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A POSTERIORI ERROR ESTIMATION FOR THE OPTIMAL CONTROL OF

TIME-PERIODIC EDDY CURRENT PROBLEMS

M. WOLFMAYR

Abstract. This work presents the multiharmonic analysis and derivation of functional type a
posteriori estimates of a distributed eddy current optimal control problem and its state equation
in a time-periodic setting. The existence and uniqueness of the solution of a weak space-time
variational formulation for the optimality system and the forward problem are proved by deriving
inf-sup and sup-sup conditions. Using the inf-sup and sup-sup conditions, we derive guaranteed,
sharp, and fully computable bounds of the approximation error for the optimal control problem
and the forward problem in the functional type a posteriori estimation framework. We present
here the first computational results on the derived estimates.

1. Introduction

We discuss time-periodic eddy current optimal control and corresponding boundary value prob-
lems. We derive a posteriori error estimates for the time-periodic boundary value problem and
the optimality system of the optimal control problem. Similar estimates have been derived previ-
ously for time-periodic parabolic problems in [33, 34]. However, functional type estimates for the
time-periodic eddy-current problems are new and discussed here. The problems occur in the ap-
plication of Maxwell equations in electromagnetism. Eddy-current models for Maxwell equations
haven been discussed in [15].

The problems are formulated in terms of their Fourier series expansions in time which is a
natural framework due to the time-periodicity. The Fourier coefficients can be then discretized by
for instance the finite element method. This method has been applied previously to nonlinear eddy-
current problems in [56] and later analyzed and efficient solvers presented in [8, 9, 10]. Domain
decomposition methods have been applied in [18, 19].

Optimal control problems are subject matter of many publications mentioning the books [25,
52, 14]. The multiharmonic finite element method is a type of space-time method. Space-time
methods for parabolic optimal control problems have been recently presented in [36, 37, 35].

The multiharmonic analysis with inf-sup and sup-sup estimates regarding time-periodic para-
bolic optimal control problems have been discussed in [38, 54]. The conditions yield existence and
uniqueness of a solution by applying Babuška-Aziz’ theorem, see [6, 7]. Robust preconditioning for
the MINRES (minimal residual) method, which was introduced in [44], was presented in [26, 27]
for time-periodic and multiharmonic parabolic optimal control problems.

Functional type a posteriori estimates have been introduced in e.g. [50] and discussed for
time-dependent problems in [48]. These type of reliable methods have been discussed in various
papers and books. We refer to the books [43, 49, 39] and recently [46] discussing also eddy-
current problems. Functional a posteriori estimates have been applied to Maxwell type problems
in [24, 2, 42, 45, 1]. For optimal control problems, functional type a posteriori estimates have
been discussed in [21, 22] together with the minimization of quadratic functionals with respect to
parameters introduced from Young’s inequality.

The focus of this work lies on eddy-current problems due to the range of applications regarding
simulations of electromagnetic devices. In order to compute candidates for the approximations of
the exact solution, we have discretized the problem by the multiharmonic finite element method.
The multiharmonic method has been applied for time-discretization and the space-time dependent
systems of linear equations corresponding to the Fourier coefficients have been discretized by the
finite element method. In [57], a finite element analysis for the coefficients in a time-harmonic
setting has been discussed. We have used Nédélec (edge) basis functions of lowest order for
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approximating the space curl-space, see [40, 41]. For the numerical tests, we have used the Fast
FEM assembly: edge elements toolbox for computing the mass, stiffness matrices and the load
vector, see [47, 3, 53]. Efficient solvers and preconditioners for time-periodic eddy-current optimal
control problems have already been discussed in [29, 28, 30] or later in [4, 5].

Adaptive methods for eddy current problems have been discussed in e.g. [17]. In [55], an
adaptive edge element method for a quasilinear curl curl problem has been presented. Hierarchical
error estimators for eddy-current problems are subject matter of [12] and residual based error
estimators of e.g. [11, 51] and recently in [13]. Recent works on error estimators for harmonic eddy-
current problems include [20]. In [16], estimates by broken patchwise equilibration are presented.

