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Abstract:We present quadrature schemes to calculate matrices where the so-called modified Hilbert trans-
formation is involved. These matrices occur as temporal parts of Galerkin finite element discretizations of
parabolic or hyperbolic problems when the modified Hilbert transformation is used for the variational set-
ting. This work provides the calculation of these matrices to machine precision for arbitrary polynomial
degrees and non-uniform meshes. The proposed quadrature schemes are based on weakly singular integral
representations of the modified Hilbert transformation. First, these weakly singular integral representations
of the modified Hilbert transformation are proven. Second, using these integral representations, we derive
quadrature schemes, which treat the occurring singularities appropriately. Thus, exponential convergence
with respect to the number of quadrature nodes for the proposed quadrature schemes is achieved. Numerical
results, where this exponential convergence is observed, conclude this work.
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1 Introduction
For the discretization of parabolic or hyperbolic evolution equations, the classical approaches are time step-
ping schemes together with finite element methods in space, see, e.g., [17] for parabolic and [1] for hyper-
bolic problems. An alternative is to discretize the time-dependent problem without separating the temporal
and spatial variables, i.e., space-time methods, see, e.g., [6]. In general, the main advantages of space-time
methods are space-time adaptivity, space-time parallelization and the treatment ofmoving boundaries. How-
ever, space-time approximation methods depend strongly on the space-time variational formulations on the
continuous level. Different variational approaches for parabolic and hyperbolic problems are contained in [5,
8]. In recent years, novel variational settings, which use a so-called modified Hilbert transformation HT ,
have been introduced, see [15, 18] for parabolic problems, and see [9, 10] for hyperbolic problems. Con-
forming space-time discretizations by piecewise polynomials of these variational formulations lead to huge
linear systems. In [7, 20, 21], fast space-time solvers are developed, where some of them allow for an easy
parallelization in time. Further extensions for this variational setting, which includes the modified Hilbert
transformationHT , are an hp-FEM in temporal direction and a classical FEM with graded meshes in spatial
direction, see [12]. All the mentioned discretization schemes ask for an accurate realization of the modified
Hilbert transformation HT , which acts only on the temporal part, to calculate the corresponding matrices.
There are different possibilities of computing the entries of these temporal matrices. In [16], a weakly singu-

*Corresponding author: Marco Zank, Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria,
e-mail: marco.zank@univie.ac.at. https://orcid.org/0000-0002-4146-1474

Open Access. ©2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.



474 | M. Zank, Quadratures for the Modified Hilbert Transformation

lar integral representation of the modified Hilbert transformation HT for sufficiently smooth functions and
quadrature schemes are derived, which can be used for discretizations of parabolic problems as in [15, 18].
However, in [16], singular integrals are proposed to be calculated analytically, which is not convenient for
high-order approaches, as the aforementioned hp-FEM. In addition, for discretizations of hyperbolic prob-
lems as in [9, 10], the weakly singular integral representation of the modified Hilbert transformation HT ,
given in [16], is not applicable. One way out is the approach in [19], which is well-suited for low polynomial
degrees. Thus, accurate realizations of the modified Hilbert transformationHT for high polynomial degrees,
as needed in an hp-FEM, seem not to be available. In this work, we provide such realizations. For this pur-
pose, we prove a new weakly singular integral representation of the modified Hilbert transformationHT for
sufficiently smooth functions with jumps and derive quadrature schemes, which allow for the calculation of
the involved matrices to high float point accuracy.

In greater detail, for given T > 0, μ ≥ 0 and f , we consider the ordinary differential equation (ODE)

∂tu(t) + μu(t) = f (t) for t ∈ (0, T), u(0) = 0, (1.1)

which is the temporal part of the heat equation, and the ordinary differential equation

∂ttu(t) + μu(t) = f (t) for t ∈ (0, T), u(0) = ∂tu(0) = 0, (1.2)

which is the temporal part of the wave equation. Note that μ plays the role of an eigenvalue of the spatial
operator, see [5, 15, 18].

To state related variational formulations to (1.1), (1.2), we introduce classical Sobolev spaces, where
details and further references are contained in [18]. The classical Sobolev space H1(0, T) is endowed with
the norm ‖ ⋅ ‖H1(0,T). Its closed subspaces

H1
0, (0, T) = {υ ∈ H

1(0, T) : υ(0) = 0} and H1
,0(0, T) = {υ ∈ H

1(0, T) : υ(T) = 0}

are endowed with the Hilbertian norm | ⋅ |H1(0,T) := ‖∂t ⋅ ‖L2(0,T), where ‖ ⋅ ‖L2(0,T) is the usual L2(0, T) norm
and ∂t denotes the (weak) derivative. Additionally, we have the Sobolev spaces

H1/2
0, (0, T) := {U|(0,T) : U ∈ H1/2(−∞, T) with U(t) = 0, t < 0},

H1/2
,0 (0, T) := {U|(0,T) : U ∈ H1/2(0,∞) with U(t) = 0, t > T}

with the Hilbertian norms

‖υ‖H1/2
0, (0,T) := (‖υ‖2H1/2(0,T) + T

∫
0

|υ(t)|2

t
dt)

1/2
,

‖υ‖H1/2
,0 (0,T) := (‖υ‖2H1/2(0,T) + T

∫
0

|υ(t)|2

T − t
dt)

1/2
,

where ‖ ⋅ ‖H1/2(J) is a norm, e.g., the Slobodetskii norm, in the usual Sobolev space H1/2(J) for open inter-
vals J ⊂ ℝ. Further, ⟨ ⋅ , ⋅ ⟩(0,T) denotes the duality pairing in [H1/2

,0 (0, T)]󸀠 and H1/2
,0 (0, T), or in [H

1
,0(0, T)]󸀠

and H1
,0(0, T), as extension of the inner product ⟨ ⋅ , ⋅ ⟩L2(0,T) in L2(0, T). Last, we define the modified Hilbert

transformationHT : L2(0, T) → L2(0, T) as

(HTυ)(t) =
∞
∑
k=0 υk cos((π2 + kπ) tT ), t ∈ (0, T), (1.3)

where

υk =
2
T

T

∫
0

υ(t) sin((π2 + kπ)
t
T )

dt

are the Fourier coefficients of the series representation

υ(t) =
∞
∑
k=0 υk sin((π2 + kπ) tT ), t ∈ (0, T),
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when υ ∈ L2(0, T) is given. The modified Hilbert transformationHT is a bijective mapping

HT : Hν0, (0, T) → Hν,0(0, T) for ν ∈ {0, 1/2, 1} with H0
0, (0, T) = H

0
,0(0, T) = L

2(0, T).

