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Abstract: We analyze a numerical method to solve the time-dependent linear Pauli equation in three space
dimensions. The Pauli equation is a semi-relativistic generalization of the Schrödinger equation for 2-spinors
which accounts both for magnetic fields and for spin, with the latter missing in preceding numerical work on
the linear magnetic Schrödinger equation. We use a four term operator splitting in time, prove stability and
convergence of the method and derive error estimates as well as meshing strategies for the case of given time-
independent electromagnetic potentials, thus providing a generalization of previous results for the magnetic
Schrödinger equation.
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1 Introduction

Relativistic quantummechanics is appropriate for the dynamics of “fast” charged particles (e.g., electrons mov-
ing close to speed of light c). In the fully relativistic regime the Dirac equation with electromagnetic potentials
is the appropriate model, where the unknown is a 4-spinor including both spin and antimatter in a quantum
field theory approach [7, 19]. In the fully non-relativistic (“Newtonian”) c →∞ regime one uses the standard
Schrödinger equation with electric potential for the scalar wave function. In the intermediate semi-relativistic
(“Post-Newtonian”) regime of a first-order theory, i.e., keeping the corrections at O( 1c ), the appropriate model
is the Pauli equation for the 2-spinor. It is the simplest available theory that retains relativistic effects of both
electromagnetism and spin, in contrast to the scalar magnetic Schrödinger equation where spin is completely
absent in the model. This hierarchy of approximations of the Dirac equation is laid out, e.g., in [13, 14, 16, 19]
and in [13, 14, 16] specifically also for the self-consistent case of coupling to the Maxwell equations and their
magnetostatic approximations. In [16] the related Pauli-Poisson model is discussed in which the magnetic field
is linear and the electric field is self-consistent. This model can formally be justified in a weak coupling limit
from the linear N-body Pauli equation our numerical scheme applies and rigorous proofs of convergence are
subject to follow-up work.

The Pauli equation contains a magnetic Schrödinger operator and a so-called Stern–Gerlach term that
couples the magnetic field to the spin operators; the time dependent version reads

iℏ∂tu = [
1
2m(−iℏ∇ −

q
c A)

2
+ qϕ − ℏq2mc σ ⋅ B]u. (1.1)
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Here, u ∈ ℂ2 is a 2-spinor (u1 , u2)T representing quantummechanical spin up and spin down states, A ∈ ℝ3 and
ϕ ∈ ℝ denote the magnetic vector potential and the electric scalar potential, respectively, which are related to
the electromagnetic fields by

E = −∇ϕ − ∂tA and B = ∇ × A.

Moreover, i ∈ ℂdenotes the imaginary unit, i.e., i2 = −1, σ = (σ1 , σ2 , σ3) is a vector collecting the 3 Paulimatrices
and the product σ ⋅ B is a shorthand notation for the matrix

σ ⋅ B =
3
∑
j=1

Bjσj = (
B3 B1 − iB2

B1 + iB2 −B3
) ∈ ℂ2×2 .

Finally, m and q are the associated mass and charge, while the positive constants ℏ and c are the scaled Planck
constant and the speed of light respectively. The above rendition of the Pauli equation retains all of the gauge
freedom of electrodynamics and is semi-relativistic in the sense that it is suitable for medium high velocities
relative to the speed of light, cf. [13, 14]. From the complex valued 2-spinor solution u of (1.1) the physical quan-
tities of interest are computed as quadratic quantities, e.g., the position density n = |u|2 = u ⋅ u and the current
density¹ which contains (divergence free) extra terms to the standard definition for the Schrödinger equations
(cf. [17]),

J = − iℏ2m (u ⋅ ∇u − u ⋅ ∇u) −
q
mc |u|

2A − |q|ℏ2m ∇ × (uσu). (1.2)

Lastly, we note the continuity equation connecting n and J as well as conservation of total mass and energy:

∂tn + ∇ ⋅ J = 0,

mtot = m ∫
ℝ3

n dx = m ∫
ℝ3

|u|2 dx,

E =
1
2m ∫
ℝ3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(−iℏ∇ − qc A)u

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
dx + q ∫

ℝ3

ϕ|u|2 dx − ℏq2mc ∫
ℝ3

(σ ⋅ B)u ⋅ u dx.

In this paper, we propose and analyze an exponential splitting method [15] for the Pauli equation (1.1). The
scheme is an extension of analogous approaches developed for the scalar magnetic Schrödinger equation [5,
9, 12]. Our method consists of a four-term operator splitting, where the three operator contributions appear-
ing in the magnetic Schrödinger equation (kinetic, potential, advective) are supplemented with a fourth term
accounting for spin. The presence of this additional contribution determines a bidirectional coupling of the two
equations for the two components of u.

The remainder of this paper is organized as follows: The proposed method is described in Section 2; In
Section 3 we study stability (Theorem 3.4) and convergence (Theorem 3.5) of the method: The applicability of
the scheme is demonstrated in Section 4 with numerical experiments.

