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Abstract

We aim to analyze and calculate time-dependent acoustic wave scattering by a
bounded obstacle and a locally perturbed non-selfintersecting curve. The scatter-
ing problem is equivalently reformulated as an initial-boundary value problem of
the wave equation in a truncated bounded domain through a well-defined trans-
parent boundary condition. Well-posedness and stability of the reduced problem
are established. Numerically, we adopt the perfect matched layer (PML) scheme
for simulating the propagation of perturbed waves. By designing a special absorb-
ing medium in a semi-circular PML, we show well-posedness and stability of the
truncated initial-boundary value problem. Finally, we prove that the PML solution
converges exponentially to the exact solution in the physical domain. Numerical
results are reported to verify the exponential convergence with respect to absorbing
medium parameters and thickness of the PML.

Keywords: wave equation, well-posedness, PML, convergence.

1 Introduction

The scattering problems over a half-space with local perturbations have widely consid-
ered in the fields of radar techniques, sonar, ocean surface detection, medical detection,
geophysics, outdoor sound propagation and so on. Such problems are also referred to as
cavity scattering problems in the literature; see e.g. [1, 2, 30, 39] where variational and
integral equation methods (see also [1, 2]) were adopted to reduce the unbounded phys-
ical domain to a truncated computational domain in the time-harmonic regime. In this
paper we concern the time-dependent scattering problems governed by wave equations.

If the domain of the wave equations is unbounded, one can either use transpar-
ent/absorbing boundary conditions to minimize the spurious reflections or absorbing
boundary layers, which are usually referred to perfectly matched layers (PML), to bound
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the unbounded physical domain by truncated computational domain in the numerical
simulation. A major challenge is to construct the temporal dependence of the transpar-
ent boundary condition [21] or the artificially designed absorbing medium (see e.g., [24])
in the PML method. The PML scheme is initially introduced by Bérenger for 2D and 3D
Maxwell equations [7, 8]. The basic idea of the PML is to surround the physically com-
putational domain by some artificial medium that absorbs outgoing waves effectively.
Mathematically, a PML layer method can be equivalently formulated as a complex
stretching of the external domain. Such a feature makes PML an effective for mod-
eling a variety of wave phenomena [12,16,23,36]. Due to its barely reflective absorption
of out going waves, PML turns out to be very popular for simulating the propagation of
waves in time domain [26–28].

For time-harmonic scattering problems, the PML formulation was introduced in
[17] to locally perturbed rough surface scattering problems. We also refer the read-
ers to [18, 25, 29] for the analysis of acoustic scattering problem in the whole space and
to [4, 13] for electromagnetic scattering problems where the convergence rate depends
exponentially on the absorption parameter and thickness of PML layer. In theory it
is crucial to investigate well-posedness, stability, convergence of the PML formulation.
This paper is concerned with the mathematical analysis and numerical simulation of the
time-dependent acoustic scattering problem in a locally perturbed half space with the
following issues:

(1) well-posedeness and stability of the time-dependent problem using the Dirichlet-to-
Neumann (DtN) operator;

(2) well-posedness and long-time stability of the PML formulation in a truncated do-
main;

(3) convergence of the solution of the PML formulation to that of the original problem;

(4) numerical tests of the exponential convergence of the PML method.

To the best of our knowledge, the mathematical investigation of the convergence/error
analysis of the PML problem for wave equations is far from being complete, in compari-
sion with the vast works for time-harmonic scattering problems. Existing results mainly
concern the well-posedness and stability of PML problem; see e.g., [3, 9, 10, 14] where
the absorption parameter was all assumed to be a constant. Using Laplace transform
and the transparent boundary conditions (TBC), the exponential convergence with re-
spect to the thickness and the absorbing parameter has been justified in [19, 20] for
time-dependent acoustic scattering problems in the whole space. Later the approach of
applying Laplace transform [19, 20] has been extended to the cases of waveguides [11],
periodic structures as well as electromagnetic scattering problems in the whole space [38].
See also [5,31,37] for the analysis of the time-dependent fluid-solid interaction problems
and electromagnetic scattering problems. Nevertheless, the exponential convergence re-
sults in the aforementioned literatures are not confirmed by numerical examples. On
the other hand, as far as we know, a comprehensive analysis is still missing for the PML
method to the acoustic wave equation in a locally perturbed half space.
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In this work, a perturbation of the half plane {x : x2 > 0} can be caused by either
a bounded obstacle imbedded in the background medium or a compact change of the
unbounded curve x2 = 0; see the geometry shown in Figure 1. Firstly, we adopt the ap-
proach of [19] to prove well-posedness of the scattering problem in proper time-dependent
Sobolev spaces by using a well-defined TBC (Dirichlet-to-Neumann operator). We com-
plement the earlier work [19] by describing mapping properties of the DtN operator and
by connecting the TBCs defined over a finite and an infinite time period, which seem not
well-addressed in the literature. Motivated by [19], a circular PML layer with special
medium properties will then be defined to truncate the original problem. A first order
symmetric hyperbolic system is derived for the truncated PML problem, which is similar
to those considered in [6,19,20]. The well-posedness and stability of the truncated PML
problem are justified by Laplace transform, variational method together with the energy
method of [10]. The convergence of the PML scheme is based on the stability estimate
of an initial-boundary value problem in the PML layer and the exponential decay of the
PML extension problem to be proved using modified Bessel functions. Such a technique
is also inspired [19].

This paper is organized as follows. In the subsequent Section 2, we first introduce
the mathematical model and rigorous define the transparent boundary condition (TBC)
to reformulate the scattering problem to an initial-boundary value problem in a trun-
cated bounded domain. Well-posedness and stability will then be shown in Section 2.2.
In Section 3, we derive a PML formulation in the half plane by complex coordinates
stretching inspired by [16, 19, 20, 34] and study the well-posedness and stability for the
PML problem. We analyze the exponential convergence of the PML method in the half
space in Section 4. In the final Section 5, two numerical examples are reported to show
the performance of the PML method.

2 Mathematical formulations

Let Γ0 be a local perturbation of the straight line {(x1, 0) : x1 ∈ R} such that Γ0

coincides with x2 = 0 in |x1| > R for some R > 0 and that Γ0 is a non-selfintersecting
C2-smooth curve. Denote by Ω ⊂ R2 the unbounded domain above Γ0, which is supposed
to be filled by a homogeneous and isotropic medium with the unit mass density. Let
D ⊂ B+

R := {x ∈ Ω : |x| < R} be a bounded domain with the Lipschitz boundary
∂D such that the exterior of D is connected; see Figure 1. Physically, the domain D
represents a sound soft obstacle embedded in Ω. Write R2

+ = {x ∈ R2 : x2 > 0},
Γ+
R := {x ∈ Ω : |x| = R}. It is obvious that B+

R is a Lipschitz domain.
The time-dependent acoustic scattering problem with the Dirichlet boundary con-

dition enforcing on the obstacle ∂D and the locally perturbed rough surface Γ0 can be
governed by the initial-boundary value problem of the wave equation

∂2
t u(x, t)−∆u(x, t) = ∂tf(x, t) in (Ω\D)× (0, T ),
u(x, t) = 0 on (∂D ∪ Γ0)× (0, T ),

u(x, 0) = ∂tu(x, 0) = 0 in (Ω\D).

(2.1)

3



Here, T > 0 is an arbitrarily fixed positive number, the function f represents an acoustic
source term compactly supported in B+

R\D and u denotes the total field. In the exterior
of B+

R , the total field u = uin + ure + usc can be divided into the sum of the incident
field uin, the reflected field ure corresponding to the unperturbed scattering problem in
the homogeneous half space x2 > 0 and the scattered field usc caused by D and the
perturbation of the straight line x2 = 0. The first two components of u will be explained
as follows.

Figure 1: Geometry of acoustic wave scattering problem caused by a bounded obstacle
D and a locally perturbed curve Γ0.

The incident field uin is generated by the inhomogeneous wave equation in R2:{
∂2
t u(x, t)−∆u(x, t) = ∂tf(x, t) in R2, t > 0,
u(x, 0) = ∂tu(x, 0) = 0 in R2.

Obviously, the incident field uin takes the explicit form

uin(x, t) =

∫
R2

G(x, t; y) ∗ ∂tf(y, t) dy in R2 × R+,

where ∗ denotes convolution between G and ∂tf with respect to the time t , and

G(x, t; y) :=
H(t− |x− y|)

2π
√
t2 − |x− y|2

,

is the Green’s function of the wave operator ∂2
t −∆ in the free space R2 ×R. Note that

H is the Heaviside function defined by

H(t) :=

{
0, t ≤ 0,
1, t > 0.

The reflected field ure caused by the incident field uin and the Dirichlet curve x2 = 0 is
governed by 

∂2
t u

re(x, t)−∆ure(x, t) = 0 in R2
+, t > 0,

ure(x, 0) = ∂tu
re(x, 0) = 0 in R2

+,
ure(x, t) = −uin(x, t) on x2 = 0, t > 0.
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Denote by y∗ = (y1,−y2) the reflection of y = (y1, y2) by the straight line x2 = 0.
Through simple calculations, we obtain the expression of the reflected field ure by

ure(x, t) = −
∫
R2

G(x, t; y∗) ∗ ∂tf(y, t) dy

= −
∫ t

0

∫
B+
R\D

G(x− y∗, t− τ)∂τf(y, τ) dydτ.

Evidently, the sum uin+ure denotes the total field to the unperturbed scattering problem
that corresponds to uin and the Dirichlet curve x2 = 0. The function usc consists of the
scattered wave from the bounded domain D and the local perturbation {x ∈ Γ0 : x2 6=
0, x1 ∈ R}.

Throughout this paper, we suppose that for any bounded domain Ω0, f ∈ H2(0, T ;L2(Ω0))
and that f |t=0 = 0, f = f̃ |(0,T ) where

f̃ ∈ H2(0,∞;L2(Ω0)), ‖f̃‖H2(0,∞;L2(Ω0)) ≤ ‖f‖H2(0,T ;L2(Ω0)).

This implies that the source term ∂tf on the right hand side of (2.1) belongs toH1(0, T ; Ω\D).
Hence, applying the approach of J. L. Lions (see [32, Theorem 8.1, Chapter 3] and
[32, Theorem 8.2, Chapter 3]) there exists a unique solution u ∈ C(0, T ;H1

0 (Ω\D)) ∩
C1(0, T ;L2(Ω\D)) to (2.1).