Additional properties ofHT are given in [14–16, 18, 19].
With this notation, a related variational formulation to the parabolic-type problem (1.1) is to find

u ∈ H1/2
0, (0, T) such that

⟨∂tu,HTυ⟩(0,T) + μ⟨u,HTυ⟩L2(0,T) = ⟨f,HTυ⟩(0,T) for all υ ∈ H1/2
0, (0, T), (1.4)

for a given right-hand side f ∈ [H1/2
,0 (0, T)]󸀠. For the hyperbolic-type problem (1.2), a related variational for-

mulation is to find u ∈ H1
0, (0, T) such that

⟨HT∂tu, ∂tυ⟩L2(0,T) + μ⟨u,HTυ⟩L2(0,T) = ⟨f,HTυ⟩(0,T) for all υ ∈ H1
0, (0, T), (1.5)

for a given right-hand side f ∈ [H1
,0(0, T)]󸀠. The variational formulations (1.4), (1.5) are uniquely solvable,

where their derivation and analysis are given in [9, 15, 18].
Next, we state conforming discretizations of the variational formulations (1.4), (1.5). For this purpose,

we define a partition TN = {τℓ}Nℓ=1 of (0, T) for given N ∈ ℕ, i.e.,
0 = t0 < t1 < t2 < ⋅ ⋅ ⋅ < tN−1 < tN = T (1.6)

with elements τℓ := (tℓ−1, tℓ) ⊂ ℝ. The mesh sizes are hℓ := tℓ − tℓ−1 for ℓ = 1, . . . , N, and the maximal mesh
size is h := maxℓ hℓ. On TN , with the distribution p = (p1, . . . , pN) ∈ ℕN of polynomial degrees, we introduce
the space of piecewise polynomial, continuous functions on intervals

Sp(TN) := {υ ∈ C[0, T] : υ|τℓ ∈ ℙpℓ (τℓ) for all ℓ ∈ {1, . . . , N}} = span{φi}Mi=1, (1.7)

where C[0, T] is the space of continuous functions andℙp(A) is the space of polynomials on a subset A ⊂ ℝd,
d ∈ ℕ, of global degree at most p ∈ ℕ0. Here, M = ∑Nℓ=1(pℓ + 1) − (N − 1) = 1 + ∑Nℓ=1 pℓ is the number of
degrees of freedom and the functions φi : [0, T] → ℝ are basis functions of Sp(TN), satisfying

φj(0) = 0 for all j ∈ {2, . . . ,M}, (1.8)

i.e., φ1(0) ̸= 0. Further, we define the subspace

Sp0, (T
N) := Sp(TN) ∩ H1

0, (0, T) = span{φj+1}M−1j=1 .

Thus, a conforming finite element method of the variational formulation (1.4) is to find uh ∈ Sp0, (TN) such
that

⟨∂tuh ,HTυh⟩L2(0,T) + μ⟨uh ,HTυh⟩L2(0,T) = ⟨f,HTυh⟩(0,T) for all υh ∈ Sp0, (T
N). (1.9)

The discrete variational formulation (1.9) is uniquely solvable, see [15, 18], and is equivalent to the linear
system

(ÃHT + μM̃HT )u = FHT (1.10)

with the matrices
M̃HT [i, j] :=⟨φj+1,HTφi+1⟩L2(0,T), (1.11)
ÃHT [i, j] :=⟨∂tφj+1,HTφi+1⟩L2(0,T) (1.12)

for i, j = 1, . . . ,M − 1, and the corresponding right-hand side FHT .
Analogously, the conforming FEM of the variational formulation (1.5) to find uh ∈ Sp0, (TN) such that

⟨HT∂tuh , ∂tυh⟩L2(0,T) + μ⟨uh ,HTυh⟩L2(0,T) = ⟨f,HTυh⟩(0,T) for all υh ∈ Sp0, (T
N)

is uniquely solvable, see [9, 10], and is equivalent to the linear system

((B̃HT )⊤ + μM̃HT )u = FHT



476 | M. Zank, Quadratures for the Modified Hilbert Transformation

with the matrix M̃HT , given in (1.11), and the matrix

B̃HT [i, j] := ⟨∂tφj+1,HT∂tφi+1⟩L2(0,T) (1.13)

for i, j = 1, . . . ,M − 1, and the right-hand side FHT as for the linear system (1.10). Note that, for f ∈ L2(0, T),
this right-hand side FHT can be realized, using the matrix

MHT [i, j] := ⟨φj ,HTφi⟩L2(0,T) (1.14)

for i, j = 1, . . . ,M, see [19, 21] for all the details. Additionally, we set

AHT [i, j] := ⟨∂tφj ,HTφi⟩L2(0,T), (1.15)
BHT [i, j] := ⟨∂tφj ,HT∂tφi⟩L2(0,T) (1.16)

for i, j = 1, . . . ,M. Hence, thematrices M̃HT , ÃHT , B̃HT , given in (1.11), (1.12), (1.13), are submatrices of the
matricesMHT , AHT , BHT , given in (1.14), (1.15), (1.16), respectively. Thus,we ask for an accurate realization
of these matrices MHT , AHT , BHT , which is the main topic of this manuscript.

The rest of the paper is organized as follows. In Section 2, we recall well-known and prove new weakly
singular integral representations ofHT , which are the starting point of the calculation of the matrices MHT ,
AHT , BHT . In Section 3, Gauss quadratures are given, which are used in the following sections. Section 4 is
the main part of this paper, where we state all quadrature schemes to calculate the matricesMHT , AHT , BHT

to high accuracy. In Section 5, numerical examples show the quality of the new assembling method ofMHT ,
AHT , BHT . In Section 6, we give some conclusions.

2 Integral Representations of the Modified Hilbert Transformation
In this section, we recall a weakly singular integral representation ofHT for functions in H1(0, T) and prove
a new weakly singular integral representation of HT for functions, which are only piecewise in H1. These
weakly singular integral representations are used for the calculation of the matrices MHT , AHT , BHT , given
in (1.14), (1.15), (1.16), respectively. We start to recall the integral representations for functions in L2(0, T)
or H1(0, T), which are proven in [16].

Lemma 1 ([16, Lemma 2.1]). For υ ∈ L2(0, T), the operator HT , as defined in (1.3), allows the integral repre-
sentation

(HTυ)(t) = v.p.
T

∫
0

υ(s)K(s, t)ds, t ∈ (0, T), (2.1)

as a Cauchy principal value integral, where the kernel function is given as

K(s, t) := 1
2T [

1
sin π(s+t)

2T
+

1
sin π(s−t)

2T
].

For υ ∈ H1(0, T), the operatorHT , as defined in (1.3), allows the integral representation

(HTυ)(t) = −
2
π
υ(0) ln tan πt

4T +
T

∫
0

∂tυ(s)K(s, t)ds, t ∈ (0, T), (2.2)

as a weakly singular integral, where

K(s, t) := −1
π
ln[tan π(s + t)4T tan π|t − s|4T ]. (2.3)

The integral representation (2.2) in connection with specialized numerical integration gives the possibil-
ity to calculate matrices, which are based on HT applied to a function in H1(0, T), e.g., the matrices MHT
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in (1.14) and AHT in (1.15). However, the integral representation (2.2) is not applicable for functions which
have jumps since these functions do not belong to H1(0, T). As the integral representation (2.1) is a Cauchy
principal value integral and therefore is complicated touse inpractical implementations,weprove anew inte-
gral representation ofHT for functions which are piecewise in H1 but possibly having jumps. This integral
representation is used for the calculation of the matrix BHT in (1.16).

