DE GRUYTER Comput. Methods Appl. Math. 2023; 23(2): 473-489 8

Research Article

Marco Zank*

Integral Representations and Quadrature
Schemes for the Modified Hilbert
Transformation

https://doi.org/10.1515/cmam-2022-0150
Received July 25, 2022; accepted September 6, 2022

Abstract: We present quadrature schemes to calculate matrices where the so-called modified Hilbert trans-
formation is involved. These matrices occur as temporal parts of Galerkin finite element discretizations of
parabolic or hyperbolic problems when the modified Hilbert transformation is used for the variational set-
ting. This work provides the calculation of these matrices to machine precision for arbitrary polynomial
degrees and non-uniform meshes. The proposed quadrature schemes are based on weakly singular integral
representations of the modified Hilbert transformation. First, these weakly singular integral representations
of the modified Hilbert transformation are proven. Second, using these integral representations, we derive
quadrature schemes, which treat the occurring singularities appropriately. Thus, exponential convergence
with respect to the number of quadrature nodes for the proposed quadrature schemes is achieved. Numerical
results, where this exponential convergence is observed, conclude this work.
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1 Introduction

For the discretization of parabolic or hyperbolic evolution equations, the classical approaches are time step-
ping schemes together with finite element methods in space, see, e.g., [17] for parabolic and [1] for hyper-
bolic problems. An alternative is to discretize the time-dependent problem without separating the temporal
and spatial variables, i.e., space-time methods, see, e.g., [6]. In general, the main advantages of space-time
methods are space-time adaptivity, space-time parallelization and the treatment of moving boundaries. How-
ever, space-time approximation methods depend strongly on the space-time variational formulations on the
continuous level. Different variational approaches for parabolic and hyperbolic problems are contained in [5,
8]. In recent years, novel variational settings, which use a so-called modified Hilbert transformation Hr,
have been introduced, see [15, 18] for parabolic problems, and see [9, 10] for hyperbolic problems. Con-
forming space-time discretizations by piecewise polynomials of these variational formulations lead to huge
linear systems. In [7, 20, 21], fast space-time solvers are developed, where some of them allow for an easy
parallelization in time. Further extensions for this variational setting, which includes the modified Hilbert
transformation Hr, are an hp-FEM in temporal direction and a classical FEM with graded meshes in spatial
direction, see [12]. All the mentioned discretization schemes ask for an accurate realization of the modified
Hilbert transformation 7, which acts only on the temporal part, to calculate the corresponding matrices.
There are different possibilities of computing the entries of these temporal matrices. In [16], a weakly singu-
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lar integral representation of the modified Hilbert transformation Hr for sufficiently smooth functions and
quadrature schemes are derived, which can be used for discretizations of parabolic problems as in [15, 18].
However, in [16], singular integrals are proposed to be calculated analytically, which is not convenient for
high-order approaches, as the aforementioned hp-FEM. In addition, for discretizations of hyperbolic prob-
lems as in [9, 10], the weakly singular integral representation of the modified Hilbert transformation Hr,
given in [16], is not applicable. One way out is the approach in [19], which is well-suited for low polynomial
degrees. Thus, accurate realizations of the modified Hilbert transformation Ht for high polynomial degrees,
as needed in an hp-FEM, seem not to be available. In this work, we provide such realizations. For this pur-
pose, we prove a new weakly singular integral representation of the modified Hilbert transformation Hr for
sufficiently smooth functions with jumps and derive quadrature schemes, which allow for the calculation of
the involved matrices to high float point accuracy.
In greater detail, for given T > 0, u > 0 and f, we consider the ordinary differential equation (ODE)

oeu(t) + pu(t) = f(t) forte (0,T), u(0)=0, (1.1)
which is the temporal part of the heat equation, and the ordinary differential equation
Oreu(t) + pu(t) =f(t) forte (0,T), u(0)=o0.u(0)=0, (1.2)

which is the temporal part of the wave equation. Note that u plays the role of an eigenvalue of the spatial
operator, see [5, 15, 18].

To state related variational formulations to (1.1), (1.2), we introduce classical Sobolev spaces, where
details and further references are contained in [18]. The classical Sobolev space H'(0, T) is endowed with
the norm | - [|g1 (o, 7). Its closed subspaces

H) (0,T)={v e H'(0,T): v(0) =0} and H',(0,T)={veH'(0,T):v(T) =0}

are endowed with the Hilbertian norm |- g0, 1) := I10¢ - l12(0,1), Where | -[|12(0,1) is the usual L?(0, T) norm
and 9, denotes the (weak) derivative. Additionally, we have the Sobolev spaces

HY?(0, T) = {Ujo,1) : U € HY/*(~00, T) with U(¢) = 0, t < 0},
HT(/)Z(O, T) :={Ujo,m: Ue Hl/z(o, oo) with U(t) =0, t > T}

with the Hilbertian norms

e 2
lvlgi?o,m = <||U||H1/2<0,T) *

. 2
wla2o.m = <||U||H1/2<0,T> *

where | -[|g12(j) is a norm, e.g., the Slobodetskii norm, in the usual Sobolev space H'/?(J) for open inter-
vals J ¢ R. Further, (-, -)(o,r) denotes the duality pairing in [H'5*(0, T)]’ and H'}’(0, T), or in [H',(0, T)'
and H %O(O, T), as extension of the inner product (-, - )12¢0, 1) in L2(0, T). Last, we define the modified Hilbert
transformation Hr: L2(0, T) — L%(0, T) as

(FHrv)(b) = g)uk cos((g N kn)%), te(,T), (1.3)
where ;
Vg = % j u(t)sin((g + kn)%) dt
0

are the Fourier coefficients of the series representation

u(t) = ]Z Uk sin((g + ki‘[)%), te(0,7),
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when v € L%(0, T) is given. The modified Hilbert transformation (r is a bijective mapping
Hr: Hy (0,T) > H'5(0,T) forve{0,1/2,1} with Hy (0, T) = H%(0, T) = L*(0, T).