2.1 A transparent boundary condition (TBC) on a semi-circle

The aim of this section is to rigorously address the Dirichlet-to-Neumann map for the
wave equation (2.1) in a locally perturbed half-plane. We shall follow the spirit of [19] for
a bounded sound-hard obstacle but complement the definition of DtN there by describing
mapping properties in time-dependent Sobolev spaces and connecting the DtN operators
defined over a finite and an infinite time period. More precisely, we shall define the time-
domain boundary operator T by

T u = ∂ru on Γ+
R × (0, T ), (2.2)

which is called the TBC. Thus, the time-domain scattering problem (2.1) in the un-
bounded domain over the local rough surface can be reduced into an equivalent initial-
boundary value problem in the bounded domain Ω+

R := B+
R\D:

∂2
t u−∆u = ∂tf in Ω+

R × (0, T ),
u = 0 on (∂D ∪ Γ0)× (0, T ),
∂ru = T u on Γ+

R × (0, T ),
u|t=0 = ∂tu|t=0 = 0 in Ω+

R.

(2.3)

In what follows we derive a representation of the boundary operator T . Let H
1/2
0 (Γ+

R),

H1/2(Γ+
R), H−1/2(Γ+

R), H
−1/2
0 (Γ+

R) be Sobolev spaces defined on the open arc Γ+
R. Then
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H
1/2
0 (Γ+

R) and H−1/2(Γ+
R), H1/2(Γ+

R) and H
−1/2
0 (Γ+

R) are anti-linear dual spaces [33]. For

u ∈ H1
0 (B+

R), we have u|Γ+
R
∈ H1/2

0 (Γ+
R).

Consider an initial-boundary value problem over a finite time period
∂2
t u(x, t)−∆u(x, t) = 0 in (Ω\B+

R)× (0, T ),
u(x, t) = g(x, t) on Γ+

R × (0, T ),
u(x, t) = 0 on (Γ0 ∩ |x| > R)× (0, T ),

u(x, 0) = ∂tu(x, 0) = 0 in (Ω\B+
R)

(2.4)

where g ∈ C(0, T ;H
1/2
0 (Γ+

R)) ∩ C1(0, T ;H−1/2(Γ+
R)) satisfying g(x, 0) = ∂tg(x, 0) = 0.

By [15, Chapter 7], there exists a unique solution u to the above equations satisfying

u ∈ C(0, T ;H1
� (Ω\B+

R)) ∩ C1(0, T ;L2(Ω\B+
R)),

where H1
� (Ω\B+

R) = {u ∈ H1(Ω\B+
R) : u = 0 on {Γ0 ∩ |x| > R}}.

Definition 2.1. The DtN operator T : C(0, T ;H
1/2
0 (Γ+

R)) → C(0, T ;H−1/2(Γ+
R)) over

a finite time period (0, T ) is defined as

T g = ∂ru on Γ+
R × (0, T ),

where u ∈ C(0, T ;H1
� (Ω\B+

R)) ∩ C1(0, T ;L2(Ω\B+
R)) is the unique solution to (2.4).

Consider another initial-boundary value problem but over an infinite time
∂2
tw(x, t)−∆w(x, t) = 0 in (Ω\B+

R)× (0,∞),
w(x, t) = g̃(x, t) on Γ+

R × (0,∞),
w(x, t) = 0 on (Γ0 ∩ |x| > R)× (0,∞),

w(x, 0) = ∂tw(x, 0) = 0 in (Ω\B+
R),

(2.5)

with the initial-boundary value

g̃ ∈ L2(0,∞;H
1/2
0 (Γ+

R)) ∩H1(0,∞;H−1/2(Γ+
R)), g̃(x, 0) = ∂tg̃(x, 0) = 0. (2.6)

Definition 2.2. The DtN operator T̃ : L2(0,∞;H
1/2
0 (Γ+

R)) → L2(0,∞;H−1/2(Γ+
R))

over the infinite time period (0,∞) is defined as

T̃ g̃ = ∂rw on Γ+
R × (0,∞),

where w ∈ L2(0,∞;H1
� (Ω\B+

R)) ∩H1(0,∞;L2(Ω\B+
R)) is the unique solution of (2.5).

Lemma 2.1. Let g̃ be the boundary value of the problem (2.4) and denote by g̃ its zero
extension to t > T . Then

T̃ g̃ = T g in L2(0, T ;H−1/2(Γ+
R)).
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Proof. It is obvious that the extension g̃ fulfills the regularity and initial values specified
in (2.6). Define v := u− w, where u and w are the unique solutions to (2.4) and (2.5),
respectively. It then follows that

∂2
t v(x, t)−∆v(x, t) = 0 in (Ω\B+

R)× (0, T ),
v(x, t) = 0 on Γ+

R × (0, T ),
v(x, t) = 0 on (Γ0 ∩ |x| > R)× (0, T ),

v(x, 0) = ∂tv(x, 0) = 0 in (Ω\B+
R).

(2.7)

By uniqueness to the above system (see e.g., [15, 32]), we get v ≡ 0 in (Ω\B+
R)× (0, T ),

implying that ∂rv = 0 on Γ+
R×(0, T ). Hence, we obtain that T̃ g̃ = T g on Γ+

R×(0, T ).

From the proof of Lemma 2.1 we conclude that the definition of T g is independent
of the values of g in t > T . Below we want to derive an expression of T̃ by Laplace
transform. For any s ∈ C with Re(s) > 0, applying Laplace transform to (2.5) with
respect to t, we see that wL = L (w) satisfies the Helmoholtz equation

−∆wL + s2wL = 0 in Ω\B+
R , (2.8)

together with the radiation condition

√
r(
∂wL
∂r

+ swL)→ 0 as r = |x| → ∞. (2.9)

Let G : H
1/2
0 (Γ+

R)→ H−1/2(Γ+
R) be the DtN operator in s-domain defined by

G g̃L = ∂rwL on Γ+
R.

where wL is the unique solution to (2.8)-(2.9) satisfying the boundary value wL = gL on
Γ+
R and wL = 0 on Γ0 ∩ {x : |x| > R}. Then it follows that

T̃ = L −1 ◦ G ◦L .

Next, we derive a representation of the DtN operator G . In the polar coordinates (r, θ),
wL can be expanded into the series (see e.g., [19, 30,39])

wL(r, θ; s) =
∞∑
n=1

Kn(sr)

Kn(sR)
wnL(R, s) sinnθ, r > R, θ ∈ [0, π],

where

wnL(R, s) =
2

π

∫ π

0
wL(R, θ, s) sinnθ dθ =

2

π

∫ π

0
g̃L(R, θ, s) sinnθ dθ.

Here Kn(z) represents the modified Bessel function of order n. A simple calculation
gives

GwL(R, θ, s) =
∂wL
∂r
|Γ+
R

= s

∞∑
n=1

K ′n(sR)

Kn(sR)
wnL(R, s) sinnθ. (2.10)

The DtN operators G and T have the following properties.
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Lemma 2.2. The operator G : H
1/2
0 (Γ+

R)→ H−1/2(Γ+
R) is bounded.

Proof. By the recurrence formula of modified Bessel function

K
′
n(z) = −Kn−1(z)− n

z
Kn(z),

we deduce that ∣∣∣K ′n(sR)

Kn(sR)

∣∣∣ =
∣∣∣ n
sR

+
Kn−1(sR)

Kn(sR)

∣∣∣ ≤ n

|s|R
+ 1.

Let |Bn| :=
∣∣∣K′n(sR)
Kn(sR)

∣∣∣. Then, |Bn| ≤ C
√
n2 + 1 for some constant C > 0. Given φ ∈

H
−1/2
0 (Γ+

R), we expand

φ(R, θ) =
∞∑
n=1

φn(R) sinnθ, φn(R) =
2

π

∫ π

0
φ(R, θ) sinnθ dθ.

By the definition of G , for any ω ∈ H1/2
0 (Γ+

R) it follows that∣∣∣〈G (ω), φ〉Γ+
R

∣∣∣ =
∣∣∣ ∫

Γ+
R

s

∞∑
n=1

K
′
n(sR)

Kn(sR)
ωn(R) sinnθ

∞∑
n=1

φn(R) sinnθ dγ
∣∣∣

=
∣∣∣sR ∞∑

n=1

K
′
n(sR)

Kn(sR)
ωn(R)φn(R)

∫ π

0
sin2 nθ dθ

=
∣∣∣π
2
sR

∞∑
n=1

K
′
n(sR)

Kn(sR)
ωn(R)φn(R)

∣∣∣
≤ π

2
|s|R

( ∞∑
n=1

∣∣∣K ′n(sR)

Kn(sR)

∣∣∣|ωn(R)|2
)1/2( ∞∑

n=1

∣∣∣K ′n(sR)

Kn(sR)

∣∣∣|φn(R)|2
)1/2

≤ C
( ∞∑
n=1

√
1 + n2|ωn(R)|2

)1/2( ∞∑
n=1

√
1 + n2|φn(R)|2

)1/2

≤ C‖ω‖
H

1/2
0 (Γ+

R)
‖φ‖

H
1/2
0 (Γ+

R)
.

Then, we have

‖Gω‖H−1/2(Γ+
R) = sup

φ∈H1/2
0 (Γ+

R)

∣∣∣〈G (ω), φ〉Γ+
R

∣∣∣
‖φ‖

H
1/2
0 (Γ+

R)

≤ C‖ω‖
H

1/2
0 (Γ+

R)
.

Lemma 2.3. It holds that, for any ω ∈ H1/2
0 (Γ+

R),

−Re 〈s−1 Gω, ω〉Γ+
R
≥ 0.
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Proof. Given ω ∈ H1/2
0 (Γ+

R), we have

ω(R, θ) =

∞∑
n=1

ωn(R) sinnθ, ωn(R) =
2

π

∫ π

0
ω(R, θ) sinnθ dθ.

It follows from the expression of G uL (2.10) and Lemma C.1, we obtain

−Re 〈s−1 Gω, ω〉Γ+
R

=− Re

∫
Γ+
R

∞∑
n=1

K
′
n(sR)

Kn(sR)
ωn(R) sinnθ

∞∑
n=1

ωn(R) sinnθ dγ

=−R
∞∑
n=1

Re
(K ′n(sR)

Kn(sR)

)
|ωn(R)|2

∫ π

0
sin2 nθ dθ

=− π

2
R
∞∑
n=1

Re
(K ′n(sR)

Kn(sR)

)
|ωn(R)|2 ≥ 0.

Below we write the Laplace transform variable as s = s1 + is2 with s1 > 0, s2 ∈ R.

Lemma 2.4. Let ω ∈ C(0, T ;H
1/2
0 (Γ+

R) ∩ C1(0, T ;H−1/2(Γ+
R) with the initial values

ω(·, 0) = ∂tω(·, 0) = 0. Then it holds that

Re

∫ T

0
e−2s1t〈T ω, ∂tω〉Γ+

R
dt ≤ 0.

