VPor VDo) 2() = (U =T Po) L2(0) < Il — Tl a1 () [ VPoll L2(0)
and with [I3, Theorem 4.1] this gives

[VDellae) < llue —llg-1(0) < Ve lalm (o)

Hence we conclude
IPe — Unboll2() < ch[|m(qy)-

In the same way as above we also obtain

_ ~ - 1 _
V(Do — Unpo)ll2) < IVDellz2) = —= VPl 2 (o) < Ul a1 (0)-

Ve

Now, summing up all contributions this gives
h™? g — u9h||2L2(Q) + [V (ue — ugh)||2L2(Q)
+ 072D — Donll T2y + IV (Bo = Por) 720y < ¢ [8l7 ()
in particular we have
l[ug = gnll72(q) < ¢h® (@i ().
Hence, [35) follows from, again using (Z.4) and o = h?,

tgh — Tl L2() < lluen — ellr2(o) + lue — Tl 2i) < chl@lm @) + 0"* [@lm ().



It remains to consider w € H}(Q) N H?(Q). We proceed as above, but with ([2.35) we
first obtain

IN

lue — nl L2 u =l L2(0) + 1T — @l L2(0)

IN

0" |AT| 2oy + ¢ h? [T 2(a) < ch? [T g2(q),
while with ([Z.9) we conclude

[V(ue —=an)llLz) < [IV(ue = 0)|lL2) + V(@ =)l L2(0)
o | AT L2 () + ch [ 20y < ch[tlgeq)-

IN

Moreover, we also have, in the case of a smoothly bounded or convex domain €2,

and using (23],

1 1
— |P9|H2(Q) < ch? _Q ||Ap9||L2(Q)

Ve Ve

1
= ch® —|lup — Ul r2(q) < ch®[|AU|12(q).

Ve

Finally, and following the above estimates, we have

1o — Mibollrzi) < ch?[Polmz(n) = ch®

_ - ~ 1 _
V(P — npo)ll 2y < chlpoluz) = Ch—g IPolr2(0) < ch||ATl|L2q)-

7

Again, summing up all contributions this gives

h=? e — ugh”%%sl) + 1V (ue — ugh)”%%sz)
+h72|Po = PonllF2(q) + IV Be — Do) |72y < ch?uli(q),
ie.,
l[ug — thH%?(Q) < ch' [ulp2 ().
Now, (3.0) follows from the triangle inequality and using (2.9). O

In order to derive error estimates for less regular targets w we also need the
following result.

Lemma 3. Let (ugn, Pon) € Vi, X Vi, be the unique solution of the coupled finite
element variational formulation B3) and B4). For u € L*()) there holds the
error estimate

lwon — Tl L2(0) < |allL2(q)- (3.7)

Proof. We consider the Galerkin formulations (3.3]) and ([B.4) for the particular test
functions vy, = ppp, and gp = u,p to obtain
1 ~
— (Dohs Pon) 12(0) + (Vtgh, VDon) 12(0) = 0,

Ve

and
1

- 1 _
—(VDon, Vugn)r2(Q) + 76 (Uohs Ugh) L2(2) = %@7%}1&2(@)-
When summing up both expressions this gives
(Doh» Don)12(9) + (Ugh, Uon) £2(0) = (U, Ugh) 12(02),
which we can write as
(Doh> Doh) L2(0) + (Ugh — Ty Ugh — W) 12(Q) = (U — Ugh, ) £2()-

From this we conclude (B71). O



Now, using an interpolation argument, we can prove the final error estimate.

Corollary 1. Let (upn, Pon) € Vi, x Vi, be the unique solution of the coupled finite
element variational formulation B3) and BA). Let w € HF(QY) for s € [0,1] or
ue HJ () NH*Q) for s € (1,2], and let o = h*. Then,

[ton = Tl[L2() < ch® [[u]l o g)- (3-8)

4 Robust solvers

The finite element variational formulation (33]) and [B4]) is equivalent to a coupled
linear system of algebraic equations,

1 1 1
—Mhﬁ—l—Khu:O, and —Khﬁ—l— — Mpu=—f, 4.1
Ve Ve T )
where K, and My, are the standard finite element stiffness and mass matrices, the
entries of which are given by

Kh[f,k]:/Vgok-Vgogd:E and Mh[f,k]z/gokcpgd:v fork,{=1,..., Ny,
Q Q

respectively. The load vector £ = (f¢)o=1.._n, € RV" is given by its entries

.....

