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Abstract: The stress-strain constitutive law for viscoelastic materials such as soft tissues, metals at high tem-
perature, and polymers can be written as a Volterra integral equation of the second kind with a fading memory
kernel. This integral relationship yields current stress for a given strain history and can be used in the momen-
tum balance law to derive a mathematical model for the resulting deformation. We consider such a dynamic
linear viscoelastic model problem resulting from using a Dirichlet–Prony series of decaying exponentials to
provide the fading memory in the Volterra kernel. We introduce two types of internal variable to replace the
Volterra integral with a system of auxiliary ordinary differential equations and then use a spatially discontinu-
ous symmetric interior penalty Galerkin (SIPG) finite elementmethod and – in time – a Crank–Nicolsonmethod
to formulate the fully discrete problems: one for each type of internal variable. We present a priori stability and
error analyses without using Grönwall’s inequality and with the result that the constants in our estimates grow
linearly with time rather than exponentially. In this sense, the schemes are therefore suited to simulating long
time viscoelastic response, and this (to our knowledge) is the first time that such high quality estimates have
been presented for SIPG finite element approximation of dynamic viscoelasticity problems. We also carry out
a number of numerical experiments using the FEniCS environment (https://fenicsproject.org), describe a simu-
lation using “real” material data, and explain how the codes can be obtained and all of the results reproduced.

Keywords: Viscoelasticity, Generalised Maxwell Solid, Symmetric Interior Penalty, Discontinuous Galerkin
Finite Element Method, A Priori Analysis, Internal Variables
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1 Introduction

The application of anonsymmetric interior penalty discontinuousGalerkin (NIPG) finite elementmethod (DGFEM)
to a dynamic linear solid viscoelasticity problemwith tensor-valued internal variable stress representationwas
presented by Rivière, Shaw, andWhiteman in [21]. They gave an a priori energy error estimate by using the stan-
dard Grönwall inequality to deal with the time accumulation of error, and hence the constants in the stability
and error bounds are too large to give confidence in the long time simulation of viscoelastic response. In this
paper, we use the symmetric interior penalty Galerkin (SIPG) method and prove stability bounds and a priori
error estimates (not only in the energy norm but also in the spatial L2 norm) without the use of Grönwall’s
inequality. We therefore obtain non-exponentially increasing bounds for temporal L∞-type norms. Further-
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more, we introduce vector-valued internal variables in displacement form and velocity form (to be defined
below). This has the advantage of reducing computer memory requirements in that we need only store vec-
tors of dimension d, instead of symmetric second-order tensors of dimension d(d + 1)/2, as in [21]. This can be
significant for high fidelity 3D simulations.

We consider a linear homogeneous and isotropic viscoelastic solid material (see e.g. [11]) occupying
a bounded polytopic domain, the interior of which is denoted by Ω ⊂ ℝd , and consider the deformation and
stress-strain state of this material over times t ∈ [0, T], where T > 0. The deformation u and stress σ follow the
momentum equation

ρü − ∇ ⋅ σ = f on Ω × (0, T], (1.1)

where overdots denote time differentiation so that ü is acceleration, ρ is the mass density of the material
(assumed constant), ∇ ⋅ σ is the divergence of stress, and f is an external body force (see e.g. [21, 22]). Simi-
larly, u̇ denotes velocity. In addition to this vector-valued governing equation, we assume amix of essential and
natural boundary conditions so that

u(t) = 0 on ΓD × [0, T], (1.2)
σ(t) ⋅ n = gN(t) on ΓN × [0, T], (1.3)

where ΓD is the Dirichlet boundary (assumed to have positive surface measure), ΓN is the Neumann boundary
givenby ΓN = ∂Ω\ΓD , n is an outwardunit normal vector defined a.e. on ΓN , and gN prescribes a surface traction
on ΓN . Furthermore, for initial conditions on the displacement and the velocity, we take

u(0) = u0 and u̇(0) = w0 (1.4)

for given functions u0 and w0.
To close the problem and solve for displacement, we need a constitutive equation expressing stress in terms

of displacement. In the linear viscoelasticity model considered here, this involves a Volterra (or “fading mem-
ory”) integral with the specific material characterised by stiffness D and a stress relaxation function φ; see
e.g. [8, 11, 14, 22]. The stress is then given by

σ(t) = Dφ(t)ε(0) +
t

∫
0

Dφ(t − s) ̇ε(s) ds, (1.5)

where D is a fourth-order positive definite tensor satisfying the symmetries Dijkl = Djikl = Dijlk = Dklij , and ε is
the strain defined by

εij(v) =
1
2(

∂vi
∂xj
+
∂vj
∂xi
) for i, j = 1, . . . , d.

Note that, in (1.5), we use the shorthand ε(t) = ε(u(t)). The form of φ depends on which viscoelastic model is
invoked. There are several (see e.g. [8, 11] and the references therein), but here we focus on the generalised
Maxwell solid where

φ(t) = φ0 +
Nφ

∑
q=1 φqe−t/τq (1.6)

with Nφ ∈ ℕ, strictly positive delay times {τq}Nφ
q=1, and coefficients {φq}Nφ

q=0, the latter of which are normalised
so that φ(0) = 1. The positivity requirement excludes the case φ0 = 0 (a fluid in the sense used by Golden and
Graham in [11]): this is an important assumption in the arguments developed below. In particular, in moving
from (4.4) to (4.5), we will use the fact that

1 −
Nφ

∑
q=1 φq = φ(0) −

Nφ

∑
q=1 φq = φ0 > 0. (1.7)

This paper is arranged as follows. In Section 2, we give our notations and the preliminary background for
DGFEM. In Section 3, we introduce two forms of internal variables, each of which are used to represent the
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Volterra (or “history”) integral, and formulate a variational problem for each form. We then state and prove
(without using Grönwall’s inequality) stability bounds in Section 4 and error bounds in Section 5, carry out
some illustrative numerical experiments in Section 6, using FEniCS (see [1] and https://fenicsproject.org), and
then end with some concluding remarks in Section 7.

2 Preliminary

We use standard notation so that Lp(Ω), Hs(Ω), and W s
p(Ω) (with s and p non-negative) denote the usual

Lebesgue, Hilbert, and Sobolev spaces. For any normed space X, ‖ ⋅ ‖X is the X norm which, for inner product
spaces, is always the norm induced by the inner product. For example, ‖ ⋅ ‖L2(Ω) is the L2(Ω) norm, as induced
by the L2(Ω) inner product denoted – for brevity – by ( ⋅ , ⋅ ), but for S ⊂ Ω̄, we use ( ⋅ , ⋅ )L2(S) for the L2(S)
inner product. For time dependent functions, we expand this notation so that, for X a normed target space,
f ∈ Lp(0, T; X) denotes the space of Lp(0, T) → X functions with norm

‖f ‖Lp(0,T;X) = ( T∫
0

‖f (t)‖pX dt)
1/p

for 1 ⩽ p < ∞. When p = ∞, this becomes the essential supremum norm

‖f ‖L∞(0,T;X) = ess sup
0⩽t⩽T ‖f (t)‖X .

When convenient, we shall often replace the upper limit T in these expressions by some other value t ∈ [0, T].
For inner products of vector-valued and tensor-valued functions, we use the same notation as for the scalar

cases. For instance, we have

(v,w) = ∫
Ω

v ⋅ w dΩ, (v,w) = ∫
Ω

v : w dΩ =
d
∑
i,j=1∫Ω vijwij dΩ

for vector-valued functions v and w, and second-order tensors v and w.

Meshes

We refer to [19] for a detailed explanation of the framework of the DGFEM and here just summarise the main
points. Assume that the closure of Ω is subdivided into closed elements E, where E is a triangle in 2D or a tetra-
hedron in 3D, and the intersection of any pair of elements is either a vertex, an edge, a face, or empty. The
diameter of E is defined by hE := supx,y∈E‖x − y‖, where ‖ ⋅ ‖ is the Euclidean norm, and |E| denotes themeasure
(area/volume) of E. In a similar way, let e be an edge of E and use |e| to denote its measure (length/area). Let
h be the maximum of the diameters hE over all the elements E, and define the set Eh of all of those elements.
Then |e| ⩽ hd−1E ⩽ hd−1 for all e ⊂ ∂E for each E ∈ Eh . We further suppose that the subdivision is quasi-uniform,
which means that there exists a positive constant C such that h ⩽ ChE for all E ∈ Eh .

Next, let Γh be the set of interior edges (in 2D) or faces (in 3D) contained in the subdivisionEh . Then, for each
edge or face element e, we can define a unit normal vector ne . If e ⊂ ∂Ω, then ne is the outward unit normal
vector. For an interior edge e such that e ⊂ Ei ∩ Ej with i < j, the normal vector ne is oriented from Ei to Ej .

Test Spaces

We introduce the broken Sobolev space Hs(Eh) = {v ∈ L2(Ω) | for all E ∈ Eh , v|E ∈ Hs(E)} and endow it with
the broken Sobolev norm ⦀ ⋅ ⦀Hs(Eh) defined by

⦀v⦀Hs(Eh) = ( ∑
E∈Eh

‖v‖2Hs(E))1/2 .

https://fenicsproject.org
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We note the following facts: Hs(Ω) ⊂ Hs(Eh) and Hs+1(Eh) ⊂ Hs(Eh). These definitions and notations are
extended in an obvious way to the vector field analogue H s(Eh).

We define the space of polynomials of degree less than or equal to k on E, for E ⊂ ℝd , by

Pk(E) = span{xi11 ⋅ ⋅ ⋅ x
id
d

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

d
∑
m=1 im ⩽ k, x ∈ E, im ∈ ℕ ∪ {0} for each m}

and then define our DG finite element space as

Dk(Eh) = {v ∈ H1(Eh) | v|E ∈ Pk(E) for each E ∈ Eh}.

The analogous vector field is given byDk(Eh) := [Dk(Eh)]d .

Average and Jump

Suppose two elements Eei and E
e
j share the common edge ewith i < j and that there is a vector-valued function v

and a second-order tensor v on Eei and E
e
j . Then we define an average and a jump for v and v by

{v} =
(v|Eei )|e + (v|Eej )|e

2 , {v} =
(v|Eei )|e + (v|Eej )|e

2 ,

[v] = (v|Eei )|e − (v|Eej )|e , [v ⊗ ne] = (v|Eei )|e ⊗ ne − (v|Eej )|e ⊗ ne ,

where the normal vector ne is oriented from Eei to E
e
j and ⊗ is the outer product defined, for vectors a and b,

by (a ⊗ b)mn = ambn for m, n = 1, . . . , d. On the other hand, if e ⊂ ∂Ω and e ⊂ ∂E,

{v} = v|e , {v} = v|e , [v] = v|e ⋅ ne , and [v ⊗ ne] = v|e ⊗ ne .