Additional properties of Hr are given in [14-16, 18, 19].
With this notation, a related variational formulation to the parabolic-type problem (1.1) is to find
ue Hé{z(o, T) such that

(dcu, Hrv)o,1) + pit, Hrvd o, = f, Hrv)o,n forallv e Hy*(0, 1), (1.4)

for a given right-hand side f € [H %2(0, T)]'. For the hyperbolic-type problem (1.2), a related variational for-

mulationis to find u € Hé, (0, T) such that
(H1oeu, 0VY20,1) + U, HrV)2(0,1) = (f, Hrvdo,ry forallv e Hj (0, T), (1.5)

for a given right-hand side f € [H 30(0, T)]'. The variational formulations (1.4), (1.5) are uniquely solvable,
where their derivation and analysis are given in [9, 15, 18].

Next, we state conforming discretizations of the variational formulations (1.4), (1.5). For this purpose,
we define a partition TV = {rg}fyzl of (0, T) for given N € N, i.e.,

O=to<ti<try<---<tyg<ty=T (1.6)
with elements 1, := (t,_1, t;) ¢ R. The mesh sizes are hy := t, — t,_1 for¢ =1, ..., N, and the maximal mesh
sizeis h := maxe he. On TV, with the distribution p = (p1, ..., pn) € NN of polynomial degrees, we introduce

the space of piecewise polynomial, continuous functions on intervals
SP(TN) := {v € C[0, T] : v}y, € PP¢(1,) forall € € {1, ..., N} = span{p;}}1,, 1.7)

where C[0, T] is the space of continuous functions and IP? (A) is the space of polynomials on a subset A c R¢,
d € N, of global degree at most p € No. Here, M = 2?]:1(]9{ +1)-(N-1)=1+ Z{Ll pe is the number of
degrees of freedom and the functions ¢;: [0, T] — R are basis functions of SP (7" Ny, satisfying

®j(0)=0 forallje{2,...,M}, (1.8)
i.e., ¢1(0) # 0. Further, we define the subspace
Se (TV) == SP(TN)nHy (0, T) = span{<p,~+1}]’.‘g1.

Thus, a conforming finite element method of the variational formulation (1.4) is to find uy € Sg’ (V) such
that

(O¢un, Hrvn)r200,1) + MUk, HTURI120,1) = (f, HrUR)(0,7) fOralluy € Sf)’, (@. (1.9)
The discrete variational formulation (1.9) is uniquely solvable, see [15, 18], and is equivalent to the linear
system

(A% 4 uMtryy = Fo0r (1.10)

with the matrices
MP[1, j] =(@ja1, Hr@ir1)120,1)5 (1.11)
ATT[i, ] ==(0¢@jr1, HT@is1)1200,T) (1.12)

fori,j=1,..., M- 1, and the corresponding right-hand side F7'r,
Analogously, the conforming FEM of the variational formulation (1.5) to find uy, € Sg’ (7M) such that

(Hro¢up, 0cup)12(0,1) + MUK, HTUR)12(0,T) = {f, HTVUR)(0,7) fOrallvy € Sg, (T
is uniquely solvable, see [9, 10], and is equivalent to the linear system

((B)T + uM " yu = F7r
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with the matrix M”(7, given in (1.11), and the matrix

BY(i, j] := (0r@js1, HTOePir1)120,T) (1.13)

fori,j=1,...,M -1, and the right-hand side E“T as for the linear system (1.10). Note that, for f € L>(0, T),
this right-hand side F** can be realized, using the matrix

M™(i, §] := (@), Hrid120,1) (1.14)

fori,j=1,...,M,see[19, 21] for all the details. Additionally, we set

AT, ] = (0epj, Hr i) 1200.1)5 (1.15)
BY(i, j] := (0rj, H1oepid12(0,1) (1.16)

fori,j =1, ..., M.Hence, the matrices M?(7, A7(r, B3 givenin (1.11), (1.12), (1.13), are submatrices of the
matrices M7(1, A%t B¥r givenin (1.14), (1.15), (1.16), respectively. Thus, we ask for an accurate realization
of these matrices M7(r, A7t B which is the main topic of this manuscript.

The rest of the paper is organized as follows. In Section 2, we recall well-known and prove new weakly
singular integral representations of Hr, which are the starting point of the calculation of the matrices M7tr,
A% BH7 In Section 3, Gauss quadratures are given, which are used in the following sections. Section 4 is
the main part of this paper, where we state all quadrature schemes to calculate the matrices M7(r, A7(r, B7(r
to high accuracy. In Section 5, numerical examples show the quality of the new assembling method of M7tr,
A% B In Section 6, we give some conclusions.

2 Integral Representations of the Modified Hilbert Transformation

In this section, we recall a weakly singular integral representation of H7 for functions in H'(0, T) and prove
a new weakly singular integral representation of (7 for functions, which are only piecewise in H!. These
weakly singular integral representations are used for the calculation of the matrices M Hr A%r B given
in (1.14), (1.15), (1.16), respectively. We start to recall the integral representations for functions in L2(0, T)
or H(0, T), which are proven in [16].