Lemma 2. Let a, b ∈ [0, T]with a < b, and let a function f ∈ H1(a, b) ⊂ C[a, b] be given. Then, for the function
υf ∈ L2(0, T),

υf (s) =
{
{
{

f (s), s ∈ [a, b],
0 otherwise,

the operatorHT , as defined in (1.3), allows the integral representation

(HTυf )(t) = −f (b)K(b, t) + f (a)K(a, t) +
b

∫
a

∂t f (s)K(s, t)ds (2.4)

for t ∈ (0, T) \ {a, b} as a weakly singular integral, where the kernel functionK(s, t) is given in (2.3).
If, in addition, f (a) = 0, i.e., f ∈ H1

0, (a, b), then the representation

(HTυf )(a) = −f (b)K(b, a) +
b

∫
a

∂t f (s)K(s, a)ds

holds true as a weakly singular integral. Analogously, if f (b) = 0, i.e., f ∈ H1
,0(a, b), then we have the represen-

tation

(HTυf )(b) = f (a)K(a, b) +
b

∫
a

∂t f (s)K(s, b)ds

as a weakly singular integral.

Proof. Let t ∈ (0, T) be arbitrary but fixed. We split the proof accordingly to the relation between t, a and b.
First, consider the case t ∈ (a, b). The integral representation (2.1), integration by parts, the relation

−∂sK(s, t) = K(s, t) and the Hölder continuity of f with exponent 12 , see [11, Chapitre 2, Théorème 3.8], yield

(HTυf )(t) = limε↘0( t−ε∫
a

f (s)K(s, t)ds +
b

∫
t+ε f (s)K(s, t)ds)

= lim
ε↘0(−f (t − ε)K(t − ε, t) + f (a)K(a, t) + t−ε∫

a

∂t f (s)K(s, t)ds

− f (b)K(b, t) + f (t + ε)K(t + ε, t) +
b

∫
t+ε ∂t f (s)K(s, t)ds)

= f (a)K(a, t) − f (b)K(b, t) +
b

∫
a

∂t f (s)K(s, t)ds,

where the last integral exists as a weakly singular integral.
Second, we examine the case t ∈ (0, a) when a > 0, or t ∈ (b, T) when b < T. The integral representa-

tion (2.1) and integration by parts give

(HTυf )(t) = limε↘0 b

∫
a

f (s)K(s, t)ds = f (a)K(a, t) − f (b)K(b, t) +
b

∫
a

∂t f (s)K(s, t)ds.

Third, the case t = a is investigated when f (a) = 0. As in the cases before, the integral representa-
tion (2.1), the Hölder continuity of f and integration by parts lead to

(HTυf )(a) = limε↘0 b

∫
a+ε f (s)K(s, a)ds = limε↘0(f (a + ε)K(a + ε, a) − f (b)K(b, a) +

b

∫
a

∂t f (s)K(s, a)ds)
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= −f (b)K(b, a) +
b

∫
a

∂t f (s)K(s, a)ds,

where the last integral exists as a weakly singular integral.
Last, the case t = b, when f (b) = 0, is proven analogously.

Remark 1. Choose a = 0 and b = T in Lemma 2. Then representation (2.4) of Lemma 2 coincides with repre-
sentation (2.2) of Lemma 1 due toK(0, t) = − 2π ln tan

πt
4T andK(T, t) = 0 for t ∈ (0, T).

Remark 2. Consider the situation of Lemma 2. For f ∈ H1(a, b) with f (a) ̸= 0 or f (b) ̸= 0, the function
HTυf ∈ L2(0, T) admits a singularity for t = a or t = b, respectively.

3 Gauss Quadratures
In this section, Gauss quadratures are stated, which are used in the following sections. For this purpose, we
introduce Gauss quadratures on [0, 1] of order K ∈ ℕ, see [3]. First, the classical Gauss–Legendre quadrature
with weights ων,K ∈ ℝ and nodes ξν,K ∈ [0, 1], ν = 1, . . . , K, fulfills

1

∫
0

g(t)dt =
K
∑
ν=1ων,Kg(ξν,K) for all g ∈ ℙ2K−1[0, 1], (3.1)

see [3, equation (1.6)]. This Gauss quadrature is generalized to the square domain [0, 1] × [0, 1] via using the
Gauss–Legendre quadrature (3.1) for each coordinate direction. More precisely, the tensor Gauss quadrature

K1
∑
ν1=1

K2
∑
ν2=1ων1 ,K1ων2 ,K2G(ξν1 ,K1 , ξν2 ,K2 ) (3.2)

approximates the integral
1

∫
0

1

∫
0

G(ξ1, ξ2)dξ1 dξ2

for a function G : [0, 1] × [0, 1] → ℝ, where ωνi ,Ki ∈ ℝ and ξνi ,Ki ∈ [0, 1] are the Gauss integration weights
and Gauss integration nodes of order Ki ∈ ℕ with respect to the coordinate direction i ∈ {1, 2}.

For singular integrals with a logarithmic term, we introduce a nonclassical Gauss–Jacobi quadrature.
In greater detail, for K ∈ ℕ, the weights ω̂ν,K ∈ ℝ and nodes ̂ξ ν,K ∈ [0, 1], ν = 1, . . . , K, of the Gauss–Jacobi
quadrature for a logarithmic term satisfy

−
1

∫
0

g(t) ln(t)dt =
K
∑
ν=1 ω̂ν,Kg( ̂ξ ν,K) for all g ∈ ℙ2K−1[0, 1], (3.3)

see [3, equation (1.7)]. With quadrature (3.3), the equality

1

∫
0

1

∫
0

g(s, t) ln|s − t|ds dt = −
K
∑
μ=1 K
∑
ν=1 ω̂μ ̂ξ μων(g((1 − ξν) ̂ξ μ , ̂ξ μ) + g(1 − (1 − ξν) ̂ξ μ , 1 − ̂ξ μ))
−

K
∑
μ=1 K
∑
ν=1ωμξμω̂ν(g((1 − ̂ξ ν)ξμ , ξμ) + g(1 − (1 − ̂ξ ν)ξμ , 1 − ξμ)) (3.4)

holds true for all g ∈ ℙ2K−2([0, 1] × [0, 1]), where
ων = ων,K , ω̂ν = ω̂ν,K , ξν = ξν,K , ̂ξ ν = ̂ξ ν,K

are defined in (3.1), (3.3), see [3, equation (2.7)], [4].
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4 Quadrature Schemes for the Modified Hilbert Transformation
In this section, we describe the assembling of the matrices MHT in (1.14), AHT in (1.15) and BHT in (1.16).
The crucial point is the realization of the modified Hilbert transformation HT , where different possibilities
exist, see [16, 19]. In particular, for a uniform degree vector p = (p, p, . . . , p) with a fixed, low polynomial
degree p ∈ ℕ, e.g., p = 1 or p = 2, thematricesMHT , AHT and BHT in (1.14), (1.15), (1.16), respectively, can
be calculated using a series expansion based on the Legendre chi function, which converges very fast, inde-
pendently of themesh sizes, see [19, Subsection 2.2]. As for an hp-FEM, the degree vector p is not uniform, or
for high polynomial degrees, it is convenient to apply numerical quadrature rules to approximate the matrix
entries ofMHT , AHT and BHT in (1.14), (1.15), (1.16), respectively. This is the main topic of the paper and is
described in great detail in the following.