The paper is organized as follows: section 2 presents the model problem, which is a minimization
problem with respect to state and control and a time-periodic state equation, the forward problem.
In section 3, we present the Fourier space framework for the time-periodic problem, and derive
the weak space-time variational formulations which form the basis for the inf-sup and sup-sup
conditions as well as estimates in section 4. The multiharmonic finite element discretization is
presented in section 5. Finally, the a posteriori error estimates for the forward and optimal control
problem are derived in sections 6 and 7, respectively. The numerical results are discussed in section
8 and conclusions and future outlook in section 9.

2. Model problem

Let Ω ⊂ R
3 be a bounded Lipschitz domain, where Γ := ∂Ω denotes the boundary. We consider

a time-periodic setting with a given time interval (0, T ) which equals also the time period. We
denote by Q := Ω× (0, T ) and Σ := Γ× (0, T ) the full space-time domain, also called space-time
cylinder, and its outer surface area, respectively. Let yd be the given desired state. The state and
control functions y and u are subject of the minimization problem

min
y,u

J (y,u) = min
y,u

1

2
‖y − yd‖2L2(Q) +

α

2
‖u‖2L2(Q)(1)

and time-periodic state equation

σ
∂y

∂t
+ curl(ν curly) = u in Q,(2)

y × n = 0 on Σ,(3)

y(0) = y(T ) in Ω,(4)

div(σy) = 0 in Q.(5)

We incorporate the Coulomb gauging condition (5) implicitly: the given desired state yd is assumed
to be weakly divergence-free, i.e.,

∫

Ω

yd · ∇v dx = 0 ∀ v ∈ H1
0 (Ω).(6)

The divergence-free property is passed over to the unknown functions y and u for eddy current
optimal control problems in a time-periodic setting. The coefficients σ = σ(x) and ν = ν(x)
denote the conductivity and reluctivity, respectively. Altogether the problem forms a time-periodic
distributed eddy current optimal control problem. In this work, we consider the linear version of
the eddy current problem (2)-(4), where Ω is a conducting domain: the reluctivity ν is independent
of |curly|, and σ and ν are both strictly positive and uniformly bounded, i.e.,

0 < σ ≤ σ(x) ≤ σ and 0 < ν ≤ ν(x) ≤ ν, x ∈ Ω.

However, we could extend our analysis also to the case of bounded domains which consist of
conducting and non-conducting domains, see [29]. The desired state yd is the given target that we
try to reach via a suitable control u. The positive regularization parameter α provides a weighting
of the cost of the control in the cost functional J (·, ·) in (1).
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The solution of the optimal control problem (1)-(4) is equivalent to the solution of its optimality
system. The Lagrange functional of the minimization problem is given as

L(y,u,p) := J (y,u)−
∫ T

0

∫

Ω

(

σ
∂y

∂t
+ curl(ν curly)− u

)

p dxdt,(7)

where p denotes the so-called Lagrange multiplier or adjoint state. The necessary optimality
conditions

∇yL(y,u,p) = 0, ∇uL(y,u,p) = 0, ∇pL(y,u,p) = 0,(8)

characterize a stationary point of the Lagrange functional (7). We do not impose any inequality
constraints on the control. Hence, we can use the second condition of (8), i.e., u = −α−1p in Q,
to eliminate the control u from the optimality system. This leads to the derivation of a reduced
optimality system, which can be written in its classical formulation as

σ
∂y

∂t
+ curl(ν curly) = −α−1p in Q,(9)

y × n = 0 on Σ,(10)

y(0) = y(T ) in Ω,(11)

−σ∂p
∂t

+ curl(ν curlp) = y − yd in Q,(12)

p× n = 0 on Σ,(13)

p(0) = p(T ) in Ω.(14)

The weakly divergence-free property of yd is passed on to the state y and the control u, hence
also to the adjoint state p.

In this work, we derive a weak space-time variational formulation of the state equation (2)-(5)
and of the optimality system (9)-(14). We then deduce a posteriori error estimates for the optimal
control problem. In the following section, we introduce Sobolev spaces of functions in the space-
time domain Q. The notation is close to the one used by Ladyzhenskaya [31] and Ladyzhenskaya
et al. [32].