Proof. Let ω̃(r, t) be the zero extension of ω(r, t) with respect to t in R. Applying the
Parseval identity (A.4) and Lemmas 2.1 and 2.3, we obtain

Re

∫ T

0
e−2s1t〈T ω, ∂tω〉Γ+

R
dt = Re

∫ T

0
e−2s1t

∫
Γ+
R

T ω∂tω dγ dt

= Re

∫
Γ+
R

∫ ∞
0

e−2s1tT̃ ω̃∂tω̃ dt dγ

=
1

2π

∫ ∞
−∞

Re〈G ω̃L, sω̃L〉Γ+
R
ds2

=
1

2π

∫ ∞
−∞
|s|2Re〈s−1G ω̃L, ω̃L〉Γ+

R
ds2

≤ 0.

2.2 Well-posedness in the time-domain

In the subsection, we prove well-posedness of the truncated initial-boundary value prob-
lem (2.3) in the bounded domain Ω+

R by using the variational method in the Laplace
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domain. Taking Laplace transform of (2.3) and using f(·, 0) = 0 we obtain
∆uL − s2uL = sfL in Ω+

R\D,
uL = 0 on ∂D ∪ Γ0,
∂ruL = G uL on Γ+

R.
(2.11)

We formulate the variational formulation of problem (2.11) and show its well-posedness
in the space XR := {u ∈ H1(Ω+

R) : u = 0 on ∂D ∪ Γ0}. Multiplying the Helmholtz
equation in (2.11) by the complex conjugate of a test function v ∈ XR, applying the
Green’s formula with the boundary conditions on Γ+

R ∪ Γ0 ∪ ∂D, we arrive at

a(uL, v) =

∫
Ω+
R

fL v dx for all v ∈ XR, (2.12)

where the sesquilinear form a(·, ·) is defined as

a(uL, v) =

∫
Ω+
R

(
1

s
∇uL · ∇v + suLv

)
dx− 〈s−1G uL, v〉Γ+

R
.

Lemma 2.5. The variational problem (2.12) has a unique solution uL ∈ XR with the
following stability estimate

‖∇uL‖L2(Ω+
R) + ‖suL‖L2(Ω+

R) ≤ C
(1 + |s|)|s|

s1
‖fL‖L2(Ω+

R), (2.13)

where C is a constant independent of s.

Proof. (i) We first prove that a(·, ·) is continuous and strictly coercive. Using the
Cauchy-Schwarz inequality, the boundedness of G in Lemma 2.2 and the trace theo-
rem, we obtain

|a(uL, v)| ≤ |s|−1‖∇uL‖L2(Ω+
R)‖∇v‖L2(Ω+

R) + |s|‖uL‖L2(Ω+
R)‖v‖L2(Ω+

R)

+|s|−1‖G uL‖H−1/2(Γ+
R)‖v‖H1/2(Γ+

R)

≤ C‖uL‖H1(Ω+
R)‖v‖H1(Ω+

R) + C‖uL‖H1(Ω+
R)‖v‖H1(Ω+

R)

C‖uL‖H1/2(Γ+
R)‖v‖H1/2(Γ+

R)

≤ C‖uL‖H1(Ω+
R)‖v‖H1(Ω+

R).

Setting v = uL, it follows from the expression of the sesquilinear form a(·, ·) that

a(uL, uL) =

∫
Ω+
R

1

s
|∇uL|2 + s|uL|2 dx− 〈s−1G uL, uL〉Γ+

R
.

Taking the real part of the above equation and using Lemma 2.3 we have

Re(a(uL, uL)) =

∫
Ω+
R

s1

|s|2
|∇uL|2 + s1|uL|2 dx− Re〈s−1G uL, uL〉Γ+

R

≥
∫

Ω+
R

s1

|s|2
|∇uL|2 + s1|uL|2 dx

≥ s1

|s|2
(
‖∇uL‖2L2(Ω+

R)
+ ‖suL‖2L2(Ω+

R)

)
. (2.14)
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Hence, by the Lax-Milgram Lemma, the variational problem (2.12) has a unique solution
uL ∈ XR.

(ii) Combining (2.12) with the Cauchy-Schwarz inequality, it follows that

|a(uL, uL)| ≤ 1

|s|
‖fL‖L2(Ω+

R)‖suL‖L2(Ω+
R)

≤ 1

|s|
‖fL‖L2(Ω+

R)‖suL‖H1(Ω+
R)

≤ 1

|s|
‖fL‖L2(Ω+

R)

(
|s|2‖∇uL‖2L2(Ω+

R)
+ ‖suL‖2L2(Ω+

R)

)1/2

≤ C
1 + |s|
|s|
‖fL‖L2(Ω+

R)

(
‖∇uL‖2L2(Ω+

R)
+ ‖suL‖2L2(Ω+

R)

)1/2
. (2.15)

Combining (2.14) and (2.15) yields

s1

|s|2
(
‖∇uL‖2L2(Ω+

R)
+ ‖suL‖2L2(Ω+

R)

)
≤ Re(a(uL, uL))

≤ |a(uL, uL)|

≤ C
1 + |s|
|s|
‖fL‖L2(Ω+

R)

(
‖∇uL‖2L2(Ω+

R)
+ ‖suL‖2L2(Ω+

R)

)1/2
.

Then, using the Cauchy-Schwarz inequality, we have

‖∇uL‖L2(Ω+
R) + ‖suL‖L2(Ω+

R) ≤
(
‖∇uL‖2L2(Ω+

R)
+ ‖suL‖2L2(Ω+

R)

)1/2

≤ C
(1 + |s|)|s|

s1
‖fL‖L2(Ω+

R),

which completes the proof of the stability estimate.

Theorem 2.1. The initial boundary value problem (2.3) has a unique solution

u(x, t) ∈ L2(0, T ;XR) ∩H1(0, T ;L2(Ω+
R)),

which satisfies the stability estimate

max
0≤t≤T

(
‖∂tu‖L2(Ω+

R) + ‖∇u‖L2(Ω+
R)

)
≤ C‖∂tf‖L1(0,T ;L2(Ω+

R)).

Proof. We first prove existence and uniqueness of solutions to (2.3). Simple calculations
show that ∫ T

0
‖∂tu‖2L2(Ω+

R)
+ ‖∇u‖2

L2(Ω+
R)
dt

≤ C

∫ ∞
0

e−2s1t
(
‖∂tu‖2L2(Ω+

R)
+ ‖∇u‖2

L2(Ω+
R)

)
dt.

11



Hence it suffices to estimate the integral∫ ∞
0

e−2s1t
(
‖∂tu‖2L2(Ω+

R)
+ ‖∇u‖2

L2(Ω+
R)

)
dt.

Based on the stability estimate of uL in Lemma 2.5, we derive from [35, Lemma 44.1]
that uL is a holomorphic function of s on the half plane s1 > ζ0 > 0, where ζ0 is any
positive constant. Thus, by Lemma A.2, the inverse Laplace transform of uL exists and
is supported in [0,∞).

Set u = L −1(uL). Applying the Parseval identity (A.4) and the stability estimate
(2.13) in Lemma 2.5 and using the Cauchy-Schwarz inequality, we obtain∫ ∞

0
e−2s1t(‖∂tu‖2L2(Ω+

R)
+ ‖∇u‖2

L2(Ω+
R)

) dt

=
1

2π

∫ +∞

−∞
‖suL‖2L2(Ω+

R
+ ‖∇uL‖2L2(Ω+

R)
) ds2

≤ C
1

s2
1

∫ +∞

−∞
(1 + |s|)2|s|2‖fL‖2L2(Ω+

R)
ds2

≤ C
1

s2
1

∫ +∞

−∞
‖s2fL‖2L2(Ω+

R)
+ ‖sfL‖2L2(Ω+

R)
ds2

≤ C
1

s2
1

∫ ∞
0

e−2s1t
(
‖∂2

t f‖2L2(Ω+
R)

+ ‖∂tf‖2L2(Ω+
R)

)
dt.

This together with the Poincaré inequality proves

u ∈ L2(0, T ;XR) ∩H1(0, T ;L2(Ω+
R)).

To prove the stability estimate, we define the energy function

E(t) :=
1

2

(
‖∂tu‖2L2(Ω+

R)
+ ‖∇u‖2

L2(Ω+
R)

)
, 0 < t < T.

It is obvious that

E(t)− E(0) =

∫ t

0
E′(τ) dτ.

Recalling the wave equation in (2.3) and applying integration by parts, we obtain∫ t

0
e−2s1τE′(τ) dτ = Re

∫ t

0
e−2s1τ

∫
Ω+
R

∂ττu∂τu+∇u · ∇(∂τu) dxdτ

= Re

∫ t

0
e−2s1τ

∫
Ω+
R

(∆u+ ∂τf)∂τu+∇u · ∇(∂τu) dxdτ

= Re

∫ t

0
e−2s1τ 〈T u, ∂τu〉Γ+

R
dτ

+Re

∫ t

0
e−2s1τ (∂τf, ∂τu)L2(Ω+

R) dτ. (2.16)
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Applying integration by parts on the left hand side of (2.16) and using E(0) = 0 together
with Lemma 2.4, we obtain

e−2s1tE(t) + 2s1

∫ t

0
e−2s1τE(τ) dτ

≤ Re

∫ t

0
e−2s1τ (∂τf, ∂τu)L2(Ω+

R) dτ

≤
∫ T

0
‖e−s1t∂tf‖L2(Ω+

R) ‖e
−s1t∂tu‖L2(Ω+

R)dt

≤ max
0≤t≤T

‖e−s1t∂tu‖L2(Ω+
R) ‖e

−s1t∂tf‖L1(0,T ;L2(Ω+
R))

≤ ε max
0≤t≤T

‖e−s1t∂tu‖2L2(Ω+
R)

+
1

4ε
‖e−s1t∂tf‖2L1(0,T ;L2(Ω+

R))
.

Letting s1 → 0, choosing ε > 0 small enough and applying Cauchy-Schwartz inequality,
we finally get

max
0≤t≤T

(
‖∂tu‖L2(Ω+

R) + ‖∇u‖L2(Ω+
R)

)
≤ C max

0≤t≤T

(
‖∂tu‖2L2(Ω+

R)
+ ‖∇u‖2

L2(Ω+
R)

)1/2

≤ C‖∂tf‖L1(0,T ;L2(Ω+
R)).

This completes the stability estimate.

3 The time-domain PML problem

Inspired by the PML approach for bounded obstacles [19,20], we present in this section
the time-domain PML formulation in a perturbed half-plane and then show the well-
posedness and stability of the PML problem by applying the Laplace transform together
with the variational and energy methods.

3.1 Well-posedness of the PML problem

We surround the domain Ω+
R with a PML layer

Ω+
PML := B+

ρ \B+
R =: {x ∈ Ω : R < |x| < ρ},

where B+
ρ := {x ∈ Ω : |x| < ρ}. We denote Ω+

ρ := B+
ρ \D the truncated PML domain

with the exterior boundary Γ+
ρ := {x ∈ Ω : |x| = ρ}. Let s1 = Re(s) > 0 for s ∈ C.