fg:/ﬂcpgd:t for/=1,...,Np.
Q

The stiffness matrix Kj and the mass matrix M, are symmetric and positive defi-
nite. Furthermore, they satisfy the spectral inequalities

gKhd(v,v) < Amin(K) (v, v) < (K, V) < Anax(K) (v, v) < h?2(v,v) (4.2
and
enh? (v, V) € Amin(M) (v, v) < (MV, V) < Apax (M) (v, v) < ehd(v,v)  (4.3)

for all v.€ RV», where Apin(+) and Ayax(-) always denote the minimal and maximal
eigenvalues of the corresponding matrices, respectively, and (-,-) = (-,-)gn, de-
notes the Euclidean inner product in the Euclidean vector space RV*. The positive
constants ¢k, ¢k, ¢\, and ey are independent of the mesh-size h; see, e.g., |5l [1§].

Since the mass matrix My, is invertible, we can eliminate the modified adjoint
P, and hence we can rewrite (4.1 as Schur complement system

[g K,M; 'K + My, |u=f. (4.4)

The Schur complement S, = gKhM,ZlKh + M, is obviously symmetric and pos-
itive definite, and hence invertible. Therefore, the coupled system (41]) also has
a unique solution p = (Px)k=1... N,, U = (Ur)k=1... N, € RV which delivers the
nodal parameters for the unique solution p,p = Zivﬁl Drpr and upp = Zivﬁl Uk PE
of the mixed finite element scheme (3] and ([B.4]) as we have already mentioned in
SectionBl Let 0 < Amin(M},, 'Kz) = A < ... < An, = Amax(M, 'K}) be the eigen-
values, and eq,...,ey, € RV" the corresponding eigenvectors of the generalized
eigenvalue problem

Khe = )\Mhe, (4.5)

and let us suppose that the eigenvectors ey, ..., ey, are orthonormal with respect to
the Mj-energy inner product (M-, -), i.e., (Mpe;,e;) =, ; foralli,j =1,..., Np.



It is well known, see also [@.2]) and ([@3)), that there exists positive constants ¢k
and ¢y, which are independent of h, such that

cvk < Amin(M;, 'Kp)  and  Amax(M;, 'Kj,) < evxch ™2 (4.6)
These bounds are sharp with respect to h.

Lemma 4. If o = h*, then the Schur complement Sy, is spectrally equivalent to the
mass matrix My. More precisely, there hold the spectral equivalence inequalities

cus (Mpv,v) < (Spv,v) < ens (Mpv,v), Vv e RN (4.7)
where cyg = 1 and Eys = Cape + 1, with ey from ([dLG).

Proof. Let v € RN® be arbitrary, and let us expand v = fv 1 vie; in the orthonor-
mal eigenvector basis, where vf = (Mpv,e;). Then we can represent (Spv,v) in
the form

(Spv,v) = Z vivs (0 KpM,, Khel—l—Mhez,eJ)
1,j=1
Np,
= Z v g)\ +1)(Mpe;, e5) = Z(’Uf)Q(Q)\? +1).
3,j=1 i=1

Using now the identity (Mpv,v) = vahl( ¢)?, and the bounds (@6, we immedi-
ately get the estimates

Np

(Shv, V) = (0Amin(M}, 'Kp)* +1) > (1) > (ociix + 1)(Mav,v) > (Myv,v)
=1

and
Np
(S7:%) < (QXas M5 K1) 4 1) D (05)? < (Bich™ + 1) (Myv, v),
i=1
from which the spectral equivalence inequalities (&) follow for o = h*. O

Since S; = gKhM,leh + M, is spectrally equivalent to the mass matrix
Mj,, we can efficiently solve the symmetric and positive definite Schur complement
system (@A) by means of the Preconditioned Conjugate Gradient (PCG) method
with the symmetric and positive definite preconditioner C; = Mj,. Using the well-
known convergence estimate for the PCG method (see, e.g., [I8, Chapter 13]), and
the spectral equivalence inequalities (7)) from Lemma [ we arrive at estimates of
the iteration error in the L?(2)-norm for the corresponding finite element functions:

uon — upnll2) = ||u—u"|\Mh = (My(u—u"),u—u")"?
1/2

IN

CMS >(Sp(u—u”),u—u")
71/2

2q" ||U_ uO”Sh

CMS 12
< <—) 24" [lu— ufl,
CMs

CMS 1/
= <—) 2anU9h_Ugh”L2(Q)a
Ems

g lu—uls, < ey

10



where

\/conda(M;*Sy,) — 1 Amax(M; 1S C
L with conds(M,,'S),) = Amax(My, Sn) _ 2us

q= ) ) =
CODdQ(M}:lSh) +1 )\min(Mh Sh) CMs

Since we can take ¢\ = 1, we finally arrive at the L?(f2) iteration error estimate

won — ul | z2(0y < 2 (@ns) 27" lugn — udll L2, (4.8)

where

7= veus — 1 . \/512\/IK+1_1 <1
Vems +1 0 /@ +1+1

is independent of h, using ¢vk from (@6). Here the finite element functions
Uon () = ZkN:hl ugpr(r) and upy, (r) = Egll ulpr(x) correspond to the solution
u = (ug)k=1,....n, € RV" of the Schur complement system (£4) and the n-th PCG
iterate u™ = (u})k=1,... N, € R™ | respectively.

Now, using the triangle inequality, the L?(Q)-norm discretization error estimate
(B.3), and the L?(Q)-norm iteration error estimate (&), we finally get

7 —ugnll2) < 1 = ugnllL2) + lluen — ugnll2()

IN

ch? |[ul| s () + 2 (@ms)'? 7" |Jupn — udnll 2

B (e s + 2 (@nis) ™ utgn = udy 2o

IN

provided that g* < h® that yields n > Inh~*/Ing *. Since 7 is independent of
h, the number of PCG iterations only logarithmically grows with respect to h in
order to obtain the total error in the order O(h®) of the discretization error. This
logarithmical growth can be avoided in a nested iteration setting on a sequence of
grids; see, e.g, [6].

However, each Schur Complement PCG iteration step requires the solution of
two systems of algebraic equations with the symmetric and positive definite well-
conditioned mass matrix M, as system matrix, namely,

1. in the matrix-vector multiplication Spu” = QKhM,ZlKhu" + Mpu”,

2. and in the preconditioning step Mw" = r™.

Thus, in a preprocessing step, we can factorize My, e.g., by means of the LhDth or
the Cholesky factorization, and then use fast forward and backward substitutions
at each iteration step. In the preconditioning step, we can avoid the solution of
the preconditioning system Cp,w" = r" with C, = M, by replacing C; with a
spectrally equivalent preconditioner such as C;, = diag(Mp), Cp = lump(My,),
C;, = area(My},), or even Cj, = hel; cf. [@3). Here, diag(M},) is the diagonal
matrix with the diagonal entries from M;,, lump(M}) is the lumped mass matrix
that is diagonal; see, e.g., [I9], C}, = area(M},) denotes the diagonal matrix with the
k-th diagonal entry which coincides with the area of the support of the basis function
©k; see [I8, Lemma 9.7] that also provides the spectral equivalence constants, and I,
is the identity matrix. If we replace M;l in the Schur complement system (4] by
the diagonal matrix (lump(Mp,))~!, then the solution of the corresponding inexact
Schur complement system

[g K, (lump(M,,)) 'K, + Mh] U=f (4.9)

by means of the PCG precondioned by diag(Myp,), lump(My) or Cj, = area(My,), is
obviously of asymptotically optimal complexity O(Ny, Ine~1) for some fixed relative
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accuracy € € (0,1). However, the use of mass lumping in the discretization needs
an additional analysis that goes beyond the scope of this paper. Instead, in Sec-
tion Bl we compare the discretization error and the efficiency of this inexact Schur
comlement PCG, that we call inexSCPCG, with the discretization error without
mass lumping corresponding to the solution of (£I]) and the efficiency of the other
solvers proposed below.

The solution of a mass matrix system in the matrix-vector multiplication Spu”
can also be avoided by a mixed reformulation as a system of double size with
a symmetric, but indefinite system matrix that reads as follows: Find (u,p) €

RN x RMn guch that
Mh Kh ul f
pee e (@10

where p = —,/op = —p. The symmetric and indefinite system (£I0) is obviously
equivalent to the non-symmetric and positive definite system (1), and, therefore,
to the Schur complement system (@.4]).

The block-diagonal matrix

(4.11)

Py — [Mh + 91/2Kh 0 ]

0 o~ (M, + 0/%K},)

provides a preconditioner for the MINRES solver that is robust with respect to the
mesh size h and the regularization parameter p. This result is proven in [22], where
also the corresponding convergence rate estimates are given. In order to obtain
an efficient, but at the same time robust preconditioner, we have to replace the
block-entry My, + 0'/2K}, by a spectrally equivalent preconditioner C, such that
the spectral equivalence constants do not depend neither on A nor on p. Symmetric
and positive definite multigrid preconditioners based on symmetric V- or W-cycles
are certainly suitable candidates. We came back to this choice later.