3. Fourier space setting

Let L2(Ω) := [L2(Ω)]3 and L2(Q) := [L2(Q)]3. We define the spaces Hcurl(Ω) := {v ∈ L2(Ω) :

curl v ∈ L2(Ω)} and Hcurl

0 (Ω) := {v ∈ Hcurl(Ω) : v×n = 0 on Γ}. Also, H1(Ω) := {v ∈ L2(Ω) :
∇v ∈ L2(Ω)} and H1

0 (Ω) := {v ∈ H1(Ω) : v = 0 on Γ}.
For the space-time domain Q, we define the function spaces Hcurl,0(Q) = {v ∈ L2(Q) :

curlx v ∈ L2(Q)} and Hcurl,1(Q) = {v ∈ L2(Q) : curlx v ∈ L2(Q), ∂tv ∈ L2(Q)}. Next, we de-

fine H1,0(Q) = {v ∈ L2(Q) : ∇xv ∈ L2(Q)} and H1,0
0 (Q), where the latter includes homogeneous

Dirichlet boundary conditions. The notations curlx, ∂t and ∇x are used for the weak spatial curl,
the weak time derivative and the weak spatial gradient, respectively.

For ease of notation, we introduce the following simplifications: the index x in curlx and ∇x

will be omitted, and all inner products and norms in L2 related to the whole space-time domain
Q will be denoted by (·, ·) and ‖ · ‖, respectively. Inner product (·, ·)Ω and norm ‖ · ‖Ω are related
to L2(Ω), inner product and norm (·, ·)1,Ω and ‖ · ‖1,Ω to H1(Ω), and (·, ·)curl,Ω and ‖ · ‖curl,Ω

to Hcurl(Ω). All the inner product and norm symbols are used for both the scalar and the
vector-valued case, since their use is obvious from the context and simplifies notation.

The space-time Sobolev spaces Hcurl,0(Q) and Hcurl,1(Q) are equipped with the norms

‖v‖2
Hcurl,0 := ‖v‖2 + ‖curl v‖2 and ‖v‖2

Hcurl,1 := ‖v‖2 + ‖curl v‖2 + ‖∂tv‖2,
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respectively. Boundary and time-periodicity conditions are included by defining the following
function spaces:

H
curl,0
0 (Q) := {v ∈ Hcurl,0(Q) : v × n = 0 on Σ},

H
curl,1
0 (Q) := {v ∈ Hcurl,1(Q) : v × n = 0 on Σ},

H
curl,1
0,per (Q) := {v ∈ H

curl,1
0 (Q) : v(x, 0) = v(x, T ) for almost all x ∈ Ω}.

We introduce additionally the spaces

H0,1(Q) := {v ∈ L2(Q) : ∂tv ∈ L2(Q)},
H0,1

per(Q) := {v ∈ H0,1(Q) : v(x, 0) = v(x, T ) for almost all x ∈ Ω}.

All L2(Q) functions provide the feasible representation as Fourier series expansion. The real
Fourier series expansion in time for v ∈ L2(Q) is given by

v(x, t) = vc
0(x) +

∞
∑

k=1

(vc
k(x) cos(kωt) + vs

k(x) sin(kωt))

with the cosine and sine Fourier coefficients

vc
k(x) =

2

T

∫ T

0

v(x, t) cos(kωt) dt, vs
k(x) =

2

T

∫ T

0

v(x, t) sin(kωt) dt

and

vc
k(x) =

1

T

∫ T

0

v(x, t) dt.

The periodicity is T and the corresponding frequency ω = 2π/T . We use the following notation:

vk = (vc
k,v

s
k)

T , v⊥
k = (−vs

k,v
c
k)

T , curl vk = (curl vc
k, curl vs

k)
T .

The relation ‖v⊥
k ‖2Ω = ‖vk‖2Ω holds. We define a perpendicular Fourier series as introduced in [54]:

v⊥(x, t) =
∞
∑

k=1

(−vc
k(x) sin(kωt) + vs

k(x) cos(kωt)) .