From the integral representation ofHT in (2.2), we have

MHT [i, j] = ⟨φj ,HTφi⟩L2(0,T) = −2πφi(0) T∫
0

φj(t) ln tan
πt
4T dt +

T

∫
0

φj(t)
T

∫
0

K(s, t)∂tφi(s)ds dt, (4.1)

AHT [i, j] = ⟨∂tφj ,HTφi⟩L2(0,T) = −2πφi(0) T∫
0

∂tφj(t) ln tan
πt
4T dt +

T

∫
0

∂tφj(t)
T

∫
0

K(s, t)∂tφi(s)ds dt (4.2)

for i, j = 1, . . . ,M with the basis functions φi , φj in (1.7) satisfying (1.8).
For the matrix BHT in (1.16), the integral representation ofHT in (2.4) yields

HT∂tφi(t) =
N
∑
k=1[−(∂tφi)k−K(tk , t) + (∂tφi)k−1+ K(tk−1, t) + tk

∫
tk−1 ∂tt(φi|τk )(s)K(s, t)ds]

for t ∈ (0, T) \ {tk : k = 1, . . . , N − 1}, i = 1, . . . ,M, where we use the notation

υk− := limε↘0 υ(tk − ε) and υk−1+ := lim
ε↘0 υ(tk−1 + ε), k = 1, . . . , N,

for a sufficiently smooth function υ : (0, T) → ℝ. Thus, the entries of the matrix in (1.16) admit the represen-
tation

BHT [i, j] = ⟨∂tφj ,HT∂tφi⟩L2(0,T)
=

N
∑
k=1[−(∂tφi)k−

T

∫
0

∂tφj(t)K(tk , t)dt + (∂tφi)k−1+ T

∫
0

∂tφj(t)K(tk−1, t)dt
+

T

∫
0

∂tφj(t)
tk

∫
tk−1 ∂tt(φi|τk )(s)K(s, t)ds dt] (4.3)

for i, j = 1, . . . ,M with the basis functions φi , φj in (1.7) satisfying (1.8).
Thematrix entriesMHT [i, j], AHT [i, j], BHT [i, j] in (4.1), (4.2), (4.3), respectively, are computed element-

wise for the partition TN = {τℓ}Nℓ=1 of (0, T) into intervals τℓ = (tℓ−1, tℓ) ⊂ (0, T), ℓ = 1, . . . , N. For this pur-
pose, we assume that we use standard Lagrange finite elements as in [2, Section 6.3], or for the hp-FEM,
we use basis functions φi, i = 1, . . . ,M, as described in [13, Subsection 3.1.6]. Thus, we assume that the
basis functions φi : [0, T] → ℝ, i = 1, . . . ,M, allow for a local representation on an element τℓ, ℓ = 1, . . . , N,
by shape functions ψpℓm : [0, 1] → ℝ, m = 1, . . . , pℓ + 1, defined on the reference interval [0, 1]. In greater
detail, for a basis functionφi, i = 1, . . . ,M, there exists an element τℓ = (tℓ−1, tℓ), ℓ = 1, . . . , N,with a related
polynomial degree pℓ ∈ ℕ such that the local representation

φα(m,ℓ)(t) = ψpℓm ( t − tℓ−1hℓ ) for all t ∈ τℓ (4.4)
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holds true, where α(m, ℓ) = i ∈ {1, 2, . . . ,M} is the global index related to the local index m for the interval
τℓ and ψpℓm is a shape function. Possible choices of such shape functions are the classical Lagrange polyno-
mials with equidistant nodes or Gauss–Lobatto nodes, see [2, Chapter 6], or Lobatto polynomials (integrated
Legendre polynomials), see [13, Subsection 3.1.4].

With this notation, we fix two intervals τℓ = (tℓ−1, tℓ), τk = (tk−1, tk) with indices ℓ, k ∈ {1, . . . , N} and
related local polynomial degrees pℓ, pk ∈ ℕ. We define the local matrix MHT

k,ℓ ∈ ℝ(pk+1)×(pℓ+1) by
MHT
k,ℓ [n,m] = −2πφα(n,k)(0) tℓ∫

tℓ−1 φα(m,ℓ)(t) ln tan πt
4T dt +

tℓ
∫
tℓ−1 φα(m,ℓ)(t)

tk

∫
tk−1 K(s, t)∂tφα(n,k)(s)ds dt

= −δk,1ψ
pk
n (0)

2hℓ
π

1

∫
0

ψpℓm (η) ln tan π(tℓ−1 + ηhℓ)4T dη

+ hℓ 1

∫
0

ψpℓm (η)
1

∫
0

K(tk−1 + ξhk , tℓ−1 + ηhℓ)∂tψpkn (ξ )dξ dη (4.5)

and, analogously, the local matrix AHT
k,ℓ ∈ ℝ(pk+1)×(pℓ+1) by

AHT
k,ℓ [n,m] = −δk,1ψpkn (0)2π 1

∫
0

∂tψ
pℓ
m (η) ln tan

π(tℓ−1 + ηhℓ)
4T dη

+
1

∫
0

∂tψ
pℓ
m (η)

1

∫
0

K(tk−1 + ξhk , tℓ−1 + ηhℓ)∂tψpkn (ξ )dξ dη (4.6)

for n = 1, . . . , pk + 1 andm = 1, . . . , pℓ + 1, where we used property (1.8), the local representation (4.4) and
δk,1 is the usual Kronecker delta.

In the same way, the local matrix BHT
k,ℓ ∈ ℝ(pk+1)×(pℓ+1) is defined by

BHT
k,ℓ [n,m] = −1πhk ∂tψpkn (0)J0k,ℓ[m] + 1

πhk
∂tψ

pk
n (1)J1k,ℓ[m]

+
1
hk

1

∫
0

∂tψ
pℓ
m (η)

1

∫
0

K(tk−1 + ξhk , tℓ−1 + ηhℓ)∂ttψpkn (ξ )dξ dη (4.7)

for n = 1, . . . , pk + 1 and m = 1, . . . , pℓ + 1 with the integrals
J0k,ℓ[m] = −π 1

∫
0

∂tψ
pℓ
m (η)K(tk−1, tℓ−1 + ηhℓ)dη, (4.8)

J1k,ℓ[m] = −π 1

∫
0

∂tψ
pℓ
m (η)K(tk , tℓ−1 + ηhℓ)dη. (4.9)

Note that J0k,ℓ[m] = J1k−1,ℓ[m], i.e., investigating only one term is another possibility. To keep the same cases
as for the matricesMHT , AHT and due to implementation issues, we give the quadrature schemes for J0k,ℓ[m]
and J1k,ℓ[m].