2 A Four-Term Exponential Splitting Scheme

We first rewrite the Pauli equation (1.1) into a non-dimensionalized form²

iε∂tu = [
1
2 (−iε∇ − A)

2 −
ε
2σ ⋅ B + ϕ]u. (2.1)

The rescaled magnetic field and potentials (not relabeled) are also dimensionless. For the purpose of numerics
we pose the problem not in whole spaceℝ3, but on the space-time box ΩT := Ω × (0, T), where Ω := ∏3ℓ=1[0, Lℓ]

1 In (1.2), u ⋅ ∇u = u1∇u1 + u2∇u2 ∈ ℝ3 and u∇u = u1∇u1 + u2∇u2 ∈ ℝ3, while uσu ∈ ℝ3 denotes the vector with components
(uσu)j = uσju for all j = 1, 2, 3.
2 The dimensionless scaling parameter is ε = ℏ

mcLI , where LI is a suitable reference length. The potentials A→
A
AI
and ϕ → ϕ

ϕI are
scaled by the factors AI = mc

q and ϕI = cAI .
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is a rectangular cuboid, and T > 0. This does not introduce errors if u has compact support inside Ω, which we
assume to be the case. We further choose periodic boundary conditions on Ω for u(x, t) and a regular initial
condition u(x, 0) = u0(x), x ∈ Ω, where u0 ∈ C∞(Ω)2 is periodic.

Imposing the Coulomb gauge, i.e., requiring that ∇ ⋅ A = 0, and writing individually the two equations
in (2.1), we obtain the system

iε∂tu1 = [−
ε2

2 ∇
2 + iεA ⋅ ∇ + (12 |A|

2 + ϕ − ε2B3)]u1 + [−
ε
2B1 +

iε
2 B2]u2 ,

iε∂tu2 = [−
ε2

2 ∇
2 + iεA ⋅ ∇ + (12 |A|

2 + ϕ + ε2B3)]u2 + [−
ε
2B1 −

iε
2 B2]u1 . (2.2)

With the operators

A =
iε
2 ∇

2 , B1 = −
i
ε(

1
2 |A|

2 + ϕ − ε2B3), B2 = −
i
ε(

1
2 |A|

2 + ϕ + ε2B3),

C = A ⋅ ∇, D1 =
i
2B1 +

1
2B2 , D2 =

i
2B1 −

1
2B2 ,

A = (
A 0
0 A
) , B = (

B1 0
0 B2
) , C = (

C 0
0 C
) , D = (

0 D1
D2 0

) ,

we can rewrite problem (2.2) as
∂tu = (A +B + C +D)u. (2.3)

Using the standard semigroup notation, we denote its exact solution by

u(x, t) = e(t−t󸀠)(A+B+C+D) u(x, t󸀠) for all x ∈ Ω and t ≥ t󸀠 ≥ 0.

The Pauli operator is split into four contributions: the kinetic part (A), which involves the Laplace operator, the
potential part (B), which collects the scalar terms of the potentials and the diagonal part of the spin term, the
advection part (C), which includes the convection due the magnetic vector potential, and the coupling part (D),
peculiar of the Pauli equation, which collects the off-diagonal part of the spin term and in general determines
the coupling of the two components of the spinor.

In view of this decomposition, the idea is to approach the time discretization of the Pauli equation with
a four-term operator splitting method in analogy with the three-term splitting method proposed in [5, 9, 12] for
the scalar magnetic Schrödinger equation: Given an integer N > 0, we consider a uniform partition of the time
interval [0, T]with time-step size Δt := T

N , i.e., tn := nΔt for all n = 0, . . . , N , and denote by U
n(x) the numerical

approximation of u(x, tn). We consider the Lie exponential splitting scheme

Un+1 = eΔtD eΔtC eΔtA eΔtB Un ,

so in the implementation, this method needs to solve each of the four steps separately to advance the state by
one time-step Δt. Extensions of the results in this paper to higher-order splittingmethods such as Strang splitting
are straightforward. For special cases, e.g., for time-independent potentials, significant computational cost can
be saved in some of the steps by pre-computing the (then analytical) solution outside of the solution step loop
for all of the intended simulation time.

For the spatial discretization of Ω := ∏3ℓ=1[0, Lℓ], for Nℓ ≥ 2 and ℓ = 1, 2, 3, let Δxℓ =
Lℓ
Nℓ . We define the grid

size as |Δx|, where Δx = (Δx1 , Δx2 , Δx3). The set of grid points {xj} then consists of points xj = ( j1L1N1
, j2L2N2

, j3L3N3
),

where j = (j1 , j2 , j3)with 0 ≤ jℓ ≤ Nℓ−1.Wedenote the values of a periodic function v : Ω → ℂ2 at the grid points
as

vj1 ,j2 ,j3 := v(xj) = v(
j1L1
N1

, j2L2N2
, j3L3N3
).

Some steps of the splitting scheme will be performed in Fourier space. To that end, for a given periodic
function v : Ω → ℂ2, we denote by v̂k1 ,k2 ,k3 its discrete Fourier transform computed via FFT, i.e.,

v̂k1 ,k2 ,k3 =
1

N1N2N3

N1−1
∑
j1=0

N2−1
∑
j2=0

N3−1
∑
j3=0

vj1 ,j2 ,j3 e
−2πi∑3ℓ=1 jℓkℓ

Nℓ .

