
ar
X

iv
:2

20
7.

04
66

4v
1 

 [
m

at
h.

N
A

] 
 1

1 
Ju

l 2
02

2

Robust finite element discretization and solvers for

distributed elliptic optimal control problems
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Abstract

We consider standard tracking-type, distributed elliptic optimal control
problems with L2 regularization, and their finite element discretization. We
are investigating the L2 error between the finite element approximation u̺h

of the state u̺ and the desired state (target) u in terms of the regularization
parameter ̺ and the mesh size h that leads to the optimal choice ̺ = h4. It
turns out that, for this choice of the regularization parameter, we can devise
simple Jacobi-like preconditioned MINRES or Bramble-Pasciak CG methods
that allow us to solve the reduced discrete optimality system in asymptotically
optimal complexity with respect to the arithmetical operations and memory
demand. The theoretical results are confirmed by several benchmark problems
with targets of various regularities including discontinuous targets.

Keywords: Elliptic optimal control problems, L2 regularization, finite element
discretization, robust error estimates, robust solvers.
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1 Introduction

Let us consider the optimal control problem: Find the optimal state u̺ and the
optimal control z̺ such that the cost functional

J (u̺, z̺) =
1

2

∫

Ω

[u̺(x) − u(x)]2 dx +
̺

2

∫

Ω

[z̺(x)]
2 dx (1.1)

is minimized subject to the elliptic boundary value problem

−∆u̺ = z̺ in Ω, and u̺ = 0 on ∂Ω, (1.2)

where ̺ > 0 denotes the regularization parameter, u is the given desired state that is
nothing but the target which we want to reach, and Ω ⊂ R

d (d = 1, 2, 3) denotes the
computational domain that is assumed to be bounded with Lipschitz boundary ∂Ω.
This optimal control problem has a unique solution u̺ ∈ H1

0 (Ω) and z̺ ∈ L2(Ω),
where we use the usual notation for Sobolev and Lebesgue spaces; see, e.g., [11, 20].
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This solution can be determined by solving the optimality system consisting of the
state (primal) problem (1.2), the gradient equation

p̺ + ̺z̺ = 0 in Ω, (1.3)

and the adjoint problem

−∆p̺ = u̺ − u in Ω, p̺ = 0 on ∂Ω (1.4)

for determining the co-state (adjoint) p̺. The control z̺ can be eliminated by
means of the gradient equation (1.3) that results in the so-called reduced optimality
system which is the starting point for our analysis in Section 2. At that point we
mention that there are many publications on elliptic optimal control problems such
as (1.1)–(1.2), their numerical solution, and their application to practical problems,
where often additional constraints, e.g., box constraints imposed on the control,
are added. We refer to the monographs [11, 20] for more detailed information on
optimal control problems of that kind.

In this paper, we are interested to derive regularization error estimates of the
form ‖u̺ − u‖L2(Ω) and ‖u̺h − u‖L2(Ω) in terms of the relaxation parameter ̺ and
the finite element mesh size h. Optimal control problems without state or control
constraints correspond to the solution of inverse problems with Tikhonov regular-
ization in a Hilbert scale; see [12] for related regularization error estimates. In [13]
we have given regularization error estimates for ‖u̺ − u‖L2(Ω) when considering
both the regularization in L2(Ω), and in the energy space H−1(Ω). The order of
the convergence rate in the relaxation parameter ̺ does not only depend on the
regularity of the given target, but also on the choice of the regularization. In the
case of the energy regularization, we have analyzed the finite element discretization
of the reduced optimality system in [10]. When combining both error estimates, this
results in the choice ̺ = h2 to ensure optimal convergence of the approximate state
u̺h to the target u. This optimal choice of the regularization parameter also allows
the construction of preconditioned iterative solution methods which are robust with
respect to the regularization parameter ̺ = h2, and the finite element mesh size h.
In this work we will derive related regularization and finite element error estimates
in the case of the L2 regularization which will result in the optimal choice ̺ = h4.
This optimal choice of ̺ allows us to construct robust and, at the same time, very
efficient iterative solvers based on diagonal, i.e. Jacobi-like preconditioners. The
discretization of the reduced optimality system leads to large-scale systems of finite
element equations with symmetric, but indefinite system matrices for determining
the nodal vectors for the finite element approximations to the optimal state u̺
and optimal co-state (adjoint) p̺. Iterative solvers for such kind of saddle point
systems are extensively studied in the literature. We refer the reader to the sur-
vey paper [1], the monograph [4], and the more recent papers [14] and [15] for a
comprehensive overview on saddle point solvers. Using an operator interpolation
technique, Zulehner proposed a block-diagonal preconditioner for the symmetric
and indefinite discrete reduced optimality system that is robust with respect to the
regularization parameter ̺ [22]. The diagonal blocks of the preconditioner are of
the form Mh + ̺1/2Kh and ̺−1(Mh + ̺1/2K), where Mh and Kh denote the mass
and the stiffness matrices, respectively. Replacing now Mh + ̺1/2Kh by some ̺ -
robust multigrid or multilevel preconditioner as proposed in [16] and [9], this finally
leads to a robust and efficient preconditioner for the MINRES solver [17]. Surpris-
ingly, for the optimal choice ̺ = h4 of the regularization parameter, the matrix
Mh + ̺1/2Kh is spectrally equivalent to the mass matrix Mh, and, therefore, well-
conditioned. Now, replacing Mh + ̺1/2Kh by some diagonal approximation of the
mass matrix, we get a robust and really very cheap preconditioner for MINRES.
The same observation lead to robust and asymptotically optimal preconditioners
for the Bramble-Pasciak CG [2].
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The remainder of the paper is organized as follows. In Section 2, we derive the L2

error estimate between the exact state solution u̺ of the optimal control problem for
fixed ̺ and the desired state u in terms of the regularization parameter ̺, whereas, in
Section 3, the same estimates are derived for a finite element approximation u̺h to
u. Section 4 is devoted to the construction and analysis of fast and robust iterative
solvers. Section 5 presents and discusses numerical results for typical benchmark
problems. Finally, in Section 6, we draw some conclusions, and give an outlook on
some future research topics.

2 Regularization error estimates

When using the gradient equation (1.3) to eliminate the control z̺, the variational
formulation of the primal Dirichlet problem (1.2) is to find u̺ ∈ H1

0 (Ω) such that

1

̺
〈p̺, v〉L2(Ω) + 〈∇u̺,∇v〉L2(Ω) = 0 for all v ∈ H1

0 (Ω), (2.1)

while the variational formulation of the adjoint problem (1.4) is to find p̺ ∈ H1
0 (Ω)

such that
〈∇p̺,∇q〉L2(Q) = 〈u̺ − u, q〉L2(Q) for all q ∈ H1

0 (Ω). (2.2)

While unique solvability of the coupled variational formulation (2.1) and (2.2) is
well established, our particular interest is in estimating the regularization error
‖u̺−u‖L2(Ω) which depends on the regularity of the target u. As already discussed
in [13], we can prove the following result:

Lemma 1. Let (u̺, p̺) ∈ H1
0 (Ω) × H1

0 (Ω) be the unique solution of the coupled

variational formulation (2.1) and (2.2). When assuming u ∈ L2(Ω) only, this gives

‖u̺ − u‖L2(Ω) ≤ ‖u‖L2(Ω). (2.3)

For u ∈ H1
0 (Ω) there holds

‖u̺ − u‖L2(Ω) ≤ ̺1/4 ‖∇u‖L2(Ω). (2.4)

Moreover, if u ∈ H1
0 (Ω) satisfies ∆u ∈ L2(Ω), then

‖u̺ − u‖L2(Ω) ≤ ̺1/2 ‖∆u‖L2(Ω). (2.5)

Proof. When considering the variational formulation (2.2) for q = u̺, and (2.1) for
v = p̺ this gives