We define the following σ-weighted inner products:

(

σ∂ty,v
)

:=

∫

Q

σ∂ty · v dx dt = T

2

∞
∑

k=1

kω(σyk,vk)Ω(15)

and

(

σ∂ty,v
⊥) :=

∫

Q

σ∂ty · v⊥ dx dt =
T

2

∞
∑

k=1

kω(σyk,v
⊥
k )Ω.(16)

Definition 1. By introducing the norm
∥

∥∂
1/2
t v

∥

∥

2
:= T

2

∑∞
k=1 kω‖vk‖2Ω in Fourier space, we define

the spaces H
0, 1

2

per(Q) := {v ∈ L2(Q) :
∥

∥∂
1/2
t v

∥

∥ <∞}, Hcurl, 1
2

per (Q) := {v ∈ Hcurl,0(Q) :
∥

∥∂
1/2
t v

∥

∥ <

∞} and H
curl, 1

2

0,per (Q) := {v ∈ H
curl, 1

2

per (Q) : v × n = 0 on Σ} with |v|
H

0, 1
2

per

=
∥

∥∂
1/2
t v

∥

∥. We define

the σ-weighted inner products as follows

(

σ∂
1/2
t y, ∂

1/2
t v

)

:=

∫

Q

σ∂
1/2
t y · ∂1/2t v dx dt =

T

2

∞
∑

k=1

kω(σyk,vk)Ω(17)

and

(

σ∂
1/2
t y, ∂

1/2
t v⊥) :=

∫

Q

σ∂
1/2
t y · ∂1/2t v⊥ dx dt =

T

2

∞
∑

k=1

kω(σyk,v
⊥
k )Ω.(18)
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H
curl, 1

2

per (Q)-seminorm and norm are defined as

|v|2
H

curl, 1
2

:= T ‖curlvc
0‖2Ω +

T

2

∞
∑

k=1

(

kω‖vk‖2Ω + ‖curl vk‖2Ω
)

and

‖v‖2
H

curl, 1
2

:= T (‖vc
0‖2Ω + ‖curlvc

0‖2Ω) +
T

2

∞
∑

k=1

(

(1 + kω)‖vk‖2Ω + ‖curlvk‖2Ω]
)

.

The following lemma can be found in [38, 33] for the scalar case. We introduce here the vector-
valued version.

Lemma 1. The identities
(

σ∂
1/2
t y, ∂

1/2
t v

)

=
(

σ∂ty,v
⊥) and

(

σ∂
1/2
t y, ∂

1/2
t v⊥) =

(

σ∂ty,v
)

(19)

are valid for all y ∈ H0,1
per(Q) and v ∈ H

0, 1
2

per(Q).

The orthogonality relations
(

σ∂ty,y
)

= 0 and (σy⊥,y) = 0 ∀y ∈ H0,1
per(Q),

(

σ∂
1/2
t y, ∂

1/2
t y⊥) = 0 and

(

ν curly, curly⊥) = 0 ∀y ∈ H
curl, 1

2

per (Q)
(20)

hold with
(

ν curly, curly⊥) :=
∑∞

k=1(ν curlyk, curly⊥
k )Ω and curly⊥

k := (−curlys
k, curlyc

k)
T

for all k ∈ N. The Friedrichs inequality for Hcurl(Ω) (see, e.g., [23]) holds also for functions
represented by their Fourier series as follows

‖curl v‖2 =

∫

Q

|curl v|2 dx dt = T ‖curl vc
0‖2Ω +

T

2

∞
∑

k=1

‖curl vk‖2Ω

≥ 1

Ccurl
F

2

(

T ‖vc
0‖2Ω +

T

2

∞
∑

k=1

‖vk‖2Ω

)

=
1

Ccurl
F

2 ‖v‖
2

(21)

for weakly divergent functions v ∈ Hcurl,0(Q), where Ccurl
F > 0 is a constant depending only on

the domain Ω. The weakly divergence-free condition for the adjoint state p can be stated as
∫

Q

p · ∇v dx dt = 0 ∀ v ∈ H1,0
0 (Q).(22)

We include the gauging condition by introducing the following definitions.