In the following algorithm, we summarize the structure of the proposed exponential time splitting scheme.
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Algorithm 2.1 (Lie Splitting Scheme for the Pauli Equation). Input. U0 ≈ u0.
Loop. For each n = 0, . . . , N − 1, iterate the following steps:
(i) Potential step: Compute Un∗ = eΔtB Un in physical space;
(ii) Kinetic step: Compute Un∗∗ = eΔtA Un∗ in Fourier space;
(iii) Advection step: Compute Un∗∗∗ = eΔtC Un∗∗ in Fourier space;
(iv) Coupling step: Compute Un+1 = eΔtD Un∗∗∗ in physical space.
Output. UN(xj) ≈ u(xj , tN).

The numerical methods used to solve the individual ODEs as well as the order of solving the steps are in prin-
ciple arbitrary but since both the kinetic and advection steps can be efficiently solved in Fourier space, some
computational cost can be saved by arranging them such that only one Fourier and inverse Fourier transform
step is required per time step. We include a brief discussion of each individual step and possible numerical
approaches in Appendix A.

3 Analysis of the Method

In this section we generalize the approach of [2, 9, 12] to study the stability and convergence of the splitting
scheme for the Pauli equation described in Section 2. The results are based on using the methods suggested in
Appendix A for the individual ODEs.

3.1 Stability Analysis

Consider the discrete ℓ2 norm and the L2 norm for functions given by

‖U i‖2ℓ2 = (
3
∏
ℓ=1

Lℓ
Nℓ
)

N1−1
∑
j1=0

N2−1
∑
j2=0

N3−1
∑
j3=0
|Ui(xj)|2 ,

‖Ui‖2L2 = ∫
Ω

|Ui(x)|2dx,

where U i denotes the vector of coefficients Ui(xj) = Ui(
j1L1
N1

, j2L2N2
, j3L3N3
). The i index is added here to denote that

these norms are defined for spinor components as opposed to the 2-spinor itself. The total 2-spinor norm in
question is the sum of the two spinor component norms. For the sake of simplicity we assume the potentials to
be time-independent, so that analytic solutions for the potential and the coupling steps are available for all time.

In the following three lemmas we state three auxiliary results for the proof of stability of Algorithm 2.1.

Lemma 3.1. Let Un∗∗
i (xj) denote the elements of the grid point vector U

n∗∗
i after solving the kinetic and potential

step starting from Un
i . Then it holds that

‖Un∗∗
i ‖ℓ2 = ‖U

n
i ‖ℓ2

and thus
‖Un∗∗

1 ‖ℓ2 + ‖U
n∗∗
2 ‖ℓ2 = ‖U

n
1 ‖ℓ2 + ‖U

n
2 ‖ℓ2 .

Proof. The proof is a higher-dimensional analogue of [2, Lemma 3.1]. We explicitly omit the i-index notation
above in this proof despite the functions being spinor components as opposed to the full 2-spinor to avoid
excessive notational clutter. It holds that

‖Un∗∗‖2ℓ2 = (
3
∏
ℓ=1

Lℓ
Nℓ
)∑

j
|Un∗∗(xj)|2 = (

3
∏
ℓ=1

Lℓ
N2
ℓ

)∑
k
|Ûn∗∗

k1 ,k2 ,k3 |
2 = (

3
∏
ℓ=1

Lℓ
N2
ℓ

)∑
k
|e−

iεΔt
2 ∑

3ℓ=1( 2πkℓLℓ )2 Ûn∗
k1 ,k2 ,k3 |

2

= (
3
∏
ℓ=1

Lℓ
N2
ℓ

)∑
k
|Ûn∗

k1 ,k2 ,k3 |
2 = (

3
∏
ℓ=1

Lℓ
Nℓ
)∑

j
|Un∗(xj)|2 = ‖Un∗‖2ℓ2 ,
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where we used the shorthands

∑
j
→

N1−1
∑
j1=0

N2−1
∑
j2=0

N3−1
∑
j3=0

and ∑
k
→

N1−1
∑
k1=0

N2−1
∑
k2=0

N3−1
∑
k3=0

.

The second and fifth step of the above computation make use of a higher-dimensional variant of Plancherel’s
theorem (compare, e.g., [11]) which exploits a generalization of the same structure used for the one-dimensional
Schrödinger variant in [2]. The potential step can be solved exactly, so the remaining statement ‖Un∗‖2ℓ2 = ‖U

n‖2ℓ2
is straightforward. Summing both spinor component results completes the proof.

Lemma 3.2. Under the assumption that errors from the interpolation and backwards step are negligible and
∇ ⋅ A = 0, the advection step solution satisfies

‖Un∗∗∗
I,i ‖L2 ≤ ‖U

n∗∗
I,i ‖L2 ,

where Un∗∗∗
I,i denotes the Fourier interpolation of the i-th spinor component Un∗∗∗

i , and thus

‖Un∗∗∗
I,1 ‖L2 + ‖U

n∗∗∗
I,2 ‖L2 ≤ ‖U

n∗∗
I,1 ‖L2 + ‖U

n∗∗∗
I,2 ‖L2 .