We recall that the optimal choice of the regularization parameter is ¢ = h?.

Using again the eigenvector expansion v = i:hl vie;, we get

Np, Nn
(M, + 0 PKp)v,v) = > (14 0"72N)(0f) = > (1 +h*\)(vf)° (4.12)

i=1 i=1

for all v .€ RV». This representation and the eigenvalue estimates (Z.6]) immediately
yield the spectral equivalence inequalities

(14 h2eyk) (Mpv,v) < (My, + 02Ky )v,v) < (14 euk) (Mpv,v), Yv € RV,
which we now rewrite in short form as
cva M < Ap < eva My, (4.13)

where Ay = My +0"2K;, = My, +h%Ky,, eya = 14+h2eyi > 1, and Gya = 1+Cuk.
Replacing now the mass matrix My, by the diagonal preconditioner Cj, = diag(Myp,),
we see that

cca Ch < An <Tca Cy, (4.14)

with h-independent, positive constants ¢, and ¢ca. These spectral equivalence in-
equalities easily follow from ([@I3)) and the spectral equivalence of My, to diag(Myp,).
Therefore, the diagonal preconditioner

C 0
Pdiag,h = |: Oh h4Ch:|

(4.15)

diag(My,) 0
0 h~*diag(M},)
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is spectrally equivalent to Pp. Thus, the MINRES preconditioned by Pgiag,n con-
verges with a rate that is independent of i, and with an asymptotically optimal com-
plexity O(Ny, Ine™1) for some fixed relative accuracy € € (0,1). We call this solver
Paiag MINRES. Numerical tests underpinning our theoretical results are presented
in Section [l If we replace My, + 0'/2K; by C;, = lump(My), C; = area(My,),
or Cj, = diag(My, + h2K}), we also get diagonal preconditioners with the same
properties as diag(Mjp,).

At first glance, it does not seem necessary to replace My, + 0'/2K, by a symetric
and positive definite multigrid preconditioner C;, = (M +0'/?K},) (I, —MGZ)_1 as
it was proposed in [22] for fixed positive g, since, for o = h*, the block M}, + 0'?K,
is spectrally equivalent to M}, and, therefore, well conditioned. Here, I}, is the iden-
tity, MG denotes the multigrid iteration matrix, and k is the number of multigrid
iterations per precondioning step (usually, ¥k = 1). However, we can improve the
spectral equivalent constants in comparison to Cj, = diag(My,) for the price of
higher arithmetical, but still asymptotically optimal cost per preconditioning step.
More precisely, for the multigrid preconditioner Cp, = A, (I — MGZ)’l, we get
the spectral equivalence inequalities (II4]) with the spectral constants ¢y = 1—7F
and ¢cp = 1 +n¥, where 7 is an upper bound for the Aj-energy norm of the multi-
grid iteration matrix MGy, that is nothing but the multigrid convergence rate in
the Ap-energy norm. We mention that ¢ca is even equal to 1 if k is even or if
the multigrid iteration matrix MGy, is non-negative with respect to the Aj-energy
inner product. We refer the reader to [7, [§] for details on multigrid preconditioners.
Therefore, the multigrid preconditioner

C, O ] _ [Ah(Ih —MGH)! 0

Prme = [ 0 h'C, 0 TNV (e ] I

is spectrally equivalent to Pp. Thus, the MINRES preconditioned by Pug,n also
converges with a rate that is independent of h, and with asymptotically optimal
complexity O(NpIne™!). We call this solver Py, MINRES. Numerical tests illus-
trating the behavior of this multigrid preconditioner and comparing it with the
diagonal preconditioner Pgiag,n are reported in Section

Instead of the MINRES, we can also use Bramble-Pasciak PCG (BP-PCG) as
solver; see [2]. In order to apply BP-PCG, we reformulate the coupled system (.T])
in the equivalent form