Definition 2. We define the spaces

W := {v ∈ Hcurl(Ω) : ∃ψ ∈ H1(Ω) : v = ∇ψ, (ψ, 1)Ω = 0, ψ|Γ = c, c ∈ R},
Hcurl|0,0(Q) := {v ∈ Hcurl,0(Q) : (σy(t),v)Ω = 0 ∀v ∈ W for a.e. t ∈ (0, T )},

H
curl|0, 12
0,per (Q) := {v ∈ H

curl, 1
2

0,per (Q) : (σy(t),v)Ω = 0 ∀v ∈ W for a.e. t ∈ (0, T )},

Hence, the latter two are the gauged subspaces of Hcurl,0(Q) and H
curl, 1

2

0,per (Q), respectively.

Remark 1. The divergence-free property (6), which is passed over to u is valid in the frequency
domain, so for all modes k ∈ N0. This leads to

0 = (u(t),∇ψ)Ω = (uc
0,∇ψ)Ω +

∞
∑

k=0

[(uc
k,∇ψ)Ω cos(kωt) + (us

k,∇ψ)Ω sin(kωt)]

for all t ∈ (0, T ). Due to the orthogonality of cosine and sine functions, we immediately obtain
that the single Fourier coefficients are weakly divergence-free.
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The weakly divergence-free condition (6) for the desired state reads for the Fourier coefficients
as follows

∫

Ω

ydk · ∇v dx = 0 ∀ v ∈ H1
0 (Ω)(23)

for all k ∈ N and
∫

Ω

yd
c
0 · ∇v dx = 0 ∀ v ∈ H1

0 (Ω)(24)

for k = 0.

Remark 2. The gauging condition is essential in the case k = 0. The coefficient yc
0 is constant

and a non-unique contribution to the solution y for the eddy current problem corresponding to
the forward problem only. However, this is not the case for the full optimal control problem. The
condition is always redundant for the cases k ∈ N, since here it is passed from the right-hand side
u to yk for k ∈ N as non-constant unique contributions.

4. Weak space-time variational formulations

In order to derive functional type error estimates, we present variational formulations for the
forward problem (2)-(5) and the optimality system (9)-(14). We start with the forward problem.
In this case, the function u takes the role of the given data. The problem reads as follows: Given

u ∈ L2(Q) fulfilling (6), find y ∈ H
curl, 1

2

0,per (Q) such that
∫

Q

(

σ∂
1/2
t y · ∂1/2t v⊥ + ν curly · curl v

)

dx dt =

∫

Q

u · v dx dt(25)

for all v ∈ H
curl, 1

2

0,per (Q). The functions are expanded into Fourier series. This is a natural approach
because of the time-periodicity condition. Lemma 2 yields existence and uniqueness of a solution
for variational problem (25) by applying Babuška-Aziz’ theorem (see [6] and [7]).

Lemma 2. The following inf-sup and sup-sup conditions are fulfilled

c|y|
H

curl, 1
2

≤ sup

06=v∈H
curl, 1

2

0,per (Q)

a(y,v)

|v|
H

curl, 1
2

≤ c|y|
H

curl, 1
2

(26)

for all y ∈ H
curl, 1

2

0,per (Q), where c and c are positive constants depending only on the maximum

and minimum values of the conductivity and reluctivity parameters: c = min{ν, σ}/
√
2 and c =

max{σ, ν}. The space-time bilinear form is given as follows

a(y,v) =

∫

Q

(

σ∂
1/2
t y · ∂1/2t v⊥ + ν curly · curl v

)

dx dt.

Proof. Applying triangle and Cauchy-Schwarz inequalities yields the upper estimate

|a(y,v)| =
∣

∣

∣

∫

Q

(

σ∂
1/2
t y · ∂1/2t v⊥ + ν curly · curl v

)

dx dt
∣

∣

∣

≤ σ
∣

∣

∣

∫

Q

∂
1/2
t y · ∂1/2t v⊥ dx dt

∣

∣

∣+ ν
∣

∣

∣

∫

Q

curly · curl v dx dt
∣

∣

∣

≤ σ
∥

∥∂
1/2
t y

∥

∥

∥

∥∂
1/2
t v

∥

∥+ ν‖curly‖‖curlv‖
≤ max{σ, ν}|y|

H
curl, 1

2

|v|
H

curl, 1
2

deducing the constant c = max{σ, ν}. For the lower estimate, we choose the test function v =
y − y⊥ and apply the σ- and ν-weighted orthogonality relations (20). We obtain the inequalities