Proof. See proofs of analogous results in [12, Lemma 3.2] and [20, Theorem 1] for the first statement. The second
is an immediate corollary.

Lemma 3.3. Let Un+1
i denote the grid point vector after solving the coupling step starting from Un∗∗∗

i . Then it
holds that

‖Un+1
1 ‖ℓ2 + ‖U

n+1
2 ‖ℓ2 = ‖U

n∗∗∗
1 ‖ℓ2 + ‖U

n∗∗∗
2 ‖ℓ2 .

Proof. The coupling step may be solved analytically as with the potential step before and thus any analysis of
this sort can be reduced to an analysis of this exact solution. However, while eΔtD is unitary, unlike in the other
cases the spinor-component-wise operators are not necessarily unitary here. Nevertheless, the stated result still
holds by totalmass conservation in the Pauli equation.

In the following theorem, we establish the stability of Algorithm 2.1.

Theorem 3.4. Let Un+1 be the grid point vector after passing through all of the steps outlined in Algorithm 2.1
once, starting from Un . Then it holds that

‖Un+1
1 ‖ℓ2 + ‖U

n+1
2 ‖ℓ2 ≤ ‖U

n
1 ‖ℓ2 + ‖U

n
2 ‖ℓ2 .

Proof. Applying Lemma 3.1 and 3.2 sequentially, we see that

‖Un∗∗∗
i ‖ℓ2 = ‖U

n∗∗∗
I,i ‖L2 ≤ ‖U

n∗∗
I,i ‖L2 = ‖U

n∗∗
i ‖ℓ2 = ‖U

n
i ‖ℓ2 ,

and thus
‖Un∗∗∗

1 ‖ℓ2 + ‖U
n∗∗∗
2 ‖ℓ2 ≤ ‖U

n
1 ‖ℓ2 + ‖U

n
2 ‖ℓ2 .

The conclusion then follows via Lemma 3.3.

3.2 Error Estimates

In this subsection we study error estimates for the proposed method. For this purpose we will make use of the
following shorthands to avoid overly long and repeated summation notation:

‖U‖α = ‖U1‖ℓ2 + ‖U2‖ℓ2 ,
‖u‖A = ‖u1‖L2 + ‖u2‖L2 .

The main result of this section will be using the following assumptions, which are analogues of the assump-
tions for the scalar Schrödinger-type equation in [2, 9, 12]: We will assume that the solutions and potentials are
periodic on the spatial box and sufficiently smooth for the below assumptions (3.1) and (3.2) to hold. Withm ≥ 1
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let 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂m1

∂xm1

∂m2

∂tm2
ui(x, t)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩C([0,T],L2)

≤
αm1+m2

εm1+m2
, (3.1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂m

∂xmA(x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2
≤ βm ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂m

∂xm ϕ(x)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2
≤ γm , (3.2)

wherem,m1 ,m2 ∈ ℕ andm = m1 + m2, while αm , βm and γm are positive constants and ε is the (small) scaling
parameter appearing in the scaled Pauli equation. Wherever we write ui without specific index i we mean
to imply that the statement holds for both of the 2-spinor components individually and thus has an obvious
extension to the α and A norms defined above.

Theorem 3.5. Denote the exact 2-spinor solution to the Pauli equation in (2.3) for given parameter ε by

uε(x, t) = (u
ε
1(x, t)
uε2(x, t)
) ,

where
uε(x, t + Δt) = eΔtA+ΔtB+ΔtC+ΔtD uε(x, t),

and its operator splitting numerical approximation at time nΔt by Un , where

Un+1 = eΔtD eΔtC eΔtA eΔtB Un .

We assume that the potentials and solution are sufficiently smooth and periodic on the relevant spatial box for
assumptions (3.1) and (3.2) to hold, that the characteristic equation in (A.2) in the advection step and the FFT steps
may be solved with negligible error along with the assumption statements listed in (3.1)–(3.2) and that |Δx| = O(ε)
and Δt = O(ε). Then, for any time t ∈ [0, T] we have the error estimate

‖uε(tn) − Un
I ‖A ≤

C1T
Δt (
|Δx|
ε )

m
+
C2TΔt
ε ,

with C1 , C2 being constants independent of Δt, Δx, T, and ε.

Proof. Similar to discussions in [2, Theorem 4.1], [9, Theorem 4] and [12, Theorem 3.2] for various cases of scalar
Schrödinger-type equations, the local splitting error for the Pauli equation operator splitting method is also
determined by the non-commutativity of the respective operators via the classical Baker–Campbell–Hausdorff
formula. The proof strategy thus begins with the computation of commutators [⋅, ⋅] for the operators ΔtA, ΔtB,
ΔtC and ΔtD and then concludes via a triangle inequality estimation for the error and can thus be seen as
a 2-spinor generalization of the above referenced theorems.