Lemma 1 ([16, Lemma 2.1]). For v € L?(0, T), the operator Hr, as defined in (1.3), allows the integral repre-

sentation
T

(Hrv)(t) = v.p. J v(s)K(s,t)ds, te(0,T), (2.1)
0
as a Cauchy principal value integral, where the kernel function is given as

1 1 1
K(s, t) := —[ + ]
. T1(s+t) . m(s—t)
2T | sin 7620 gin 7620

Forv € H'(0, T), the operator Hr, as defined in (1.3), allows the integral representation

T
(Hru)(t) = —%v(o) Intan Z—]{ + J ow(s)K(s,t)ds, te(0,T), (2.2)
0

as a weakly singular integral, where

K(s, t) := —% ln[tan n(s + t) tan nlt - Sl]

4T 4T (2.3)

The integral representation (2.2) in connection with specialized numerical integration gives the possibil-
ity to calculate matrices, which are based on Hy applied to a function in H(0, T), e.g., the matrices MHr
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in (1.14) and A7T in (1.15). However, the integral representation (2.2) is not applicable for functions which
have jumps since these functions do not belong to H(0, T). As the integral representation (2.1) is a Cauchy
principal value integral and therefore is complicated to use in practical implementations, we prove a new inte-
gral representation of (7 for functions which are piecewise in H! but possibly having jumps. This integral
representation is used for the calculation of the matrix B’ in (1.16).

Lemma 2. Leta, b € [0, T] witha < b, and let a function f € H (a, b) c Cla, b] be given. Then, for the function

vr € L2(0, T),
f(s), sela,bl,
Vf(S) = {

0 otherwise,

the operator Hr, as defined in (1.3), allows the integral representation
b
(Hrvp)(t) = =f(D)X(b, t) + f(@)K(a, t) + J 0f(s)K(s, t)ds (2.4)
a

fort € (0, T)\ {a, b} as a weakly singular integral, where the kernel function X(s, t) is given in (2.3).
If, in addition, f(a) = 0, i.e., f € H(l), (a, b), then the representation

b
(Hrvp)(a) = -f(b)X(b, a) + J 0tf(s)K(s, a)ds

holds true as a weakly singular integral. Analogously, if f(b) = 0, i.e.,f € H fo(a, b), then we have the represen-

tation
b

(Hrvp)(b) = f(a)X(a, b) + j 0¢f(s)XK(s, b)ds

as a weakly singular integral.

Proof. Let t € (0, T) be arbitrary but fixed. We split the proof accordingly to the relation between ¢, a and b.

First, consider the case t € (a, b). The integral representation (2.1), integration by parts, the relation

-05K(s, t) = K(s, t) and the Holder continuity of f with exponent %, see [11, Chapitre 2, Théoréme 3.8], yield
t-¢ b

(FHrvp)(D) = Li{g( j F($)K(s, B)ds + j F($)K(s, D) ds)

a

t+e

~

£

= Li{g(—f(t —e)K(t-¢g,t)+ fla)K(a, t) + | o¢f(s)K(s,t)ds

a b
—f(D)YK(b, t) + f(t+)K(t + ¢, t) + j 0tf(s)K(s, t) ds)
b t+e

=f(@)X(a, t) - f(b)X(b, t) + I 0ef (8)X(s, t) ds,
a
where the last integral exists as a weakly singular integral.
Second, we examine the case t € (0, a) when a > 0, or t € (b, T) when b < T. The integral representa-
tion (2.1) and integration by parts give

b b
(FHrvp)(t) = 1813(} Jf(S)K(S, t)ds = f(a)K(a, t) - f(D)X(b, t) + J of(s)K(s, t) ds.

Third, the case t = a is investigated when f(a) = 0. As in the cases before, the integral representa-
tion (2.1), the Holder continuity of f and integration by parts lead to

b b
(Hrvp)(a) = Hi% J f(s)K(s,a)ds = li&}(f(a +&)K(a +¢€,a)-f(b)X(b, a) + J 0f(s)XK(s, a) ds)

a+e a
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b
- f(b)X(b, a) + j 0 (5)K(s, a) ds,

where the last integral exists as a weakly singular integral.
Last, the case t = b, when f(b) = 0, is proven analogously. O

Remark 1. Choose a = 0and b = T in Lemma 2. Then representation (2.4) of Lemma 2 coincides with repre-
sentation (2.2) of Lemma 1 due to X(0, t) = -2 ~lIntan /5 and K(T,t)=0fort e (0, T).

Remark 2. Consider the situation of Lemma 2. For f € H'(a, b) with f(a) # 0 or f(b) # 0, the function
Hrvs € L%(0, T) admits a singularity for t = a or ¢ = b, respectively.

3 Gauss Quadratures

In this section, Gauss quadratures are stated, which are used in the following sections. For this purpose, we
introduce Gauss quadratures on [0, 1] of order K € N, see [3]. First, the classical Gauss-Legendre quadrature
with weights w, x € Rand nodes &, x € [0,1],v=1,...,K, fulfills

1 K
[s0de= Y wnxs@i forallg e P20, 1) (3.1)
0 v=1

see [3, equation (1.6)]. This Gauss quadrature is generalized to the square domain [0, 1] x [0, 1] via using the
Gauss-Legendre quadrature (3.1) for each coordinate direction. More precisely, the tensor Gauss quadrature

Ki K»

DY Wk, v, k, G Ky Ev,ky) (3.2)
vi=1lvy,=1
approximates the integral
11
J J G(&1, &) dé dé,
00

for a function G: [0, 1] x [0, 1] — R, where w,, k; € R and &, , € [0, 1] are the Gauss integration weights
and Gauss integration nodes of order K; € IN with respect to the coordinate direction i € {1, 2}.