Define the medium parameter in the PML layer as

α(r) =

{
1, r ≤ R,
1 + s−1σ(r), r > R,
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where r = |x|, σ = 0 for r ≤ R and σ > 0 for r > R.
In what follows, we will derive the PML formulation by a complex transformation of

variables. Denote by r̃ the complex radius

r̃ =

∫ r

0
α(τ) dτ = rβ(r),

where β(r) = r−1
∫ r

0 α(τ) dτ . It is obvious that β(r) = 1 + s−1σ̂(r) for r ≥ R, where
σ̂(r) = r−1

∫ r
0 σ(τ) dτ . To derive the PML equations, we need to transform the exterior

problem (2.3) into the s-domain. On Γ+
R, the Laplace transform of u can be expanded

into the series,

uL(R, s) =

∞∑
n=1

unL(R, s) sinnθ, unL(R, s) =
2

π

∫ π

0
uL(R, θ, s) sinnθ dθ.

Then, let us define the PML extension ũL in the s-domain as

ũL(r, θ, s) =
∞∑
n=1

Kn(sr̃)

Kn(sR)
ũnL(R, s) sinnθ, r > R.

Since Kn(z) v ( π2z )1/2e−z as |z| → ∞, ũL(r, θ, s) decays exponentially for large r̃. It is

easy to see that ũL satisfies −1
r̃
∂
∂r̃ (r̃ ∂∂r̃ )ũL− 1

r̃2
∂2

∂θ2
ũL + s2ũL = 0 in Ω\B+

R . Since r̃ = rβ
and dr̃ = αdr, we obtain

−∇ · (A∇ũL) + s2αβũL = 0, x ∈ Ω\B+
R (3.1)

where A = diag{β/α, α/β} is a complex matrix and A∇ũL = β
α
∂ũL
∂r er + α

βr
∂ũL
∂θ eθ. Here

er and eθ are the unit vectors in polar coordinates.
Next, we will deduce the PML system in the time-domain by applying the inverse

Laplace transform to (3.1). Since A, α and β are complex, to simplify the inverse Laplace
transform, we introduce the auxiliary functions

p̃∗L := −1

s
∇ũL, ũ∗L :=

1

s
σũL, p̃L := Ap̃∗L, (3.2)

to transform (3.1) into a first order system.

In Ω\B+
R , define

ũ := L −1(ũL), p̃ := L −1(p̃L), ũ∗ := L −1(ũ∗L), p̃∗ := L −1(p̃∗L),

with the zero initial conditions

ũ|t=0 = 0, p̃|t=0 = 0, ũ∗|t=0 = 0, p̃∗|t=0 = 0.

Taking the inverse Laplace transform to (3.1) and (3.2) and using the zero initial condi-

tions, we can write the PML system for x ∈ Ω\B+
R as

∂tũ+ (σ + σ̂)ũ+ σũ∗ +∇ · p̃ = 0,
∂tp̃
∗ = −∇ũ, ∂tũ

∗ = σũ,
∂tp̃+ Λ1p̃ = ∂tp̃

∗ + Λ2p̃
∗,

(3.3)
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where sα = s+ σ, sβ = s+ σ̂, Λ1 = MTdiag{σ, σ̂}M and Λ2 = MTdiag{σ̂, σ}M with

M :=

(
cos θ sin θ
− sin θ cos θ

)
.

Since the above PML system (3.3) is a first order system, it is necessary to reduce
equivalently the time-domain scattering problem (2.3) in the half space into a first order
PDE system:

∂tu = −∇ · p+ f(x, t) in Ω+
R × (0, T ),

∂tp = −∇u in Ω+
R × (0, T ),

u = 0 on (∂D ∪ Γ0)× (0, T ),

p · x̂+ T (
∫ t

0 u dτ) = 0, on Γ+
R × (0, T ),

u|t=0 = p|t=0 = 0 in Ω+
R.

(3.4)

Below we derive the DtN boundary condition on Γ+
R × (0, T ). Taking Laplace transform

to the second equation of (3.4), we obtain that

pL +
1

s
∇uL = 0.

Then, multiplying the above equation by x̂ = x/|x| on Γ+
R and using the DtN boundary

condition ∂ruL = G uL, it follows that

pL · x̂+
1

s
G uL = 0 on Γ+

R. (3.5)

Taking inverse Laplace transform to (3.5) and using (A.3), we have

p · x̂+ T

(∫ t

0
u dτ

)
= 0 on Γ+

R × (0, T ). (3.6)

Further, since σ(R) = σ̂(R) = 0, we get α = β = 1 on Γ+
R and thus ũ = u and p̃ = p

on Γ+
R. Therefore, (ũ, p̃) can be viewed as the extension of the solution of the problem

(2.1). Setting ũ = u and p̃ = p in Ω+
R, we can reformulate the truncated PML problem

in Ω+
ρ as

∂tũ+ (σ + σ̂)ũ+ σũ∗ +∇ · p̃ = f in Ω+
ρ × (0, T ), (3.7a)

∂tp̃
∗ = −∇ũ, ∂tũ

∗ = σũ in Ω+
ρ × (0, T ), (3.7b)

∂tp̃+ Λ1p̃ = ∂tp̃
∗ + Λ2p̃

∗ in Ω+
ρ × (0, T ), (3.7c)

ũ = 0 on (∂D ∪ Γ0)× (0, T ), (3.7d)

ũ = 0 on Γ+
ρ × (0, T ), (3.7e)

ũ|t=0 = p̃|t=0 = ũ∗|t=0 = p̃∗|t=0 in Ω+
ρ . (3.7f)

The well-posedness of truncated PML problem will be proved by applying Laplace
transform and the variational method. In the rest of this paper, we assume that σ(r)
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is monotonically increasing on [R, ρ] such that σR ≤ σ ≤ σρ. First, we take Laplace
transform to (3.7) with s ∈ C and then eliminate p̃L, ũ∗L and p̃∗L, to obtain

−∇ · (A∇ũL) + s2αβũL = sfL in Ω+
ρ × (0, T ),

ũL = 0 on ∂D ∪ Γ0,
ũL = 0 on Γ+

ρ .
(3.8)

It is easy to derive the variational formulation of (3.8): find a solution ũL ∈ H1
0 (Ω+

ρ )
such that

ã(ũL, v) =

∫
Ω+
ρ

sfLvdx, for all v ∈ H1
0 (Ω+

ρ ) (3.9)

where the sesquilinear form ã(·, ·) : H1
0 (Ω+

ρ )×H1
0 (Ω+

ρ )→ C is defined as

ã(ũL, v) =

∫
Ω+
ρ

A∇ũL · ∇v + s2αβũLv dx.

We will prove the well-posedness of (3.8). The proof of the first inequality in the subse-
quent lemma is similar to that in [19, Lemma 4.1] where the PML layer is defined as an
annular domain in the free space R2 and σ is a positive constant.

Lemma 3.1. For any ũL ∈ H1
0 (Ω+

ρ ), it holds that

(a) Re[ã(uL, uL)] + s2
s1+σρ

Im[ã(uL, uL)] ≥ s21
(s1+σρ)2

(
‖A∇uL‖2L2(Ω+

ρ )
+ ‖sαβuL‖2L2(Ω+

ρ )

)
,

(b) |ã(uL, uL)| ≥
(

s1
s1+σρ

)2
s1
|s| |

s1
s+σρ
|2
(
‖∇uL‖2L2(Ω+

ρ )
+ ‖suL‖2L2(Ω+

ρ )

)
.

Proof. It suffices to prove (b). For any ũL ∈ H1
0 (Ω+

ρ ), applying (a) we have

|ã(uL, uL)| ≥ 1

|s|
Re[sã(uL, uL)]

≥ s1

|s|

(
Re[ã(uL, uL)] +

s2

s1
Im[ã(uL, uL)]

)
≥ s1

|s|

(
Re[ã(uL, uL)] +

s2

s1 + σρ
Im[ã(uL, uL)]

)
≥ s1

|s|

(
s1

s1 + σρ

)2 (
‖A∇uL‖2L2(Ω+

ρ )
+ ‖sαβuL‖2L2(Ω+

ρ )

)
≥

( s1

s1 + σρ

)2 s1

|s|

∣∣∣ s1

s+ σρ

∣∣∣2 (‖∇uL‖2L2(Ω+
ρ )

+ ‖suL‖2L2(Ω+
ρ )

)
.

This completes the proof.
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Lemma 3.2. The variational problem (3.9) has a unique solution ũL ∈ H1
0 (Ω+

R) with
the following stability estimates

‖A∇uL‖L2(Ω+
ρ ) + ‖sαβuL‖L2(Ω+

ρ ) ≤ C

(
|s|
s1

)1/2(
1 +

σρ
s1

)
‖fL‖L2(Ω+

ρ ), (3.10)

‖∇uL‖L2(Ω+
ρ ) + ‖suL‖L2(Ω+

ρ ) ≤ C

(
|s|
s1

)1/2(
1 +

σρ
s1

)
|s+ σρ|
s1

‖fL‖L2(Ω+
ρ ),(3.11)

where C is a constant independent of s.

Proof. The first part of the lemma follows easily from the Lax-Milgram lemma and the
strictly coercivity of ã(·, ·) in Lemma 3.1. Further, the stability estimates (3.10) and
(3.11) follow from (3.9), Lemma 3.1 and the Cauchy-Schwartz inequality.

The well-posedness of PML problem (3.7) in the time domain can be established by
applying Lemma 3.2.

Theorem 3.1. The truncated PML problem (3.7) in the time domain has a unique
solution (u, p, u∗, p∗) such that

u ∈ L2(0, T ;H1
0 (Ω+

ρ )) ∩H1(0, T ;L2(Ω+
ρ )), u∗ ∈ H1(0, T ;L2(Ω+

ρ )),

p ∈ L2(0, T ;H(div,Ω+
ρ )) ∩H1(0, T ;L2(Ω+

ρ )), p∗ ∈ H1(0, T ;L2(Ω+
ρ )).

Proof. By simple calculations, we can obtain∫ T

0
‖∂tu‖2L2(Ω+

ρ )
+ ‖∇u‖2

L2(Ω+
ρ )
dt

≤ C

∫ ∞
0

e−2s1t(‖∂tu‖2L2(Ω+
ρ )

+ ‖∇u‖2
L2(Ω+

ρ )
) dt.

Hence it suffices to estimate the integral∫ ∞
0

e−2s1t(‖∂tu‖2L2Ω+
ρ )

+ ‖∇u‖2
L2(Ω+

ρ )
) dt.