We can now introduce the jump penalty operator

Jα0 ,β00 (v,w) = ∑
e⊂Γh∪ΓD α0
|e|β0
∫
e

[v] ⋅ [w] de,

where α0 and β0 are positive constants.

Useful Inequalities

We now recall the following inequalities for use later in the a priori analysis.
∙ Inverse polynomial trace inequalities [23]: For any v ∈ Pk(E), for all e ⊂ ∂E,

{{{{{{
{{{{{{
{

‖v‖L2(e) ⩽ C|e|1/2|E|−1/2‖v‖L2(E) ,
‖v‖L2(e) ⩽ Ch−1/2E ‖v‖L2(E) ,

‖∇v ⋅ ne‖L2(e) ⩽ C|e|1/2|E|−1/2‖∇v‖L2(E) ,
‖∇v ⋅ ne‖L2(e) ⩽ Ch−1/2E ‖∇v‖L2(E) ,

(2.1)

where C is a positive constant and is independent of hE but depends on the polynomial degree k.
∙ Poincaré’s inequality [3, 19]: If β0(d − 1) ⩾ 1 and |e| ⩽ 1 for every e ⊂ Γh ∪ ΓD , then

‖v‖L2(Ω) ⩽ C(⦀∇v⦀2H0(Eh) + ∑
e⊂Γh∪ΓD 1
|e|β0
‖[v]‖2L2(e))1/2 (2.2)

for any v ∈ H1(Eh).
∙ Inverse inequality (or Markov inequality) [17, 19]: For any E ∈ Eh , there is a positive constant C such that

for all v ∈ Pk(E), ‖∇jv‖L2(E) ⩽ Ch−jE ‖v‖L2(E) for all j ∈ {0, 1, . . . , k}, (2.3)

where

∇jv =
{
{
{

∇ ⋅ ∇j−1v for even j,
∇(∇j−1v) for odd j,

and ∇0v = v.

Note that these three inequalities can also be applied in the obvious way to vector-valued functions.
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DG Bilinear Form

We define a DG bilinear form a : H s(Eh) × H s(Eh) 󳨃→ ℝ for s > 3/2 by

a(v,w) = ∑
E∈Eh

∫
E

Dε(v) : ε(w) dE − ∑
e⊂Γh∪ΓD ∫e {Dε(v)} : [w ⊗ ne] de

− ∑
e⊂Γh∪ΓD ∫e {Dε(w)} : [v ⊗ ne] de + Jα0 ,β00 (v,w) (2.4)

for any v,w ∈ H s(Eh). We also define our DG energy norm by

‖v‖V = ( ∑
E∈Eh

∫
E

Dε(v) : ε(v) dE + Jα0 ,β00 (v, v))
1/2

for v ∈ H s(Eh). (2.5)

Comparing these, we can observe that

a(v, v) = ‖v‖2V − 2 ∑
e⊂Γh∪ΓD ∫e {Dε(v)} : [v ⊗ ne] de. (2.6)

Remark 2.1. In the DG bilinear form, the third term is called the “interior penalty” term and the last one is
called the “jump penalty”. Depending on the sign of the interior penalty, the bilinear form is either symmetric or
nonsymmetric. In this article, we consider only the symmetric DGmethod and refer to [15, 21] for an application
of the nonsymmetric method for viscoelasticity. The reason why we employ SIPG is that it requires only the
standard penalisation β0(d − 1) ⩾ 1 for optimal spatial error estimates, while NIPGneeds the super-penalisation
β0(d − 1) ⩾ 3. Since the use of the super-penalisation enforces the linear system to be more ill-conditioned, we
may encounter some difficulty in solving the system with iterative solvers. For more details, we refer to [15].

Remark 2.2 (Korn’s Inequality for Piecewise H1 Vector Fields [4, 19]). If we have β0(d − 1) ⩾ 1, then sinceD is sym-
metric positive definite and the jump penalty is defined not only on the interior edges but also on the positive
measured Dirichlet boundary, Korn’s inequality yields, for any v ∈ H1(Eh),

∑
E∈Eh

‖∇v‖2L2(E) ⩽ C‖v‖2V (2.7)

for some positive C independent of v.

In CGFEM, the squared energy norm ‖v‖2V is usually given by the energy inner product a(v, v). Here, in DGFEM,
we see from (2.6) that this is nearly true but there is an extra term. The following lemma allows us to deal with
that term.

Lemma 2.1. Suppose α0 > 0 and β0(d − 1) ⩾ 1. For any v,w ∈Dk(Eh) and for any pair E1 , E2 ∈ Eh , we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

{Dε(v)} : [w ⊗ ne] de
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

C
√α0
(‖Dε(v)‖2L2(E1) + ‖Dε(v)‖2L2(E2) + α0

|e|β0
‖[w]‖2L2(e)), (2.8)

where e is the shared edge of elements E1 and E2, and C is a positive constant independent of v andw but dependent
on the inverse polynomial trace inequality’s constants and the domain. When e ⊂ ∂Ω, (2.8) holds with E1 = E2.

Proof. Let e ⊂ Γh and e ⊂ E1 ∩ E2, where E1 , E2 ∈ Eh . Recalling the definitions of the average and jump, and
using the Cauchy–Schwarz inequality, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

{Dε(v)} : [w ⊗ ne] de
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽
1
2 (‖Dε(v|E1 )‖L2(e) + ‖Dε(v|E2 )‖L2(e)) |e|β0/2|e|β0/2 ‖[w]‖L2(e) ,

after noting that [w ⊗ ne] = [w] ⊗ ne since ne|E1 = −ne|E2 . The inverse polynomial trace inequality (2.1) implies
that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

{Dε(v)} : [w ⊗ ne] de
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ C(|e|β0/2h−1/2E1 ‖Dε(v)‖L2(E1) + |e|β0/2h−1/2E2 ‖Dε(v)‖L2(E2)) ‖[w]‖L2(e)|e|β0/2
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for a positive constant C. Since |e| ⩽ hd−1, the discrete Cauchy–Schwarz inequality yields
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

{Dε(v)} : [w ⊗ ne] de
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ C(hβ0(d−1)−1E1 + hβ0(d−1)−1E2 )1/2(‖Dε(v)‖2L2(E1) + ‖Dε(v)‖2L2(E2))1/2 ‖[w]‖L2(e)|e|β0/2
⩽ C(‖Dε(v)‖2L2(E1) + ‖Dε(v)‖2L2(E2))1/2 ‖[w]‖L2(e)|e|β0/2

because hE1 ⩽ diam(Ω), hE2 ⩽ diam(Ω), and β0(d − 1) ⩾ 1. Using Young’s inequality, we then obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
e

{Dε(v)} : [w ⊗ ne] de
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ C(

ϵ
2 (‖Dε(v)‖

2
L2(E1) + ‖Dε(v)‖2L2(E2)) + 1

2ϵ
‖[w]‖2L2(e)
|e|β0
)

for any positive ϵ. Taking ϵ = 1/√α0 then completes the proof.

Corollary 2.1. By (2.8), we can also derive

∑
e⊂Γh∪ΓD ∫e |{Dε(v)} : [w ⊗ ne] de| ⩽ C

√α0
(‖v‖2V + J

α0 ,β0
0 (w,w)), (2.9)

where C is a positive constant independent of v,w ∈Dk(Eh) but dependent on the inverse polynomial trace
inequality’s constant in (2.1).

Theorem 2.1 (Coercivity and Continuity). Suppose α0 > 0 is sufficiently large and β0(d − 1) ⩾ 1. Then there exist
positive constants κ and K such that

κ‖v‖2V ⩽ a(v, v),
󵄨󵄨󵄨󵄨a(v,w)

󵄨󵄨󵄨󵄨 ⩽ K‖v‖V‖w‖V for all v,w ∈Dk(Eh),

where κ and K are independent of v and w.

Proof. The proof follows the same arguments as in [15, Theorems 4.5 and 4.6]. For example, the use of (2.8) and
(2.9) leads us to show the coercivity and the continuity. For details, please see [15].

Remark 2.3. Due to the use of inverse polynomial trace inequality, the DG bilinear formwill not be coercive and
continuous on the broken Sobolev space. In other words, Theorem 2.1 holds only on the finite element space.
For the choice of the penalty parameter α0, we refer to [12, 24]. For instance, we will take α0 ∈ [10, 100] in the
numerical experiments Section 6.

DG Elliptic Projection

The DG elliptic projector R is defined for u ∈ H s(Eh) and s > 3/2 by

R : H s(Eh) 󳨃→Dk(Eh) such that a(u, v) = a(Ru, v) for all v ∈Dk(Eh).

Referring to [13, 19, 20, 24], for example, we recall the following elliptic-error estimates:

‖u − Ru‖V ⩽ Chmin(k+1,s)−1⦀u⦀Hs(Eh) , (2.10)
‖u − Ru‖L2(Ω) ⩽ Chmin(k+1,s)⦀u⦀Hs(Eh) (2.11)

for u ∈ H s(Eh) with s > 3/2 and for sufficiently large penalty parameters α0 and β0 ⩾ (d − 1)−1. Here, the posi-
tive constant C is independent of u but dependent on the domain, its boundary, and the polynomial degree k.

We now move on to describe the model problem.