For singular integrals with a logarithmic term, we introduce a nonclassical Gauss—Jacobi quadrature.
In greater detail, for K € N, the weights @, x € R and nodes é’ vk €[0,1],v=1,...,K, of the Gauss-Jacobi
quadrature for a logarithmic term satisfy

1 K
jg(t) In(t)d Z yxg(&vk) forallg e P10, 1], (3.3)
5 V=1
see [3, equation (1.7)]. With quadrature (3.3), the equality
11 K K
| [gsomis-tdsde=- Y ¥ 0,061 - )0 ) +8(1 - (1= 80 1- §)
00

pu=1v=1
K K
- Z Zwyé'ywv (- ‘fv)'f}b'{y)'*’g( (1—$v)£y,1—£}1)) (3.4)
H: :

holds true for all g € P?X-2([0, 1] x [0, 1]), where

Wy = Wy,K, Wy = (Dv,K, 'fv = 'fv,Ky gv = gv,K

are defined in (3.1), (3.3), see [3, equation (2.7)], [4].
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4 Quadrature Schemes for the Modified Hilbert Transformation

In this section, we describe the assembling of the matrices M”(r in (1.14), A’ in (1.15) and B?" in (1.16).
The crucial point is the realization of the modified Hilbert transformation Hr, where different possibilities
exist, see [16, 19]. In particular, for a uniform degree vector p = (p, p, . . ., p) with a fixed, low polynomial
degreep € N, e.g.,p = 1 or p = 2, the matrices M”77, A¥r and B?(7 in (1.14), (1.15), (1.16), respectively, can
be calculated using a series expansion based on the Legendre chi function, which converges very fast, inde-
pendently of the mesh sizes, see [19, Subsection 2.2]. As for an hp-FEM, the degree vector p is not uniform, or
for high polynomial degrees, it is convenient to apply numerical quadrature rules to approximate the matrix
entries of M7tr, A7 and B*r in (1.14), (1.15), (1.16), respectively. This is the main topic of the paper and is
described in great detail in the following.
From the integral representation of Hr in (2.2), we have

T T T
.. 2
ML) = 0y, Hrgiom = -2 piO) [ @O Intan T2 de+ [ 90 [ K(s. Dot dsde, @4.)
0 0 0
) T ¢ T T
. . T
AT ] = (s, Hr@id120,1) = —-#i(0) j drpj(t)Intan = dt + j 0rpj(t) J K(s, )orpi(s)dsdt  (4.2)
0 0 0

fori,j=1,..., M with the basis functions ¢;, ¢; in (1.7) satisfying (1.8).
For the matrix B’(7 in (1.16), the integral representation of Hr in (2.4) yields

N b
Hroepi() = Y [—(atgoi)"x(tk, £) + (@) Kt ) + j A¢t(@iir, ) (S)K(s, 1) ds]

k=1 o1

forte (0, T)\{tx: k=1,...,N-1},i=1,..., M, where we use the notation

= 11mu(tk—s) and vk llmv(tk 1+¢), k=1,...,N,
for a sufficiently smooth function v: (0, T) — R. Thus, the entries of the matrix in (1.16) admit the represen-
tation

B[, j1 = (9:@j, Hroepi) 20,1
T T
-X [ Q0" [ g%t Ot + Qe [ 21y (OK(tic, Ot
k=1 0 0
T tx

" j 000;(0) j det(Pir)()K(s, ) ds dt] 4.3)

ti-1

(=}

fori,j=1,..., M with the basis functions ¢;, ¢; in (1.7) satisfying (1.8).

The matrix entries M7 [i, j], A¥(r[i, j1, B [i, j] in (4.1), (4.2), (4.3), respectively, are computed element-
wise for the partition TV = {Te}e , of (0, T) into intervals 7, = (t,—1, t¢) (0, T), € =1, , N. For this pur-
pose, we assume that we use standard Lagrange finite elements as in [2, Section 6.3], or for the hp-FEM,
we use basis functions ¢;, i = 1, ..., M, as described in [13, Subsection 3.1.6]. Thus, we assume that the
basis functions ¢;: [0, T] - R,i=1,..., M, allow for alocal representation on an element 7, £ = 1, ..., N,
by shape functions l/)p ‘20,11 >R, m=1,...,p,+ 1, defined on the reference interval [0, 1]. In greater
detail, for a basis function ¢;,i = 1, ..., M, there exists an element 7, = (t,_1, t¢),£ =1, ..., N,witharelated
polynomial degree p, € N such that the local representation

Pa(m,o)(t) = !I)pe< t; 1) forallt e T, (4.4)
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holds true, where a(m, ¢) =i € {1, 2, ..., M} is the global index related to the local index m for the interval
7, and Yh! is a shape function. Possible choices of such shape functions are the classical Lagrange polyno-
mials with equidistant nodes or Gauss—Lobatto nodes, see [2, Chapter 6], or Lobatto polynomials (integrated
Legendre polynomials), see [13, Subsection 3.1.4].

With this notation, we fix two intervals 7, = (ty_1, t¢), Tk = (tx_1, tx) with indices ¢, k € {1, ..., N} and
related local polynomial degrees p,, px € IN. We define the local matrix M,fi,’ € RO+ DxPe+l) by

te te ti
oy 2 mt
MG m) = 29400 [ @amo@ntan T2 de+ | pumo(® | Kis, 00@anp(s) dsde

te-1 te-1 ti-1

1
2h n(te-1 +nh
= -5 2 [whion intan ML g

4T
1 04
+he j W () J K(tx-1 + &Rk, te_1 + nhe)oPhk (&) d& dn 4.5)
0 0
and, analogously, the local matrix Afg € RExrDx(etD) py
1
2 n(te_1 +nh
AL m) = -6t @)% [ ot intan UL LI g
1 0 1
+ I et (1) I K(tr-1 + Eh, te_1 + nhe)oPht(§) dEdn (4.6)
0
forn=1,...,px+1andm=1,..., pe + 1, where we used property (1.8), the local representation (4.4) and