Using the stability estimate of uL in Lemma 3.2, we duduce from [35, Lemma 44.1]
that uL is a holomorphic function of s on the half plane s1 > ζ0 > 0, where ζ0 is any
positive constant. Thus, by Lemma A.2, the inverse Laplace transform of uL exists and
is supported in [0,∞].

Set u = L −1(uL). One deduces from the Parseval identity (A.4), stability estimate
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(3.11) and the Cauchy-Schwartz inequality that∫ ∞
0

e−2s1t(‖∂tu‖2L2(Ω+
ρ )

+ ‖∇u‖2
L2(Ω+

ρ )
) dt

=
1

2π

∫ +∞

−∞
‖suL‖2L2(Ω+

ρ )
+ ‖∇uL‖2L2(Ω+

ρ )
) ds2

≤ C
1

s3
1

(
1 +

σρ
s1

)2 ∫ +∞

−∞
|s||s+ σρ|2‖fL‖2L2(Ω+

ρ )
ds2

= C
1

s3
1

(
1 +

σρ
s1

)2 ∫ +∞

−∞
‖s(s+ σρ)fL‖L2(Ω+

ρ )‖(s+ σρ)fL‖L2(Ω+
ρ ) ds2

≤ C
1

s3
1

(
1 +

σρ
s1

)2 ∫ +∞

0
e−2s1t‖∂ttf + σρ∂tf‖L2(Ω+

ρ )‖∂tf + σρf‖L2(Ω+
ρ ) dt

≤ C
1

s3
1

(
1 +

σρ
s1

)2 ∫ +∞

0
e−2s1t

(
‖∂ttf‖L2(Ω+

ρ )‖∂tf‖L2(Ω+
ρ )

+σρ‖∂ttf‖L2(Ω+
ρ )‖f‖L2(Ω+

ρ ) + σρ‖∂tf‖2L2(Ω+
ρ )

+ σ2
ρ‖∂tf‖L2(Ω+

ρ )‖f‖L2(Ω+
ρ )

)
dt

≤ C
1

s3
1

(
1 +

σρ
s1

)2 ∫ +∞

0
e−2s1t

(
(1 + σρ)‖∂ttf‖2L2(Ω+

ρ )
+ σρ(1 + σρ + σ2

ρ)‖∂tf‖2L2(Ω+
ρ )

+(1 + σρ)‖f‖2L2(Ω+
ρ )

)
dt.

This together with the Poincaré inequality proves

u ∈ L2(0, T ;H1
0 (Ω+

ρ )) ∩H1(0, T ;L2(Ω+
ρ )).

From (3.2) and the first equation of (3.8), we obtain

spL = −A∇uL, ∇ · pL = −sαβuL + fL. (3.12)

By the first equation of (3.12) and stability estimate (3.10), we deduce from [35, Lemma
44.1] that pL is holomorphic function of s on the half plane s1 > ζ0 > 0, where ζ0 is
any positive constant. Thus, by Lemma A.2, it follows from that the inverse Laplace
transform of pL exists and is supported in [0,∞]. Then, using the Parseval identity
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(A.4), Cauchy inequality with ε and stability estimate (3.10), we can obtain∫ ∞
0

e−2s1t
(
‖∂tp‖2L2(Ω+

ρ )
+ ‖∇ · p‖2

L2(Ω+
ρ )

)
dt

=
1

2π

∫ +∞

−∞
‖spL‖2L2(Ω+

ρ )
+ ‖∇ · pL‖2L2(Ω+

ρ )
ds2

=
1

2π

∫ +∞

−∞
‖A∇uL‖2L2(Ω+

ρ )
+ ‖sαβuL + fL‖2L2(Ω+

ρ )
ds2

≤ C
1

2π

∫ +∞

−∞
‖A∇uL‖2L2(Ω+

ρ )
+ ‖sαβuL‖2L2(Ω+

ρ )
+ ‖fL‖2L2(Ω+

ρ )
ds2

≤ C
1

2π

∫ +∞

−∞

|s|
s1

(
1 +

σρ
s1

)2

‖fL‖2L2(Ω+
ρ )

+ ‖fL‖2L2(Ω+
ρ )
ds2

≤ C

∫ +∞

0
e−2s1t

(
1

s1

(
1 +

σρ
s1

)2

‖∂tf‖L2(Ω+
ρ )‖f‖L2(Ω+

ρ ) + ‖f‖2
L2(Ω+

ρ )

)
dt

≤ C

∫ +∞

0
e−2s1t

(
1

s1

(
1 +

σρ
s1

)2

‖∂tf‖2L2(Ω+
ρ )

+
( 1

s1

(
1 +

σρ
s1

)2

+ 1
)
‖f‖2

L2(Ω+
ρ )

)
dt.

Hence,

p ∈ L2(0, T ;H(div,Ω+
ρ )) ∩H1(0, T ;L2(Ω+

ρ )).

By the second equation of (3.7b) and Poincáre’s inequality, we see∫ ∞
0

e−2s1t‖∂tu∗‖2L2(Ω+
ρ )
dt

≤
∫ ∞

0
e−2s1tσ2

ρ‖u‖2L2(Ω+
ρ )
dt

≤ C

∫ ∞
0

e−2s1tσ2
ρ

(
‖∇u‖2

L2(Ω+
ρ )

)
dt

≤ C

∫ ∞
0

e−2s1tσ2
ρ

(
‖∇u‖2

L2(Ω+
ρ )

+ ‖∂tu‖2L2(Ω+
ρ )

)
dt.

Then, in view of the solution space for u, we know u∗ ∈ H1(0, T ;L2(Ω+
ρ )). Similarly,

from the first equation of (3.7b), we know ‖∂tp∗‖2L2(Ω+
ρ )

= ‖∇u‖2
L2(Ω+

ρ )
, which implies

p∗ ∈ H1(0, T ;L2(Ω+
ρ )).

3.2 Stability of the truncated PML problem

The aim of this subsection is to prove the stability of the PML problem (3.7) with σ = σ̂.
We first present an auxiliary stability estimate.
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Theorem 3.2. Let (u, p, u∗, p∗) be the solution of the truncated PML problem (3.7).
Then there holds the stability estimate

max
0≤t≤T

(
‖∂tu+ σu‖L2(Ω+

ρ ) + ‖∂tp+ σp‖L2(Ω+
ρ ) + ‖∂tu∗ + σu∗‖L2(Ω+

ρ )

)
≤ C

∫ T

0
‖∂tf + σf‖L2(Ω+

ρ ) dt,

where the constant C is independent of σ and T .

Proof. We apply to equation (3.7a) the operator ∂t + σ to get

∂2
t u+∇ · (∂tp+ σp) + (σ + σ̂) (∂tu+ σu) + σ̂ (∂tu

∗ + σu∗) = ∂tf + σf.

Multiplying the above equation by ∂tu+ σu and integrating over Ω+
ρ yield

1

2

d

dt
‖∂tu+ σu‖2

L2(Ω+
ρ )

+
1

2

d

dt
‖∂tu∗ + σu∗‖2

L2(Ω+
ρ )

+ (∇ · (∂tp+ σp), ∂tu+ σu)Ω+
ρ

+ ((σ + σ̂)(∂tu+ σu), (∂tu+ σu))Ω+
ρ

= (∂tf + σf, ∂tu+ σu)Ω+
ρ
.

(3.13)

Since ∫ t

0
((σ + σ̂)(∂τu+ σu), (∂τu+ σu))Ω+

ρ
dτ ≥ 0,

integrating (3.13) from 0 to t and applying Green’s first identity, we obtain

1

2
‖∂tu+ σu‖2

L2(Ω+
ρ )

+
1

2
‖∂tu∗ + σu∗‖2

L2(Ω+
ρ )
−
∫ t

0
((∂τp+ σp), ∇(∂τu+ σu))Ω+

ρ
dτ

≤1

2
‖∂tu|t=0‖2L2(Ω+

ρ )
+

1

2
‖∂tu∗|t=0‖2L2(Ω+

ρ )
+

∫ t

0
(∂τf + σf, ∂τu+ σu)Ω+

ρ
dτ.

(3.14)

Here we have used the fact that u|t=0 = u∗|t=0 = 0. We then apply ∂t to the first
equation of (3.7b) and (3.7c) and eliminate the term with p∗. This gives

∂2
t p+ Λ1∂tp+ Λ2∇u+∇∂tu = 0.

Multiplying the above equation by ∂tp+ σp and integrating over Ω+
ρ yield

1

2

d

dt
‖∂tp+ σp‖2

L2(Ω+
ρ )

+ (∇(∂tu+ σu), (∂tp+ σp))Ω+
ρ

+ ((Λ1 − σI)∂tp, (∂tp+ σp))Ω+
ρ

= 0.
(3.15)

Since σ = σ̂, we have Λ1 = Λ2 = σI and Λ1 − σI = 0. Thus it follows from (3.15) that

1

2
‖∂tp+ σp‖2

L2(Ω+
ρ )

+

∫ t

0
(∇(∂τu+ σu), (∂τp+ σp))Ω+

ρ
dτ = ‖∂tp|t=0‖2L2(Ω+

ρ )
. (3.16)
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Adding (3.14) and (3.16) we get

1

2
‖∂tu+ σu‖2

L2(Ω+
ρ )

+
1

2
‖∂tu∗ + σu∗‖2

L2(Ω+
ρ )

+
1

2
‖∂tp+ σp‖2

L2(Ω+
ρ )

≤ 1

2
‖∂tu|t=0‖2L2(Ω+

ρ )
+

1

2
‖∂tu∗|t=0‖2L2(Ω+

ρ )

+‖∂tp|t=0‖2L2(Ω+
ρ )

+

∫ t

0
(∂τf + σf, ∂τu+ σu)Ω+

ρ
dτ.

It follows from the compatibility conditions in (3.7a)-(3.7b) and the initial conditions
(3.7f) that

∂tu|t=0 = f |t=0 = 0, ∂tu
∗|t=0 = 0, ∂tp|t=0 = 0. (3.17)

Applying the Cauchy inequality with ε, we have

max
0≤t≤T

(
‖∂tu+ σu‖L2(Ω+

ρ ) + ‖∂tp+ σp‖L2(Ω+
ρ ) + ‖∂tu∗ + σu∗‖L2(Ω+

ρ )

)
≤ C

∫ T

0
‖∂tf + σf‖L2(Ω+

ρ ) dt.

The following lemma will be used to prove the stability of truncated PML problem
(3.7) which can be directly obtained from [20, Lemma 3.2].

Lemma 3.3. It holds that

max
0≤t≤T

‖σu‖L2(Ω+
ρ ) ≤ max

0≤t≤T
‖∂tu+ σu‖L2(Ω+

ρ ).

The main result of this subsection is stated as follows.