These local matrices MHT
k,ℓ , AHT

k,ℓ , BHT
k,ℓ are used for the calculation of the matrices MHT , AHT and BHT ,

respectively. Thus, the assembling of the matrices MHT , AHT and BHT is realized element-wise, i.e., by two
loops via the elements.
(1) Set MHT = 0M, AHT = 0M and BHT = 0M, where 0M ∈ ℝM×M is the zero matrix.
(2) For k, ℓ = 1, . . . , N,
∙ compute the matrices MHT

k,ℓ , AHT
k,ℓ , BHT

k,ℓ ∈ ℝ(pk+1)×(pℓ+1),
∙ and set

MHT [α(n, k), α(m, ℓ)] = MHT [α(n, k), α(m, ℓ)] +MHT
k,ℓ [n,m],

AHT [α(n, k), α(m, ℓ)] = AHT [α(n, k), α(m, ℓ)] + AHT
k,ℓ [n,m],

BHT [α(n, k), α(m, ℓ)] = BHT [α(n, k), α(m, ℓ)] + BHT
k,ℓ [n,m]

for n = 1, . . . , pk + 1, m = 1, . . . , pℓ + 1.
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It remains to calculate the local matrices MHT
k,ℓ , AHT

k,ℓ , BHT
k,ℓ ∈ ℝ(pk+1)×(pℓ+1), which is the main purpose of this

work and the content of the following subsections, Subsection 4.1, 4.2, 4.3, respectively.

4.1 Local Matrix MHT
k,ℓ

In this subsection, the computation of the local matrix MHT
k,ℓ in (4.5) is investigated for fixed elements τk, τℓ

and local polynomial degrees pk, pℓ with k, ℓ ∈ {1, . . . , N}. We apply the strategy of [16, Subsection 3.1], i.e.,
the integrals in (4.5) are split into regular and singular parts. As in [16, Subsection 3.1], we distinguish three
different cases for the element indices k, ℓ, which correspond to the singularities of the integrands in (4.5).
For this purpose, let n ∈ {1, . . . , pk + 1} and m ∈ {1, . . . , pℓ + 1} be fixed. We investigate the case k = ℓ = 1
in great detail, whereas we state only the final results for the remaining cases since they can be treated in
a simpler or similar way as the case k = ℓ = 1. These final results are formulated as integrals such that these
integrals can be directly calculated or approximated by quadratures (3.1), (3.2), (3.3), (3.4).

4.1.1 Case k = ℓ = 1
We have

MHT
1,1 [n,m] = −ψ

p1
n (0)

2h1
π

1

∫
0

ψp1m (η)F11,1(ηh1)dη − ψ
p1
n (0)

2h1
π

1

∫
0

ψp1m (η) ln η dη
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=: I11,1

− ψp1n (0)
2h1
π

ln h1
1

∫
0

ψp1m (η)dη −
h1
π

1

∫
0

ψp1m (η)
1

∫
0

F21,1(ξh1, ηh1)∂tψ
p1
n (ξ )dξ dη

−
h1
π

1

∫
0

ψp1m (η)
1

∫
0

ln|s − t||s=ξh1 ,t=ηh1∂tψp1n (ξ )dξ dη
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=: I21,1

−
h1
π

1

∫
0

ψp1m (η)
1

∫
0

ln(s + t)|s=ξh1 ,t=ηh1∂tψp1n (ξ )dξ dη
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=: I31,1

with

F11,1(t) := ln
tan πt

4T
t

, F21,1(s, t) := ln[
tan π(s+t)

4T
s + t

tan π|t−s|
4T
|s − t| ]

.

Proceeding as in [16, equation (3.10)], i.e., the square domain of integration is split into two triangles, and
on each of these triangles a Duffy transformation is applied, yields

MHT
1,1 [n,m] = −ψ

p1
n (0)

2h1
π
I11,1 −

h1
π
(I21,1 + I

3
1,1)

− ψp1n (0)
2h1
π

1

∫
0

ψp1m (η)F11,1(ηh1)dη − ψ
p1
n (0)

2h1
π

ln h1
1

∫
0

ψp1m (η)dη

−
h1
π

1

∫
0

1

∫
0

ψp1m (η)F21,1((1 − ξ )ηh1, ηh1)η∂tψ
p1
n ((1 − ξ )η)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=:G1

1,1(ξ,η) dξ dη

−
h1
π

1

∫
0

1

∫
0

ψp1m ((1 − η)ξ)F21,1(ξh1, (1 − η)ξh1)ξ∂tψ
p1
n (ξ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=:G2

1,1(ξ,η) dη dξ.
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Further, applying the Gauss–Legendre quadratures (3.1), (3.2) of order K ∈ ℕ gives the approximation

MHT
1,1 [n,m] ≈ −ψ

p1
n (0)

2h1
π
I11,1 −

h1
π
(I21,1 + I

3
1,1)

− ψp1n (0)
2h1
π

K
∑
ν=1ων,Kψp1m (ξν,K)(F11,1(ξν,Kh1) + ln h1)

−
h1
π

K
∑
ν1=1 K
∑
ν2=1ων1 ,Kων2 ,K(G11,1(ξν1 ,K , ξν2 ,K) + G21,1(ξν1 ,K , ξν2 ,K)).

Using [16, Corollary 3.1] for the two-dimensional parts and similar arguments for the one-dimensional part
results in exponential convergence of the applied Gauss–Legendre quadratures with respect to the number K
of Gauss integration nodes. It remains to calculate the singular integrals I11,1, I

2
1,1 and I

3
1,1. In [16, Subsec-

tion 3.1], an analytic integration is proposed, which is practical only for constant low polynomial degrees,
e.g., pk = pℓ ∈ {1, 2}. For arbitraryhighpolynomial degrees pk , pℓ, quadrature rules of order adapted to pk , pℓ
are easier to implement. This approach is not contained in [16] and thus is investigated in the following.

For the integral I11,1, the Gauss–Jacobi quadrature (3.3) for a logarithmic term yields

I11,1 =
1

∫
0

ψp1m (η) ln η dη = −
Klog
∑
ν=1 ω̂ν,Klogψp1m ( ̂ξ ν,Klog )

with p1+1
2 ≤ Klog ∈ ℕ.