3 Model Problem

We recall our primal equations (1.1)–(1.6) and hereafter assume the data terms are bounded and smooth so that
f ∈ C(0, T; L2(Ω)), gN ∈ C1(0, T; L2(ΓN)), u0 ∈ H s(Ω), andw0 ∈ L2(Ω). We first of all set up the internal variable
representations of viscoelasticity and then give the variational formulations.
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3.1 Internal Variables

Recalling the constitutive equation (1.5) and the stress relaxation function (1.6), we define internal variables as

ψq(t) =
t

∫
0

φq
τq

e−(t−t󸀠)/τqu(t󸀠) dt󸀠 and ζ q(t) =
t

∫
0

φqe−(t−t󸀠)/τq u̇(t󸀠) dt󸀠 (3.1)

for q = 1, . . . , Nφ and note that these are zero at t = 0. Using (1.6) in (1.5), and the Leibniz integral rule leads us
to two alternative forms of the constitutive equation,

σ(u(t)) = Dε(φ0u(t) +
Nφ

∑
q=1 ζ q(t)) +

Nφ

∑
q=1 φqe−t/τqDε(u0) (3.2)

or σ(u(t)) = Dε(u(t) −
Nφ

∑
q=1 ψq(t)), (3.3)

where we note that ζ q(t) + φqe−t/τqu(0) = φqu(t) − ψq(t). We call ψq and ζ q the displacement form and velocity
form, respectively, of the internal variable. It is easy to check that (3.3) and (3.2) are equivalent by integration by
parts and remembering that ∑Nφ

q=1 φq = 1 − φ0. Using these constitutive relationships, we can derive dynamic
linear viscoelasticity model problems in two forms as follows.

Displacement Form

We consider (1.1) in the following form: find u, ψ1 , ψ2 , . . . such that

ρü − ∇ ⋅ Dε(u −
Nφ

∑
q=1 ψq) = f , (3.4)

τq ψ̇q + ψq = φqu, with ψ(0) = 0, for q = 1, . . . , Nφ . (3.5)

Velocity Form

We consider (1.1) in the form

ρü − ∇ ⋅ Dε(φ0u +
Nφ

∑
q=1 ζ q) = f + ∇ ⋅ (

Nφ

∑
q=1 φqe−t/τqDε(u0)), (3.6)

τq ̇ζ q + ζ q = τqφq u̇ with ζ(0) = 0, for q = 1, . . . , Nφ . (3.7)

In these, we note that the auxiliary equations (3.5) and (3.7) are derived by time-differentiation of each of (3.1).

Remark 3.1. The (well-known) idea here is to replace the integral form in the constitutive hereditary laws by
ODEs for a set of internal variables. With these, we use a time stepper rather than numerical integration to
compute the discrete solution. Furthermore, while [21] employed internal variables as second-order tensors,
we have defined vector-valued internal variables. This reduces the computer memory requirement by a factor
of d.

3.2 Variational Formulation

We begin by multiplying each of (3.4) and (3.6) by test functions v ∈ Hs(Eh) for s > 3/2, integrating by parts
over each E, summing over every E, and then collecting up terms to form the edge average and jump terms.
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We then assume sufficient spatial continuity of the continuous solution to (3.4) and (3.7) so that we can add the
terms involving the edge jumps of the exact solution: terms three and four on the right of (2.4). This produces
the DG bilinear form on the left-hand side and gives us a weak form for each choice of the form of the internal
variables. The procedure is standard in the DGFEM literature, and for more details in this specific setting, we
refer to [15] (where it may be useful to note that σ ⋅ n ⋅ v = σ : (v ⊗ n)).

Weak Forms

Let us define linear forms by

Fd(t; v) = (f (t), v) + (gN(t), v)L2(ΓN ) ,
Fv(t; v) = (f (t), v) + (gN(t), v)L2(ΓN ) − Nφ

∑
q=1 φqe−t/τqa(u0 , v).

Recalling (2.4), we now use these linear forms to formulate variational problems for the displacement form and
the velocity form. First for the displacement form of the problem.

Displacement Form Problem (D). Find u and {ψq}
Nφ
q=1 such that, for all v ∈ H s(Eh) with s > 3/2, we have

(ρü(t), v) + a(u(t), v) −
Nφ

∑
q=1 a(ψq(t), v) + J

α0 ,β0
0 (u̇(t), v) = Fd(t; v), (3.8)

a(τq ψ̇q(t) + ψq(t), v) = a(φqu(t), v) for each q, (3.9)

where u(0) = u0, u̇(0) = w0 and ψq(0) = 0. And, secondly, for the velocity form.

Velocity Form Problem (V). Find u and {ζ q}
Nφ
q=1 such that, for all v ∈ H s(Eh) with s > 3/2, we have

(ρü(t), v) + φ0a(u(t), v) +
Nφ

∑
q=1 a(ζ q(t), v) + Jα0 ,β00 (u̇(t), v) = Fv(t; v), (3.10)

a(τq ̇ζ q(t) + ζ q(t), v) = a(τqφq u̇(t), v) for each q, (3.11)

where u(0) = u0, u̇(0) = w0 and ζ q(0) = 0.
Note that, in (3.9) and (3.11), the energy bilinear form, rather than the L2(Ω) inner product, is used to enforce

the evolution equations for the internal variables. This is because, in the testing procedures used below for the
stability and error analyses, we want to take linear combinations of (3.8) and (3.9), and of (3.10) and (3.11), and
their numerical analogues, to cancel certain terms out. We will return to this in the proof of Theorem 4.1 below.

Fully Discrete Formulations

For the time discretisation, we employ a Crank–Nicolson type finite difference scheme [7]. Let tn = n Δt with
Δt = T/N for some N ∈ ℕ, and denote the fully discrete approximations to u and u̇ by u(tn) = un ≈ Un

h ∈Dk(Eh)
and u̇(tn) = u̇n ≈ W n

h ∈Dk(Eh). Similarly, for the internal variables, we introduce ψq(tn) ≈ Ψn
hq ∈Dk(Eh) and

ζ q(tn) ≈ Snhq ∈Dk(Eh) for each q. Furthermore, in the schemes that follow, we will use the following approxi-
mations:

ü(tn+1) + ü(tn)
2 ≈

W n+1
h −W

n
h

Δt and u(tn+1) + u(tn)
2 ≈

Un+1
h + U

n
h

2 ,

and we will impose the relation
W n+1

h +W
n
h

2 =
Un+1
h − U

n
h

Δt . (3.12)

We can now give the fully discrete schemes.
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Displacement Form Problem (D)h. Find W n
h , U

n
h , Ψ

n
h1 , . . . ,Ψ

n
hNφ
∈Dk(Eh) for n = 0, . . . , N such that, for all

v ∈Dk(Eh), we have for n = 0, 1, . . . , N − 1 firstly that

(ρ
W n+1

h −W
n
h

Δt , v) + a(
Un+1
h + U

n
h

2 , v) −
Nφ

∑
q=1 a(Ψ

n+1
hq +Ψ

n
hq

2 , v) + Jα0 ,β00 (
W n+1

h +W
n
h

2 , v)

=
1
2 (F

n+1
d (v) + F

n
d (v)) (3.13)

and secondly that, for q = 1, 2, . . . , Nφ ,

a(τq
Ψn+1

hq −Ψ
n
hq

Δt +
Ψn+1

hq +Ψ
n
hq

2 , v) = a(φq
Un+1
h + U

n
h

2 , v), (3.14)

with initial data
a(U0

h , v) = a(u0 , v), (3.15)
(W0

h , v) = (w0 , v), (3.16)
Ψ0

hq = 0 for all q = 1, . . . , Nφ , (3.17)

and where Fnd (v) = Fd(tn; v).

Velocity FormProblem (V)h. FindW n
h , U

n
h ,S

n
h1 , . . . ,S

n
hNφ
∈Dk(Eh) for n = 0, . . . ,N such that, for all v ∈Dk(Eh),

we have for n = 0, 1, . . . , N − 1 firstly that

(ρ
W n+1

h −W
n
h

Δt , v) + φ0a(
Un+1
h + U

n
h

2 , v) +
Nφ

∑
q=1 a(S

n+1
hq + S

n
hq

2 , v) + Jα0 ,β00 (
W n+1

h +W
n
h

2 , v)

=
1
2 (F

n+1
v (v) + Fnv (v)) (3.18)

and secondly that, for q = 1, 2, . . . , Nφ ,

a(τq
Sn+1hq − S

n
hq

Δt +
Sn+1hq + S

n
hq

2 , v) = a(τqφq
W n+1

h +W
n
h

2 , v), (3.19)

with initial data (3.15), (3.16),
S0hq = 0 for all q = 1, . . . , Nφ ,

and where Fnv (v) = Fv(tn; v).
The jump term penalisation of the velocities in (3.8) and (3.10) is included in these formulations to facilitate

the error analysis later: see (5.10) in particular. This term is not required for the stability estimates that follow.

4 Stability Analysis

In this section, we derive stability bounds for the solutions to the fully discrete displacement and velocity forms
of the problem. As the problems are linear, these stability bounds can also be used to conclude the existence
and uniqueness of the numerical solutions and, hence, the well-posedness of the discrete problems. At first,
we present bounds that are non-optimal in that they contain a factor of h−1‖gN‖2H1(0,T;L2(ΓN )) on the right-hand
side. This arises from use of the trace inequality on the traction term. This unwelcome appearance of h−1 is not
unusual (see for example [19, 21]) and is a technical issue stemming from the straightforward use of (4.3) below.

The h−1 factor is not observed in practical computations, suggesting that it can be removed. This can be
seen by using the deeper and non-trivial arguments given by Buffa and Ortner in [5]. There, under some quite
mild mesh assumptions, the trace bound follows without the factor of h−1 appearing. We give more details on
this below the non-optimal results that follow, and there, we set the improved results forward as a corollary.
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Theorem 4.1 (Stability Bound for (D)h). If β0(d − 1) ⩾ 1 and α0 is large enough, and if W n
h , U

n
h and {Ψ

n
hq}

Nφ
q=1 in

Dk(Eh) satisfy the fully discrete formulation (D)h , then there exists a positive constant C such that

max
0⩽n⩽N‖W n

h‖
2
L2(Ω) + max0⩽n⩽N‖Un

h‖
2
V +

Nφ

∑
q=1 max0⩽n⩽N‖Ψn

hq‖
2
V +

N−1
∑
n=0

Nφ

∑
q=1 1

Δt ‖Ψ
n+1
hq −Ψ

n
hq‖

2
V

+ Δt
N−1
∑
n=0 Jα0 ,β00 (W

n+1
h +W

n
h ,W

n+1
h +W

n
h)

⩽ CT2(‖w0‖2L2(Ω) + ‖u0‖2V + ‖f ‖2L∞(0,T;L2(Ω)) + h−1‖gN‖2H1(0,T;L2(ΓN ))).
Here, C is independent of the discrete solutions, Δt, and h, but dependent on the polynomial degree k, the domainΩ,
its boundary, and the material properties.