M, eK.||p|_|O
ol e
Applying the Bramble-Pasciak transformation

M, C,} rl1 0} _ [(Mh — CM,L)_(;‘@I 0]
VeKrCyy, o -1 VeKnCyy, -1

to the symmetric, but indefinite system ([{LIT), we arrive at the symetric and positive

definite system
p| (O] _ 0
-l
with the system matrix

K, = [M,.C;/ rl1 0} [ M, \/EK;L}

| VeKnCy  —I] |[VeKn —M,
[ M,Cy M, — M, o(M,Cy} — I)Kh]
VoKr(Cyi My, —T)  0K,C Kp, + M,
_(Mh - CMh,)C]_Wthh \/E(Mh - CMh,)C]_WlhKh:|
| VoK (Cyf My, — 1) oKnCy Ky + My, |’

|
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where Cjy, is symmetric and positive definite, spectrally equivalent to the mass
matrix My, and
Cur,, < Mp,. (4.19)

Therefore, we can choose
Cys,, = 0.25 diag(My,) (4.20)

that is spectrally equivalent to My, and that ensures (II9)); see, e.g., [4]. More
precisely, there are spectral equivalence constants 1 < ¢y < €om such that

Cum, <comCum,, <My, <ecmCu,
Then the exact BP preconditioner

b _ [Mn-Cu, 0
BPh = 0 oKuM; 'K, + My,

(4.21)
is spectrally equivalent to Kj. More precisely, the spectral equivalence inequalities
cpx < Pepn < Kn <CpkPrprn (4.22)

hold with the spectral equivalence constants

- va L+va (4.23)

C = and Cpk =
~PK 11—« 11—«

where @ = 1 — (1/¢ey)-  The lower constant cpyi was derived in [2], wheras
the upper constant can be found in [2I]. Now, replacing the Schur complement
Sy = gKhM,:lKh + M}, in the exact BP preconditioner (£21]) by diag(My},) that
is spectrally equivalent to S, we arrive at the inexact BP preconditioner

75 o Mh — CMh 0 . Mh —0.25 diag(Mh) 0
BPh = 0 diag(My)| — 0 diag(My,)

that is spectrally equivalent to Kp,_as well. Thus, the BP-PCG, that is here nothing
but the PCG preconditioned by Pgp, applied to the symmetric and positive defi-
nite system ([@I7), converges with a h-independent rate in asymptotically optimal
complexity O(Njy Ine~1). In the next section, we numerically compare exactly this
BP-PCG with PgiagMINRES and P MINRES as well as with the inexact Schur
complement PCG inexactSCPCG where we use mass lumping in the discretization
in order to make the multiplications with the Schur complement effficient.

5 Numerical results

In our numerical examples, we consider the computational domain Q = (0,1)3,
that is decomposed into uniformly refined tetrahedral elements. The starting mesh
contains 384 tetrahedral elements and 125 vertices, i.e., 5 vertices in each direction,
which leads to an initial mesh size h = 272. The tests are performed on 8 uniformly
refined mesh levels L;, i = 1,...,8. The number of vertices, the mesh size h, and
the corresponding regularization parameter o = h* are given in Table [

To confirm the convergence rate as given in ([B0]) of the finite element solution
Uon tO a given target u, we have considered the following four representative targets
with different regularities, similar to [I3]:

Target 1: A smooth target u = sin(7z) sin(my) sin(72), w € H (Q) N H(Q);

Target 2: A piecewise linear continuous target @ being one in the mid point

(1,1, 1) and zero in all corner points of Q, T € H} () N H*(Q), s < 3;
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Level | Number of vertices h o(=h?
Ly 125 272 28
Lo 729 273 2-12
Ls 4,913 24 916
Ly 35,937 27° 2720
Ls 974,625 276 9-24
Le 2,146,689 2-7 928
Lo 16,974,593 278 932
Lg 135,005,697 279 2736

Table 1: The number of vertices, the mesh size h, and the related regularization
parameter o = h* on 8 uniformly refined mesh levels.

Target 3: A piecewise constant discontinuous function @ being one in the inscribed

cube (1, 2)3 and zero elsewhere, w € H*(), s < 3;

Target 4: A smooth target @ = 1 + sin(wz1) sin(wz2) sin(rzs) that violates the
homogeneous Dirichlet boundary conditions, 7 € H*(Q), s < 1.

We will further report robustness and computational cost of four preconditioned
Krylov subspace solvers for the large scale linear system of algebraic equations that
are arising from the finite element discretization of the optimality system with
the choice of the regularization parameter o = h*. More precisely, we study the
numerical performance of the following four Krylov subspace solvers described in
Section [

1. PmgMINRES: multigrid-preconditioned MINRES for solving ([@I0),
2. PaiagMINRES: diagonal-preconditioned MINRES for solving (£10),
3. BP-PCG: Bramble-Pasciak PCG for solving (@17,

4. inexSCPCG: inexact Schur complement PCG solving (£9)).