For the integral I21,1, we apply the Gauss–Legendre quadrature (3.1) and quadrature (3.4), which lead to

I21,1 = ln h1
1

∫
0

ψp1m (η)
1

∫
0

∂tψ
p1
n (ξ )dξ dη +

1

∫
0

1

∫
0

ψp1m (η)∂tψ
p1
n (ξ )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=H1,1(ξ,η) ln|ξ − η|dξ dη

= ln h1(ψp1n (1) − ψ
p1
n (0))

Kreg
∑
ν=1ων,Kregψp1m (ξν,Kreg )

−
Klog
∑
μ=1

Klog
∑
ν=1 ω̂μ ̂ξ μων(H1,1((1 − ξν) ̂ξ μ , ̂ξ μ) + H1,1(1 − (1 − ξν) ̂ξ μ , 1 − ̂ξ μ))

−
Klog
∑
μ=1

Klog
∑
ν=1ωμξμω̂ν(H1,1((1 − ̂ξ ν)ξμ , ξμ) + H1,1(1 − (1 − ̂ξ ν)ξμ , 1 − ξμ))

with p1+1
2 ≤ Kreg ∈ ℕ, p1 +

1
2 ≤ Klog ∈ ℕ and the function H1,1(ξ, η) := ψp1m (η)∂tψ

p1
n (ξ ).

For the integral I31,1, the square domain of integration of the first line is split into two triangles, and on
each of these triangles, a Duffy transformation is applied, which yields

I31,1 = ln h1
1

∫
0

ψp1m (η)
1

∫
0

∂tψ
p1
n (ξ )dξ dη +

1

∫
0

1

∫
0

ψp1m (η) ln(ξ + η)∂tψ
p1
n (ξ )dξ dη

= ln h1
1

∫
0

ψp1m (η)
1

∫
0

∂tψ
p1
n (ξ )dξ dη +

1

∫
0

1

∫
0

ψp1m (η)η ln(ηξ + η)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=ln η+ln(1+ξ) ∂tψp1n (ξη)dξ dη
+

1

∫
0

1

∫
0

ψp1m (ξη)ξ ln(ξ + ξη)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=ln ξ+ln(1+η) ∂tψp1n (ξ )dξ dη.
Further, using quadratures (3.1), (3.3), (3.2) gives

I31,1 ≈ ln h1(ψ
p1
n (1) − ψ

p1
n (0))

K1
∑
ν=1ων,K1ψp1m (ξν,K1 ) − K2

∑
μ=1 K3
∑
ν=1ωμ,K2 ω̂ν,K3H3

1(ξμ,K2 , ̂ξ ν,K3 )

−
K4
∑
μ=1 K5
∑
ν=1 ω̂μ,K4ων,K5H3

2( ̂ξ μ,K4 , ξν,K5 ) +
K
∑
ν1=1 K
∑
ν2=1ων1 ,Kων2 ,KH3

3(ξν1 ,K , ξν2 ,K)
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with the functions

H3
1(ξ, η) := ψ

p1
m (η)η∂tψ

p1
n (ξη), H3

2(ξ, η) := ψ
p1
m (ξη)ξ∂tψ

p1
n (ξ ),

H3
3(ξ, η) := ψ

p1
m (η)η ln(1 + ξ )∂tψ

p1
n (ξη) + ψ

p1
m (ξη)ξ ln(1 + η)∂tψ

p1
n (ξ )

and the number of integration nodes
p1 + 1
2 ≤ K1 ∈ ℕ,

p1
2 ≤ K2 ∈ ℕ, p1 +

1
2 ≤ K3 ∈ ℕ, p1 +

1
2 ≤ K4 ∈ ℕ,

p1 + 1
2 ≤ K5 ∈ ℕ

and K ∈ ℕ sufficiently large. Note that all integrals of I31,1 are calculated exactly except for the integral with
the integrandH3

3, where arguments similar to [16, Corollary 3.1] yield exponential convergence of the applied
Gauss–Legendre quadratures with respect to the number K of Gauss integration nodes.

4.1.2 Case k = ℓ = N
For this and the remaining cases, we state only the integrals, where the quadratures of Section 3 have to be
applied. We calculate

MHT
N,N[n,m] = −

hN
π

1

∫
0

1

∫
0

ψpNm (η)G1N,N(ξ, η)∂tψ
pN
n ((1 − ξ )η)dξ dη

−
hN
π

1

∫
0

1

∫
0

ψpNm ((1 − η)ξ)G2N,N(ξ, η)∂tψ
pN
n (ξ )dη dξ

−
hN
π

1

∫
0

1

∫
0

ψpNm (η)∂tψ
pN
n (ξ ) ln|ξ − η|dξ dη

+
hN
π

1

∫
0

1

∫
0

ψpNm (1 − η)∂tψ
pN
n (1 − ηξ )[ln η + ln(1 + ξ )]η dξ dη

+
hN
π

1

∫
0

1

∫
0

ψpNm (1 − ξη)∂tψ
pN
n (1 − ξ )[ln ξ + ln(1 + η)]ξ dξ dη

with the functions

FN,N(s, t) := ln[tan
π(s + t)
4T (2T − s − t)

tan π|t−s|
4T
|s − t| ]

,

G1N,N(ξ, η) := FN,N(tN−1 + (1 − ξ )ηhN , tN−1 + ηhN)η,
G2N,N(ξ, η) := FN,N(tN−1 + ξhN , tN−1 + (1 − η)ξhN)ξ,

which do not have any singularity in the domain of integration. For the first and the second integral, we
apply the tensor Gauss quadrature (3.2), for the third integral, quadrature (3.4), and for the last two integrals,
quadratures (3.1), (3.3), as shown in Subsection 4.1.1.

4.1.3 Cases Excluding k = ℓ = 1 and k = ℓ = N
We compute

MHT
k,ℓ [n,m] = −hℓπ 1

∫
0

1

∫
0

ψpℓm (η)G1k,ℓ(ξ, η)∂tψpkn ((1 − ξ )η)dξ dη − hℓπ I2k,ℓ
−
hℓ
π

1

∫
0

1

∫
0

ψpℓm ((1 − η)ξ)G2k,ℓ(ξ, η)∂tψpkn (ξ )dη dξ − δk,1ψpkn (0)2hℓπ I1ℓ
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with the integrals

I1ℓ := 1

∫
0

ψpℓm (η) ln tan π(tℓ−1 + ηhℓ)4T dη,

I2k,ℓ := 1

∫
0

1

∫
0

ψpℓm (η)∂tψpkn (ξ ) ln|(tk−1 + ξhk) − (tℓ−1 + ηhℓ)|dξ dη
and with the functions

Fk,ℓ(s, t) := ln[tan π(s + t)4T
tan π|t−s|

4T
|s − t| ]

,

G1k,ℓ(ξ, η) := Fk,ℓ(tk−1 + (1 − ξ )ηhk , tℓ−1 + ηhℓ)η,
G2k,ℓ(ξ, η) := Fk,ℓ(tk−1 + ξhk , tℓ−1 + (1 − η)ξhℓ)ξ,

which do not have any singularity in the domain of integration, i.e., the tensor Gauss quadrature (3.2) is
applied to these integrands. The singular parts I1ℓ , I2k,ℓ are treated differently corresponding to the indices k, ℓ.

First, we consider the part I1ℓ . The case ℓ = 1 is excluded since I1ℓ contributes only for k = 1 due to δk,1 = 0
for k > 1. For ℓ > 1, the term I1ℓ is not singular. Thus, we apply the Gauss–Legendre quadrature (3.1) to

I1ℓ = 1

∫
0

ψpℓm (η) ln tan π(tℓ−1 + ηhℓ)4T dη

for ℓ > 1.
Second, we consider the part I2k,ℓ. We distinguish four cases.