Proof. Choose m ∈ ℕ so that m < N . Take v = Δt(W n+1
h +W

n
h) in (3.13) and v = 2(Ψn+1

hq −Ψ
n
hq) in (3.14) for

each q and for n = 0, . . . ,m − 1, and then add the results and sum over n to get

ρ‖Wm
h ‖

2
L2(Ω) + a(Um

h , U
m
h ) +

Nφ

∑
q=1 1

φq
a(Ψm

hq ,Ψ
m
hq)

+
m−1
∑
n=0

Nφ

∑
q=1 2τq

Δtφq
a(Ψn+1

hq −Ψ
n
hq ,Ψ

n+1
hq −Ψ

n
hq)

+
Δt
2

m−1
∑
n=0 Jα0 ,β00 (W

n+1
h +W

n
h ,W

n+1
h +W

n
h)

= ρ‖W0
h‖

2
L2(Ω) + a(U0

h , U
0
h) + 2

Nφ

∑
q=1 a(Ψm

hq , U
m
h )

+
Δt
2

m−1
∑
n=0(Fn+1d (W

n+1
h +W

n
h) + F

n
d (W

n+1
h +W

n
h)) (4.1)

since, by (3.12), Δt(W n+1
h +W

n
h) = 2(U

n+1
h − U

n
h) and, by (3.17),Ψ

0
hq = 0, and also where we note that

a(Ψn+1
hq +Ψ

n
hq , U

n+1
h − U

n
h) = 2a(Ψ

n+1
hq , Un+1

h ) − 2a(Ψ
n
hq , U

n
h) − a(Ψ

n+1
hq −Ψ

n
hq , U

n+1
h + U

n
h)

which, when used with (3.14), gives us

a(Ψn+1
hq +Ψ

n
hq , U

n+1
h − U

n
h) = 2a(Ψ

n+1
hq , Un+1

h ) − 2a(Ψ
n
hq , U

n
h)

−
2τq
Δtφq

a(Ψn+1
hq −Ψ

n
hq ,Ψ

n+1
hq −Ψ

n
hq)

−
1
φq
(a(Ψn+1

hq ,Ψn+1
hq ) − a(Ψ

n
hq ,Ψ

n
hq))

for each n and q. The cancellation of terms in this step illustrates the importance of enforcing the internal
variable ODEs in the energy bilinear form in (3.9) and (3.11). Using (2.6), (4.1), and Theorem 2.1 in (4.1), we obtain

ρ‖Wm
h ‖

2
L2(Ω) + ‖Um

h ‖
2
V +

Nφ

∑
q=1 1

φq
‖Ψm

hq‖
2
V +

m−1
∑
n=0

Nφ

∑
q=1 2κτqΔtφq

‖Ψn+1
hq −Ψ

n
hq‖

2
V

+
Δt
2

m−1
∑
n=0 Jα0 ,β00 (W

n+1
h +W

n
h ,W

n+1
h +W

n
h)

⩽
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ρ‖W0

h‖
2
L2(Ω) + a(U0

h , U
0
h) + 2

Nφ

∑
q=1 a(Ψm

hq , U
m
h ) +

Δt
2

m−1
∑
n=0(Fn+1d (W

n+1
h +W

n
h) + F

n
d (W

n+1
h +W

n
h))

+ 2 ∑
e⊂Γh∪ΓD ∫e {Dε(Um

h )} : [U
m
h ⊗ ne] de +

Nφ

∑
q=1 2

φq
∑

e⊂Γh∪ΓD ∫e {Dε(Ψm
hq)} : [Ψ

m
hq ⊗ ne] de

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (4.2)

Now we show an upper bound for the right-hand side of (4.2).
∙ ‖W0

h‖
2
L2(Ω): By the Cauchy–Schwarz inequality, (3.16) yields

‖W0
h‖

2
L2(Ω) = (W0

h ,W
0
h) = (W

0
h ,w0) ⩽ ‖W0

h‖L2(Ω)‖w0‖L2(Ω) ,
hence ‖W0

h‖
2
L2(Ω) ⩽ ‖w0‖2L2(Ω).



Y. Jang and S. Shaw, SIPG Finite Element Method for Viscoelasticity  657

∙ |a(U0
h , U

0
h)|: Combining the coercivity and the continuity, we can derive

κ‖U0
h‖

2
V ⩽ a(U

0
h , U

0
h) = a(U

0
h , u0) ⩽ K‖U

0
h‖V‖u0‖V

by (3.15). This implies ‖U0
h‖V ⩽ K/κ‖u0‖V , and so we have

|a(U0
h , U

0
h)| ⩽ K‖U

0
h‖

2
V ⩽ K̄‖u0‖

2
V for K̄ = K

3

κ2
.

∙ 󵄨󵄨󵄨󵄨2∑
Nφ
q=1 a(Ψm

hq , U
m
h )
󵄨󵄨󵄨󵄨: The Cauchy–Schwarz inequality, Young’s inequality and (2.9) yield
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2
Nφ

∑
q=1 a(Ψm

hq , U
m
h )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

Nφ

∑
q=1(ϵq + C

√α0
)‖Um

h ‖
2
V +

Nφ

∑
q=1( 1ϵq + C

√α0
)‖Ψm

hq‖
2
V

for any positive ϵq for all q.
∙ 󵄨󵄨󵄨󵄨

Δt
2 ∑

m−1
n=0 (Fn+1d (W

n+1
h +W

n
h) + F

n
d (W

n+1
h +W

n
h))
󵄨󵄨󵄨󵄨: Note that summation by parts and the fundamental theo-

rem of calculus give
m−1
∑
n=0(gN(tn+1) + gN(tn), Un+1

h − U
n
h)L2(e)

= 2(gN(tm), Um
h )L2(e) − 2(gN(t0), U0

h)L2(e)
−
m−1
∑
n=0

tn+1
∫
tn

( ̇gN(t󸀠), Un+1
h + U

n
h)L2(e) dt󸀠 for all e ⊂ ΓN .

By (3.12) and the Cauchy–Schwarz inequality, we therefore have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Δt
2

m−1
∑
n=0(Fn+1d (W

n+1
h +W

n
h) + F

n
d (W

n+1
h +W

n
h))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽
Δt
2

m−1
∑
n=0(‖f n+1‖L2(Ω) + ‖f n‖L2(Ω))‖W n+1

h +W
n
h‖L2(Ω)

+ 2 ∑
e⊂ΓN‖gmN ‖L2(e)‖Um

h ‖L2(e) + 2 ∑
e⊂ΓN‖g0N‖L2(e)‖U0

h‖L2(e)
+
m−1
∑
n=0

tn+1
∫
tn

∑
e⊂ΓN‖ ̇gN(t󸀠)‖L2(e)‖Un+1

h + U
n
h‖L2(e) dt󸀠 .

Since the inverse polynomial trace inequality (2.1) and Poincaré’s inequality (2.2) imply that

∑
e⊂∂Ω‖v‖2L2(e) ⩽ Ch−1 ∑E∈Eh

‖v‖2L2(E) ⩽ Ch−1‖v‖2V for all v ∈Dk(Eh), (4.3)

the triangle inequality and Young’s inequality lead us to
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Δt
2

m−1
∑
n=0(Fn+1d (W

n+1
h +W

n
h) + F

n
d (W

n+1
h +W

n
h))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽
Δt
4ϵa

m−1
∑
n=0(‖f n+1‖2L2(Ω) + ‖f n‖2L2(Ω)) + 2Δtϵa m−1

∑
n=0(‖W n+1

h ‖
2
L2(Ω) + ‖W n

h‖
2
L2(Ω))

+
1
ϵb
‖gmN ‖

2
L2(ΓN ) + Cϵbh ‖Um

h ‖
2
V +

1
h
‖g0N‖

2
L2(ΓN ) + C‖U0

h‖
2
V

+
1
ϵb

tm

∫
0

‖ ̇gN(t󸀠)‖2L2(ΓN )dt󸀠 + CΔtϵb2h

m−1
∑
n=0(‖Un+1

h ‖
2
V + ‖U

n
h‖

2
V )

for any positive ϵa and ϵb . Maximising over time, we then arrive at
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Δt
2

m−1
∑
n=0(Fn+1d (W

n+1
h +W

n
h) + F

n
d (W

n+1
h +W

n
h))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽
T
2ϵa
‖f ‖2L∞(0,T;L2(Ω)) + 4Tϵa max

0⩽n⩽N‖W n
h‖

2
L2(Ω) + ( 1ϵb + 1h)‖gN‖2L∞(0,T;L2(ΓN ))

+ C‖U0
h‖

2
V +

1
ϵb
‖ ̇gN‖2L2(0,T;L2(ΓN )) + C(T + 1)ϵbh

max
0⩽n⩽N‖Un

h‖
2
V .
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∙ 󵄨󵄨󵄨󵄨2∑e⊂Γh∪ΓD ∫e{Dε(Um
h )} : [U

m
h ⊗ ne] de

󵄨󵄨󵄨󵄨: (2.9) implies that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 ∑
e⊂Γh∪ΓD ∫e {Dε(Um

h )} : [U
m
h ⊗ ne] de

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

C
√α0
‖Um

h ‖
2
V .

∙ 󵄨󵄨󵄨󵄨∑
Nφ
q=1 2

φq ∑e⊂Γh∪ΓD ∫e{Dε(Ψm
hq)} : [Ψ

m
hq ⊗ ne] de

󵄨󵄨󵄨󵄨: In the same manner, (2.9) yields

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Nφ

∑
q=1 2

φq
∑

e⊂Γh∪ΓD ∫e {Dε(Ψm
hq)} : [Ψ

m
hq ⊗ ne] de

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

Nφ

∑
q=1 C

φq√α0
‖Ψm

hq‖
2
V .