As the operators in question act on 2-spinors and have a block operator representation we make use of the
observation that the commutators of such operators L,M,K with form

L = (
L 0
0 L
) , M = (

M1 0
0 M2

) , K = (
0 K1
K2 0
)

satisfy

[L,M] = ([L,M1] 0
0 [L,M2]

) , [L,K] = ( 0 [L, K1]
[L, K2] 0

) ,

[M,K] = ( 0 M1K1 − K1M2
M2K2 − K2M1 0

) .

The computation can thus be made easier by computing these for each of the relevant component operators of
ΔtA, ΔtB, ΔtC and ΔtD. Direct computation yields the following results for the non-coupling commutators:

[ΔtA, ΔtB1]u1 =
(Δt)2
2

3
∑
j=1

∂2j (
1
2 |A|

2 + ϕ − ε2B3)u1 + (Δt)
2

3
∑
j=1

∂j(
1
2 |A|

2 + ϕ − ε2B3)∂ju1 ,

[ΔtA, ΔtB2]u2 =
(Δt)2
2

3
∑
j=1

∂2j (
1
2 |A|

2 + ϕ + ε2B3)u2 + (Δt)
2

3
∑
j=1

∂j(
1
2 |A|

2 + ϕ + ε2B3)∂ju2 ,

[ΔtA, ΔtC]ui =
iε(Δt)2

2

3
∑
k=1

3
∑
j=1
(∂2kAj∂jui + 2∂kAj∂k∂jui),
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[ΔtC, ΔtB1]u1 = −
i(Δt)2
ε

3
∑
j=1

Aj∂j(
1
2 |A|

2 + ϕ − ε2B3)u1 ,

[ΔtC, ΔtB2]u2 = −
i(Δt)2
ε

3
∑
j=1

Aj∂j(
1
2 |A|

2 + ϕ + ε2B3)u2 .

This covers the operators which are already present in the magnetic Schrödinger case. The primary takeaway
from this is that the worst case scenario for the error from these commutators is of order O( (Δt)

2

ε ), consistent
with [2, 9, 12]. This even holds true for theB operator which differs from the magnetic Schrödinger case. Direct
computation of the components of the coupling step commutators yields

[ΔtA, ΔtD1]u2 =
(Δt)2
2

3
∑
j=1

∂2j (−
ε
2B1 +

iε
2 B2)u1 + (Δt)

2
3
∑
j=1

∂j(−
ε
2B1 +

iε
2 B2)∂ju2 ,

[ΔtA, ΔtD2]u1 =
(Δt)2
2

3
∑
j=1

∂2j (−
ε
2B1 −

iε
2 B2)u1 + (Δt)

2
3
∑
j=1

∂j(−
ε
2B1 −

iε
2 B2)∂ju1 ,

[ΔtC, ΔtD1]u2 = (Δt)2
3
∑
j=1

Aj∂j(
i
2B1 +

1
2B2)u2 ,

[ΔtC, ΔtD2]u1 = (Δt)2
3
∑
j=1

Aj∂j(
i
2B1 −

1
2B2)u1 ,

Δt2(B1D1 −D1B2)u2 =
(Δt)2
2 (−B1B3 + iB2B3),

Δt2(B2D2 −D2B1)u1 =
(Δt)2
2 (B1B3 + iB2B3).

All of these terms are O((Δt)2). As Δt = O(ε), this means the coupling step commutators contribute less to the
error than the previously mentioned worst case scenario. Combining these results for all of the commutators,
one finds that the local splitting error satisfies

‖uε(tn+1) − ũ(tn+1)‖A = O(
Δt2
ε )

,

where ũ(tn+1) is the pre-discretization operator splitting solution satisfying

ũ(tn+1) = eΔtD eΔtC eΔtA eΔtB u(tn).

Due to the nature of the coupling step, the errors in the two spin components are not in general separable. We
proceed via the triangle inequality as follows:

‖uε(tn+1) − Un+1
I ‖A ≤ ‖u

ε(tn+1) − ũ(tn+1)‖A + ‖ũ(tn+1) − ũI(tn+1)‖A + ‖ũI(tn+1) − Un+1
I ‖A .

The first term on the right-hand side was already shown above to be of order O( Δt2ε ), while the second term
is the error of the used interpolation method which as discussed in [2, 9] and [18, Theorem 3] is O(( |Δx|ε )

m)
under the assumption in (3.1), where m is any positive integer. The final term in need of investigation is thus
‖ũ(tn+1) − Un+1

I ‖A which corresponds to the error incurred due to the discretization. Noting that ‖fI‖L2 = ‖f‖ℓ2 ,
we obtain

‖ũI(tn+1) − Un+1
I ‖A = ‖ũ(tn+1) − U

n+1‖α = ‖eΔtD eΔtC eΔtA eΔtB u(tn) − eΔtD eΔtCN eΔtAN eΔtB Un‖α ,

where ũ and u denote the vectors collecting the gridpoint values of ũ and u, respectively. As the potential and
coupling steps are solved analytically the operators remain unaffected on the right-hand side but for the kinetic
and advection steps we must distinguish their numerical approximations AN and CN . A further application of
the triangle inequality yields