Theorem 3.3. The solution (u, p, u∗, p∗) to the truncated PML problem (3.7) satisfies
the stability estimate

max
0≤t≤T

(
‖∂tu‖L2(Ω+

ρ ) + ‖∂tp‖L2(Ω+
ρ ) + ‖∂tu∗‖L2(Ω+

ρ ) + +‖∂tp∗‖L2(Ω+
ρ )

)
≤ C

∫ T

0
‖∂tf + σf‖L2(Ω+

ρ ) dt.

Proof. It follows from Lemma 3.3 that

max
0≤t≤T

‖∂tu‖L2(Ω+
ρ ) ≤ max

0≤t≤T
‖∂tu+ σu‖L2(Ω+

ρ ) + max
0≤t≤T

‖σu‖L2(Ω+
ρ )

≤ 2 max
0≤t≤T

‖∂tu+ σu‖L2(Ω+
ρ ).

Similarly, we obtain

max
0≤t≤T

‖∂tp‖L2(Ω+
ρ ) ≤ 2 max

0≤t≤T
‖∂tp+ σp‖L2(Ω+

ρ ).
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Using (3.7b) and Lemma 3.3,

max
0≤t≤T

‖∂tu∗‖L2(Ω+
ρ ) = max

0≤t≤T
‖σu‖L2(Ω+

ρ ) ≤ max
0≤t≤T

‖∂tu+ σu‖L2(Ω+
ρ ).

By (3.7c) and Lemma 3.3, one deduces

max
0≤t≤T

‖∂tp∗‖L2(Ω+
ρ ) ≤ 2 max

0≤t≤T
‖∂tp∗ + σp∗‖L2(Ω+

ρ )

= 2 max
0≤t≤T

‖∂tp+ σp‖L2(Ω+
ρ ).

The desired estimate of Theorem 3.3 follows from Theorem 3.2 and the above estimates.

4 Convergence of PML method

In this section, we shall prove convergence of the PML method. First, we discuss the
stability of an auxiliary problem for (ũ, p̃, ũ∗, p̃∗) over the PML layer Ω+

PML. Consider

∂tũ+ (σ + σ̂)ũ+ σũ∗ +∇ · p̃ = 0 in Ω+
PML × (0, T ),

∂tp̃
∗ = −∇ũ ∂tũ

∗ = −σũ in Ω+
PML × (0, T ),

∂tp̃+ Λ1p̃ = ∂tp̃
∗ + Λ2p̃

∗ in Ω+
PML × (0, T ),

ũ = 0 on (Γ+
R ∪ Γ0)× (0, T ),

ũ = ξ on Γ+
ρ × (0, T )

ũ|t=0 = p̃|t=0 = ũ∗|t=0 = p̃∗|t=0 in Ω+
PML.

(4.1)

Below we prove a trace lemma which will be used in proving the stability of the above
auxiliary problem (4.1).

Lemma 4.1. Let ξ ∈ H2(0, T ;H
1/2
0 (Γ+

ρ )). Then there exists a function ζ ∈ H2(0, T ;

H1(Ω+
PML)) such that ζ = 0 on Γ+

R × (0, T ), ζ = ξ on Γ+
ρ × (0, T ) and

‖∂2
t ζ‖L2(0,T ;L2(Ω+

PML)) ≤ Cρ
1/2‖∂2

t ξ‖L2(0,T ;H−1/2(Γ+
ρ )), (4.2)

‖∇∂tζ‖L2(0,T ;L2(Ω+
PML)) ≤ Cρ

−1/2‖∂tξ‖L2(0,T ;H
1/2
0 (Γ+

ρ ))
. (4.3)

Proof. Expand ξ(θ, t) as follows

ξ(θ, t) =
∞∑
n=1

ξn(t) sinnθ, ξn =
2

π

∫ π

0
ξ(θ, t) sinnθ dθ.

Let χn ∈ C∞[R, ρ] such that χn(ρ) = 1, 0 ≤ χn(r) ≤ 1, |χ′n| ≤ Cδ−1
n for r ∈ [R, ρ], and

supp(χn) ⊂ (ρ− δn, ρ), where δn = (ρ−R)/
√

1 + n2, n ∈ Z. Define the function

ζ(t, r, θ) :=
∞∑
n=1

ξn(t)χn(r) sinnθ.
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Then, it is clear that ζ = 0 on Γ+
R × (0, T ), ζ = ξ on Γ+

ρ × (0, T ). It is obvious that∫ T

0
‖∂2

t ζ‖2L2(Ω+
PML)

dt =

∫ T

0

∫ π

0

∫ ρ

R

∣∣∣ ∞∑
n=1

ξ
′′
n(t)χn(r) sinnθ

∣∣∣2r drdθdt
=

∫ T

0

π

2

∞∑
n=1

∫ ρ

R

∣∣ξ′′n(t)
∣∣2∣∣χn(r)

∣∣2r drdt
≤

∫ T

0

π

2

∞∑
n=1

∫ ρ

ρ−δn

∣∣ξ′′n(t)
∣∣2r drdt

≤
∫ T

0

π

2
ρ
∞∑
n=1

δn
∣∣ξ′′n(t)

∣∣2 dt
≤

∫ T

0
|ρ−R|‖∂2

t ξ‖2H−1/2(Γ+
ρ )
dt

≤ Cρ‖∂2
t ξ‖2L2(0,T ;H−1/2(Γ+

ρ ))
.

This proves (4.2). Similarly, one can prove (4.3).

Theorem 4.2 below describes the stability of the solution to the problem (4.1) in
Ω+
PML. It can be easily proved by combining Lemmas 3.2 and 4.1 together with the

Parseval identity. Since the proof is quite similar to [19, Theorem 4.3], we omit the
detailed proof.

Lemma 4.2. Let s1 = 1/T , (φ,Φ, φ∗,Φ∗) be the solution of the PML problem (4.1) in
Ω+
PML. Then

‖∂tΦ‖L2(0,T ;L2(Ω+
PML)) + ‖∇ · Φ‖L2(0,T ;L2(Ω+

PML))

≤ (1 + σT )2T
(
ρ‖∂2

t ξ‖L2(0,T ;H−1/2(Γ+
ρ )) + ρ−1‖∂tξ‖L2(0,T ;H

1/2
0 (Γ+

ρ ))

)
.

We also need an estimate for the convolution proved in [19, Lemma 5.2].

Lemma 4.3. Let g1, g2 ∈ L2(0, T ). For any Re(s) = s1 > 0, it holds that

‖g1 ∗ g2‖L2(0,T ) ≤ es1t
(

max
−∞<s2<+∞

|L (g1)(s1 + is2)|
)
‖g2‖L2(0,T ). (4.4)

The following result follows directly from the proof of Lemma 2.4.

Lemma 4.4. Given t ≥ 0 and ω ∈ L2(0, T ;H
1/2
0 (Γ+

R)) with the initial condition ω(·, 0) =
0, it holds that

−Re

∫ t

0
e−2s1τ

〈
T

(∫ τ

0
ω(x, η) dη

)
, ω(x, η)

〉
dτ ≥ 0.

Now, we are ready to verify the exponential convergence of the time-domain PML
method.
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Theorem 4.1. Let (u, p) and (û, p̂, û∗, p̂∗) be the solution of the problems (3.4) and (3.3)
with s1 = T−1, respectively. Then

max
0≤t≤T

(
‖u− û‖L2(Ω+

R) + ‖p− p̂‖L2(Ω+
R)

)
≤ C (1 + σT )2ρT 3/2e

−ρσ̂(ρ)
(

1−R
2

ρ2

)
‖∂2

t û‖L2(0,T ;H−1/2(Γ+
R))

+C (1 + σT )2ρ−1T 3/2e
−ρσ̂(ρ)

(
1−R

2

ρ2

)
‖∂tû‖L2(0,T ;H

1/2
0 (Γ+

R))
,

where C > 0 is a constant.

Proof. By (3.4) and (3.7a)-(3.7b), it follows that

∂(u− û)

∂t
+∇ · (p− p̂) = 0 in Ω+

R × (0, T ), (4.5)

∂(p− p̂)
∂t

+∇(u− û) = 0 in Ω+
R × (0, T ). (4.6)

Multiplying both sides of (4.5) by a test function v ∈ XR, using the DtN boundary
condition (3.6) and Green’s first formula, we obtain(∂(u− û)

∂t
, v
)

Ω+
R

− (p− p̂, ∇v)Ω+
R
−
〈
T
(∫ t

0
(u− û) dτ

)
, v
〉

Γ+
R

=
〈
p̂ · x̂+ T

(∫ t

0
û dτ

)
, v
〉

Γ+
R

.

(4.7)

Define

ω := u− û, ω∗ :=

∫ t

0
u− û dτ.

Taking v = ω in (4.7) and applying (4.7) with p− p̂|t=0 = 0, we have

1

2

d

dt

(
‖ω‖2

L2(Ω+
R)

+ ‖∇ω∗‖2
L2(Ω+

R)

)
− 〈T (ω∗), ω〉Γ+

R
=
〈
p̂ · x̂+ T

(∫ t

0
û dτ

)
, ω
〉

Γ+
R

. (4.8)

Denote the spaces

X(0, T ; Ω+
R) :=

{
v ∈ L∞(0, T ;L2(Ω+

R)), v∗ =

∫ t

0
v dt ∈ L∞(0, T ;H1(Ω+

R))
}
,

Y (0, T ; Γ+
R) :=

{
φ :

∫ T

0
〈φ, v〉Γ+

R
dt <∞, ∀ v ∈ X(0, T ; Ω+

R)
}
.

It is clear that X(0, T ; Ω+
R) and Y (0, T ; Γ+

R) are Banach spaces with the norms, respec-
tively

‖v‖X(0,T ;Ω+
R) = sup

0≤t≤T

(
‖v‖2

L2(Ω+
R)

+ ‖∇v∗‖2
L2(Ω+

R)

)1/2
, (4.9)

‖φ‖Y (0,T ;Γ+
R) = sup

v∈X(0,T ;Ω+
R)

∣∣∣ ∫ T0 〈φ, v〉Γ+
R
dt
∣∣∣

‖v‖X(0,T ;Ω+
R)

. (4.10)
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Multiplying both sides of (4.8) by e−2s1t and then integrating from 0 to t. Since ω|t=0 =
ω∗|t=0 = 0, taking the real part of the resulting identity and using Lemma 4.4 and trace
theorem, we obtain

‖e−s1tω‖2
X(0,T ;Ω+

R)
≤ C

∥∥∥e−s1t(p̂ · x̂+ T
( ∫ t

0 û dτ
))∥∥∥

Y (0,T ;Γ+
R)
‖e−s1tω‖Y (0,T ;Γ+

R)

≤ C‖e−s1t
(
p̂ · x̂+ T

( ∫ t
0 û dτ

))∥∥∥
Y (0,T ;Γ+

R)
‖e−s1tω‖X(0,T ;Ω+

R).