〈u̺ − u, u̺〉L2(Ω) = 〈∇p̺,∇u̺〉L2(Ω) = −1

̺
〈p̺, p̺〉L2(Ω),

i.e., we can write

1

̺
‖p̺‖2L2(Ω) + ‖u̺ − u‖2L2(Ω) = 〈u− u̺, u〉L2(Ω) ≤ ‖u̺ − u‖L2(Ω)‖u‖L2(Ω),

and therefore, (2.3) follows.
Next we consider the case u ∈ H1

0 (Ω). Then we can use (2.2) for q = u̺−u and
(2.1) for v = p̺ to obtain

‖u̺ − u‖2L2(Ω) = 〈u̺ − u, u̺ − u〉L2(Ω) = 〈∇p̺,∇(u̺ − u)〉L2(Ω)

= 〈∇p̺,∇u̺〉L2(Ω) − 〈∇p̺,∇u〉L2(Ω) = −1

̺
〈p̺, p̺〉L2(Ω) − 〈∇p̺,∇u〉L2(Ω),
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i.e.,

‖u̺ − u‖2L2(Ω) +
1

̺
‖p̺‖2L2(Ω) = −〈∇p̺,∇u〉L2(Ω) ≤ ‖∇p̺‖L2(Ω)‖∇u‖L2(Ω). (2.6)

Now, using (2.2) for q = p̺ this gives

‖∇p̺‖2L2(Ω) = 〈∇p̺,∇p̺〉L2(Ω) = 〈u̺ − u, p̺〉L2(Ω) ≤ ‖u̺ − u‖L2(Ω)‖p̺‖L2(Ω),

and hence,

‖u̺ − u‖2L2(Ω) ≤ ‖u̺ − u‖1/2L2(Ω)‖p̺‖
1/2
L2(Ω)‖∇u‖L2(Ω)

follows, i.e.,

‖u̺ − u‖L2(Ω) ≤ ‖p̺‖1/3L2(Ω)‖∇u‖
2/3
L2(Ω). (2.7)

Moreover, (2.6) then implies

‖p̺‖2L2(Ω) ≤ ̺ ‖∇p̺‖L2(Ω)‖∇u‖L2(Ω)

≤ ̺ ‖u̺ − u‖1/2L2(Ω)‖p̺‖
1/2
L2(Ω)‖∇u‖L2(Ω)

≤ ̺ ‖p̺‖2/3L2(Ω)‖∇u‖
4/3
L2(Ω),

i.e.,
‖p̺‖L2(Ω) ≤ ̺3/4 ‖∇u‖L2(Ω).

Now, (2.4) follows when using (2.7).
Finally we assume u ∈ H1

0 (Ω) satisfying ∆u ∈ L2(Ω). As in the derivation of
(2.6) we have

‖u̺ − u‖2L2(Ω) = 〈∇p̺,∇u̺〉L2(Ω) − 〈∇p̺,∇u〉L2(Ω).

Now, using integration by parts, inserting p̺ = −̺z̺, and using z̺ = −∆u̺, this
gives

‖u̺ − u‖2L2(Ω) = −〈p̺,∆u̺〉L2(Ω) + 〈p̺,∆u〉L2(Ω)

= ̺ 〈z̺,∆u̺〉L2(Ω) − ̺ 〈z̺,∆u〉L2(Ω)

= −̺ 〈∆u̺,∆u̺〉L2(Ω) + ̺ 〈∆u̺,∆u〉L2(Ω),

i.e.,

‖u̺ − u‖2L2(Ω) + ̺ ‖∆u̺‖2L2(Ω) = ̺ 〈∆u̺,∆u〉L2(Ω) ≤ ̺ ‖∆u̺‖L2(Ω)‖∆u‖L2(Ω),

and hence,

‖∆u̺‖L2(Ω) ≤ ‖∆u‖L2(Ω), ‖u̺ − u‖2L2(Ω) ≤ ̺ ‖∆u‖2L2(Ω),

i.e., (2.5) follows.

Note that the regularization error estimates of Lemma 1 were already given in
[13, Theorem 4.1]. But in particular the proof of (2.4) is a bit different to that of [13],
resulting in an improved constant, and (2.5) is new. In addition to regularization
error estimates in L2(Ω) we also need to have related estimates in H1

0 (Ω) when
assuming u ∈ H1

0 (Ω).

Lemma 2. Let (u̺, p̺) ∈ H1
0 (Ω) × H1

0 (Ω) be the unique solution of the coupled

variational formulation (2.1) and (2.2). When assuming u ∈ H1
0 (Ω), this gives

‖∇(u̺ − u)‖L2(Ω) ≤ ‖∇u‖L2(Ω). (2.8)

Moreover, if u ∈ H1
0 (Ω) satisfies ∆u ∈ L2(Ω), then

‖∇(u̺ − u)‖L2(Ω) ≤ ̺1/4 ‖∆u‖L2(Ω). (2.9)
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Proof. Due to the assumption u ∈ H1
0 (Ω) we can use v = u̺ − u as test function in

(2.1) and q = p̺ in (2.2) to obtain

〈∇u̺,∇(u̺ − u)〉L2(Ω) = −1

̺
〈p̺, u̺ − u〉L2(Ω) = −1

̺
〈∇p̺,∇̺p〉L2(Ω),

i.e., we have

1

̺
‖∇p̺‖2L2(Ω) + ‖∇(u̺ − u)‖2L2(Ω) = 〈∇u,∇(u − u̺)〉L2(Ω)

≤ ‖∇u‖L2(Ω)‖∇(u̺ − u)‖L2(Ω),

from which we conclude (2.8).
On the other hand, when assuming u ∈ H1

0 (Ω) satisfying ∆u ∈ L2(Ω), and when
applying integration by parts, we also have

1

̺
‖∇p̺‖2L2(Ω) + ‖∇(u̺ − u)‖2L2(Ω) = 〈∇u,∇(u− u̺)〉L2(Ω)

= 〈∆u, u̺ − u〉L2(Ω) ≤ ‖∆u‖L2(Ω)‖u̺ − u‖L2(Ω).

Finally, using (2.5), this gives

‖∇(u̺ − u)‖2L2(Ω) ≤ ‖∆u‖L2(Ω)‖u̺ − u‖L2(Ω) ≤ ̺1/2 ‖∆u‖2L2(Ω),

i.e., (2.9) follows.

3 Finite element error estimates

For the numerical solution of the coupled variational formulation (2.1) and (2.2) we
first introduce the transformation p̺(x) =

√
̺ p̺̃(x), i.e., we consider the variational

formulation to find (u̺, p̺̃) ∈ H1
0 (Ω)×H1

0 (Ω) such that

1√
̺
〈p̺̃, v〉L2(Ω) + 〈∇u̺,∇v〉L2(Ω) = 0 for all v ∈ H1

0 (Ω), (3.1)

and

− 〈∇p̺̃,∇q〉L2(Q) +
1√
̺
〈u̺, q〉L2(Ω) =

1√
̺
〈u, q〉L2(Q) for all q ∈ H1

0 (Ω). (3.2)

Let Vh = S1
h(Ω) ∩ H1

0 (Ω) = span{ϕh,k}Nh

k=1 = span{ϕk}Nh

k=1 be the finite element
space of piecewise linear and continuous basis functions which are defined with
respect to some admissible decomposition of the computational domain Ω into shape
regular and globally quasi-uniform simplicial finite elements of mesh size h. For
simplicity, we omit the subindex h from the basis functions ϕh,k. The Galerkin
variational formulation of (3.1) and (3.2) is to find (u̺h, p̺̃h) ∈ Vh × Vh such that

1√
̺
〈p̺̃h, vh〉L2(Ω) + 〈∇u̺h,∇vh〉L2(Ω) = 0 for all vh ∈ Vh, (3.3)

and

− 〈∇p̺̃h,∇qh〉L2(Q) +
1√
̺
〈u̺h, qh〉L2(Ω) =

1√
̺
〈u, qh〉L2(Q) for all qh ∈ Vh. (3.4)

The mixed finite element scheme (3.3) and (3.4) has obviously a unique solution.
Indeed, choosing the test function vh = p̺̃h in (3.3) as well as qh = u̺h in (3.4), and
adding both equations, we see that p̺̃h and u̺h must be zero for the homogeneous
equations (u = 0). Now uniqueness always yields existence in the linear finite-
dimensional case. So, the corresponding system of algebraic equation also has a
unique solution and vice versa; see also Section 4.