6,1 is the usual Kronecker delta.
In the same way, the local matrix BJ{T € ]R(Pk”)x(p“” is defined by

B [n,m] = —a PR Im z/f’k(n]ke m]
1 1 1
v oo [ j K(tor + &b te-s + )b () df dn (4.7)
k 0 0
forn=1,...,pxr+landm=1,..., pe + 1 with the integrals
1
Jp o lm] = -1 j Ot (MK (tk1, te—1 + nhe) dn, (4.8)
0
1
JLIm] = - J QWP (K (b, ter + nhe) dn. 4.9)

Note that J 2, J[Aml =] ,1_1, (.ml, i.e., investigating only one term is another possibility. To keep the same cases
as for the matrices M?‘7, A%r and due to implementation issues, we give the quadrature schemes for ],(()’ Lm]
and ],1, (ml.

These local matrices M,?cg s Akﬂg s BJ{T are used for the calculation of the matrices M7, A%r and B7(r,
respectively. Thus, the assembling of the matrices M?(r, A7 and B is realized element-wise, i.e., by two
loops via the elements.

(1) Set Mt = 0y, A7 = 0y and B = Oy, where 0y € RM*M s the zero matrix.
(2) Fork,=1,...,N,
«  compute the matrices M, 7, AT B}CT € RPitDx(pe+l)

k,e?* "k, e’
« andset
M [a(n, k), a(m, €)] = M*T[a(n, k), a(m, )] +M Jn, ml,

A% a(n, k), a(m, €)] = A [a(n, k), a(m, €)] +A Jn,m],

BM(a(n, k), a(m, )] = BX"[a(n, k), a(m, £)] +B Jn, m]
forn=1,...,pk+1,m=1,...,pp+1.
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It remains to calculate the local matrices M ,ffg , Az{e’ , BJ{T R®e+Dxe+1) which is the main purpose of this

work and the content of the following subsections, Subsectlon 4.1, 4.2, 4.3, respectively.

4.1 Local Matrix Mi{;

In this subsection, the computation of the local matrix M 1n (4.5) is investigated for fixed elements Ty, T,
and local polynomial degrees py, pe with k, € € {1, . N} We apply the strategy of [16, Subsection 3.1], i.e.,
the integrals in (4.5) are split into regular and singular parts. As in [16, Subsection 3.1], we distinguish three
different cases for the element indices k, €, which correspond to the singularities of the integrands in (4.5).
For this purpose, let n € {1,...,px+1}and m € {1, ..., p, + 1} be fixed. We investigate the case k = £ = 1
in great detail, whereas we state only the final results for the remaining cases since they can be treated in
a simpler or similar way as the case k = £ = 1. These final results are formulated as integrals such that these
integrals can be directly calculated or approximated by quadratures (3.1), (3.2), (3.3), (3.4).

41.1 Casek=¢=1

We have
Hr _ p1 Zhl P1 1 P1 Zhl Dp1
M {[n,m] =-yy (0)— Ym (MF1,1(nh1)dn - ¢y (0)— Ym () Inndn
0 0
::I%,l
1 h 1 1
¢”1<0) Inh j Wi () dyp - j W) jF% L(€hy, )l (€) dE dn
0 0 0
1 1
_ j W) j1n|s ~ tlisth, g, O (&) dE dy
0 0
B L 1 =1,
= [ i) [ Ins + g coan O () d
0 0
::Ii"1
with ¢ (540) o 7L
tan ZL tan T80 g TS
1 . 4T 2 . 4T
F1,1(t) :=1In F o F1,1(s’ t) := ln[ s+t 51 ]

Proceeding as in [16, equation (3.10)], i.e., the square domain of integration is split into two triangles, and
on each of these triangles a Duffy transformation is applied, yields

2h
M [n,m) = g7 )L - 1(1%1 +1 )

1 1
¥R jnp"l(rz FL stk dn = 9 O 22 s [ )

=

11 0
1H¢”1<n>F (1 - ©)nhy, nha)ndAWL (1 - E)n) dE dn
00

e
=t Gil(fﬂl)

=

11
L [ bt - me)F s (6h, (- M) () dn dé.
00

7
= G1,1(S(yfl
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Further, applying the Gauss—Legendre quadratures (3.1), (3.2) of order K € N gives the approximation

2h
M, m] =~y (0)==1 ; - 1(1%,1 +)

2h
- PR0) =+ Z Wy, P (&,6)(F} 1 (&,xh1) +Inhy)

v=1

= z z Wy, k Wy, k(G 1 &y ks Ev, ) + G 1 (8vs K5 €0, K)).-

vi=1vy=1

Using [16, Corollary 3.1] for the two-dimensional parts and similar arguments for the one-dimensional part

results in exponential convergence of the applied Gauss—Legendre quadratures with respect to the number K

of Gauss integration nodes. It remains to calculate the singular integrals I7 ;, I%,1 and Iil. In [16, Subsec-

tion 3.1], an analytic integration is proposed, which is practical only for constant low polynomial degrees,

e.g., Pk = pe € {1, 2}. For arbitrary high polynomial degrees py, p,, quadrature rules of order adapted to px, p,

are easier to implement. This approach is not contained in [16] and thus is investigated in the following.
For the integral I* 110 the Gauss—Jacobi quadrature (3.3) for a logarithmic term yields

Kiog

1
= [whioninndn == Y Gy, vh G,
0 v=1

with 252 < Kjog € N.
For the integral I 2,1, we apply the Gauss—Legendre quadrature (3.1) and quadrature (3.4), which lead to

1 11
£, =1nh1j¢p1<n)j AR @ dg dn + [ [ 9h Dok @ Inlg - nldg d
0 00

X =H1,1(&n)
=Inhy (PR’ (1) = PR'(0)) Y. Wy Keeg Wit (Ev,Ke)

Klog Klog R i N N ~ ~

- z Z (Dyé’ywv(Hl,l((l - fv)‘sua 5}1) + Hl,l(l - (1 - ‘fv)fys 1- ‘S}l))
u=1v=1
Klog Klog . .