(1) Case k = ℓ: We compute

I2k,ℓ = ln hℓ(ψpℓn (1) − ψpℓn (0)) 1∫
0

ψpℓm (η)dη +
1

∫
0

1

∫
0

ψpℓm (η)∂tψpℓn (ξ ) ln|ξ − η|dξ dη,
where quadratures (3.1), (3.4) are applied.

(2) Case k = ℓ + 1: The equality

I2k,ℓ = 1

∫
0

1

∫
0

ψpℓm (1 − η)∂tψpkn (ηξ )η(ln η + ln(ξhk + hℓ))dξ dη
+

1

∫
0

1

∫
0

ψpℓm (1 − ξ + ηξ )∂tψpkn (ξ )ξ(ln ξ + ln((1 − η)hℓ + hk))dξ dη
holds true, where we use quadratures (3.1), (3.3) and (3.2).

(3) Case k + 1 = ℓ: We have that

I2k,ℓ = 1

∫
0

1

∫
0

ψpℓm ((1 − ξ )η)∂tψpkn (1 − η)η(ln η + ln(hk + (1 − ξ )hℓ))dξ dη
+

1

∫
0

1

∫
0

ψpℓm (η)∂tψpkn (1 − η + ξη)η(ln η + ln((1 − ξ )hk + hℓ))dξ dη
holds true, where we use again quadratures (3.1), (3.3) and (3.2).

(4) Otherwise, we apply the tensor Gauss quadrature (3.2) to

I2k,ℓ = 1

∫
0

1

∫
0

ψpℓm (η)∂tψpkn (ξ ) ln|(tk−1 + ξhk) − (tℓ−1 + ηhℓ)|dξ dη,
as the integral is not singular.
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4.2 Local Matrix AHT
k,ℓ

In this subsection, the computation of the local matrix AHT
k,ℓ in (4.6) is investigated for fixed elements τk, τℓ

and related polynomial degrees pk, pℓ with k, ℓ ∈ {1, . . . , N}. To calculate the local matrix AHT
k,ℓ , replace in

Subsection 4.1 the function ψpℓm ( ⋅ ) with the function 1
hℓ ∂tψpℓm ( ⋅ ) in all occurring quantities.

4.3 Local Matrix BHT
k,ℓ

In this subsection, the computation of the local matrix BHT
k,ℓ in (4.7) is investigated for fixed elements τk, τℓ

and related polynomial degrees pk, pℓ with k, ℓ ∈ {1, . . . , N}. To calculate the second line in (4.7), replace in
Subsection 4.1 the function ψpℓm ( ⋅ )with the function 1

hℓ ∂tψpℓm ( ⋅ ) and the function ∂tψpkn ( ⋅ )with the function1
hk ∂ttψ

pk
n ( ⋅ ) in all occurring quantities which are related to the last line in (4.5). Thus, it remains to compute

the integrals J0k,ℓ[m] and J1k,ℓ[m] given in (4.8) and (4.9), respectively, where m = 1, . . . , pℓ + 1.
As in Subsection 4.1, we distinguish three different cases for the element indices k, ℓ, which correspond

to the singularities of the integrands in (4.8) and (4.9). For this purpose, let m ∈ {1, . . . , pℓ + 1} be fixed. We
state only the final results since their derivation is given in a simpler or similarway as in Subsection 4.1. These
final results are formulated as integrals such that these integrals can be directly calculated or approximated
by the Gauss–Legendre quadrature (3.1) and the Gauss–Jacobi quadrature (3.3).

4.3.1 Case k = ℓ = 1
We calculate

J0k,ℓ[m] = 1

∫
0

∂tψ
p1
m (η)F1,1(0, ηh1)dη + 2

1

∫
0

∂tψ
p1
m (η) ln η dη + 2 ln h1(ψ

p1
m (1) − ψ

p1
m (0)),

J1k,ℓ[m] = 1

∫
0

∂tψ
p1
m (η)F1,1(t1, ηh1)dη +

1

∫
0

∂tψ
p1
m (η) ln(1 + η)dη

+
1

∫
0

∂tψ
p1
m (1 − η) ln η dη + 2 ln h1(ψ

p1
m (1) − ψ

p1
m (0))

with the function

F1,1(s, t) := ln[
tan π(s+t)

4T
s + t

tan π|t−s|
4T
|s − t| ]

,

which does not have any singularity in the domain of integration. For these integrals, we apply quadra-
tures (3.1), (3.3), as shown in Subsection 4.1.1.

4.3.2 Case k = ℓ = N
We compute

J0k,ℓ[m] = 1

∫
0

∂tψ
pN
m (η)FN,N(tN−1, tN−1 + ηhN)dη + 1

∫
0

∂tψ
pN
m (η) ln η dη −

1

∫
0

∂tψ
pN
m (η) ln(2 − η)dη

and J1k,ℓ[m] = 0 with the function
FN,N(s, t) := ln[tan

π(s + t)
4T (2T − s − t)

tan π|t−s|
4T
|s − t| ]

,

which does not have any singularity in the domain of integration. For these integrals, we apply again quadra-
tures (3.1), (3.3), as shown in Subsection 4.1.1.
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4.3.3 Cases Excluding k = ℓ = 1 and k = ℓ = N
We have

J0k,ℓ[m] = 1

∫
0

∂tψ
pℓ
m (η)Fk,ℓ(tk−1, tℓ−1 + ηhℓ)dη + J0,singk,ℓ [m],

J1k,ℓ[m] = 1

∫
0

∂tψ
pℓ
m (η)Fk,ℓ(tk , tℓ−1 + ηhℓ)dη + J1,singk,ℓ [m]

with the function

Fk,ℓ(s, t) := ln[tan π(s + t)4T
tan π|t−s|

4T
|s − t| ]

,

which does not have any singularity in the domain of integration, and the terms

J0,singk,ℓ [m] =

{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{
{

ln hℓ(ψpℓm (1) − ψpℓm (0)) + 1

∫
0

∂tψ
pℓ
m (η) ln η dη, k = ℓ,

ln hℓ(ψpℓm (1) − ψpℓm (0)) + 1

∫
0

∂tψ
pℓ
m (1 − η) ln η dη, k = ℓ + 1,

1

∫
0

∂tψ
pℓ
m (η) ln(hk + ηhℓ)dη, k + 1 = ℓ,

1

∫
0

∂tψ
pℓ
m (η) ln|tk−1 − (tℓ−1 + ηhℓ)|dη otherwise,

and

J1,singk,ℓ [m] =

{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{
{

ln hℓ(ψpℓm (1) − ψpℓm (0)) + 1

∫
0

∂tψ
pℓ
m (1 − η) ln η dη, k = ℓ,

1

∫
0

∂tψ
pℓ
m (η) ln(hk + (1 − η)hℓ)dη, k = ℓ + 1,

ln hℓ(ψpℓm (1) − ψpℓm (0)) + 1

∫
0

∂tψ
pℓ
m (η) ln η dη, k + 1 = ℓ,

1

∫
0

∂tψ
pℓ
m (η) ln|tk − (tℓ−1 + ηhℓ)|dη otherwise.