Now we are in a position to formulate the main result of this section.
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Theorem 1. Let (u̺h, p̺̃h) ∈ Vh × Vh be the unique solution of the coupled finite

element variational formulation (3.3) and (3.4). Assume that the underlying finite

element mesh is globally quasi-uniform such that an inverse inequality in Vh is valid,

and consider ̺ = h4. For u ∈ H1
0 (Ω) then there holds the error estimate

‖u̺h − u‖L2(Ω) ≤ c h |u|H1(Ω). (3.5)

For u ∈ H1
0 (Ω)∩H2(Ω), and if the domain Ω is either smoothly bounded or convex,

then we also have

‖u̺h − u‖L2(Ω) ≤ c h2 |u|H2(Ω). (3.6)

Proof. For given (ϕ, ψ) ∈ H1
0 (Ω) × H1

0 (Ω) define (ϕh, ψh) ∈ Vh × Vh as unique
solutions satisfying the variational formulations

1√
̺
〈ψh, vh〉L2(Ω)+〈∇ϕh,∇vh〉L2(Ω) =

1√
̺
〈ψ, vh〉L2(Ω)+〈∇ϕ,∇vh〉L2(Ω), ∀vh ∈ Vh,

and

−〈∇ψh,∇qh〉L2(Ω)+
1√
̺
〈ϕh, qh〉L2(Ω) = −〈∇ψ,∇qh〉L2(Ω)+

1√
̺
〈ϕ, qh〉L2(Ω), qh ∈ Vh.

When using an inverse inequality in Vh, this gives

1√
̺
‖ϕh‖2L2(Ω) + ‖∇ϕh‖2L2(Ω) +

1√
̺
‖ψh‖2L2(Ω) + ‖∇ψh‖2L2(Ω)

≤
(

1√
̺
+ cI h

−2

)
‖ϕh‖2L2(Ω) +

(
1√
̺
+ cI h

−2

)
‖ψh‖2L2(Ω)

=
(
1 + cI h

−2 √̺
)[

1√
̺
‖ϕh‖2L2(Ω) +

1√
̺
‖ψh‖2L2(Ω)

]

=
(
1 + cI h

−2 √̺
)[

1√
̺
〈ϕh, ϕh〉L2(Ω) − 〈∇ψh,∇ϕh〉L2(Ω)

+〈∇ϕh,∇ψh〉L2(Ω) +
1√
̺
〈ψh, ψh〉L2(Ω)

]

=
(
1 + cI h

−2 √̺
)[

1√
̺
〈ϕ, ϕh〉L2(Ω) − 〈∇ψ,∇ϕh〉L2(Ω)

+〈∇ϕ,∇ψh〉L2(Ω) +
1√
̺
〈ψ, ψh〉L2(Ω)

]

≤
(
1 + cI h

−2 √̺
)[

1√
̺
‖ϕ‖L2(Ω)‖ϕh‖L2(Ω) + ‖∇ψ‖L2(Ω)‖∇ϕh‖2L2(Ω)

+‖∇ϕ‖L2(Ω)‖∇ψh‖L2(Ω) +
1√
̺
‖ψ‖L2(Ω)‖ψh‖L2(Ω)

]

≤
(
1 + cI h

−2 √̺
)[

1√
̺
‖ϕ‖2L2(Ω) + ‖∇ϕ‖2L2(Ω) +

1√
̺
‖ψ‖2L2(Ω) + ‖∇ψ‖2L2(Ω)

]1/2

·
[

1√
̺
‖ϕh‖2L2(Ω) + ‖∇ϕh‖2L2(Ω) +

1√
̺
‖ψh‖2L2(Ω) + ‖∇ψh‖2L2(Ω)

]1/2
.

Hence,

1√
̺
‖ϕh‖2L2(Ω) + ‖∇ϕh‖2L2(Ω) +

1√
̺
‖ψh‖2L2(Ω) + ‖∇ψh‖2L2(Ω)

≤
(
1 + cI h

−2 √̺
)2

[
1√
̺
‖ϕ‖2L2(Ω) + ‖∇ϕ‖2L2(Ω) +

1√
̺
‖ψ‖2L2(Ω) + ‖∇ψ‖2L2(Ω)

]
.
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In fact, the Galerkin projection (ϕ, ψ) 7→ (ϕh, ψh) is bounded, and in particular for
̺ = h4 we therefore conclude Cea’s lemma, i.e., for arbitrary (vh, qh) ∈ Vh × Vh we
have

h−2 ‖u̺ − u̺h‖2L2(Ω) + ‖∇(u̺ − u̺h)‖2L2(Ω)

+ h−2 ‖p̺̃ − p̺̃h‖2L2(Ω) + ‖∇(p̺̃ − p̺̃h)‖2L2(Ω)

≤ c ·
[
h−2 ‖u̺ − vh‖2L2(Ω) + ‖∇(u̺ − vh)‖2L2(Ω)

+ h−2 ‖p̺̃ − qh‖2L2(Ω) + ‖∇(p̺̃ − qh)‖2L2(Ω)

]
.

For u ∈ H1
0 (Ω) we can consider vh = uh being a suitable approximation, e.g.,

Scott–Zhang interpolation [3]. Then, using (2.4), this gives, recall ̺ = h4,

‖u̺ − uh‖L2(Ω) ≤ ‖u̺ − u‖L2(Ω) + ‖u− uh‖L2(Ω)

≤ ̺1/4 |u|H1(Ω) + c h |u|H1(Ω) ≤ c h |u|H1(Ω).

Moreover, now using (2.8), we also have

‖∇(u̺ − uh)‖L2(Ω) ≤ ‖∇(u̺ − u)‖L2(Ω) + ‖∇(u− uh)‖L2(Ω) ≤ (1 + c) ‖∇u‖L2(Ω) .

Correspondingly, let qh = Πhp̺̃ be some suitable approximation, e.g., again the
Scott–Zhang interpolation. Then,

‖p̺̃ −Πhp̺̃‖L2(Ω) ≤ c h ‖∇p̺̃‖L2(Ω) = c h
1√
̺
‖∇p̺‖L2(Ω) .

From (2.2), and using duality we first have

‖∇p̺‖2L2(Ω) = 〈∇p̺,∇p̺〉L2(Ω) = 〈u̺−u, p̺〉L2(Ω) ≤ ‖u̺−u‖H−1(Ω)(Ω)‖∇p̺‖L2(Ω),

and with [13, Theorem 4.1] this gives

‖∇p̺‖L2(Ω) ≤ ‖u̺ − u‖H−1(Ω) ≤
√
̺ |u|H1(Ω).

Hence we conclude
‖p̺̃ −Πhp̺̃‖L2(Ω) ≤ c h |u|H1(Ω).

In the same way as above we also obtain

‖∇(p̺̃ −Πhp̺̃)‖L2(Ω) ≤ ‖∇p̺̃‖L2(Ω) =
1√
̺
‖∇p̺‖L2(Ω) ≤ |u|H1(Ω).