Collecting these results then gives

ρ‖Wm
h ‖

2
L2(Ω) + (1 − Nφ

∑
q=1 ϵq − CNφ

√α0
)‖Um

h ‖
2
V +

Nφ

∑
q=1( 1φq − 1

ϵq
−

C
√α0
)‖Ψm

hq‖
2
V

+
m−1
∑
n=0

Nφ

∑
q=1 2κτqΔtφq

‖Ψn+1
hq −Ψ

n
hq‖

2
V +

Δt
2

m−1
∑
n=0 Jα0 ,β00 (W

n+1
h +W

n
h ,W

n+1
h +W

n
h)

⩽ ρ‖w0‖2L2(Ω) + (K̄ + CKκ )‖u0‖2V + T
2ϵa
‖f ‖2L∞(0,T;L2(Ω)) + ( 1ϵb + 1h)‖gN‖2L∞(0,T;L2(ΓN ))

+
1
ϵb
‖ ̇gN‖2L2(0,T;L2(ΓN )) + 4Tϵa max

0⩽n⩽N‖W n
h‖

2
L2(Ω) + C(T + 1)ϵbh

max
0⩽n⩽N‖Un

h‖
2
V . (4.4)

When we set ϵq = φq + φ0/(2Nφ) > 0 for each q and use (1.7) to obtain

1 −
Nφ

∑
q=1 ϵq = 1 −

Nφ

∑
q=1 φq −

Nφ

∑
q=1 φ0

2Nφ
= φ0 −

φ0
2 =

φ0
2 > 0,

inequality (4.4) gives

ρ‖Wm
h ‖

2
L2(Ω) + (φ02 − CNφ

√α0
)‖Um

h ‖
2
V +

Nφ

∑
q=1( φ0

2Nφφ2q + φ0φq
−

C
√α0
)‖Ψm

hq‖
2
V

+
m−1
∑
n=0

Nφ

∑
q=1 2κτqΔtφq

‖Ψn+1
hq −Ψ

n
hq‖

2
V +

Δt
2

m−1
∑
n=0 Jα0 ,β00 (W

n+1
h +W

n
h ,W

n+1
h +W

n
h)

⩽ ρ‖w0‖2L2(Ω) + (K̄ + CKκ )‖u0‖2V + T
2ϵa
‖f ‖2L∞(0,T;L2(Ω)) + ( 1ϵb + 1h)‖gN‖2L∞(0,T;L2(ΓN ))

+
1
ϵb
‖ ̇gN‖2L2(0,T;L2(ΓN )) + 4Tϵa max

0⩽n⩽N‖W n
h‖

2
L2(Ω) + C(T + 1)ϵbh

max
0⩽n⩽N‖Un

h‖
2
V . (4.5)

After noting that the right-hand side of (4.5) is independent of m and that m is arbitrary, we can obtain

ρ
2 max

0⩽n⩽N‖W n
h‖

2
L2(Ω) + (φ04 − CNφ

√α0
) max
0⩽n⩽N‖Un

h‖
2
V +

Nφ

∑
q=1( φ0

2Nφφ2q + φ0φq
−

C
√α0
) max
0⩽n⩽N‖Ψn

hq‖
2
V

+
N−1
∑
n=0

Nφ

∑
q=1 2κτqΔtφq

‖Ψn+1
hq −Ψ

n
hq‖

2
V +

Δt
2

N−1
∑
n=0 Jα0 ,β00 (W

n+1
h +W

n
h ,W

n+1
h +W

n
h)

⩽ ρ‖w0‖2L2(Ω) + (K̄ + CKκ )‖u0‖2V + 4T2ρ ‖f ‖2L∞(0,T;L2(Ω))
+
1
h
(
4C(T + 1)

φ0
+ 1)‖gN‖2L∞(0,T;L2(ΓN )) + 4C(T + 1)φ0h

‖ ̇gN‖2L2(0,T;L2(ΓN )) ,
where ϵa = ρ/(8T) and ϵb = φ0h/(4C(T + 1)). Taking α0 sufficiently large then completes the proof.
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Theorem 4.2 (Stability Bound for (V)h). If β0(d − 1) ⩾ 1 and α0 is large enough, and ifW n
h , U

n
h and {S

n
hq}

Nφ
q=1 satisfy

the fully discrete formulation (V)h , then there exists a positive constant C such that

max
0⩽n⩽N‖W n

h‖
2
L2(Ω) + max0⩽n⩽N‖Snh‖2V + Nφ

∑
q=1 max0⩽n⩽N‖Ψn

hq‖
2
V +

N−1
∑
n=0

Nφ

∑
q=1 Δt‖Sn+1hq − S

n
hq‖

2
V

+ Δt
N−1
∑
n=0 Jα0 ,β00 (W

n+1
h +W

n
h ,W

n+1
h +W

n
h)

⩽ CT2(‖w0‖2L2(Ω) + ‖u0‖2V + ‖f ‖2L∞(0,T;L2(Ω)) + h−1‖gN‖2H1(0,T;L2(ΓN ))).
Here, C is independent of discrete solutions, Δt, and h, but dependent on the polynomial degree k, the domain Ω,
its boundary, and the material properties.

Proof. The proof follows the same arguments as in Theorem 4.1. We take v = Δt(W n+1
h +W

n
h) in (3.18) and

v = Δt(Sn+1h + S
n+1
h ) in (3.19) for each q and add the results. We then use (2.2), the inverse polynomial trace

inequality, (2.6), (2.9), the Cauchy–Schwarz inequality and Young’s inequality, continuity and coercivity of the
DG bilinear form, and maximise over discrete time just as before. There is this additional term in Fv( ⋅ ),

m−1
∑
n=0

Nφ

∑
q=1 φq(e−tn+1/τq + e−tn/τq )a(u0 , Un+1

h − U
n
h)

which can be dealt with by using the fundamental theorem of calculus, summation by parts, and continuity.
Specifically,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

m−1
∑
n=0

Nφ

∑
q=1 φq(e−tn+1/τq + e−tn/τq )a(u0 , Un+1

h − U
n
h)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2
Nφ

∑
q=1 φqe−tm/τqa(u0 , Um

h ) − 2
Nφ

∑
q=1 φqe−t0/τqa(u0 , U0

h)

−
m−1
∑
n=0

Nφ

∑
q=1 φq(e−tn+1/τq − e−tn/τq )a(u0 , Un+1

h + U
n
h)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 2|a(u0 , Um
h )| + 2|a(u0 , U

0
h)| + 2K

Nφ

∑
q=1 φq m−1∑n=0

tn+1
∫
tn

e−t󸀠/τq
τq
‖u0‖V‖Un

h‖V dt
󸀠

since |e−t/τq | ⩽ 1 for all t ⩾ 0, for each q, and ∑Nφ
q=1 φq ⩽ 1. Young’s inequality, continuity, and maximising over

time now yield an m-independent upper bound. The proof is now completed in a similar way (appropriate
choice of Young’s inequality constants and large enough α0) to the proof of Theorem 4.1.

As we have already touched upon above, the h−1 factor appearing in Theorems 4.1 and 4.2 can be removed by
using the results in [5], under [5, Assumption 2.1] on the quality of the family of meshes. These assumptions
require shape regularity and contact regularity. The former is well understood, and the latter says, essentially,
that, in ℝd for d = 2 (d = 3), the length (area) of an edge (face) can be bounded below by Chd−1, where h is the
local mesh size. The consequence is that hedge ∼ helement. There is a third assumption regarding the existence
of a sub-mesh. This is described as a purely technical assumption which allows the proofs to go through with
a high degree of generality. For d = 2, 3, they point to the related earlier results of Brenner in [3]. We refer back
to [5, Assumption 2.1] for the full details and here just outline the relevant result and give the implications for
the improvements in Theorems 4.1 and 4.2.

For a constant CBT, independent of h, [5, equation (4.6)] gives

‖v‖Lq(∂Ω) ⩽ CBT(‖v‖L1(Ω) + ‖∇v‖Lp(Ω) + α(∫
Γh

h1−p|[v]|p ds)1/p),
where α > 0 and we can take p = 2 with q = ∞ (q = 4) for d = 2 (d = 3). Using (2.2) and (2.5), with the positivity
of the material constants, we can then introduce the DG norm ‖ ⋅ ‖V into the right-hand side above.
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Corollary 4.1 (to Theorems 4.1 and 4.2). With the techniques and result from [5] just discussed, in Theorems 4.1
and 4.2, the terms h−1‖gN‖2H1(0,T;L2(ΓN )) can be replaced with ‖gN‖2H1(0,T;L2(ΓN )).
Proof. By β0(d − 1) = 1 in (2.5), recalling (2.2), we get, for a generic constant C,

‖v‖Lq(∂Ω) ⩽ C(‖v‖L1(Ω) + ‖∇v‖L2(Ω) + α(∫
Γh

h−1|[v]|2 ds)1/2 + α(∫
ΓD

h−1|[v]|2 ds)1/2) ⩽ C‖v‖V
for all v ∈Dk(Eh). Therefore, for q = 4 or q = ∞, we have ‖v‖L2(∂Ω) ≲ ‖v‖Lq(∂Ω) ≲ ‖v‖V , which can be used in
place of (4.3) above with no need to introduce h−1.
Again, we emphasise that obtaining these improved results requires lengthy and non-trivial arguments which
it would not be appropriate to try and replicate here. The full details are of course in [5].

5 Error Analysis

In order to carry out an a priori error analysis, we take the usual approach of splitting the error into “spatial”
and “temporal” components by using the elliptic projection. To this end, define

θ(t) := u(t) − Ru(t), ϑq(t) := ψq(t) − Rψq(t), νq(t) := ζ q(t) − Rζ q(t),

χn := Un
h − Ru

n , ϖn := W n
h − Ru̇

n , ςnq := Ψn
hq − Rψ

n
q ,Υnq := Snhq − Rζ nq , and E1(t) :=

ü(t + Δt) + ü(t)
2 −

u̇(t + Δt) − u̇(t)
Δt

for t ∈ [0, T], q = 1, . . . , Nφ , and n = 0, . . . , N , and note that (3.12) implies that

χn+1 − χn
Δt =

ϖn+1 +ϖn

2 − En
2 − E

n
3 (5.1)

for n = 0, . . . , N − 1, where

E2(t) :=
̇θ(t + Δt) + ̇θ(t)

2 −
θ(t + Δt) − θ(t)

Δt , E3(t) :=
u(t + Δt) − u(t)

Δt −
u̇(t + Δt) + u̇(t)

2 .

Also, for a three-times time-differentiable function v(t), with v(3) denoting the third time derivative, we have
v̇(tn+1) + v̇(tn)

2 −
v(tn+1) − v(tn)

Δt =
1
2Δt

tn+1
∫
tn

v(3)(t)(tn+1 − t)(t − tn) dt.
Hence, if v(3) ∈ L2(tn , tn+1;X), the Cauchy–Schwarz inequality gives

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
v̇(tn+1) + v̇(tn)

2 −
v(tn+1) − v(tn)

Δt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

X
⩽
Δt3
4 ‖v
(3)‖2L2(tn ,tn+1;X) . (5.2)

As is well known, the usual path to an error bound is to use the triangle inequality to split the error using
the spatial and temporal components introduced above. The spatial errors are bounded using standard results
for elliptic problems, and so it is the temporal error components that demand the bulk of the effort. For our
problems, this effort is contained in the next two lemmas: the first for (D)h and the second for (V)h .