‖ũI(tn+1) − Un+1
I ‖A ≤ ‖e

ΔtD eΔtC eΔtA eΔtB u(tn) − eΔtD eΔtC eΔtAN eΔtB u(tn)‖α
+ ‖eΔtD eΔtC eΔtAN eΔtB u(tn) − eΔtD eΔtCN eΔtAN eΔtB u(tn)‖α
+ ‖eΔtD eΔtCN eΔtAN eΔtB u(tn) − eΔtD eΔtCN eΔtAN eΔtB Un‖α .
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The first term in the above is just a measure of the spectral approximation error again and is thus O(( |Δx|ε )
m) as

described above. The same is true for the second term since if errors due to the computation of the backwards
grid step are negligible, then this step is just a measure for the interpolation accuracy. For the final term we
note that since the operators eΔtD , eΔtC , eΔtA and eΔtB are all unitary, the lemmas leading up to Theorem 3.4 in
particular also imply that

‖eΔtCN ‖A ≤ 1, ‖eΔtAN ‖A = 1.

Using the stability results above, cf. [12, equation (3.50)], then yields

‖eΔtD eΔtCN eΔtAN eΔtB u(tn) − eΔtD eΔtCN eΔtAN eΔtB Un‖α ≤ ‖uε(tn) − Un
I ‖A .

Analogous to [12, equation (3.52)] the discussion so far yields a recursive relationship for error accumulation

‖uε(tn+1) − Un+1
I ‖A ≤ ‖u

ε(tn) − Un
I ‖A + C1(

|Δx|
ε )

m
+ C2(

Δt2
ε ).

which on the solution interval t ∈ [0, T] implies that

‖uε(tn) − Un
I ‖A ≤

C1T
Δt (
|Δx|
ε )

m
+
C2TΔt
ε

,

for some constants C1 and C2 independent of Δt, Δx, T , and ε.

The above theorem is fully consistent with the view of the Pauli equation as a bottom-up generalization of the
scalar magnetic Schrödinger equation as it yields analogous error bounds despite the inclusions of the cou-
pling step as well as its inherent three-dimensional nature. Furthermore, we can use the above result to define
a meshing strategy for a desired accuracy (as done for the magnetic Schrödinger equation in [12] and [9]): If
δ > 0 is a desired error bound so that ‖uε(tn) − Uε,n

I ‖β ≤ δ, then one should choose Δt and Δx to satisfy

Δt
ε = O(δ), (

|Δx|
ε )

m
= O(δΔt).

Remark 3.6. We note that for solutions and fields with sufficient regularity, the second term of the error bound
in Theorem 3.5 dominates the error and one can thus expect approximately linear convergence in Δt. Higher-
order in Δt methods can be derived in a straightforward way by replacing the Lie splitting with higher-order
splitting schemes. In particular, since the Strang splitting schemes of second order rely on the approximation

e(A+B)Δt = eA
Δt
2 eBΔteA

Δt
2 + O(Δt2),

one can apply this iteratively in the four term operator splitting setup to obtain a second-order in Δt method
based on, e.g.,

e(A+B+C+D)Δt = eA
Δt
2 eB

Δt
2 eC

Δt
2 eDΔteC

Δt
2 eB

Δt
2 eA

Δt
2 + O(Δt2),

which does not require any additional implementation of solution steps compared to the first-order Lie split-
ting scheme. The order in which the operators appear in higher-order schemes can be rearranged similarly
to how it was done for the Lie splitting to improve computational efficiency via the commutativity of the sum
in e(A+B+C+D)Δt .

4 Numerical Experiments

We present proof-of-concept numerical results obtained from an implementation of the proposed method as
a first-order Lie splitting scheme. Higher precisionmay be obtained than is illustrated in this section by decreas-
ing the stepsize in space and time, as well as using a second- or higher-order Strang splitting, cf. [1, 21]. The
computations presented in this section have been performed with an implementation of the above method
in the Julia programming language [4]. We consider two cases with different spin coupling behavior and set
Ω = [0, 10]3, Δx = 0.4 and ε = 0.5 for both numerical experiments.
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4.1 Decoupled Spin State Dynamics

We seek numerical solutions of the Pauli equation (1.1) using the following constant-in-time fields, which are
periodic on Ω:

A(x) = π(
− cos( π5 (x2 − 5)) sin(

π
5 (x2 − 5))

cos( π5 (x1 − 5)) sin(
π
5 (x1 − 5))

0
) , (4.1)

B(x) = π5 (
0
0

∑2j=1(π cos( π5 (xj − 5))
2 − π sin( π5 (xj − 5))

2)
) , (4.2)

ϕ(x) = 0. (4.3)

It is easily confirmed that these fields satisfy B = ∇ × A as well as the Coulomb gauge ∇ ⋅ A = 0. We initialize the
state

u0 = (e
−(x1−4.5)2−(x2−4.5)2−(x3−5)2

e−(x1−5.5)2−(x2−5.5)2−(x3−5)2
) . (4.4)