The multigrid preconditioner (£I6]) with k& = 1, which is applied in Py MINRES, is
based on a W-cycle that starts with a zero initial guess, uses 2 forward Gauss—Seidel
presmoothing and 2 backward Gauss—Seidel postsmoothing steps, and canonical
transfer operators such that the multigrid preconditioner is symmetric and positive
definite; see [7, [§]. We note that the first three solvers solve mixed systems with
2N}, degrees of freedoms, whereas the last method solves the inexact Schur comple-
ment system that only has N}, degrees of freedom. We recall that the systems ([@.1l),
(#I0), @I7) and @A) are equivalent. But since we use the inexact Schur com-
plement instead of the exact Schur complement in (@3], we compute a perturbed
solution ,, with some additional error. Hence we also compare all discretization
errors. In all of these approaches, the solvers stop the iterations as soon as the pre-
conditioned residual is reduced by a factor 10'!. Since the residual of the inexact
Schur complement system (@3] is computed for the primal unknown u only, the
resulting L? error of ,y, is different compared to the system (@I), where also the
residual of the adjoint p is involved. We finally mention that the preconditioned
residual norm here reproduces the L? norm in which we are primarily interested.

5.1 Convergence studies

The errors [|ugn — l|2(q) between the finite element solution w,, and the given
target w are computed by means of the first three methods that solve the equivalent
mixed formulations (£I0) or (£IT), whereas the errors ||uyn —| £2() are computed
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by solving the inexact Schur complement equation (£9) using inexSCPCG. These
errors are given in Tables 2HH] for Targets 1-4, respectively. For all of these cases,
we have used the required scaling ¢ = h*, which leads to optimal convergence with
respect to the mesh size h, depending on the corresponding regularity of the given
target w. This is observed as the experimental order of convergence (eoc) in Tables
2H5l Further, the solution @, from solving the inexact Schur complement equation
(Approach 4) does not deteriorate with respect to the accuracy and convergence
rate. This is confirmed by comparison with the solution from the exact Schur
complement equation that is equivalent to solving the mixed fromulations (ZI0) or
(@TI1) as we did in the first three approaches.

Level Apprgaches 1-3 _ Ap_proach 4
luoh —Ullz2()  eoc | |lupn —Ullr2(0)  eoc
Ly 3.04904e—1 — | 3.03162e—1 —
Lo 7.14457e—2 2.09 | 6.92534e—2 2.13
Ls 5.35113e—3 3.74 | 5.29228e—3 3.71
Ly 6.22449¢—4 3.10 | 6.19849e—4 3.09
Ls 1.34331e—4 2.21 | 1.33758e—4 2.21
Lg 3.27079¢—5 2.03 | 3.25740e—5 2.04
Ly 8.07438e—6 2.02 | 8.04282e¢—6 2.02
Lg 2.00173e—6 2.01 | 1.99422¢—6 2.01
Theory 2 2

Table 2: Comparison of error ||u,n — | £2(q) (Approaches 1 - 3) and |[ugn — | £2(q)
(Approach 4) for Target 1.

Level Apprgaches 1-3 _ Ap_proach 4
Tugn — #lcem _eoc | Tign — ullzm _eoc
Ly 2.72445e—1 — | 2.71300e—1 —
Lo 8.50409e—2 1.68 | 8.41925e—2 1.69
Ls 2.99226e—2 1.51 | 2.90354e—2 1.54
Ly 1.04906e—2 1.51 | 1.00864e—2 1.53
Ls 3.70527e—3 1.50 | 3.54103e—3 1.51
Lg 1.30970e—3 1.50 | 1.24752e—3 1.51
Ly 4.63061e—4 1.50 | 4.40293e—4 1.50
Lg 1.63735e—4 1.50 | 1.55529e—4 1.50
Theory 1.5 1.5

Table 3: Comparison of error ||uyn — 1| £2(q) (Approaches 1 - 3) and |[ugn — | £2(q)
(Approach 4) for Target 2.