- Z z wyfyd)v(Hl,l((l -&)éu, fy) +Hi1(1-(1- §v)éyu, 1~ fy))
pu=1v=1

with p12+1 < Kieg € N, py + % < Kjog € N and the function Hy,1(&, n7) := YEL()oaPht(&).
For the integral I %,1’ the square domain of integration of the first line is split into two triangles, and on
each of these triangles, a Duffy transformation is applied, which yields

L,=Inh depht (&) dedn + | | ¥hi ) In(E + mocyph(§) dédn

Y (1)

Yo | oeph' (&) dEdn + | | Y5 (n In(é +n) oph (én) dé dn

= 1

Ot . Ot
Ot . Ot
Ot . Ot

|
|

=Ilnn+In(1+¢)
11
v [ [ whieme I + e 28 @ dgan.
00 —ln¢'+1n(1+n)
Further, using quadratures (3.1), (3.3), (3.2) gives
K, K K; X
By ~Inhy (Y0 (1) - ¥R 0) Y wvi, W k) = Y. Y @k, @i, H: (ks Evks)

v=1 u=1v=1

K, Ks K

K
- z z D,k Wy, ks Ha (& ks Ev,s) + Z Z Wy KWy, kKH3 (&0, Ky 0y K)

pu=lv=1 vi=1vy,=1
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with the functions

H3(&,n) = Yhi (mnocpht (&n),  H3(& 1) := Phi (En)Eoahh (&),
H3(& 1) == Yo mnIn(L + )b (&) + Yot (€& In(1 + n)dph! ()

and the number of integration nodes

p1+1 p1+1
<Ks e N
2 2 >

1 1
<K €N, %sl(zelN, P45 <K eN, pits<KieN,

and K € N sufficiently large. Note that all integrals of I il are calculated exactly except for the integral with
the integrand H g , Wwhere arguments similar to [16, Corollary 3.1] yield exponential convergence of the applied
Gauss—Legendre quadratures with respect to the number K of Gauss integration nodes.

4.1.2 Casek=€¢=N

For this and the remaining cases, we state only the integrals, where the quadratures of Section 3 have to be
applied. We calculate

Y (1 =)&) Gy, (& Moy (8) dn d&

ol

Y (oYY () In|€ - nldédn

Yo' (1= moepn" (1 - nd)[Inn +In(1 + &)Indé dn

+
alEd

+
alEd

Ot |, Ot |, Ot |, Ot .
Ot |, Ot O, Ot .

Y (1= &m)oapp" (1 - H[Iné +1In(1 + n))éd&dn

with the functions

lt=s]
(s +t) tan T

Fy (s, t) :=In|t 2T -s-t)—— |,

NN (S, T) n[an 4T( s )Is—tl

Gy.n(& 1) = Fyn(tn- + (1= Enhy, ty-1 + nhy)n,
GIZV,N(& n) := Fyn(tn-1 + éhw, tnoq + (1 - n)éhn)é,
which do not have any singularity in the domain of integration. For the first and the second integral, we

apply the tensor Gauss quadrature (3.2), for the third integral, quadrature (3.4), and for the last two integrals,
quadratures (3.1), (3.3), as shown in Subsection 4.1.1.

4.1.3 Cases Excludingk=¢=1andk=€¢=N

We compute
11
" h
My (n,m) = =2 | | i )GE (& mORi (1 - Hyn)dgdn - 1,

, k "
O(;l | 2h
- [ [ b= )6 6 Mok (@) dndg - 61w O 1,

00
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with the integrals

1
1._ [y (te-1 + 1nhe)
I; := lem (7)Intan 4T dn,
11
2,: j j W OE (O Inl(tie + Ehy) — (ter + nhe)l dE dy
00

and with the functions
n(s + t) tan 7l

4T  |s-— t| ’
Gy o(& 1) 1= Fre(tir + (1 = Enhy, tes + nhe)n,
Gy o(&, 1) = Fie(tror + Ehp, teoy + (1 = )Ehe)é,

which do not have any singularity in the domain of integration, i.e., the tensor Gauss quadrature (3.2) is
applied to these integrands. The singular parts I}, I ,% . are treated differently corresponding to the indices k, ¢.

First, we consider the part Il}. The case € = 1 is excluded since I(} contributes only for k = 1 dueto §x,; = 0
for k > 1. For ¢ > 1, the term I} is not singular. Thus, we apply the Gauss-Legendre quadrature (3.1) to

Fie(s, t) :=In| tan

1
to- h
I} = I Yhe () Intan Tilte-1 + nhe) d
4T

0
fore > 1.

Second, we consider the part I ,f - We distinguish four cases.
(1) Case k = ¢: We compute

1
If o = Inhe(° (1) - 9 (0)) j Y () dn + j Yhi Moy’ (§)In|é — n| dé dn,
0

© e,

where quadratures (3.1), (3.4) are applied.
(2) Case k = £ + 1: The equality

11
B, = j jzﬁ’éf(l — oL (ném(inn + Inhy + he)) dE dy
00 11
v [ [ - g 9ot ©Fng + In((1 - mhe + b)) dg dn
00

holds true, where we use quadratures (3.1), (3.3) and (3.2).
(3) Case k + 1 = ¢: We have that

11
B,= j j Y2 (1 = Em)B (1 — mn(inn + In(he + (1 - E)he)) dE dn
00 11
+ | [ whiopoapti - + gmn(ing + In(L - Hhi + he) dg dy
00

holds true, where we use again quadratures (3.1), (3.3) and (3.2).
(4) Otherwise, we apply the tensor Gauss quadrature (3.2) to

1

2 _
B~ |
0

as the integral is not singular.