Now, summing up all contributions this gives

h−2 ‖u̺ − u̺h‖2L2(Ω) + ‖∇(u̺ − u̺h)‖2L2(Ω)

+ h−2 ‖p̺̃ − p̺̃h‖2L2(Ω) + ‖∇(p̺̃ − p̺̃h)‖2L2(Ω) ≤ c |u|2H1(Ω),

in particular we have

‖u̺ − u̺h‖2L2(Ω) ≤ c h2 |u|2H1(Ω).

Hence, (3.5) follows from, again using (2.4) and ̺ = h4,

‖u̺h − u‖L2(Ω) ≤ ‖u̺h − u̺‖L2(Ω) + ‖u̺ − u‖L2(Ω) ≤ c h |u|H1(Ω) + ̺1/4 |u|H1(Ω).
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It remains to consider u ∈ H1
0 (Ω)∩H2(Ω). We proceed as above, but with (2.5) we

first obtain

‖u̺ − uh‖L2(Ω) ≤ ‖u̺ − u‖L2(Ω) + ‖u− uh‖L2(Ω)

≤ ̺1/2 ‖∆u‖L2(Ω) + c h2 |u|H2(Ω) ≤ c h2 |u|H2(Ω),

while with (2.9) we conclude

‖∇(u̺ − uh)‖L2(Ω) ≤ ‖∇(u̺ − u)‖L2(Ω) + ‖∇(u− uh)‖L2(Ω)

≤ ̺1/4 ‖∆u‖L2(Ω) + c h |u|H2(Ω) ≤ c h |u|H2(Ω).

Moreover, we also have, in the case of a smoothly bounded or convex domain Ω,
and using (2.5),

‖p̺̃ −Πhp̺̃‖L2(Ω) ≤ c h2 |p̺̃|H2(Ω) = c h2
1√
̺
|p̺|H2(Ω) ≤ c h2

1√
̺
‖∆p̺‖L2(Ω)

= c h2
1√
̺
‖u̺ − u‖L2(Ω) ≤ c h2 ‖∆u‖L2(Ω).

Finally, and following the above estimates, we have

‖∇(p̺̃ −Πhp̺̃)‖L2(Ω) ≤ c h |p̺̃|H2(Ω) = c h
1√
̺
|p̺|H2(Ω) ≤ c h ‖∆u‖L2(Ω).

Again, summing up all contributions this gives

h−2 ‖u̺ − u̺h‖2L2(Ω) + ‖∇(u̺ − u̺h)‖2L2(Ω)

+ h−2 ‖p̺̃ − p̺̃h‖2L2(Ω) + ‖∇(p̺̃ − p̺̃h)‖2L2(Ω) ≤ c h2|u|2H2(Ω),

i.e.,
‖u̺ − u̺h‖2L2(Ω) ≤ c h4 |u|H2(Ω).

Now, (3.6) follows from the triangle inequality and using (2.9).

In order to derive error estimates for less regular targets u we also need the
following result.

Lemma 3. Let (u̺h, p̺̃h) ∈ Vh × Vh be the unique solution of the coupled finite

element variational formulation (3.3) and (3.4). For u ∈ L2(Ω) there holds the

error estimate

‖u̺h − u‖L2(Ω) ≤ ‖u‖L2(Ω). (3.7)

Proof. We consider the Galerkin formulations (3.3) and (3.4) for the particular test
functions vh = p̺̃h and qh = u̺h to obtain

1√
̺
〈p̺̃h, p̺̃h〉L2(Ω) + 〈∇u̺h,∇p̺̃h〉L2(Ω) = 0,

and

−〈∇p̺̃h,∇u̺h〉L2(Q) +
1√
̺
〈u̺h, u̺h〉L2(Ω) =

1√
̺
〈u, u̺h〉L2(Q).

When summing up both expressions this gives

〈p̺̃h, p̺̃h〉L2(Ω) + 〈u̺h, u̺h〉L2(Ω) = 〈u, u̺h〉L2(Ω),

which we can write as

〈p̺̃h, p̺̃h〉L2(Ω) + 〈u̺h − u, u̺h − u〉L2(Ω) = 〈u − u̺h, u〉L2(Ω).

From this we conclude (3.7).
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Now, using an interpolation argument, we can prove the final error estimate.

Corollary 1. Let (u̺h, p̺̃h) ∈ Vh × Vh be the unique solution of the coupled finite

element variational formulation (3.3) and (3.4). Let u ∈ Hs
0 (Ω) for s ∈ [0, 1] or

u ∈ H1
0 (Ω) ∩Hs(Ω) for s ∈ (1, 2], and let ̺ = h4. Then,

‖u̺h − u‖L2(Ω) ≤ c hs ‖u‖Hs(Ω). (3.8)

4 Robust solvers

The finite element variational formulation (3.3) and (3.4) is equivalent to a coupled
linear system of algebraic equations,

1√
̺
Mhp̃+Khu = 0, and −Khp̃+

1√
̺
Mhu =

1√
̺
f , (4.1)

where Kh and Mh are the standard finite element stiffness and mass matrices, the
entries of which are given by

Kh[ℓ, k] =

∫

Ω

∇ϕk · ∇ϕℓ dx and Mh[ℓ, k] =

∫

Ω

ϕk ϕℓ dx for k, ℓ = 1, . . . , Nh,

respectively. The load vector f = (fℓ)ℓ=1,...,Nh
∈ R

Nh is given by its entries

fℓ =

∫

Ω

uϕℓ dx for ℓ = 1, . . . , Nh.

The stiffness matrix Kh and the mass matrix Mh are symmetric and positive defi-
nite. Furthermore, they satisfy the spectral inequalities

cKh
d(v,v) ≤ λmin(K)(v,v) ≤ (Kv,v) ≤ λmax(K)(v,v) ≤ cKh

d−2(v,v) (4.2)

and

cMh
d(v,v) ≤ λmin(M)(v,v) ≤ (Mv,v) ≤ λmax(M)(v,v) ≤ cMh

d(v,v) (4.3)

for all v ∈ R
Nh , where λmin(·) and λmax(·) always denote the minimal and maximal

eigenvalues of the corresponding matrices, respectively, and (·, ·) = (·, ·)
R

N
h

de-
notes the Euclidean inner product in the Euclidean vector space RNh . The positive
constants cK, cK, cM, and cM are independent of the mesh-size h; see, e.g., [5, 18].

Since the mass matrix Mh is invertible, we can eliminate the modified adjoint
p̃, and hence we can rewrite (4.1) as Schur complement system

[
̺KhM

−1
h Kh +Mh

]
u = f . (4.4)

The Schur complement Sh = ̺KhM
−1
h Kh +Mh is obviously symmetric and pos-

itive definite, and hence invertible. Therefore, the coupled system (4.1) also has
a unique solution p̃ = (p̃k)k=1,...,Nh

, u = (uk)k=1,...,Nh
∈ R

Nh which delivers the

nodal parameters for the unique solution p̺̃h =
∑Nh

k=1 p̃kϕk and u̺h =
∑Nh

k=1 ukϕk

of the mixed finite element scheme (3.3) and (3.4) as we have already mentioned in
Section 3. Let 0 < λmin(M

−1
h Kh) = λ1 ≤ . . . ≤ λNh

= λmax(M
−1
h Kh) be the eigen-

values, and e1, . . . , eNh
∈ R

Nh the corresponding eigenvectors of the generalized
eigenvalue problem

Khe = λMhe, (4.5)

and let us suppose that the eigenvectors e1, . . . , eNh
are orthonormal with respect to

the Mh-energy inner product (Mh·, ·), i.e., (Mhei, ej) = δi,j for all i, j = 1, . . . , Nh.
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It is well known, see also (4.2) and (4.3), that there exists positive constants cMK

and cMK, which are independent of h, such that

cMK ≤ λmin(M
−1
h Kh) and λmax(M

−1
h Kh) ≤ cMKh

−2. (4.6)

These bounds are sharp with respect to h.