Hence, by taking s1 → 0

sup
0≤t≤T

(
‖ω‖2

L2(Ω+
R)

+ ‖∇ω∗‖2
L2(Ω+

R)

)
≤ C

∥∥∥p̂ · x̂+ T
(∫ t

0
û dτ

)∥∥∥
Y (0,T ;Γ+

R)
. (4.11)

It is clear that T
( ∫ t

0 û dτ
)

= − ˜̂p · x̂ on Γ+
R, where ˜̂p defines the PML extension of p̂.

Hence, in order to estimate
∥∥∥p̂ · x̂+ T

( ∫ t
0 û dτ

)∥∥∥
Y (0,T ;Γ+

R)
, it suffices to estimate ‖(p̂−

˜̂p) · x̂‖Y (0,T ;Γ+
R). Since any function v ∈ X(0, T ; Ω+

R) can be extended into Ω+
PML× (0, T )

such that v = 0 on Γ+
ρ × (0, T ) and ‖v‖X(0,T ;Ω+

R) ≤ C‖v‖X(0,T ;Ω+
PML), it follows by (4.10)

that

‖(p̂− ˜̂p) · x̂‖Y (0,T ;Γ+
R) = sup

v∈X(0,T ;Ω+
R)

∣∣∣ ∫ T0 〈φ, v〉Γ+
R
dt
∣∣∣

‖v‖X(0,T ;Ω+
R)

≤ sup
v∈X(0,T ;Ω+

R)

∣∣∣ ∫ T0 〈φ, v〉Γ+
R
dt
∣∣∣

‖v‖X(0,T ;Ω+
PML)

.

(4.12)

For any v ∈ X(0, T ; Ω+
PML) it has that v = 0 on Γ+

ρ , and then, by divergence theorem,∫ T

0
〈(p̂− ˜̂p) · x̂, v〉Γ+

R
dt =

∫ T

0

[
(∇ · (p̂− ˜̂p), v)Ω+

PML
+ (p̂− ˜̂p, ∇v)Ω+

PML

]
dt. (4.13)

Now, it follows that, for any v ∈ X(0, T ; Ω+
PML), by the definition of v∗ and the initial

condition p̂− ˜̂p|t=0 = 0,∣∣∣ ∫ T

0
(p̂− ˜̂p, ∇v)Ω+

PML
dt
∣∣∣ = (p̂− ˜̂p, ∇v∗)Ω+

PML

∣∣∣T
0
−
∫ T

0
(∂t(p̂− ˜̂p), ∇v∗)Ω+

PML
dt

≤ 2 max
0≤t≤T

‖∇v∗‖L2(Ω+
PML)

∫ T

0
‖∂t(p̂− ˜̂p)‖L2(Ω+

PML) dt.

(4.14)

Combining (4.12), (4.13), (4.14) and using the Cauchy-Schwartz inequality, we have

‖(p̂− ˜̂p) · x̂‖Y (0,T ;Γ+
R) ≤ C

∫ T

0
‖∇ · (p̂− ˜̂p)‖L2(Ω+

PML) + ‖∂t(p̂− ˜̂p)‖L2(Ω+
PML) dt.

25



This together with (4.11) leads to

sup
0≤t≤T

(
‖ω‖2

L2(Ω+
R)

+ ‖∇ω∗‖2
L2(Ω+

R)

)
≤ C

∫ T

0
‖∇ · (p̂− ˜̂p)‖L2(Ω+

PML) + ‖∂t(p̂− ˜̂p)‖L2(Ω+
PML) dt.

Let (˜̂u, ˜̂p, ˜̂u∗, ˜̂p∗) be the PML extension of (û, p̂, û∗, p̂∗). Then, (û− ˜̂u, p̂− ˜̂p, û∗− ˜̂u∗, p̂∗− ˜̂p∗)
satisfies the problem (4.1) with ξ = −˜̂u|Γ+

ρ
. It follows by Theorem 4.2 and Cauchy-

Schwartz inequality that

sup
0≤t≤T

(
‖ω‖2

L2(Ω+
R)

+ ‖∇ω∗‖2
L2(Ω+

R)

)
≤ C(1 + σT )2T 3/2

(
ρ‖∂2

t
˜̂u‖L2(0,T ;H−1/2(Γ+

ρ )) + ρ−1‖∂t ˜̂u‖L2(0,T ;H
1/2
0 (Γ+

ρ ))

)
.

(4.15)

Now we estimate each term on the right hand side of the above inequality. Since ˜̂u is
the PML extension of û in the time-domain for r > R, it can be written as

˜̂u(r, θ, t) =
∞∑
n=1

[
L −1

(K ′n(sr̃)

Kn(sR)

)
∗ ûn(R, t)

]
sinnθ,

where ûn(R, t) = 2
π

∫ π
0 û(R, θ, t) sinnθ dθ. Since ûn(R, 0) = 0, we have

∂t ˜̂u =
∞∑
n=1

[
L −1

(K ′n(sr̃)

Kn(sR)

)
∗ ∂tûn(R, t)

]
sinnθ.

Then, since sρ̃ = sρ+ σ̂ρ, by Lemmas C.2 and 4.3, we know that for any s1 > 0

‖∂t ˜̂u‖2
L2(0,T ;H

1/2
0 (Γ+

ρ ))
=

∫ T

0
‖∂tũ‖2

H
1/2
0 (Γ+

ρ ))
dt

=

∫ T

0

π

2
ρ
∞∑
n=1

(1 + n2)
1
2

[
L −1

(
K ′n(sρ̃)

Kn(sR)

)
∗ ∂tûn(R, t)

]2

dt

=
π

2
ρ

∞∑
n=1

(1 + n2)
1
2

∥∥∥L −1

(
K ′n(sρ̃)

Kn(sR)

)
∗ ∂tûn(R, t)

∥∥∥2

L2(0,T )

≤ π

2
ρ e2s1T

∞∑
n=1

(1 + n2)
1
2 max
−∞<s2<+∞

∣∣∣∣K ′n(sρ̃)

Kn(sR)

∣∣∣∣2 ‖∂tûn(R, t)‖2L2(0,T )

≤ ρ

R
e2s1T max

−∞<n<+∞
max

−∞<s2<+∞

∣∣∣∣K ′n(sρ̃)

Kn(sR)

∣∣∣∣2 ‖∂tû‖2L2(0,T ;H
1/2
0 (Γ+

R))

≤ ρ

R
e2s1T e

−2ρσ̂(ρ)
(

1−R
2

ρ2

)
‖∂tû‖2

L2(0,T ;H
1/2
0 (Γ+

R))
.
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This implies that

‖∂t ˜̂u‖L2(0,T ;H
1/2
0 (Γ+

ρ ))
≤ Ce−ρσ̂(ρ)

(
1−R

2

ρ2

)
‖∂tû‖L2(0,T ;H

1/2
0 (Γ+

R))
. (4.16)

Analogously, we obtain

‖∂2
t
˜̂u‖
L2(0,T ;H

−1/2
0 (Γ+

ρ ))
≤ Ce−ρσ̂(ρ)

(
1−R

2

ρ2

)
‖∂2

t û‖L2(0,T ;H−1/2(Γ+
R)). (4.17)

Combining (4.15) with (4.16) and (4.16), we complete the proof.

Remark 4.1. Theorem 4.1 illustrates that the exponential convergence of error between
the PML solution and the original solution can be achieved by enlarging the absorbing
parameter σ or the thickness ρ−R of the PML layer .

Remark 4.2. We remark that the results in this paper can be easily extended to the
Neumann boundary condition imposed on Γ0. In the Neumann case, one should expand
the solutions in terms of cosine functions in the Laplace domain and change correspond-
ingly the solution spaces. However, we don’t know how to extend the approach to the
case of the impedance boundary condition.

5 Numerical implementation

In this section, we will present two numerical examples to demonstrate the convergence
of the PML method. The PML equations are discretized by the finite element method
in space and finite difference in time. The computations are carried out by the software
FreeFEM.

Multiply (3.7a)-(3.7c) with test functions v ∈ H1
0 (Ω+

ρ ), q ∈ L2(Ω+
ρ ), v∗ ∈ H1

0 (Ω+
ρ ),

q∗ ∈ L2(Ω+
ρ ), respectively. The weak formulation of system (3.7) reads as follow: find u ∈

L2(0, T ;H1
0 (Ω+

ρ )), p ∈ L2(0, T ;L2(Ω+
ρ )), u∗ ∈ L2(0, T ;L2(Ω+

ρ )), p∗ ∈ L2(0, T ;L2(Ω+
ρ ))

such that

(∂tũ, v)Ω+
ρ

+ ((σ + σ̂)ũ, v)Ω+
ρ

+ (σũ∗, v)Ω+
ρ
− (p̃,∇v)Ω+

ρ
= (f, v)Ω+

ρ
, (5.1a)

(∂tp̃, q)Ω+
ρ

+ (Λ1p̃, q)Ω+
ρ
− (∂tp̃

∗, q)Ω+
ρ
− (Λ2p̃

∗, q)Ω+
ρ

= 0, (5.1b)

(∂tũ
∗, v∗)Ω+

ρ
− (σũ, q∗)Ω+

ρ
= 0, (5.1c)

(∂tp̃
∗, q∗)Ω+

ρ
+ (∇ũ, q∗)Ω+

ρ
= 0, (5.1d)

ũ = 0 on ∂D ∪ Γ0 × (0, T ), (5.1e)

ũ = 0 on Γ+
ρ × (0, T ), (5.1f)

ũ|t=0 = p̃|t=0 = ũ∗|t=0 = p̃∗|t=0 = 0 in Ω+
ρ . (5.1g)

Solutions of the weak form (5.1) will be numerically solved by an implicit finite difference
in time and a finite element method in space. Let {t0, t1, ..., tN} be a partition of the
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time interval [0, T ] and δnt = tn+1 − tn be the n-th time-step size. Let Mh be a regular
triangulation of Ω+

ρ . We assume the elements K ∈Mh may have one curved edge align
with Γ0∪Γ+

ρ so that Ω+
ρ = ∪K∈Mh

K. As usual, we shall use the most simple continuous
finite elements in the computation. The solutions u, p, u∗ and p∗ will be approximated in
the finite element space P1 for piecewise linear functions, namely, the standard Taylor-
Hood finite element for the velocity-pressure variables, satisfying the inf-sup condition.
Denote by P0 the finite element space for piecewise constant functions. Define the spaces
Lh, Ṽh, Vh and Wh as

Lh = {σ ∈ L2(Ω+
ρ ) | ∀K ∈ Th, σ|K ∈ P0},

Ṽh = {u ∈ H1
? (Ω+

ρ ) | ∀K ∈ Th, u|K ∈ P1},
Vh = {u ∈ H1(Ω+

ρ ) | ∀K ∈ Th, u|K ∈ P1},
Wh = {p ∈ L2(Ω+

ρ ) | ∀K ∈ Th, σ|K ∈ P1}.