5.2 Solver performance

We recall that all solvers stop the iterations as soon as the preconditioned residual is
reduced by a factor 10!, A comparison of the number of iterations (#Its) and the
required solving time in seconds (s) using these four solvers are provided in Tables[6-
for the given targets Target 14, respectively. PnMINRES requires the fewest
iteration numbers among all these solvers. The solver inexSCPCG outperforms
the other three solvers regarding the solving time. This is mainly due to the fact
that the inexact Schur complement equation only needs half of degrees of freedom
in comparison with the mixed formulations. Finally, we observe that all of the
preconditioned Krylov subspace methods show their robustness with respect to the

16



Level Apprgaches 1-3 _ Ap_proach 4
Hugh — u||L2(Q) €0cC ||u9h — UHLz(Q) e0C
Ly 3.28255e—1 — | 3.26425e—1 —
Lo 2.30561e—1 0.51 | 2.25595e—1 0.53
Ls 1.63827e—1 0.49 | 1.59922e—1 0.50
Ly 1.15682e—1 0.50 | 1.12852e—1 0.50
Ly 8.16986e—2 0.50 | 7.96806e—2 0.50
Lg 5.77276e—2 0.50 | 5.62946e—2 0.50
L7 4.08035e—2 0.50 | 3.97882e—2 0.50
Lg 2.88466e—2 0.50 | 2.81281e—2 0.50
Theory: 0.5 0.5

Table 4: Comparison of error ||uyn — | £2(q) (Approaches 1 - 3) and |[ugn — | 12(q)
(Approach 4) for Target 3.

Level Apprgaches 1-3 _ Ap_proach 4
Tugh — #lcrm_eoc | Tign — ullzm _eoc
Ly 1.15861e—0 — | 1.15659e—0 —
Lo 6.72524e—1 0.78 | 6.73325e—1 0.78
Ls 4.63819e—1 0.54 | 4.62241e—1 0.54
Ly 3.27310e—1 0.50 | 3.25524e—1 0.51
Ls 2.31129e—1 0.50 | 2.29647e—1 0.50
Lg 1.63305e—1 0.50 | 1.62176e—1 0.50
Ly 1.15426e—1 0.50 | 1.14599e—1 0.50
Lg 8.16011e—2 0.50 | 8.10057e—2 0.50
Theory: 0.5 0.5

Table 5: Comparison of error ||uyn — 1| £2(q) (Approaches 1 - 3) and |[ugn — | £2(q)
(Approach 4) for Target 4.

mesh size h, using the particular choice for the regularization parameter o = h?.
Furthermore, solvers Pgiag MINRES, BP-PCG, and inexSCPCG are relatively easy
to parallelize due to the fact that each iteration of these approaches only requires
matrix-vector multiplications, and the preconditioning step only requires a vector
scaling operation by simply using the diagonal of the corresponding matrix as a
preconditioner thanks to the spectral equivalence inequalities.

6 Conclusions and outlook

We have derived robust estimates of the derivation of the finite element approxi-
mation wu,y, of the state u, from the target (desired state) u in the L2({2) norm,
and robust, asymptotically optimal solvers for distributed elliptic optimal control
problems with L? -regularization. Due to the optimal choice o = h* of the regular-
ization parameter, Jacobi-like preconditioners are sufficient to construct MINRES
or Bramble-Pasciak CG solvers of asymptotically optimal complexity with respect
to arithmetical operations and memory demand. The parallelization of these it-
erative methods is straightforward, and will lead to very scalable implementations
since, in contrast to multigrid preconditioners, diagonal preconditioners are triv-
ial to parallelize. The numerical results yield that the multigrid preconditioned
MINRES solver is slightly more efficient in a single processor implementation.

Our numerical experiments show that the inexact Schur Complement PCG (in-
exactSCPCQG) seems to be the most promising iterative solver, in particular, in its
parallel version, but also the single processor implementation is the most efficient
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Lovel | PugMINRES | P MINRES BP-PCG inexSCPCG
#Its  Time (s) | #Its Time (s) | #Its  Time (s) | #Its Time (s)
Ly 19 2.9e—-2 21 2.9e-3 24 4.9e-2 10  6.6e—4
Lo 21 2.7e—-1 172 1.4e—1 180 4.5e—1 88 2.5e—2
L3 20 1.8e—0 234 2.3e—0 254  1.0e—0 126 2.6e—1
Ly 20 lde+1 231 3.8e+1 247  1.3e+1 132 3.3e—0
Ls 18  1.0e+42 225 4.2e42 242 2.0e42 130  2.0e+1
Lg 18  8.1e+42 220 2.1e+3 235  2.6e+3 128  1.8e+2
L 18 7.9e+3 213 2.4e+4 229  9.5e+3 124 4.1e+3
Lg 18 7.le+4 205  2.le+5H 223  1.5e+H 120 3.6e+4

Table 6: Comparison of the number of iterations (#Its) and the solving time in
seconds (s) for Target 1.