Lemma 4. If ̺ = h4, then the Schur complement Sh is spectrally equivalent to the

mass matrix Mh. More precisely, there hold the spectral equivalence inequalities

cMS (Mhv,v) ≤ (Shv,v) ≤ cMS (Mhv,v), ∀v ∈ R
Nh , (4.7)

where cMS = 1 and cMS = c2MK + 1, with cMK from (4.6).

Proof. Let v ∈ R
Nh be arbitrary, and let us expand v =

∑Nh

i=1 v
e
i ei in the orthonor-

mal eigenvector basis, where vei = (Mhv, ei). Then we can represent (Shv,v) in
the form

(Shv,v) =

Nh∑

i,j=1

vei v
e
j (̺KhM

−1
h Khei +Mhei, ej)

=

Nh∑

i,j=1

vei v
e
j (̺λ

2
i + 1)(Mhei, ej) =

Nh∑

i=1

(vei )
2(̺λ2i + 1).

Using now the identity (Mhv,v) =
∑Nh

i=1(v
e
i )

2, and the bounds (4.6), we immedi-
ately get the estimates

(Shv,v) ≥ (̺λmin(M
−1
h Kh)

2 + 1)

Nh∑

i=1

(vei )
2 ≥ (̺c2MK + 1)(Mhv,v) ≥ (Mhv,v)

and

(Shv,v) ≤ (̺λmax(M
−1
h Kh)

2 + 1)

Nh∑

i=1

(vei )
2 ≤ (̺c2MKh

−4 + 1)(Mhv,v),

from which the spectral equivalence inequalities (4.7) follow for ̺ = h4.

Since Sh = ̺KhM
−1
h Kh + Mh is spectrally equivalent to the mass matrix

Mh, we can efficiently solve the symmetric and positive definite Schur complement
system (4.4) by means of the Preconditioned Conjugate Gradient (PCG) method
with the symmetric and positive definite preconditioner Ch = Mh. Using the well-
known convergence estimate for the PCG method (see, e.g., [18, Chapter 13]), and
the spectral equivalence inequalities (4.7) from Lemma 4, we arrive at estimates of
the iteration error in the L2(Ω)-norm for the corresponding finite element functions:

‖u̺h − un̺h‖L2(Ω) = ‖u− un‖Mh
:= (Mh(u− un),u− un)1/2

≤ c
−1/2
MS (Sh(u− un),u− un)1/2

= c
−1/2
MS ‖u− un‖Sh

≤ c
−1/2
MS 2 qn ‖u− u0‖Sh

≤
(
cMS

cMS

)1/2

2 qn ‖u− u0‖Mh

=

(
cMS

cMS

)1/2

2 qn ‖u̺h − u0̺h‖L2(Ω),
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where

q =

√
cond2(M

−1
h Sh)− 1

√
cond2(M

−1
h Sh) + 1

, with cond2(M
−1
h Sh) =

λmax(M
−1
h Sh)

λmin(M
−1
h Sh)

≤ cMS

cMS

.

Since we can take cMS = 1, we finally arrive at the L2(Ω) iteration error estimate

‖u̺h − un̺h‖L2(Ω) ≤ 2 (cMS)
1/2 qn ‖u̺h − u0̺h‖L2(Ω), (4.8)

where

q =

√
cMS − 1√
cMS + 1

=

√
c2MK + 1− 1√
c2MK + 1 + 1

< 1

is independent of h, using cMK from (4.6). Here the finite element functions

u̺h(x) =
∑Nh

k=1 ukϕk(x) and un̺h(x) =
∑Nh

k=1 u
n
kϕk(x) correspond to the solution

u = (uk)k=1,...,Nh
∈ R

Nh of the Schur complement system (4.4) and the n-th PCG
iterate un = (unk )k=1,...,Nh

∈ R
Nh , respectively.

Now, using the triangle inequality, the L2(Ω)-norm discretization error estimate
(3.8), and the L2(Ω)-norm iteration error estimate (4.8), we finally get

‖u− un̺h‖L2(Ω) ≤ ‖u− u̺h‖L2(Ω) + ‖u̺h − un̺h‖L2(Ω)

≤ c hs ‖u‖Hs(Ω) + 2 (cMS)
1/2 qn ‖u̺h − u0̺h‖L2(Ω)

≤ hs
(
c ‖u‖Hs(Ω) + 2 (cMS)

1/2 ‖u̺h − u0̺h‖L2(Ω)

)

provided that qn ≤ hs that yields n ≥ lnh−s/ ln q−1. Since q is independent of
h, the number of PCG iterations only logarithmically grows with respect to h in
order to obtain the total error in the order O(hs) of the discretization error. This
logarithmical growth can be avoided in a nested iteration setting on a sequence of
grids; see, e.g, [6].

However, each Schur Complement PCG iteration step requires the solution of
two systems of algebraic equations with the symmetric and positive definite well-
conditioned mass matrix Mh as system matrix, namely,

1. in the matrix-vector multiplication Shu
n = ̺KhM

−1
h Khu

n +Mhu
n,

2. and in the preconditioning step Mhw
n = rn.

Thus, in a preprocessing step, we can factorizeMh, e.g., by means of the LhDhL
T
h or

the Cholesky factorization, and then use fast forward and backward substitutions
at each iteration step. In the preconditioning step, we can avoid the solution of
the preconditioning system Chw

n = rn with Ch = Mh by replacing Ch with a
spectrally equivalent preconditioner such as Ch = diag(Mh), Ch = lump(Mh),
Ch = area(Mh), or even Ch = hdIh; cf. (4.3). Here, diag(Mh) is the diagonal
matrix with the diagonal entries from Mh, lump(Mh) is the lumped mass matrix
that is diagonal; see, e.g., [19], Ch = area(Mh) denotes the diagonal matrix with the
k-th diagonal entry which coincides with the area of the support of the basis function
ϕk; see [18, Lemma 9.7] that also provides the spectral equivalence constants, and Ih
is the identity matrix. If we replace M−1

h in the Schur complement system (4.4) by
the diagonal matrix (lump(Mh))

−1, then the solution of the corresponding inexact
Schur complement system

[
̺Kh(lump(Mh))

−1Kh +Mh

]
ũ = f (4.9)

by means of the PCG precondioned by diag(Mh), lump(Mh) or Ch = area(Mh), is
obviously of asymptotically optimal complexity O(Nh ln ε

−1) for some fixed relative
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accuracy ε ∈ (0, 1). However, the use of mass lumping in the discretization needs
an additional analysis that goes beyond the scope of this paper. Instead, in Sec-
tion 5, we compare the discretization error and the efficiency of this inexact Schur
comlement PCG, that we call inexSCPCG, with the discretization error without
mass lumping corresponding to the solution of (4.1) and the efficiency of the other
solvers proposed below.

The solution of a mass matrix system in the matrix-vector multiplication Shu
n

can also be avoided by a mixed reformulation as a system of double size with
a symmetric, but indefinite system matrix that reads as follows: Find (u, p̂) ∈
R

Nh × R
Nh such that [

Mh Kh

Kh −̺−1Mh

] [
u

p̂

]
=

[
f

0

]
(4.10)

where p̂ = −√
̺ p̃ = −p. The symmetric and indefinite system (4.10) is obviously

equivalent to the non-symmetric and positive definite system (4.1), and, therefore,
to the Schur complement system (4.4).