As the B field lacks an x-component, there is no coupling between spin up and down components and the spin
components evolve fully independently indefinitely. In the absence of analytic solutions we can compare the
obtained solutionswith amore precise numerical solution to approximately visualize themethod’s convergence
properties. Figure 1 shows the maximal absolute and relative errors, that is

Errabs(u, T) = max
k1 ,k2 ,k3
|(uNk1 ,k2 ,k3 − ũ

N
k1 ,k2 ,k3 |,

Errrel(u, T) = max
k1 ,k2 ,k3

|(uNk1 ,k2 ,k3 − ũ
N
k1 ,k2 ,k3 |

|ũNk1 ,k2 ,k3 |
,

compared to a high precision numerical approximation ũ. Convergence to the approximation is approximately
linear as expected of a first-order Lie splitting approach with sufficiently small Δx.

4.2 Coupled Spin State Dynamics

We use the following modified field setup to observe more complex Pauli equation phenomena:

A(x) = π(
− cos( π5 (x2 − 5)) sin(

π
5 (x2 − 5))

cos( π5 (x1 − 5)) sin(
π
5 (x1 − 5))

1
π cos(

π
5 (x1 − 5)) sin(

π
5 (x2 − 5))

) , (4.5)

B(x) = π5 (
cos( π5 (x1 − 5)) cos(

π
5 (x2 − 5))

sin( π5 (x1 − 5)) sin(
π
5 (x2 − 5))

∑2j=1(π cos( π5 (xj − 5))
2 − π sin( π5 (xj − 5))

2)
) , (4.6)

ϕ(x) = 0. (4.7)

We initialize with an exclusively spin up state:

u0 = (e
−(x1−4.5)2−(x2−4.5)2−(x3−5)2

0
) . (4.8)

Figure 2 shows the absolute value of the solution obtained for the initial state (4.8) at different times visualized
as isosurfaces. Due to the presence of a non-zero x1-component in the B field, one observes coupling between
spin up and down components. Figure 3 shows absolute and relative errors compared to a higher precision
numerical approximation.
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(a) (b)

Figure 1: Absolute and relative errors of different time discretizations for the decoupled spin dynamics numerical experiment compared
to a higher precision numerical solution. We observe approximately linear error convergence in time, as expected from a first-order
Lie splitting method.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0

(d) t = 0.0 (e) t = 0.5 (f) t = 1.0

Figure 2: Isosurfaces of constant value 0.055 for fields in (4.5) and initial state in (4.8). Absolute value of spin up component displayed in
red and absolute value of spin down component in blue. The spin up component gradually induces a spin down component in the same
location and vice versa. The coupling is bidirectional.
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(a) (b)

Figure 3: Absolute and relative errors of different time discretizations for the coupled spin system numerical experiment compared
to a higher precision numerical solution. We observe approximately linear error convergence in time, as expected from a first-order
Lie splitting method.

5 Conclusion

We extended schemes for the scalar magnetic Schrödinger equation without spin term [5, 9, 12] to the Pauli
equation by proposing a four-term operator splitting method. We analyzed the convergence of the scheme
and presented proof of concept numerical experiments. The results are applicable to time-independent as well
as simple time-dependent magnetic fields, but as of now are restricted to the linear case, i.e., explicitly given
external magnetic vector and scalar electric potentials with or without time-dependence.

In the numerics of the Pauli equation, the coupled nature of the spin up and spin down state equations
means that any error bounds can only be valid for the sumof the two states, as any errors can andwill propagate
between spin up and spin down state solutions in each step. Given this fact, it is remarkable that numerical error
bounds obtained for the linear Pauli equation appear well-behaved under mild assumptions.

An important question for applications is the extension of this method to the fully self-consistent system
consisting of the Pauli equation coupled to a suitable first-order O( 1c ) approximation of the Maxwell equations.
The canonical choice would be the so-called Pauli–Poiswell system [13]. This is part of ongoing research on
numerical methods for nonlinear Pauli equations.

A Appendix

The Potential Step

Step (i) of Algorithm 2.1 consists in finding, for all grid points xj , the solution to the initial value problem

∂s (
wj1(s)
wj2(s)
) = (

B1(s) 0
0 B2(s)

)(
wj1(s)
wj2(s)
) for s ∈ (0, Δt),

wj(0) = Un(xj),

where wj = (wj1 , wj2) and

B1(s) = −
i
ε(

1
2 |A(xj , tn + s)|

2 + ϕ(xj , tn + s) −
ε
2B3(xj , tn + s)),

B2(s) = −
i
ε(

1
2 |A(xj , tn + s)|

2 + ϕ(xj , tn + s) +
ε
2B3(xj , tn + s)).

Then the solution of the potential step is given by Un∗(xj) = eΔtB Un(xj) := wj(Δt). For time-independent mag-
netic field and potentials, an analytical solution is available for all time-steps outside of the solution loop,
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whereas for time-dependent data the solution has to be re-computed in each time-step. In the latter case the
solution can be obtained with any highly efficient ODE solver.