Lovel | PmgMINRES | PjagMINRES BP-PCG mexSCPCG
#Its Time (s) | #Its Time (s) | #Its Time (s) | #Its Time (s)
Ly 19 2.8e—2 21 2.9e-3 24 2.5e-3 10 6.4e—4
Ly 23 2.9e-1 185 1.5e—1 184 3.1e—1 94 2.7e-2
L3 23 2.0e—0 258 1.5e—0 265 3.0e—0 133 2.8e—1
Ly 23 1.6e+1 256  5.2e+1 275 4.le+1 138 3.5e—0
Ls 24 1.3e+2 248  1.1e+2 257  2.4e+2 137 3.9e+1
Lg 24 1.2e+3 240 1.9e+3 249  2.5e+3 134 6.4e+2
Ly 22 1.0e+4 230 2.9e+4 241 1.3e+4 129 3.3e+3
Lg 20 7.9e+4 220 2.2e+5 234 1.7e+b 123 2.6e+4

Table 7: Comparison of the number of iterations (#Its) and the solving time in
seconds (s) for Target 2.

one in comparison with the MINRES and Bramble-Pasciak CG solvers. The nu-
merical experiments also show that the use of the inexact Schur complement, where
the inverse of the mass matrix is replaced by the inverse of the lumped mass matrix,
does not affect the accuracy. Here a rigoros numerical analysis is still needed. More-
over, the development of a nested iteration framework with an a posteriori control
of the discretization error and its parallel implementation is a future research topic.
An adaptive mesh refinement will probably require variable regularization functions
o(z) adapted to the mesh density function rather than a fixed choice as we did in
this paper where we have investigated uniform mesh refinement.

This approach is not only restricted to the simple model problem of the Poisson
equation as constraint, extensions to more complicated elliptic equations, but also
to parabolic, e.g., the heat equation, and hyperbolic, e.g., the wave equation, can be
done in a similar way, and will be reported elsewhere. Moreover, the consideration
of control constraints requires the efficient solution of a sequence of linear algebraic
systems as considered in this paper.
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Lovel | PugMINRES | P MINRES BP-PCG inexSCPCG
#Its  Time (s) | #Its Time (s) | #Its  Time (s) | #Its Time (s)
Ly 21 3.2e-2 21 7.4e-2 25  2.5e—3 10 5.9e—4
Lo 25 3.le—1 191  1.5e—1 183 1.8e—1 97 2.8e—-2
L3 25 2.2e—0 268 1.6e—0 272 3.4e—0 136 3.0e—1
Ly 25 1.8e+1 276 1.8e+1 285 3.le+1 149  4.3e—0
Ls 26 1.5e+2 274 1.8e+2 284 1.1le42 149 5.0e+1
Lg 26 1.5e+3 276 3.7e+3 279 2.6e+3 149 7.0e+2
L, 26 1.2e+4 274 3.3e+4 266 1.7e+4 145  3.7e+3
Lg 26 1.5e+5 271 2.4e+5 237  1.6e+5 141  4.2e+4

Table 8: Comparison of the number of iterations (#Its) and the solving time in
seconds (s) for Target 3.

Lovel | PmgMINRES | PjagMINRES BP-PCG mexSCPCG
#Its Time (s) | #Its Time (s) | #Its Time (s) | #Its Time (s)
Ly 21  3.5e—2 21 2.9e-3 24 2.1e-3 10 6.1le—4
Ly 23 3.2e—-1 182 1.5e—1 185  9.7e—2 96 2.8e—2
L3 25 2.3e—0 264 1.6e—0 269  3.2e—0 137 2.8e—1
Ly 24 1.7e+1 270 1.4e+1 268  3.4e+1 147 2.5e—0
Ls 26 1.7e+2 268  3.3e+2 269 1.6e+42 148  2.3e+1
Lg 26 1.6e+3 271 4.2e+3 267  4.2e+3 150  4.9e+2
Ly 26 1.3e+4 268 4.0e+4 266 2.4e+4 149 2.8e+3
Lg 24 1l.le+b 265 2.7e+5H 263  2.4e+5b 147 3.6e+4

Table 9: Comparison of the number of iterations (#Its) and the solving time in
seconds (s) for Target 4.
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