The block-diagonal matrix

Ph =

[
Mh + ̺1/2Kh 0

0 ̺−1(Mh + ̺1/2Kh)

]
(4.11)

provides a preconditioner for the MINRES solver that is robust with respect to the
mesh size h and the regularization parameter ̺. This result is proven in [22], where
also the corresponding convergence rate estimates are given. In order to obtain
an efficient, but at the same time robust preconditioner, we have to replace the
block-entry Mh + ̺1/2Kh by a spectrally equivalent preconditioner Ch such that
the spectral equivalence constants do not depend neither on h nor on ̺. Symmetric
and positive definite multigrid preconditioners based on symmetric V - or W -cycles
are certainly suitable candidates. We came back to this choice later.

We recall that the optimal choice of the regularization parameter is ̺ = h4.
Using again the eigenvector expansion v =

∑Nh

i=1 v
e
i ei, we get

((Mh + ̺1/2Kh)v,v) =

Nh∑

i=1

(1 + ̺1/2λi)(v
e
i )

2 =

Nh∑

i=1

(1 + h2λi)(v
e
i )

2 (4.12)

for all v ∈ R
Nh . This representation and the eigenvalue estimates (4.6) immediately

yield the spectral equivalence inequalities

(1 + h2cMK) (Mhv,v) ≤ ((Mh + ̺1/2Kh)v,v) ≤ (1 + cMK) (Mhv,v), ∀v ∈ R
Nh ,

which we now rewrite in short form as

cMA Mh ≤ Ah ≤ cMA Mh, (4.13)

whereAh = Mh+̺
1/2Kh = Mh+h

2Kh, cMA = 1+h2cMK ≥ 1, and cMA = 1+cMK.
Replacing now the mass matrixMh by the diagonal preconditionerCh = diag(Mh),
we see that

cCA Ch ≤ Ah ≤ cCA Ch, (4.14)

with h-independent, positive constants cCA and cCA. These spectral equivalence in-
equalities easily follow from (4.13) and the spectral equivalence of Mh to diag(Mh).
Therefore, the diagonal preconditioner

Pdiag,h =

[
Ch 0

0 h−4Ch

]
=

[
diag(Mh) 0

0 h−4diag(Mh)

]
(4.15)
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is spectrally equivalent to Ph. Thus, the MINRES preconditioned by Pdiag,h con-
verges with a rate that is independent of h, and with an asymptotically optimal com-
plexity O(Nh ln ε

−1) for some fixed relative accuracy ε ∈ (0, 1). We call this solver
PdiagMINRES. Numerical tests underpinning our theoretical results are presented
in Section 5. If we replace Mh + ̺1/2Kh by Ch = lump(Mh), Ch = area(Mh),
or Ch = diag(Mh + h2Kh), we also get diagonal preconditioners with the same
properties as diag(Mh).

At first glance, it does not seem necessary to replace Mh+̺
1/2Kh by a symetric

and positive definite multigrid preconditionerCh = (Mh+̺
1/2Kh)(Ih−MGk

h)
−1 as

it was proposed in [22] for fixed positive ̺, since, for ̺ = h4, the block Mh+̺
1/2Kh

is spectrally equivalent to Mh and, therefore, well conditioned. Here, Ih is the iden-
tity, MG denotes the multigrid iteration matrix, and k is the number of multigrid
iterations per precondioning step (usually, k = 1). However, we can improve the
spectral equivalent constants in comparison to Ch = diag(Mh) for the price of
higher arithmetical, but still asymptotically optimal cost per preconditioning step.
More precisely, for the multigrid preconditioner Ch = Ah(Ih − MGk

h)
−1, we get

the spectral equivalence inequalities (4.14) with the spectral constants cCA = 1−ηk
and cCA = 1+ ηk, where η is an upper bound for the Ah-energy norm of the multi-
grid iteration matrix MGh that is nothing but the multigrid convergence rate in
the Ah-energy norm. We mention that cCA is even equal to 1 if k is even or if
the multigrid iteration matrix MGh is non-negative with respect to the Ah-energy
inner product. We refer the reader to [7, 8] for details on multigrid preconditioners.
Therefore, the multigrid preconditioner

Pmg,h =

[
Ch 0

0 h−4Ch

]
=

[
Ah(Ih −MGk

h)
−1 0

0 h−4Ah(Ih −MGk
h)

−1

]
(4.16)

is spectrally equivalent to Ph. Thus, the MINRES preconditioned by Pmg,h also
converges with a rate that is independent of h, and with asymptotically optimal
complexity O(Nh ln ε

−1). We call this solver PmgMINRES. Numerical tests illus-
trating the behavior of this multigrid preconditioner and comparing it with the
diagonal preconditioner Pdiag,h are reported in Section 5.

Instead of the MINRES, we can also use Bramble-Pasciak PCG (BP-PCG) as
solver; see [2]. In order to apply BP-PCG, we reformulate the coupled system (4.1)
in the equivalent form

[
Mh

√
̺Kh√

̺Kh −Mh

] [
p̃

u

]
=

[
0

−f

]
(4.17)

Applying the Bramble-Pasciak transformation

Th =

[
MhC

−1
Mh

− I 0√
̺KhC

−1
Mh

−I

]
=

[
(Mh −CMh

)C−1
Mh

I 0√
̺KhC

−1
Mh

−I

]

to the symmetric, but indefinite system (4.17), we arrive at the symetric and positive
definite system

Kh

[
p̃

u

]
=

[
0

f

]
≡ Th

[
0

−f

]
, (4.18)

with the system matrix

Kh =

[
MhC

−1
Mh

− I 0√
̺KhC

−1
Mh

−I

] [
Mh

√
̺Kh√

̺Kh −Mh

]

=

[
MhC

−1
Mh

Mh −Mh
√
̺(MhC

−1
Mh

− I)Kh√
̺Kh(C

−1
Mh

Mh − I) ̺KhC
−1
Mh

Kh +Mh

]

=

[
(Mh −CMh

)C−1
Mh

Mh
√
̺(Mh −CMh

)C−1
Mh

Kh√
̺Kh(C

−1
Mh

Mh − I) ̺KhC
−1
Mh

Kh +Mh

]
,
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where CMh
is symmetric and positive definite, spectrally equivalent to the mass

matrix Mh, and
CMh

<Mh. (4.19)

Therefore, we can choose
CMh

= 0.25 diag(Mh) (4.20)

that is spectrally equivalent to Mh, and that ensures (4.19); see, e.g., [4]. More
precisely, there are spectral equivalence constants 1 < cCM ≤ cCM such that

CMh
< cCMCMh

≤ Mh ≤ cCMCMh

Then the exact BP preconditioner

PBP,h =

[
Mh −CMh

0

0 ̺KhM
−1
h Kh +Mh

]
(4.21)

is spectrally equivalent to Kh. More precisely, the spectral equivalence inequalities

cPK ≤ PBP,h ≤ Kh ≤ cPKPBP,h (4.22)

hold with the spectral equivalence constants

cPK =
1−√

α

1− α
and cPK =

1+
√
α

1− α
, (4.23)

where α = 1 − (1/cCM). The lower constant cPK was derived in [2], wheras
the upper constant can be found in [21]. Now, replacing the Schur complement
Sh = ̺KhM

−1
h Kh +Mh in the exact BP preconditioner (4.21) by diag(Mh) that

is spectrally equivalent to Sh, we arrive at the inexact BP preconditioner

P̃BP,h =

[
Mh −CMh

0

0 diag(Mh)

]
=

[
Mh − 0.25 diag(Mh) 0

0 diag(Mh)

]

that is spectrally equivalent to Kh as well. Thus, the BP-PCG, that is here nothing
but the PCG preconditioned by P̃BP,h applied to the symmetric and positive defi-
nite system (4.17), converges with a h-independent rate in asymptotically optimal
complexity O(Nh ln ε

−1). In the next section, we numerically compare exactly this
BP-PCG with PdiagMINRES and PmgMINRES as well as with the inexact Schur
complement PCG inexactSCPCG where we use mass lumping in the discretization
in order to make the multiplications with the Schur complement effficient.