The Kinetic Step

In Step (ii) of Algorithm 2.1, one has to solve the initial boundary value problem

∂t (
w1
w2
) = (

iε
2 ∇

2 0
0 iε

2 ∇
2)(

w1
w2
) in Ω × (tn , tn+1),

w(tn) = Un∗ ,

which consists of nothing but two decoupled free Schrödinger equations with periodic boundary conditions for
w = (w1 , w2). Then the solution of the kinetic step is given by Un∗∗ = eΔtA Un∗ := w(tn+1). Hence, we can use
any of the available highly efficient methods for the free Schrödinger equation. In light of the advection step,
a good way is to solve the equation in Fourier space using FFT. In particular, as Un∗∗ = eΔtA Un∗, we find that

Ûn∗∗
k1 ,k2 ,k3 = e

− iεΔt2 ∑
3ℓ=1( 2πkℓLℓ )2 Ûn∗

k1 ,k2 ,k3

= e−
iεΔt
2 ∑

3ℓ=1( 2πkℓLℓ )2 1
N1N2N3

N1−1
∑
j1=0

N2−1
∑
j2=0

N3−1
∑
j3=0

Un∗
j1 ,j2 ,j3 e

−2πi∑3ℓ=1 jℓkℓ
Nℓ . (A.1)

Then, instead of performing an iFFT to move back to physical space, we can directly pass the Fourier space data
to the next step.

The Advection Step

This substep is the most subtle step of the operator splitting method, as standard methods are usually stable
only under restrictive CFL-type conditions that prevent the use of large time-step sizes. However, since it is
analogous to the magnetic Schrödinger equation case, we can adapt methods in [5, 9, 12] for the 2-spinor case.
We opt for the method of characteristics to solve this equation combined with Fourier interpolation. Step (iii)
of Algorithm 2.1 consists of the solution of

∂t (
w1
w2
) = (

A ⋅ ∇ 0
0 A ⋅ ∇

)(
w1
w2
) in Ω × (tn , tn+1),

w(tn) = Un∗∗ .

For each of the two components ofw = (w1 , w2) and each j, the characteristic zj(⋅) through xj solves the problem

∂tzj(t) = −A(zj(t), t) for t ∈ (tn , tn+1), (A.2)
zj(tn+1) = xj . (A.3)

with end value prescribed at t = tn+1. Solving the above characteristic equation for each grid point xj would
yield the sought approximation Un∗∗∗(xj) via

Un∗∗∗(xj) = eΔtC Un∗∗(xj) := w(zj(tn), tn) = Un∗∗(zj(tn)).

However, the point zj(tn) is not a grid point in general, so we do not have immediate access to the value
Un∗∗(zj(tn)). We need to use an interpolation method to approximate Un∗∗(zj(tn)) based on the knowledge of
Un∗∗ at grid points. Since the previous step passes Fourier data to the advection step, it is natural to use Fourier
interpolation to accomplish this. Following [5, Section 5.1], we evaluate a Fourier interpolation at x = zj(tn),
where the coefficients {Ûn∗∗

k1 ,k2 ,k3 } are known from step (ii) of Algorithm 2.1. In general, further choices are
required to make such a trigonometric interpolation unique in a sensible way (see, e.g., [10]) but we omit dis-
cussion of this here – minimally oscillatory interpolations are usually to be preferred. Besides this uniform
trigonometric method, one could employ other methods for the interpolation, e.g., the computationally more
efficient non-uniform NUFFT-based approaches as in [5, Section 5.3] and [12, Section 2.2].
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The Coupling Step

The coupling step contains the off-diagonal components of the Pauli equation. Step (iv) of Algorithm 2.1 consists
in finding, for all grid points xj , the solution of the following initial value problem:

∂s (
wj1(s)
wj2(s)
) = (

0 D1(s)
D2(s) 0

)(
wj1(s)
wj2(s)
) for s ∈ (0, Δt),

wj(0) = Un∗∗∗(xj),

where wj = (wj1 , wj2) and
D1(s) =

i
2B1(xj , tn + s) +

1
2B2(xj , tn + s),

D2(s) =
i
2B1(xj , tn + s) −

1
2B2(xj , tn + s).

Then the solution of the coupling step, which is also the approximation Un+1 ≈ u(tn+1), is given by

Un+1(xj) = eΔtD Un∗∗∗(xj) := wj(Δt).

Unlike the previous steps, this is a coupled system of ODEs, which may be treated with appropriate highly effi-
cient solvers. An analytic solution to this ODE is readily available in each time step, and as with the potential
step (step (i) of Algorithm 2.1), for the case of time-independent potentials the solution operator may in fact be
pre-computed for all considered time-steps outside of the solution loop.

Funding: We acknowledge support of the Austrian Science Fund (FWF) via the grants FWF DK W1245 and SFB
F65, support from the Vienna Science and Technology Fund (WWTF) project MA16-066 “SEQUEX”. Michele Rug-
geri is a member of the “Gruppo Nazionale per il Calcolo Scientifico (GNCS)” of the Italian “Istituto Nazionale di
Alta Matematica (INdAM)”.
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