Yot MO () Inl(t—q + Ehi) — (te—1 + nhe)| A& dn,

O e,
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4.2 Local Matrix Ai{;

In this subsection, the computation of the local matrix Akg{g in (4.6) is investigated for fixed elements 7y, T,
and related polynomial degrees pi, pe with k, € € {1, ..., N}. To calculate the local matrix Ak%g , replace in
Subsection 4.1 the function gb’,if (+) with the function hieatlpﬁf (+) in all occurring quantities.

4.3 Local Matrix Bic;

In this subsection, the computation of the local matrix B,fi,’ in (4.7) is investigated for fixed elements 7y, T,
and related polynomial degrees py, pe with k, € € {1, ..., N}. To calculate the second line in (4.7), replace in
Subsection 4.1 the function 5¢ (- ) with the function hleatl/)‘,;f( -) and the function 0,%*(-) with the function
h—lkampﬁk () in all occurring quantities which are related to the last line in (4.5). Thus, it remains to compute
the integrals ]2,e[m] and ]i,e[m] given in (4.8) and (4.9), respectively, wherem =1, ..., pe + 1.

As in Subsection 4.1, we distinguish three different cases for the element indices k, ¢, which correspond
to the singularities of the integrands in (4.8) and (4.9). For this purpose, let m € {1, ..., p, + 1} be fixed. We
state only the final results since their derivation is given in a simpler or similar way as in Subsection 4.1. These
final results are formulated as integrals such that these integrals can be directly calculated or approximated
by the Gauss—Legendre quadrature (3.1) and the Gauss—Jacobi quadrature (3.3).

4.3.1 Casek=¢=1

We calculate

1 1
TR lm] = j Ot (1)F1,1(0, nhy) dn + 2 j Oet (M) Inn dn + 21n by (P (1) - P (0)),
0 0
1 1
T elm) = [ 0w 01, 1(6x k) dn + [ 0l () Int + my
0 0

1
" j dpbi(1 - m) Inndn +21n hy (Y5 (1) - Y2 (0)
0

with the function

tan (s+t) tan n|t-s|
F11(s,8) :=1In 4T AT |,
11089 [ s+t |s -t

which does not have any singularity in the domain of integration. For these integrals, we apply quadra-
tures (3.1), (3.3), as shown in Subsection 4.1.1.

4.3.2 Casek=¢=N

We compute

1

1 1
I3 olm) = [0 (T v(en-r. tws + nhw) i+ [ 2 Inmdn - [ ) In2 -y
0 0 0

and J ,1 o[m] = 0 with the function

2T -s-1)

(s +t) tan —"'lf}s'
4T Is—t |

Inn(s, t) := ln[tan

which does not have any singularity in the domain of integration. For these integrals, we apply again quadra-
tures (3.1), (3.3), as shown in Subsection 4.1.1.
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4.3.3 Cases Excludingk=¢=1andk=¢=N
We have

IO lm) = | 0hi () Fe(ticrs ter +nhe) dn + 175 5 [m],

JEolm) = [ 0eWhi () Fe(tir tes +nhe) dn + T3 8 [m]

with the function

n(s + t) tan 252 ]

Frels, £) :=1Int S
kels: 1) n[an 4T st

which does not have any singularity in the domain of integration, and the terms

In he(Phi (1) — Y1 (0)) + | 9ephi () Inn dn, k=¢,

In he(Phi (1) = i (0)) + | 0P (1 - m)Inndn, k=£+1,

Ot . Ot

0,sing
]k,f [m] = 1

1
jatz/)?nf(n)ln(hk + nhe)dn, kil=e,
0
1
|
and

1
In he(WE (1) - YEE(0)) + j dpli(1-m)Inndn, k=¢,
0

1

[ oty inghu + @ - mheyan, K=t41,
Jrsnemy = 4 © 1

lnhe(¢fnf(1>—¢fn“<o>)+jaupf;(n)lnndn, kil=e,

0

1

J bl () Inlt — (te—1 + nhe)l dn otherwise.

0

Again, we apply quadratures (3.1), (3.3) to approximate ]2 ,Im] and ],1 Lml.

4.4 Exponential Convergence of the Proposed Quadrature Schemes

o () In|tr_1 — (te_1 + nhe)ldn otherwise,

DE GRUYTER

In this subsection, we summarize the quality of the quadrature schemes proposed in Subsection 4.1, 4.2, 4.3.

Theorem 1. Let the mesh (1.6) fulfill the assumption max, he < T/2. Further, choose all integration orders of the
Gauss-Jacobi quadratures (3.3), (3.4) such that the related integrals in Subsections 4.1, 4.2, 4.3 are calculated
in an exact way. Then all Gauss—Legendre quadratures (3.1), (3.2) applied in Subsections 4.1, 4.2, 4.3 converge
exponentially with respect to the number of Gauss integration nodes. In other words, the entries of the matrices

M7, AT BHT are computable to high float point accuracy.

Proof. We apply the same arguments as in [16, Corollary 3.1].

O
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<
? 1076 L -
3
i:
o100 8
Figure 1: Numerical results of the quadrature schemes of Sec-
10-14 b | tion 4 with K Gauss—Legendre points per coordinate direction
0 5 10 15 with a non-uniform mesh for the matrices M7, A%r, g7

number of integration nodes K for piecewise quadratic functions.