Lemma 5.1. Suppose u ∈ H2(0, T; C2(Ω)) ∩W1∞(0, T;H s(Eh)) ∩ H4(0, T;H s(Eh)) and β0(d − 1) ⩾ 1 for s > 3/2.
If, for n = 0, . . . ,N, the solution to (D)h is Un

h ,W
n
h ,Ψ

n
h1 , . . . ,Ψ

n
hNφ

, then, for large enough α0, there exists a positive
constant C such that

max
1⩽n⩽N‖ϖn‖L2(Ω) + max1⩽n⩽N‖χn‖V ⩽ CT‖u‖H4(0,T;Hs(Eh))(hr + Δt2),

where r = min (k + 1, s) and C are independent of h, Δt, T, and the numerical solution.
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Proof. The proofwill follow similar arguments in the stability analysis, butwe additionally use Galerkin orthog-
onality, the elliptic error estimates (2.10) and (2.11), and the time discretisation error (5.2). Averaging over tn+1
and tn and subtracting (3.8) from (3.13) give

ρ
Δt (ϖ

n+1 −ϖn , v) + 12a(χ
n+1 + χn , v) − 12 Nφ

∑
q=1 a(ςn+1q + ςnq , v) +

1
2 J

α0 ,β0
0 (ϖ

n+1 +ϖn , v)

=
ρ
Δt (
̇θn+1 − ̇θn , v) + ρ(En

1 , v) (5.3)

for all v ∈Dk(Eh), for 0 ⩽ n ⩽ N − 1. In this manner, a subtraction of (3.14) from (3.9) gives
τq
Δt a(ς

n+1
q − ςnq , v) +

1
2a(ς

n+1
q + ςnq , v) −

φq
2 a(χn+1 + χn , v) = τqa(Enq , v) (5.4)

by Galerkin orthogonality, for any v ∈Dk(Eh), where

Eq(t) =
ψ̇q(t + Δt) + ψ̇q(t)

2 −
ψq(t + Δt) − ψq(t)

Δt for each q.

Inserting v = 2(χn+1 − χn) into (5.3), with equation (5.1), and v = ςn+1q − ςnq into (5.4) for each q, summing over
n = 0, . . . ,m − 1 for m ⩽ N gives

ρ‖ϖm‖2L2(Ω) + a(χm , χm) + Nφ

∑
q=1 1

φq
a(ςmq , ςmq ) + Δt

m−1
∑
n=0

Nφ

∑
q=1 2τqφq a( ςn+1q − ςnq

Δt ,
ςn+1q − ςnq

Δt )

+
Δt
2

m−1
∑
n=0 Jα0 ,β00 (ϖ

n+1 +ϖn ,ϖn+1 +ϖn)

= ρ‖ϖ0‖2L2(Ω) + a(χ0 , χ0) + ρ m−1
∑
n=0( ̇θn+1 − ̇θn ,ϖn+1 +ϖn) − 2ρ

m−1
∑
n=0( ̇θn+1 − ̇θn ,En

2 )

− 2ρ
m−1
∑
n=0( ̇θn+1 − ̇θn ,En

3 ) + 2ρΔt
m−1
∑
n=0(En

1 ,ϖ
n+1 +ϖn) − ρΔt

m−1
∑
n=0(En

1 ,E
n
2 )

− 2ρΔt
m−1
∑
n=0(En

1 ,E
n
3 ) + 2ρ

m−1
∑
n=0(ϖn+1 −ϖn ,En

2 ) + 2ρ
m−1
∑
n=0(ϖn+1 −ϖn ,En

3 )

+ 2
Nφ

∑
q=1 a(χm , ςmq ) +

Nφ

∑
q=1 2τqφq a(Em−1q , ςmq ) −

m−1
∑
n=0

Nφ

∑
q=1 2τqφq a(En+1q − Enq , ςn+1q )

when we apply summation by parts to the summation terms from (5.4) with the fact ς0q = 0 for all q. Hence the
definition of DG bilinear form and its coercivity imply that

ρ‖ϖm‖2L2(Ω) + ‖χm‖2V + Nφ

∑
q=1 1

φq
‖ςmq ‖2V + Δt

m−1
∑
n=0

Nφ

∑
q=1 2κτqφq

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

ςn+1q − ςnq
Δt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+
Δt
2

m−1
∑
n=0 Jα0 ,β00 (ϖ

n+1 +ϖn ,ϖn+1 +ϖn)

⩽
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ρ‖ϖ0‖2L2(Ω) + ‖χ0‖2V + ρ m−1

∑
n=0( ̇θn+1 − ̇θn ,ϖn+1 +ϖn) − 2ρ

m−1
∑
n=0( ̇θn+1 − ̇θn ,En

2 )

− 2ρ
m−1
∑
n=0( ̇θn+1 − ̇θn ,En

3 ) + ρΔt
m−1
∑
n=0(En

1 ,ϖ
n+1 +ϖn) − 2ρΔt

m−1
∑
n=0(En

1 ,E
n
2 )

− 2ρΔt
m−1
∑
n=0(En

1 ,E
n
3 ) + 2ρ

m−1
∑
n=0(ϖn+1 −ϖn ,En

2 ) + 2ρ
m−1
∑
n=0(ϖn+1 −ϖn ,En

3 )

+ 2
Nφ

∑
q=1 a(χm , ςmq ) +

Nφ

∑
q=1 2τqφq a(Em−1q , ςmq ) −

m−1
∑
n=0

Nφ

∑
q=1 2τqφq a(En+1q − Enq , ςn+1q )

+ 2 ∑
e⊂Γh∪ΓD ∫e {Dε(χm)} : [χm ⊗ ne] de +

Nφ

∑
q=1 2

φq
∑

e⊂Γh∪ΓD ∫e {Dε(ςmq )} : [ςmq ⊗ ne] de
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (5.5)
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Using the elliptic projection, (3.15), (3.16), and initial conditions, we have ‖ϖ0‖L2(Ω) ⩽ ‖ ̇θ0‖L2(Ω) and ‖χ0‖V = 0.
Further, we note that the fundamental theorem of calculus allows us to deal with the time differences with
expressions like ̇θn+1 − ̇θn = ∫tn+1tn

θ̈(t󸀠) dt󸀠, and then using (5.2), we can bound En
1 , E

n
2 , E

n
3 , and E

n
q for all n and

for each q in an optimal way. For example,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Δt

m−1
∑
n=0(En

1 ,E
n
2 )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽
Δt
2

N−1
∑
n=0‖En

1 ‖
2
L2(Ω) + Δt2 N−1

∑
n=0‖En

2 ‖
2
L2(Ω) ⩽ Δt48 ‖u(4)‖2L2(0,T;L2(Ω)) + Δt48 ‖θ(3)‖2L2(0,T;L2(Ω))

by the Cauchy–Schwarz inequality, Young’s inequality, and (5.2). On the other hand, the elliptic error estimates
such as (2.11) provide spatial error estimates for θ(t) and its time derivatives, and noting that the internal vari-
ables are analogues of displacement u, we can employ elliptic error estimates for the internal variables as
well. Therefore, in the same way as for the stability estimate, using the Cauchy–Schwarz inequality and Young’s
inequality, (2.9), summation by parts, maximising in time, and choosing large enough penalty parameters, we
eventually arrive at

max
1⩽n⩽N‖ϖn‖L2(Ω) + max1⩽n⩽N‖χn‖V + Nφ

∑
q=1 max1⩽n⩽N‖ςnq‖V + (Δt N−1∑n=0

Nφ

∑
q=1 τqφq 󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ςn+1q − ςnq

Δt
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
)
1/2

+ (Δt
N−1
∑
n=0 Jα0 ,β00 (ϖ

n+1 +ϖn ,ϖn+1 +ϖn))
1/2
⩽ CT‖u‖H4(0,T;H s(Eh))(hr + Δt2).

Here, C is independent of h, Δt, and the solutions, but depends on ρ, Ω, ∂Ω, and the material properties. For full
technical details for the proof, we refer to [15].

Next, the analogous estimate for (V)h .

Lemma 5.2. Suppose u ∈ H2(0, T; C2(Ω)) ∩W1∞(0, T;H s(Eh)) ∩ H4(0, T;H s(Eh)) and β0(d − 1) ⩾ 1 for s > 3/2.
If, for n = 0, 1, . . . ,N, the solution to (V)h is Un

h ,W
n
h ,S

n
h1 , . . . ,S

n
hNφ

, then, for large enough α0, there exists a positive
constant C such that

max
1⩽n⩽N‖ϖn‖L2(Ω) + max1⩽n⩽N‖χn‖V ⩽ CT‖u‖H4(0,T;Hs(Eh))(hr + Δt2),

where r = min (k + 1, s) and C are independent of h, Δt, T, and the numerical solution.

Proof. We follow similar steps to the proof of Lemma 5.1 for the displacement form to show this claim. By
averaging at t = tn+1 and t = tn , subtracting (3.10) from (3.18) with v = 2(χn+1 − χn), and subtracting (3.11) from
(3.19), with v = 2(Υn+1q + Υnq) for each n and q, summing over n = 0, . . . ,m − 1 form ⩽ N , employing summation
by parts, recalling the coercivity of a( ⋅ , ⋅ ), and using Galerkin orthogonality, we eventually get

ρ‖ϖm‖2L2(Ω) + φ0‖χm‖2V + Nφ

∑
q=1 κ

φq
‖Υmq ‖2V + Δt m−1∑

n=0
Nφ

∑
q=1 κ

τqφq
‖Υn+1q + Υnq‖2V

+
Δt
2

m−1
∑
n=0 Jα0 ,β00 (ϖ

n+1 +ϖn ,ϖn+1 +ϖn)

⩽
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ρ‖ϖ0‖2L2(Ω) + φ0‖χ0‖2V + ρ m−1

∑
n=0( ̇θn+1 − ̇θn ,ϖn+1 +ϖn) + ρΔt

m−1
∑
n=0(En

1 ,ϖ
n+1 +ϖn)

− 2ρ
m−1
∑
n=0( ̇θn+1 − ̇θn ,En

2 ) − 2ρ
m−1
∑
n=0( ̇θn+1 − ̇θn ,En

3 )

− 2ρΔt
m−1
∑
n=0(En

1 ,E
n
2 ) − 2ρΔt

m−1
∑
n=0(En

1 ,E
n
3 )

+ Δt
m−1
∑
n=0

Nφ

∑
q=1 1

φq
a(Enq ,Υn+1q + Υnq) − Δt m−1∑

n=0
Nφ

∑
q=1 a(En

3 ,Υn+1q + Υnq)
+ 2φ0 ∑

e⊂Γh∪ΓD ∫e {Dε(χm)} : [χm ⊗ ne] de
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, (5.6)
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where

Eq(t) :=
̇ζ q(t + Δt) + ̇ζ q(t)

2 −
ζ q(t + Δt) − ζ q(t)

Δt for each q.