a(y,y) =

∫

Q

(

σ∂
1/2
t y · ∂1/2t y⊥ + ν curl y · curly

)

dx dt

=

∫

Q

ν curly · curly dx dt ≥ ν
∥

∥curly
∥

∥

2
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and

a(y,−y⊥) =

∫

Q

(

σ∂
1/2
t y · ∂1/2t y − ν curly · curly⊥

)

dx dt

=

∫

Q

σ∂
1/2
t y · ∂1/2t y dx dt ≥ σ

∥

∥∂
1/2
t y

∥

∥

2
,

both leading to

a(y,y − y⊥) ≥ ν
∥

∥curly
∥

∥

2
+ σ

∥

∥∂
1/2
t y

∥

∥

2

≥ min{ν, σ}
(

∥

∥curly
∥

∥

2
+
∥

∥∂
1/2
t y

∥

∥

2
)

.

Defining c = min{ν, σ}/
√
2, this provides the inf-sup condition

sup

06=v∈H
curl, 1

2

0,per (Q)

a(y,v)

|v|
H

curl, 1
2

≥ a(y,y − y⊥)

|y − y⊥|
H

curl, 1
2

≥ c|y|
H

curl, 1
2

.

�

The space-time variational formulation of the optimality system (9)-(14) is obtained in the
same way as for the forward problem. It is stated as follows: Given yd ∈ L2(Q) fulfilling (6), find

y,p ∈ H
curl, 1

2

0,per (Q) such that
∫

Q

(

y · v − ν curlp · curl v + σ∂
1/2
t p · ∂1/2t v⊥

)

dx dt =

∫

Q

yd · v dx dt,(27)

∫

Q

(

ν curly · curl q + σ∂
1/2
t y · ∂1/2t q⊥ +

1

α
p · q

)

dx dt = 0(28)

for all v, q ∈ H
curl, 1

2

0,per (Q). Similarly, we derive inf-sup and sup-sup conditions for the bilinear form

B((y,p), (v, q)) =
∫

Q

(

y · v − ν curlp · curl v + σ∂
1/2
t p · ∂1/2t v⊥

+ ν curly · curl q + σ∂
1/2
t y · ∂1/2t q⊥ +

1

α
p · q

)

dx dt.

(29)

Lemma 3. The space-time bilinear form (29) fulfills the following inf-sup and sup-sup conditions:

c‖(y,p)‖
H

curl, 1
2

≤ sup

06=(v,q)∈(H
curl, 1

2

0,per (Q))2

B((y,p), (v, q))
‖(v, q)‖

H
curl, 1

2

≤ c‖(y,p)‖
H

curl, 1
2

(30)

for all (y,p) ∈ (H
curl, 1

2

0,per (Q))2, where c = (1+2max{α, 1
α})−1/2(min{ 1√

α
, ν, σ}min{√α, 1√

α
}) and

c = max{1, 1
α , ν, σ} are positive constants.

Proof. Applying triangle and Cauchy-Schwarz inequalities yields the upper estimate

∣

∣B((y,p), (v, q))
∣

∣ =
∣

∣

∣

∫

Q

(

y · v − ν curlp · curl v + σ∂
1/2
t p · ∂1/2t v⊥

+ ν curly · curl q + σ∂
1/2
t y · ∂1/2t q⊥ +

1

α
p · q

)

dx dt
∣

∣

∣

≤‖y‖‖v‖+ ν ‖curlp‖‖curlv‖+ σ
∥

∥∂
1/2
t p

∥

∥

∥

∥∂
1/2
t v

∥

∥

+ ν ‖curly‖‖curlq‖+ σ
∥

∥∂
1/2
t y

∥

∥

∥

∥∂
1/2
t q

∥

∥+
1

α
‖p‖‖q‖

≤ c‖(y,p)‖
H

curl, 1
2

‖(v, q)‖
H

curl, 1
2

with c = max{1, 1
α , ν, σ}. The lower estimate is proven by choosing the test function