Again, we apply quadratures (3.1), (3.3) to approximate J0k,ℓ[m] and J1k,ℓ[m].
4.4 Exponential Convergence of the Proposed Quadrature Schemes

In this subsection, we summarize the quality of the quadrature schemes proposed in Subsection 4.1, 4.2, 4.3.

Theorem 1. Let themesh (1.6) fulfill the assumptionmaxℓ hℓ ≤ T/2. Further, choose all integration orders of the
Gauss–Jacobi quadratures (3.3), (3.4) such that the related integrals in Subsections 4.1, 4.2, 4.3 are calculated
in an exact way. Then all Gauss–Legendre quadratures (3.1), (3.2) applied in Subsections 4.1, 4.2, 4.3 converge
exponentially with respect to the number of Gauss integration nodes. In other words, the entries of the matrices
MHT , AHT , BHT are computable to high float point accuracy.

Proof. We apply the same arguments as in [16, Corollary 3.1].
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Figure 1: Numerical results of the quadrature schemes of Sec-
tion 4 with K Gauss–Legendre points per coordinate direction
with a non-uniform mesh for the matrices MHT , AHT , BHT

for piecewise quadratic functions.

5 Numerical Examples
In this section, we give numerical examples for the assembling of the matrices MHT , AHT , BHT , given in
(1.14), (1.15), (1.16), respectively. Further, we give a numerical example for the ordinary differential equa-
tion (1.1) related to the heat equation, using an h- and hp-FEM as discretization schemes.

For this purpose, we fix the choice of the shape functions. In this section, we use the Lobatto polynomi-
als (or integrated Legendre polynomials) as hierarchical shape functions on the reference element [0, 1]. In
greater detail, for a given local polynomial degree p ∈ ℕ, we set

ψp1(ξ ) = 1 − ξ, ψp2(ξ ) = ξ, ψpm(ξ ) =
ξ

∫
0

Lm−2(ζ )dζ for m ≥ 3, ξ ∈ [0, 1],

where Lm denotes the m-th Legendre polynomial on [0, 1], see [13, Subsection 3.1.4].

5.1 Numerical Integration

In this subsection, we show a numerical example for the quadrature schemes presented in Section 4 to cal-
culate the entries of the matricesMHT , AHT , BHT . For this purpose, for T = 10, we fix the non-uniformmesh
by t0 = 0, tℓ = 2ℓ−NT for ℓ = 1, . . . , N with N = 6 and the polynomial degree vector by p = (2, 2, 2, 2, 2, 2),
i.e., the degree vector is uniform. Thus, the number of the degrees of freedom is M = 13. In this situation,
we are able to calculate the matrices MHT , AHT , BHT as proposed in [19, Subsection 2.2], which serve as
reference values for these matrix entries. We compare these reference values with the values, calculated as
proposed in Section 4, when increasing the number of integration nodes K = K1 = K2 of the Gauss–Legendre
quadratures (3.1), (3.2). Here, we choose the orders of the Gauss–Jacobi quadratures (3.3), (3.4) such that
all related integrals are computed in an exact way, i.e., no additional approximation occurs. The errors are
measured in ‖ ⋅ ‖max defined by ‖A‖max := maxi,j|A[i, j]| for a matrix A with entries A[i, j].

In Figure 1,we observe exponential convergencewith respect to the number of Gauss integration nodes K
for the matrix entries of MHT , AHT , BHT calculated as proposed in Section 4. Note that this exponential
convergence is in accordance with Theorem 1.

5.2 ODE Related to the Heat Equation

In this subsection, we give a numerical example for the ordinary differential equation (1.1), which is related
to the heat equation. We use the discrete variational formulation (1.9) for different choices of the meshes TN

and polynomial degrees p.
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tion (1.9) for an h-FEM with p = 1 or p = 10, and for an hp-FEM
for the exact solution u(t) = t3/4, t ∈ [0, T], with T = 1
and μ = 10.

First, we apply an h-FEM. For given N ∈ ℕ, N ≥ 2, we consider the uniform mesh defined by tℓ = T ℓN ,
ℓ = 0, . . . , N, i.e., a uniform refinement strategy is usedwhenN doubles. Thevector of thepolynomial degrees
is uniform, i.e., p = (p, . . . , p) with p = 2 or p = 10.

Second,we apply an hp-FEM. For givenN ∈ ℕ,N ≥ 2, the geometricmesh is definedby t0 = 0, tℓ = TσN−ℓ
for ℓ ∈ {1, . . . , N}with the grading parameter σ = 0.17, see [13, p. 96]. The vector of the polynomial degrees
p = (p1, . . . , pN) is chosen as pℓ = ℓ for ℓ ∈ {1, . . . , N}.

Further, we set K = K1 = K2 = 20 for the number of integration nodes of the Gauss–Legendre quadra-
tures (3.1), (3.2). In addition, we choose the orders of the Gauss–Jacobi quadratures (3.3), (3.4) such that all
related integrals are computed in an exact way.

Last, wemeasure the error in the norm ‖ ⋅ ‖H1/2
0, (0,T), which is hardly computable. Thus, we use the approx-

imation
[υ]H1/2

0, (0,T) := √‖υ‖L2(0,T)‖∂tυ‖L2(0,T), υ ∈ H1
0, (0, T),

which is an upper bound for C‖ ⋅ ‖H1/2
0, (0,T) with C > 0, due to the interpolation inequality, see [8, p. 23].

In Figure 2, we state the numerical results of the discrete variational formulation (1.9) for the exact solu-
tion u(t) = t3/4, t ∈ [0, T] for T = 1 and μ = 10. For the h-FEM with p = 2 or p = 10, we observe the reduced
convergence due to the low regularity u ∈ H5/4−ε(0, T) with ε ∈ (0, 1). For the hp-FEM, exponential conver-
gencewith respect to the number of degrees of freedomM is achieved. Note that this exponential convergence
is proven in [12]. These numerical examples show that the proposed quadrature schemes in Section 4 provide
the matrices MHT , AHT , BHT in high float point accuracy.

6 Conclusion
ThematricesMHT , AHT , BHT occur for finite element discretizations of the heat or wave equation. The aim of
this work was to realize these matrices for arbitrary polynomial degrees, which are used for, e.g., a temporal
hp-FEM. First, we stated weakly singular integral representations of themodified Hilbert transformationHT .
These integral representations formed the basis of the quadrature schemes to calculate the matrices MHT ,
AHT , BHT . All occurring singular integrals were reformulated such that they can be calculated to machine
precision. In the last part, exponential convergence with respect to the number of Gauss integration nodes
was observed in numerical examples. Moreover, an hp-FEM for an ordinary differential equation, which is
related to the heat equation, showed the potential of the proposed quadrature schemes.
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