5 Numerical results

In our numerical examples, we consider the computational domain Ω = (0, 1)3,
that is decomposed into uniformly refined tetrahedral elements. The starting mesh
contains 384 tetrahedral elements and 125 vertices, i.e., 5 vertices in each direction,
which leads to an initial mesh size h = 2−2. The tests are performed on 8 uniformly
refined mesh levels Li, i = 1, ..., 8. The number of vertices, the mesh size h, and
the corresponding regularization parameter ̺ = h4 are given in Table 1.

To confirm the convergence rate as given in (3.6) of the finite element solution
u̺h to a given target u, we have considered the following four representative targets
with different regularities, similar to [13]:

Target 1: A smooth target u = sin(πx) sin(πy) sin(πz), u ∈ H1
0 (Ω) ∩H2(Ω);

Target 2: A piecewise linear continuous target u being one in the mid point
(12 ,

1
2 ,

1
2 ) and zero in all corner points of Ω, u ∈ H1

0 (Ω) ∩Hs(Ω), s < 3
2 ;
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Level Number of vertices h ̺ (= h4)
L1 125 2−2 2−8

L2 729 2−3 2−12

L3 4, 913 2−4 2−16

L4 35, 937 2−5 2−20

L5 274, 625 2−6 2−24

L6 2, 146, 689 2−7 2−28

L7 16, 974, 593 2−8 2−32

L8 135, 005, 697 2−9 2−36

Table 1: The number of vertices, the mesh size h, and the related regularization
parameter ̺ = h4 on 8 uniformly refined mesh levels.

Target 3: A piecewise constant discontinuous function u being one in the inscribed
cube (14 ,

3
4 )

3 and zero elsewhere, u ∈ Hs(Ω), s < 1
2 ;

Target 4: A smooth target u = 1 + sin(πx1) sin(πx2) sin(πx3) that violates the
homogeneous Dirichlet boundary conditions, u ∈ Hs(Ω), s < 1

2 .

We will further report robustness and computational cost of four preconditioned
Krylov subspace solvers for the large scale linear system of algebraic equations that
are arising from the finite element discretization of the optimality system with
the choice of the regularization parameter ̺ = h4. More precisely, we study the
numerical performance of the following four Krylov subspace solvers described in
Section 4:

1. PmgMINRES: multigrid-preconditioned MINRES for solving (4.10),

2. PdiagMINRES: diagonal-preconditioned MINRES for solving (4.10),

3. BP-PCG: Bramble-Pasciak PCG for solving (4.17),

4. inexSCPCG: inexact Schur complement PCG solving (4.9).

The multigrid preconditioner (4.16) with k = 1, which is applied in PmgMINRES, is
based on a W-cycle that starts with a zero initial guess, uses 2 forward Gauss–Seidel
presmoothing and 2 backward Gauss–Seidel postsmoothing steps, and canonical
transfer operators such that the multigrid preconditioner is symmetric and positive
definite; see [7, 8]. We note that the first three solvers solve mixed systems with
2Nh degrees of freedoms, whereas the last method solves the inexact Schur comple-
ment system that only has Nh degrees of freedom. We recall that the systems (4.1),
(4.10), (4.17) and (4.4) are equivalent. But since we use the inexact Schur com-
plement instead of the exact Schur complement in (4.9), we compute a perturbed
solution ũ̺h with some additional error. Hence we also compare all discretization
errors. In all of these approaches, the solvers stop the iterations as soon as the pre-
conditioned residual is reduced by a factor 1011. Since the residual of the inexact
Schur complement system (4.9) is computed for the primal unknown u only, the
resulting L2 error of ũ̺h is different compared to the system (4.1), where also the
residual of the adjoint p is involved. We finally mention that the preconditioned
residual norm here reproduces the L2 norm in which we are primarily interested.

5.1 Convergence studies

The errors ‖u̺h − u‖L2(Ω) between the finite element solution u̺h and the given
target u are computed by means of the first three methods that solve the equivalent
mixed formulations (4.10) or (4.17), whereas the errors ‖ũ̺h−u‖L2(Ω) are computed
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by solving the inexact Schur complement equation (4.9) using inexSCPCG. These
errors are given in Tables 2–5 for Targets 1–4, respectively. For all of these cases,
we have used the required scaling ̺ = h4, which leads to optimal convergence with
respect to the mesh size h, depending on the corresponding regularity of the given
target u. This is observed as the experimental order of convergence (eoc) in Tables
2–5. Further, the solution ũ̺h from solving the inexact Schur complement equation
(Approach 4) does not deteriorate with respect to the accuracy and convergence
rate. This is confirmed by comparison with the solution from the exact Schur
complement equation that is equivalent to solving the mixed fromulations (4.10) or
(4.17) as we did in the first three approaches.

Level
Approaches 1 - 3 Approach 4

‖u̺h − u‖L2(Ω) eoc ‖ũ̺h − u‖L2(Ω) eoc
L1 3.04904e−1 − 3.03162e−1 −
L2 7.14457e−2 2.09 6.92534e−2 2.13
L3 5.35113e−3 3.74 5.29228e−3 3.71
L4 6.22449e−4 3.10 6.19849e−4 3.09
L5 1.34331e−4 2.21 1.33758e−4 2.21
L6 3.27079e−5 2.03 3.25740e−5 2.04
L7 8.07438e−6 2.02 8.04282e−6 2.02
L8 2.00173e−6 2.01 1.99422e−6 2.01
Theory: 2 2

Table 2: Comparison of error ‖u̺h−u‖L2(Ω) (Approaches 1 - 3) and ‖ũ̺h−u‖L2(Ω)

(Approach 4) for Target 1.

Level
Approaches 1 - 3 Approach 4

‖u̺h − u‖L2(Ω) eoc ‖ũ̺h − u‖L2(Ω) eoc
L1 2.72445e−1 − 2.71300e−1 −
L2 8.50409e−2 1.68 8.41925e−2 1.69
L3 2.99226e−2 1.51 2.90354e−2 1.54
L4 1.04906e−2 1.51 1.00864e−2 1.53
L5 3.70527e−3 1.50 3.54103e−3 1.51
L6 1.30970e−3 1.50 1.24752e−3 1.51
L7 4.63061e−4 1.50 4.40293e−4 1.50
L8 1.63735e−4 1.50 1.55529e−4 1.50
Theory: 1.5 1.5

Table 3: Comparison of error ‖u̺h−u‖L2(Ω) (Approaches 1 - 3) and ‖ũ̺h−u‖L2(Ω)

(Approach 4) for Target 2.

5.2 Solver performance

We recall that all solvers stop the iterations as soon as the preconditioned residual is
reduced by a factor 1011. A comparison of the number of iterations (#Its) and the
required solving time in seconds (s) using these four solvers are provided in Tables 6–
9 for the given targets Target 1–4, respectively. PmgMINRES requires the fewest
iteration numbers among all these solvers. The solver inexSCPCG outperforms
the other three solvers regarding the solving time. This is mainly due to the fact
that the inexact Schur complement equation only needs half of degrees of freedom
in comparison with the mixed formulations. Finally, we observe that all of the
preconditioned Krylov subspace methods show their robustness with respect to the
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Level
Approaches 1 - 3 Approach 4

‖u̺h − u‖L2(Ω) eoc ‖ũ̺h − u‖L2(Ω) eoc
L1 3.28255e−1 − 3.26425e−1 −
L2 2.30561e−1 0.51 2.25595e−1 0.53
L3 1.63827e−1 0.49 1.59922e−1 0.50
L4 1.15682e−1 0.50 1.12852e−1 0.50
L5 8.16986e−2 0.50 7.96806e−2 0.50
L6 5.77276e−2 0.50 5.62946e−2 0.50
L7 4.08035e−2 0.50 3.97882e−2 0.50
L8 2.88466e−2 0.50 2.81281e−2 0.50
Theory: 0.5 0.5

Table 4: Comparison of error ‖u̺h−u‖L2(Ω) (Approaches 1 - 3) and ‖ũ̺h−u‖L2(Ω)

(Approach 4) for Target 3.