We complete the proof by using the same techniques and results as used earlier: the Cauchy–Schwarz inequality
and Young’s inequality, integration and summation by parts, (2.9), (2.11), and (5.2).

We can now use Lemmas 5.1 and 5.2 to prove the following a priori error estimates.

Theorem 5.1 (Error Analysis). Suppose the discrete solutions inDk(Eh) satisfy either (D)h or (V)h for integer s ⩾ 2,
and also that u ∈ H2(0, T; C2(Ω)) ∩W1∞(0, T;H s(Eh)) ∩ H4(0, T;H s(Eh)). If Lemmas 5.1 and 5.2 hold, then we
have

max
1⩽n⩽N‖u(tn) − Un

h‖V ⩽ CT‖u‖H4(0,T;Hs(Eh))(hr−1 + Δt2),
max
1⩽n⩽N‖u(tn) − Un

h‖L2(Ω) ⩽ CT‖u‖H4(0,T;Hs(Eh))(hr + Δt2),
max
1⩽n⩽N‖u̇(tn) −W n

h‖V ⩽ CT‖u‖H4(0,T;Hs(Eh))(hr−1 + Δt2),
max
1⩽n⩽N‖u̇(tn) −W n

h‖L2(Ω) ⩽ CT‖u‖H4(0,T;Hs(Eh))(hr + Δt2),
where r = min(s + 1, k) and C is a positive constant that is independent of h, Δt, T, and the exact and discrete solu-
tions, but depends on the polynomial degree k, Ω, ∂Ω, and the material coefficients. Moreover, the initial discrete
errors are given by

‖u0 − U0
h‖V ⩽ Ch

r−1⦀u0⦀Hs(Eh) and ‖w0 −W0
h‖L2(Ω) ⩽ Chr⦀w0⦀Hs(Eh) .

Proof. Using the triangle inequality with Lemmas 5.1 and 5.2, and the DG elliptic error estimates, we get for any
n ∈ {1, . . . , N} that

‖u(tn) − Un
h‖V ⩽ ‖θ(tn)‖V + ‖χ

n‖V ⩽ CT‖u‖H4(0,T;Hs(Eh))(hr−1 + Δt2). (5.7)

Poincaré’s inequality (2.2) indicates that ‖v‖L2(Ω) ⩽ C‖v‖V for any v ∈Dk(Eh). Hence we have

‖u(tn) − Un
h‖L2(Ω) ⩽ ‖θ(tn)‖L2(Ω) + C‖χn‖V ⩽ CT‖u‖H4(0,T;Hs(Eh))(hr−1 + Δt2). (5.8)

In a similar way, we have

‖u̇(tn) −W n
h‖L2(Ω) ⩽ ‖ ̇θ(tn)‖L2(Ω) + ‖ϖn‖L2(Ω) ⩽ CT‖u‖H4(0,T;Hs(Eh))(hr + Δt2). (5.9)

On the other hand, as seen in (5.5) and (5.6), the jump penalty term of ϖn is also bounded by the same upper
bound. In other words, we have

( Jα0 ,β00 (ϖ
n ,ϖn))1/2 = O(hr + Δt2). (5.10)

Using this argumentwith the inverse inequality (2.3), we can derive energy norm error estimates for the velocity
vector field and get

‖u̇(tn) −W n
h‖V ⩽ ‖

̇θ(tn)‖V + ‖ϖn‖V ⩽ ‖ ̇θ(tn)‖V + Ch−1‖ϖn‖L2(Ω) + ( Jα0 ,β00 (ϖ
n ,ϖn))1/2

⩽ CT‖u‖H4(0,T;Hs(Eh))(hr−1 + Δt2). (5.11)

Since n is arbitrary and the right-hand sides of (5.7)–(5.11) are independent of n, the proof is completed. Fur-
thermore, to show the discrete errors for n = 0, we want to use the triangular inequalities, DG elliptic error
estimates, and initial (DG elliptic/L2) projections, e.g. (3.15) and (3.16). Hence we have

‖u0 − U0
h‖V = ‖θ(0) − χ

0‖V ⩽ ‖θ(0)‖V + ‖χ0‖V = ‖θ(0)‖V ⩽ Chr−1⦀u0⦀Hs(Eh)
by the fact ‖χ0‖V = 0 and (2.10). Also, since ‖ϖ0‖L2(Ω) ⩽ ‖ ̇θ(0)‖L2(Ω), (2.11) leads to

‖w0 −W0
h‖L2(Ω) = ‖ ̇θ(0) −ϖ0‖L2(Ω) ⩽ ‖ ̇θ(0)‖L2(Ω) + ‖ϖ0‖L2(Ω) ⩽ 2‖ ̇θ(0)‖L2(Ω) ⩽ Chr⦀w0⦀Hs(Eh) .
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6 Numerical Experiments

In this section, we use the FEniCS environment (see [1] and https://fenicsproject.org) to give the results of some
numerical experiments that were carried out to demonstrate the convergence rates proven above: we present
tables of numerical errors, as well as convergence rates. The Python code to reproduce these results is available
at Jang’s GitHub (https://github.com/Yongseok7717/Visco_Int_CG) and can be used to reproduce the results that
are given below. Alternatively, these results can also be reproduced by using Docker. In this case, the commands
to run are

docker pull jangyour/fenics_fem

docker run -ti jangyour/fenics_fem

cd visco/Int_DG; . main.sh

An Exact Solution

As is common, we use an artificial, or manufactured, exact solution in order to calculate the errors. Let this
manufactured strong solution be

u(x, y, t) = [ xye1−t
cos(t) sin(xy)

] ∈ C∞(0, T; C∞(Ω)),
where Ω = (0, 1)2 and T = 1. We use two internal variables with coefficients and time delays φ0 = 0.5, φ1 = 0.1,
φ2 = 0.4, τ1 = 0.5, τ2 = 1.5, and (because we are not constrained by the physical reality here) we assume for
simplicity an identity fourth-order tensor as our D so that Dε = ε. We define the Dirichlet boundary as

ΓD = {(x, y) ∈ ∂Ω | x = 0 or y = 0},

and then u = 0 on ΓD , and the other data are readily computed.

Numerical Results

We present numerical errors to demonstrate the convergence rates given by the theorems, and for this, we
define en = u(tn) − Un

h and ̃e
n = w(tn) −W n

h for n = 0, . . . , N . According to Theorem 5.1, we have the L2 norm
error as well as DG energy norm error such that

‖en‖V = O(hk + Δt2) and ‖en‖L2(Ω) = O(hk+1 + Δt2)
since s = ∞. Also, we have the same rates of convergence for the velocity error. By recalling Korn’s inequal-
ity (2.7), we note that the broken H1 norm is bounded by the energy norm. Therefore, we have broken H1 error
estimates such that

⦀en⦀H1(Eh) + ⦀ ̃en⦀H1(Eh) ⩽ C(hk + Δt2)
for some positive constant C. Since the DG energy norm depends on the penalty parameters α0 and β0, we
hereafter consider the errors in the broken H1 norm instead.

Firstly, we set Δt = h and define the numerical convergence rate dc by

dc =
log(error of h1) − log(error of h2)

log(h1) − log(h2)
.

We can see in Figure 1 that dc is 1 for both the displacement and velocity form errors when k = 1, and that this
suggests quadratic convergence orders for L2 norm error or when k = 2, regardless of which internal variable
form is used.

https://fenicsproject.org
https://github.com/Yongseok7717/Visco_Int_CG
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Figure 1: Numerical convergence order: linear (top) and quadratic (bottom) polynomial basis

k h Displacement form Velocity form⦀eN⦀H1(Eh ) ⦀ ̃eN⦀H1(Eh ) ⦀eN⦀H1(Eh ) ⦀ ̃eN⦀H1(Eh )
1 1/4 1.298e−01 1.951e−01 1.298e−01 1.951e−01

1/8 6.177e−02 (1.07) 8.741e−02 (1.16) 6.177e−02 (1.07) 8.741e−02 (1.16)
1/16 2.993e−02 (1.05) 4.130e−02 (1.08) 2.993e−02 (1.05) 4.130e−02 (1.08)
1/32 1.473e−02 (1.02) 2.001e−02 (1.04) 1.473e−02 (1.02) 2.001e−02 (1.04)

2 1/4 3.168e−03 4.996e−03 3.168e−03 4.996e−03
1/8 8.030e−04 (1.98) 1.284e−03 (1.96) 8.030e−04 (1.98) 1.284e−03 (1.96)
1/16 2.008e−04 (2.00) 3.256e−04 (1.98) 2.008e−04 (2.00) 3.256e−04 (1.98)
1/32 5.010e−05 (2.00) 8.206e−05 (1.99) 5.010e−05 (2.00) 8.206e−05 (1.99)

Table 1: H1 norm of numerical errors (orders) when Δt = 1/2048
k h Displacement form Velocity form‖eN‖L2(Ω) ‖ ̃eN‖L2(Ω) ‖eN‖L2(Ω) ‖ ̃eN‖L2(Ω)
1 1/4 1.067e−02 2.293e−02 1.067e−02 2.293e−02

1/8 2.808e−03 (1.93) 6.691e−03 (1.78) 2.808e−03 (1.93) 6.691e−03 (1.78)
1/16 7.094e−04 (1.98) 1.182e−03 (1.88) 7.094e−04 (1.98) 1.182e−03 (1.88)
1/32 1.781e−04 (1.99) 4.686e−04 (1.95) 1.781e−04 (1.99) 4.686e−04 (1.95)

2 1/4 8.362e−05 1.496e−04 8.362e−05 1.496e−04
1/8 1.011e−05 (3.05) 1.861e−05 (3.01) 1.011e−05 (3.05) 1.861e−05 (3.01)
1/16 1.231e−06 (3.04) 2.315e−06 (3.01) 1.231e−06 (3.04) 2.315e−06 (3.01)
1/32 1.515e−07 (3.02) 2.906e−07 (3.00) 1.514e−07 (3.02) 2.902e−07 (3.00)

Table 2: L2 norm of numerical errors (orders) when Δt = 1/2048
Secondly, if we take Δt ≪ h, we can render the “time error” negligible in comparison to the “space error”

and isolate the spatial convergence rates. Some example results for this are shown in Tables 1 and 2, where
we see that the numerical rates follow the spatial convergence order of dc = k and dc = k + 1 in the H1 and L2
norms respectively. We can also see that there is no significant difference between the numerical schemes (D)h
and (V)h , in terms of convergence rates as well as the size of the errors.