5 Numerical Examples

In this section, we give numerical examples for the assembling of the matrices M Hr A Br | given in
(1.14), (1.15), (1.16), respectively. Further, we give a numerical example for the ordinary differential equa-
tion (1.1) related to the heat equation, using an h- and hp-FEM as discretization schemes.

For this purpose, we fix the choice of the shape functions. In this section, we use the Lobatto polynomi-
als (or integrated Legendre polynomials) as hierarchical shape functions on the reference element [0, 1]. In
greater detail, for a given local polynomial degree p € IN, we set

I3
PO=1-& PO =¢ wfn(€)=ij_z(C)d( form=3, &e[0,1],

(0]

where L,, denotes the m-th Legendre polynomial on [0, 1], see [13, Subsection 3.1.4].

5.1 Numerical Integration

In this subsection, we show a numerical example for the quadrature schemes presented in Section 4 to cal-
culate the entries of the matrices M7(r, A7(r, B¥(r_ For this purpose, for T = 10, we fix the non-uniform mesh
by to =0, t, = 26-NTfore=1,...,Nwith N = 6 and the polynomial degree vector by p = (2, 2, 2, 2, 2, 2),
i.e., the degree vector is uniform. Thus, the number of the degrees of freedom is M = 13. In this situation,
we are able to calculate the matrices M?(r, A’(r| B¥r as proposed in [19, Subsection 2.2], which serve as
reference values for these matrix entries. We compare these reference values with the values, calculated as
proposed in Section 4, when increasing the number of integration nodes K = K; = K, of the Gauss—Legendre
quadratures (3.1), (3.2). Here, we choose the orders of the Gauss—Jacobi quadratures (3.3), (3.4) such that
all related integrals are computed in an exact way, i.e., no additional approximation occurs. The errors are
measured in || - [ max defined by [|A[max := max; jlA[i, j]| for a matrix A with entries A[i, j].

In Figure 1, we observe exponential convergence with respect to the number of Gauss integration nodes K
for the matrix entries of M7(r, A7(r, B¥r calculated as proposed in Section 4. Note that this exponential
convergence is in accordance with Theorem 1.

5.2 ODE Related to the Heat Equation

In this subsection, we give a numerical example for the ordinary differential equation (1.1), which is related
to the heat equation. We use the discrete variational formulation (1.9) for different choices of the meshes TV
and polynomial degrees p.
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10,15 T T T TTTT] T T T TTTT] T T TTTTT T 4
1072 E E
g 107 ¢ E
< F E
g:; 1074 ¢ E
5 i €
§ 10~° E E
2 o || =2 §
F|—%— p=10 3
10-7 |~  hp-FEM i
F M—3/4  p3/4 1  Figure 2: Numerical results of the finite element discretiza-
1078 L | | .3 tion (1.9) for an h-FEM with p = 1 or p = 10, and for an hp-FEM
10! 102 103 for the exact solution u(t) = t3/4, t € [0, T], with T = 1
degrees of freedom M and y = 10.

First, we apply an h-FEM. For given N € N, N > 2, we consider the uniform mesh defined by ¢, = T%,
¢=0,...,N,ie., auniformrefinement strategy is used when N doubles. The vector of the polynomial degrees
is uniform, i.e.,, p = (p,...,p) withp =2 or p = 10.

Second, we apply an hp-FEM. For given N € N, N > 2, the geometric mesh is defined by to = 0, t, = ToV=¢
for ¢ € {1, ..., N} with the grading parameter ¢ = 0.17, see [13, p. 96]. The vector of the polynomial degrees
p=(p1,...,pn)ischosenas p, =€fore e {1,..., N}

Further, we set K = K; = K, = 20 for the number of integration nodes of the Gauss—Legendre quadra-
tures (3.1), (3.2). In addition, we choose the orders of the Gauss—Jacobi quadratures (3.3), (3.4) such that all
related integrals are computed in an exact way.

Last, we measure the error in the norm | - || HY(0,1)5 which is hardly computable. Thus, we use the approx-
imation

Wla0,1) = \/||U||L2(0,T)||atU||L2(o,T), veH; (0,T),

which is an upper bound for C| - || HY(0,1) with C > 0, due to the interpolation inequality, see [8, p. 23].

In Figure 2, we state the numerical results of the discrete variational formulation (1.9) for the exact solu-
tion u(t) = £3/4, t € [0, T) for T = 1 and u = 10. For the h-FEM with p = 2 or p = 10, we observe the reduced
convergence due to the low regularity u € H>/4~¢(0, T) with € € (0, 1). For the hp-FEM, exponential conver-
gence with respect to the number of degrees of freedom M is achieved. Note that this exponential convergence
is proven in [12]. These numerical examples show that the proposed quadrature schemes in Section 4 provide
the matrices M”(r, A¥r, B in high float point accuracy.

6 Conclusion

The matrices M7tr, A7t BIr occur for finite element discretizations of the heat or wave equation. The aim of
this work was to realize these matrices for arbitrary polynomial degrees, which are used for, e.g., a temporal
hp-FEM. First, we stated weakly singular integral representations of the modified Hilbert transformation Hr.
These integral representations formed the basis of the quadrature schemes to calculate the matrices M7tr,
A% B¥r_ All occurring singular integrals were reformulated such that they can be calculated to machine
precision. In the last part, exponential convergence with respect to the number of Gauss integration nodes
was observed in numerical examples. Moreover, an hp-FEM for an ordinary differential equation, which is
related to the heat equation, showed the potential of the proposed quadrature schemes.
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