Let (unh, p
n
h, u
∗n
h , p

∗n
h ) ∈ Ṽh×(Wh)2×Vh×(Wh)2 be an approximation of u(tn), p(tn), u∗(tn)

and p∗(tn) at the time point tn. The approximated solution at tn+1, which we denote as
(un+1
h , pn+1

h , u∗n+1
h , p∗n+1

h ) ∈ Ṽh × (Wh)2 × Vh × (Wh)2, will be obtained by the following
typical temporal scheme:

Figure 2: Geometry of the computational domain where {x ∈ Ω : R < |x| < ρ} is the
PML layer.
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(
ũn+1
h − ũnh
δnt

, v

)
Ω+
ρ

+
(
(σ + σ̂)ũn+1

h , v
)

Ω+
ρ

+
(
σũ∗n+1

h , v
)

Ω+
ρ
−
(
p̃n+1
h ,∇v

)
Ω+
ρ

=
(
fn+1, v

)
Ω+
ρ
,

(
p̃n+1
h − p̃nh
δnt

, q

)
Ω+
ρ

+
(
Λ1p̃

n+1
h , q

)
Ω+
ρ
−
(
∂tp̃
∗n+1
h , q

)
Ω+
ρ
−
(
Λ2p̃

∗n+1
h , q

)
Ω+
ρ

= 0,

(
ũ∗n+1
h − ũ∗nh

δnt
, v∗

)
Ω+
ρ

−
(
σũn+1

h , q∗
)

Ω+
ρ

= 0,

(
p̃∗n+1
h − p̃∗nh

δnt
, q∗

)
Ω+
ρ

+
(
∇ũn+1

h , q∗
)

Ω+
ρ

= 0,

where fn+1 = f(tn+1) and the Dirichlet boundary condition is imposed on ∂Ω+
ρ .

In the following numerical examples, we suppose D = ∅. The local rough surface is
given by

h(x) =


0, x ∈ (−∞,−π

4 ),
0.3 sin(4x), x ∈ [−π

4 ,
π
4 ],

0, x ∈ (π4 ,∞).

Example 1 We consider a time harmonic source term over the local rough surface.
In the computation, we take R = 2, ρ = 3 and set σ = σ̂ = 10. A mesh of 9245 vertices,
510 edges and 18128 triangles is adopted and the terminal time is set at t = 8. The time
harmonic source is supposed to be given by

f(x, t) :=
e
−|x−x0|

2

2η

√
2π η

sin(2t), η = 0.1,

(a) t = 2 (b) t = 4 (c) t = 8

Figure 3: Numerical solutions excited by a point source over a local rough surface at
time t = 2, 4, 8, respectively.

where the excitation frequency is ω = 2 and the location of source is at x0 = (0, 0.5). In
Figure 3, we show the numerical solution at t = 2, 4, 8, respectively. It is observed that
the waves are almost attenuated in the PML layer without reflections from the interface
between the physical domain and PML layer.
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To validate convergence of the PML method, we compute the relative error

Erel :=
‖unum − uexa‖L∞(0,T ;L∞(Ω+

ρ ))

‖uexa‖L∞(0,T ;L∞(Ω+
ρ ))

,

where uexa represents the numerical solution with relatively larger absorbing parameters
σ, σ̂ and with a larger thickness ρ−R of the PML layer. Note that analytical solutions
are not available in general.

Figure 4: Relative error Erel versus PML absorbing parameter σ for fixed PML thickness
ρ−R = 1. The vertical axis is logarithmically scaled.

Figure 5: Relative error Erel versus PML thickness ρ − R for fixed PML absorbing
parameter σ = 25. The vertical axis is logarithmically scaled.

Figures 4 and 5 show the decaying behavior of the relative error Erel as the PML
absorbing parameter σ or the PML thickness ρ − R increases. In Figure 4 we take the
PML absorbing parameter σ varying between 5 and 25 and fix the PML layer thickness
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at ρ−R = 1. Since the vertical axis is logarithmically scaled, the dashed lines indicate
that the relative error Erel decays exponentially as σ increases for a fixed layer thickness.
In Figure 5 we display the relative error versus PML thickness ρ−R for fixed absorbing
σ = 25. We take the PML thickness ρ − R ranging from 2.6 to 4. It is obvious that
relative error Erel decays exponentially as ρ−R increases for a fixed absorbing parameter.

Example 2 In this example, we consider a non-harmonic source term, that is not
compactly supported with respect to the time-variable. We take R = 2, ρ = 3.4 and set
σ = σ̂ = 25. A mesh of 11502 vertices, 553 edges and 22599 triangles is applied and the
final time is set at t = 10. The source is of the form

f(x, t) :=
e
−|x−x0|

2

2η

√
2π η

t, η = 0.1,

which is located at (0, 0.5). We present in Figure 6 the numerical solutions at time
t = 3, 7, 10, respectively. It shows that the source is excited all the time and rare
reflection occurs at the interface Γ+

R.

(a) t = 3 (b) t = 7 (c) t = 10

Figure 6: Numerical solutions for a point source over a local rough surface at time
t = 3, 7, 10, respectively.

Figures 7 and 8 show the convergence of the relative error Erel versus one of the two
PML parameters σ and ρ − R. In Figure 7, we present the relative error Erel versus
the PML absorbing parameter σ changing from 5 to 25 for the fixed PML thickness
ρ−R = 1.4. As in Example 1, we observe that Erel decays exponentially as σ increases.
In Figure 8 we display the relative error versus the PML thickness ρ − R for a fixed
absorbing σ = 25. We take the PML thickness ρ − R changing from 2.4 to 4. It is
obvious that the relative error Erel decays exponentially as ρ−R increases.

6 Conclusion

In this paper we study the PML-method to the time domain acoustic scattering problem
over a locally rough surface. We proved well-posedness of the scattering problem and
the PML formulation. The long time stability of the PML formulations is obtained by
the energy method. The exponential convergence of the PML solution is proved and it
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Figure 7: Relative error Erel versus PML absorbing parameter σ for fixed PML thickness
ρ−R = 1.4. The vertical axis is logarithmically scaled.

can be realized by either enlarging the PML absorbing parameter or the thickness of the
layer. The convergence results are verified by two numerical examples.
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Figure 8: Relative error Erel versus PML thickness ρ − R for fixed PML absorbing
parameter σ = 25. The vertical axis is logarithmically scaled.

Appendix A Laplace transform

For any s = s1 + is2 with s1 > 0, s2 ∈ R, we define the Laplace transform of u as

uL(s) = L (u)(s) :=

∫ ∞
0

e−stu(t) dt.

Some properties of the Laplace transform and its inversion are listed as follows:

L (
du

dt
) = suL − u(0), (A.1)

L (
d2u

dt2
) = s2uL − su(0)− du

dt
(0), (A.2)∫ t

0
u(τ) dτ = L −1(s−1uL(s)). (A.3)

It can be verified from the inverse Laplace transform that

u(t) = F−1(es1tL (u)(s1 + is2)).

where F−1 denotes the inverse Fourier transform with respect to s2.
Below is the Parseval or Plancherel identity for the Laplace transform (see [22, equa-

tion (2.46)])

Lemma A.1. (Parseval or Plancherel Identity) If uL = L (u) and vL = L (v),then

1

2π

∫ +∞

−∞
uL(s) vL(s) ds2 =

∫ ∞
0

e−2s1tu(t) v(t) dt, (A.4)

for all s1 > s0, where s0 is abscissa of convergence for Laplace transform of u and v.
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The following lemma refers to [35, Theorem 43.1].

Lemma A.2. let ω̆(s) denote a holomorphic function in the half complex plane Re(s) >
σ0 for some σ0 ∈ R, valued in the Banach space E. The following conditions are equive-
lent:

(1) there is a distribution ω ∈ D′+ whose Laplace transform is equal to ω̆(s), where D′+(E)
is the space of distributions on the real line which vanish identically in the open negative
half-line;

(2) there is a σ1 with σ0 ≤ σ1 < ∞ and an integer m ≥ 0 such that for all complex
numbers s with Re(s) > σ1 it holds that ‖ω̆(s)‖E ≤ C(1 + |s|)m.

Appendix B Sobolev spaces

For a bounded domain D with Lipschitz continuous boundary ∂D, define the Sobolev
space

H(div, D) := {u ∈ L2(D) : ∇ · u ∈ L2(D)}.

which is a Hilbert space with the norm

‖u‖H(div, D) =
(
‖u‖2L2(D) + ‖∇ · u‖2L2(D)

)1/2
.

The first Green formula takes the form

(∇ · u, v)D + (u, ∇v)D = 〈u · n, v〉∂D for all u, v ∈ H(div, D) (B.1)

where (·, ·)D and 〈·, ·〉∂D denote the L2-inner product on D and the dual pairing product
between H−1/2(∂D) and H1/2(∂D), respectively.

Let Γ+
R be defined as in Section 2. For any u ∈ C∞0 (Γ+

R), we have the Fourier series
expansion

u(R, θ) =
∞∑
n=1

an sinnθ, an =
2

π

∫ π

0
u(R, θ) sinnθ dθ.

Define the trace function space Hp
0 (Γ+

R) as

Hp
0 (Γ+

R) :=

u ∈ L2(Γ+
R) : ‖u‖Hp(Γ+

R) :=

( ∞∑
n=1

(1 + n2)p|an|2
)1/2

< +∞.

 .

Appendix C Modified Bessel functions

We look for solutions to the Helmholz equation

∆u(x)− s2u(x) = 0,
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in the form of

u(x) = y(sr)einθ, n = 0,±1,±2, · · · ,

where (r, θ) are cylindrical coordinates. It is obvious that y(r) is a solution of the
ordinary equation

d2y

dr2
+

1

r

dy

dr
−
(

1 +
n2

r2

)
y = 0.

The modified Bessel functions of order ν, which we denote by Kν(z), are solutions to
the differential equation

z2d
2y

dz2
+ z

dy

dz
− (z2 + ν2)y = 0.

Kν(z) satisfies the following asymptotic behavior as |z| → ∞

Kν(z) ∼
( π

2z

)1/2
e−z.

The following estimates for the modified Bessel function Kν(z) have been proved
in [19, Lemma 2.10 and 5.1] .

Lemma C.1. Let s = s1 + is2 with s1 > 0, s2 ∈ R. It holds that

−Re
(K ′n(sR)

Kn(sR)

)
≥ 0.

Lemma C.2. Suppose ν ∈ R, s = s1 + is2 with s1 > 0, s2 ∈ R, ρ1 > ρ2 > 0 and τ > 0.
It holds that

|Kν(sρ1 + τ)|
|Kν(sρ2)|

≤ e−τ(1−ρ22/ρ21).
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