Level
Approaches 1 - 3 Approach 4

‖u̺h − u‖L2(Ω) eoc ‖ũ̺h − u‖L2(Ω) eoc
L1 1.15861e−0 − 1.15659e−0 −
L2 6.72524e−1 0.78 6.73325e−1 0.78
L3 4.63819e−1 0.54 4.62241e−1 0.54
L4 3.27310e−1 0.50 3.25524e−1 0.51
L5 2.31129e−1 0.50 2.29647e−1 0.50
L6 1.63305e−1 0.50 1.62176e−1 0.50
L7 1.15426e−1 0.50 1.14599e−1 0.50
L8 8.16011e−2 0.50 8.10057e−2 0.50
Theory: 0.5 0.5

Table 5: Comparison of error ‖u̺h−u‖L2(Ω) (Approaches 1 - 3) and ‖ũ̺h−u‖L2(Ω)

(Approach 4) for Target 4.

mesh size h, using the particular choice for the regularization parameter ̺ = h4.
Furthermore, solvers PdiagMINRES, BP-PCG, and inexSCPCG are relatively easy
to parallelize due to the fact that each iteration of these approaches only requires
matrix-vector multiplications, and the preconditioning step only requires a vector
scaling operation by simply using the diagonal of the corresponding matrix as a
preconditioner thanks to the spectral equivalence inequalities.

6 Conclusions and outlook

We have derived robust estimates of the derivation of the finite element approxi-
mation u̺h of the state u̺ from the target (desired state) u in the L2(Ω) norm,
and robust, asymptotically optimal solvers for distributed elliptic optimal control
problems with L2 -regularization. Due to the optimal choice ̺ = h4 of the regular-
ization parameter, Jacobi-like preconditioners are sufficient to construct MINRES
or Bramble-Pasciak CG solvers of asymptotically optimal complexity with respect
to arithmetical operations and memory demand. The parallelization of these it-
erative methods is straightforward, and will lead to very scalable implementations
since, in contrast to multigrid preconditioners, diagonal preconditioners are triv-
ial to parallelize. The numerical results yield that the multigrid preconditioned
MINRES solver is slightly more efficient in a single processor implementation.

Our numerical experiments show that the inexact Schur Complement PCG (in-
exactSCPCG) seems to be the most promising iterative solver, in particular, in its
parallel version, but also the single processor implementation is the most efficient
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Level
PmgMINRES PdiagMINRES BP-PCG inexSCPCG

#Its Time (s) #Its Time (s) #Its Time (s) #Its Time (s)
L1 19 2.9e−2 21 2.9e−3 24 4.9e−2 10 6.6e−4
L2 21 2.7e−1 172 1.4e−1 180 4.5e−1 88 2.5e−2
L3 20 1.8e−0 234 2.3e−0 254 1.0e−0 126 2.6e−1
L4 20 1.4e+1 231 3.8e+1 247 1.3e+1 132 3.3e−0
L5 18 1.0e+2 225 4.2e+2 242 2.0e+2 130 2.0e+1
L6 18 8.1e+2 220 2.1e+3 235 2.6e+3 128 1.8e+2
L7 18 7.9e+3 213 2.4e+4 229 9.5e+3 124 4.1e+3
L8 18 7.1e+4 205 2.1e+5 223 1.5e+5 120 3.6e+4

Table 6: Comparison of the number of iterations (#Its) and the solving time in
seconds (s) for Target 1.

Level
PmgMINRES PdiagMINRES BP-PCG inexSCPCG

#Its Time (s) #Its Time (s) #Its Time (s) #Its Time (s)
L1 19 2.8e−2 21 2.9e−3 24 2.5e−3 10 6.4e−4
L2 23 2.9e−1 185 1.5e−1 184 3.1e−1 94 2.7e−2
L3 23 2.0e−0 258 1.5e−0 265 3.0e−0 133 2.8e−1
L4 23 1.6e+1 256 5.2e+1 275 4.1e+1 138 3.5e−0
L5 24 1.3e+2 248 1.1e+2 257 2.4e+2 137 3.9e+1
L6 24 1.2e+3 240 1.9e+3 249 2.5e+3 134 6.4e+2
L7 22 1.0e+4 230 2.9e+4 241 1.3e+4 129 3.3e+3
L8 20 7.9e+4 220 2.2e+5 234 1.7e+5 123 2.6e+4

Table 7: Comparison of the number of iterations (#Its) and the solving time in
seconds (s) for Target 2.

one in comparison with the MINRES and Bramble-Pasciak CG solvers. The nu-
merical experiments also show that the use of the inexact Schur complement, where
the inverse of the mass matrix is replaced by the inverse of the lumped mass matrix,
does not affect the accuracy. Here a rigoros numerical analysis is still needed. More-
over, the development of a nested iteration framework with an a posteriori control
of the discretization error and its parallel implementation is a future research topic.
An adaptive mesh refinement will probably require variable regularization functions
̺(x) adapted to the mesh density function rather than a fixed choice as we did in
this paper where we have investigated uniform mesh refinement.

This approach is not only restricted to the simple model problem of the Poisson
equation as constraint, extensions to more complicated elliptic equations, but also
to parabolic, e.g., the heat equation, and hyperbolic, e.g., the wave equation, can be
done in a similar way, and will be reported elsewhere. Moreover, the consideration
of control constraints requires the efficient solution of a sequence of linear algebraic
systems as considered in this paper.
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Level
PmgMINRES PdiagMINRES BP-PCG inexSCPCG

#Its Time (s) #Its Time (s) #Its Time (s) #Its Time (s)
L1 21 3.2e−2 21 7.4e−2 25 2.5e−3 10 5.9e−4
L2 25 3.1e−1 191 1.5e−1 183 1.8e−1 97 2.8e−2
L3 25 2.2e−0 268 1.6e−0 272 3.4e−0 136 3.0e−1
L4 25 1.8e+1 276 1.8e+1 285 3.1e+1 149 4.3e−0
L5 26 1.5e+2 274 1.8e+2 284 1.1e+2 149 5.0e+1
L6 26 1.5e+3 276 3.7e+3 279 2.6e+3 149 7.0e+2
L7 26 1.2e+4 274 3.3e+4 266 1.7e+4 145 3.7e+3
L8 26 1.5e+5 271 2.4e+5 237 1.6e+5 141 4.2e+4

Table 8: Comparison of the number of iterations (#Its) and the solving time in
seconds (s) for Target 3.

Level
PmgMINRES PdiagMINRES BP-PCG inexSCPCG

#Its Time (s) #Its Time (s) #Its Time (s) #Its Time (s)
L1 21 3.5e−2 21 2.9e−3 24 2.1e−3 10 6.1e−4
L2 23 3.2e−1 182 1.5e−1 185 9.7e−2 96 2.8e−2
L3 25 2.3e−0 264 1.6e−0 269 3.2e−0 137 2.8e−1
L4 24 1.7e+1 270 1.4e+1 268 3.4e+1 147 2.5e−0
L5 26 1.7e+2 268 3.3e+2 269 1.6e+2 148 2.3e+1
L6 26 1.6e+3 271 4.2e+3 267 4.2e+3 150 4.9e+2
L7 26 1.3e+4 268 4.0e+4 266 2.4e+4 149 2.8e+3
L8 24 1.1e+5 265 2.7e+5 263 2.4e+5 147 3.6e+4

Table 9: Comparison of the number of iterations (#Its) and the solving time in
seconds (s) for Target 4.
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