Thirdly, in Table 3, we give some results for when the spatial error became negligibly small to the temporal
error, to observe second-order accuracy in time regardless of spatial norms, displacement/velocity fields, and
internal variable forms. All of these results are consistent with the claims in the theorems.
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Norm Δt Displacement form Velocity form

eN ̃eN eN ̃eN
H1 1/2 2.696e−02 9.579e−02 1.766e−02 7.348e−02

1/4 7.445e−03 (1.86) 2.461e−02 (1.96) 4.879e−03 (1.86) 1.880e−02 (1.97)
1/8 1.894e−03 (1.97) 6.169e−03 (2.00) 1.2429e−03 (1.97) 4.712e−03 (2.00)
1/16 4.747e−04 (2.00) 1.549e−04 (2.00) 3.117e−04 (2.00) 1.181e−03 (2.00)

L2 1/2 8.121e−02 3.222e−02 5.256e−03 2.586e−02
1/4 2.410e−03 (1.75) 8.221e−03 (1.97) 1.534e−03 (1.78) 6.601e−03 (1.97)
1/8 6.252e−04 (1.95) 2.067e−03 (1.99) 3.974e−04 (1.95) 1.659e−03 (1.99)
1/16 1.577e−04 (1.99) 5.178e−04 (2.00) 1.001e−04 (1.99) 4.155e−04 (2.00)

Table 3: Time convergence errors (orders) for fixed h = 1/128 and k = 2
Displacement form Velocity form

h 1/2 1/4 1/8 1/2 1/4 1/8

Error 2.262 9.527e+03 1.262e+14 2.286 9.364e+03 1.266e+14

Table 4: ‖eN‖L2(Ω) for α0 = 0.1 where Δt = h and k = 1
Penalty Parameters

For well-posedness as well as optimal convergence, we need to have “large enough” penalty parameters, and
following studies of elasticity problems [13, 24], we took α0 = 10 and β0 = 1 for the computations above. If α0 is
small, our numerical schemes will lose stability and convergence. This is illustrated in Table 4, where we see
that the numerical errors diverged when α0 = 0.1. On the other hand, in order to observe the requirements of
the stability and error analyses above, we need β0(d − 1) ⩾ 1, but a too large β0 will result in the assembled
global matrix being ill-conditioned. Therefore, taking β0 = 1/(d − 1) seems to be the most reasonable choice. In
fact, the condition number of the assembled systemmatrix in the interior penaltymethod is of order O(h−(β0+1))
(see [15, 19]), and hence we may encounter difficulty in solving linear systems for large β0 if we use iterative
solvers. For more details, we refer to [15, 19].

An Example with Real Material Data

The results above are based on artificial choices of the material data – the point was merely to show conver-
gence and illustrate the estimates. In this closing section, we illustrate the displacement formulation using real
material data for PMMA (polymethyl methacrylate), taken from [18, Table 1]. The demonstration given below
shows clearly the effect of viscoelastic damping on the longer time response.

First, the Prony series relaxation data from [18, Table 1] are converted from dyne/cm2 to N/m2 by dividing
by ten, and then the coefficients are normalised (and nondimensionalised) to fit our assumptions for (1.6).
The results of this are in Table 5. The stiffness modulus resulting from this normalisation turns out to be
E = 2.23947GN/m2 and is absorbed into the tensor D in (1.5). We assume a compressible isotropic homogeneous
medium, and so this tensor, in two space dimensions, has a matrix representation as

D = (
λ + 2μ λ 0
λ λ + 2μ 0
0 0 μ

) with σ = (
σ11
σ22
σ12
) and ε = (

ε11
ε22
2ε12
)

for Lamé parameters λ = νE/((1 + ν)(1 − 2ν)) and μ = 1
2E/(1 + ν) (see e.g. [6, 9–11, 16]). We assume from, for

example, [2] a Poisson’s ratio of ν = 0.35 and a mass density of ρ = 1190 kg/m3.
We take Ω = (0, 2) × (0, 1) with zero initial data and solve over (0, T) = (0, 0.3). There are homogeneous

boundary conditions of Dirichlet type on the left side and homogeneous Neumann conditions on the top and
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q τq (s) dyne/cm2 φq

0 2.24 × 107 0.001000236663139
1 0.02 1.94 × 109 0.086627639575435
2 0.20 2.83 × 109 0.126369185566228
3 2 5.54 × 109 0.247379960437068
4 20 6.02 × 109 0.268813603218619
5 200 3.88 × 109 0.173255279150871
6 2000 1.56 × 109 0.069659339040041
7 20000 4.10 × 108 0.018307903209241
8 200000 1.38 × 108 0.006162172299696
9 2000000 3.68 × 107 0.001643245946586
10 20000000 7.90 × 106 0.000352762037446
11 200000000 9.60 × 106 0.000428672855631

Table 5: Prony series data for PMMA taken from [18, Table 1]. The second
and third columns are from the source, one tenth of the sum of the third col-
umn (because 10 dyne/cm2 = 1N/m2) gives 2.23947GN/m2, and the fourth
column is the normalisation of one tenth of the third column (to ensure that
φ(0) = 1 in (1.6)).

bottom edges. The body force f in (1.1) is zero. On the right-hand edge of the domain, we impose the traction

g(x, t) = (g1(x, t)
0
) N/m2 , where g1(x, t) = AH(0.01)

for A = 50MN/m2 andwhereH denotes the Heaviside step. The finite element space is piecewise quadratic with
an Nx × Ny uniform spatial mesh of right-angled triangles (diagonals from north-west to south-east), and we
use Nt time steps of size ΔT = T/Nt . We took α = 10 and β = 1, and scaled the entire discrete system by dividing
through by 109: this was needed to prevent runtime precision errors being thrown by the linear solvers.

We give two different solutions to compare elastic and viscoelastic short time response to the traction. The
elastic solution is generated by setting φq = 0 for q = 1, . . . , 11, and setting φ0 = 1. The results for the u1 dis-
placement are shown as surface plots in Figure 2 for t = 0.06 s and t = 0.3 s. The similarity at the shorter time as
well as the viscoelastic decay at the longer time is evident. To see this more clearly, the pointwise displacement
u1(2, 0.5) is shown in Figure 3.

The code that produced these results can be obtained from https://github.com/variationalform/SIPG_
PMMA_demo_2022 with

git clone git@github.com:variationalform/SIPG_PMMA_demo_2022.git

Or one can generate the results in a Docker container from https://hub.docker.com/r/variationalform/fem with

docker pull variationalform/fem:SIPG_PMMA_demo_2022

docker run -ti variationalform/fem:SIPG_PMMA_demo_2022

# in the container

cd runtime/le

./longrun_le.sh | tee ./longrun_le_out.txt

for the linear elastic runs. Alter le to ve to run with the viscoelastic data. This Docker image uses FEniCS with
DOLFIN version 2017.2.0.

7 Conclusion and Discussion

We have presented an a priori stability and error analysis of the DGFEM for linear dynamic viscoelasticity with
two types of internal variables used to replace the fading memory Volterra integral. We have given illustra-
tive numerical results, explained how these results can be reproduced, and we have observed that both of the
schemes (for each type of internal variable) behave similarly. The numerics are consistent with the predicted
convergence rates.

https://github.com/variationalform/SIPG_PMMA_demo_2022
https://github.com/variationalform/SIPG_PMMA_demo_2022
https://hub.docker.com/r/variationalform/fem
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Figure 2: Snapshots at t = 0.06 s and t = 0.3 s of the discrete solution u1 for the linear elasticity problem on the left and the viscoelastic
problem on the right. Here, Nx × Ny = 120 × 60 with Nt = 24000.
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Figure 3: Plots of the discrete solution u1(2, 0.5) for the linear elasticity problem on the left and the viscoelastic problem on the right.
Here, Nx × Ny = 120 × 60 with Nt = 24000.

Themain achievement of this work is that we have been able to give the stability and error bounds without
recourse to Grönwall’s inequality, with the result that the stability and error bounds depend explicitly on the
final time linearly, and not exponentially (along with the time dependence in the exact solution norms). This is
a significant improvement over the estimates given in [21]. Moreover, the schemes presented here use displace-
ment or velocity internal variables rather than stresses, and so – compared to [21] – for the schemes presented
here, there is a modest reduction in the computer memory requirements.

An inspection of Tables 1, 2, and 3 indicates that there is no particular reason to prefer one formulation over
the other. This is perhaps not surprising, but we are not aware of any previous work that has demonstrated it
both in theoretical estimates and in numerical experiments. We return to this point below.
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We assumed throughout that φ0 > 0 in (1.6), which is reasonable for materials with long term stiffness
(“solids” as defined by Golden and Graham in [11]). However, for “fluids”, under the specific condition φ0 = 0,
the velocity form will yield an interesting alternative model. In particular, with u0 = 0 for simplicity, we can
rewrite (3.6) as

ρẇ −
Nφ

∑
q=1∇ ⋅ (Dε(ζ q)) = f ,

where we have set u̇ = w. The internal variable still evolves according to the ODE (3.7), which holds at every
point in space, and so, in the numerical scheme, there is no need to introduce displacement. This results in
a reduced memory requirement because, in this case, we would certainly prefer the velocity formulation. We
plan to explore this interesting variant in a future study.

Finally, the results in Figures 2 and 3 demonstrate that this method can be applied to realmaterials.

Acknowledgment: Y. Jang acknowledges the support of a Brunel University London Doctoral scholarship.
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