(v, q) = (y − 1√
α
p− 1√

α
p⊥,p+

√
αy −

√
αy⊥)
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and applying the σ- and ν-weighted orthogonality relations (20). We obtain the equations

B((y,p), (y,p)) = ‖y‖2 + 1

α
‖p‖2,

B((y,p), (− 1√
α
p,

√
αy)) =

1√
α
(ν curl p, curlp) +

√
α(ν curly, curly),

B((y,p), (− 1√
α
p⊥,−

√
αy⊥)) =

1√
α
(σ∂

1/2
t p, ∂

1/2
t p) +

√
α(σ∂

1/2
t y, ∂

1/2
t y),

leading to the lower estimate

B((y,p), (v, q)) ≥ min{ 1√
α
, ν, σ}min{

√
α,

1√
α
}‖(y,p)‖2

H
curl, 1

2

.

Together with

‖(v, q)‖
H

curl, 1
2

≤
(

1 + 2max{α, 1
α
}
)1/2

‖(y,p)‖
H

curl, 1
2

,

we derive the inf-sup estimate of (30) as follows

sup

06=(v,q)∈(H
curl, 1

2

0,per (Q))2

B((y,p), (v, q))
‖(v, q)‖

H
curl, 1

2

≥
min{ 1√

α
, ν, σ}min{√α, 1√

α
}‖(y,p)‖2

H
curl, 1

2

√

1 + 2max{α, 1
α}‖(y,p)‖Hcurl, 1

2

and defining c = (1 + 2max{α, 1
α})−1/2(min{ 1√

α
, ν, σ}min{√α, 1√

α
}). �

5. Discretization

We discretize the problem by the multiharmonic finite element method. All functions in the
space-time variational problems are expanded into Fourier series and the problem setting is shifted
to the frequency domain. Using the linearity of the problem and L2-orthogonality relations of
cosine and sine functions, we derive variational problems for all the Fourier modes k ∈ N. For the
optimality system: Given ydk ∈ (L2(Ω))2 satisfying (23), find yk = (yc

k,y
s
k)

T ,pk = (pc
k,p

s
k)

T ∈
V = V × V = (Hcurl

0 (Ω))2 such that
∫

Ω

(

yk · vk − ν curlpk · curl vk + kωσ pk · v⊥
k

)

dx =

∫

Ω

ydk · vk dx,(31)

∫

Ω

(

ν curlyk · curl qk + kωσ yk · q⊥
k +

1

α
pk · qk

)

dx = 0(32)

for all vk, qk ∈ V. The variational problem for the case of k = 0 is given by: Given yd
c
0 ∈ L2(Ω)

satisfying (24), find yc
0,p

c
0 ∈ V = Hcurl

0 (Ω) such that
∫

Ω

(

yc
0 · vc

0 − ν curlpc
0 · curl vc

0

)

dx =

∫

Ω

yd
c
0 · vc

0 dx(33)

∫

Ω

(

ν curlyc
0 · curl qc

0 +
1

α
pc
0 · qc

0

)

dx = 0(34)

for all vc
0, q

c
0 ∈ V . Next the Fourier series are truncated. We denote by N the truncation index.

We use the finite element functions ykh = (yc
kh,y

s
kh)

T , pkh = (pc
kh,p

s
kh)

T ∈ Vh = Vh × Vh ⊂ V

to approximate the Fourier coefficients yk = (yc
k,y

s
k)

T , pk = (pc
k,p

s
k)

T ∈ V with the finite
element spaces Vh = Vh ×Vh and Vh = span{φ1, ...,φNh

}, the discretization parameter h and the

dimension of Vh given by Nh = O(h−3). We use the Nédélec (edge) basis functions of lowest order

for approximating the space V = Hcurl

0 (Ω) (see [40] and [41]). We derive the system of linear
equations









Mh 0 −Kh kωMh,σ

0 Mh −kωMh,σ −Kh

−Kh −kωMh,σ −α−1Mh 0
kωMh,σ −Kh 0 −α−1Mh

















yc
k

ys
k

pc
k

ps
k









=









yc
dk

ys
dk
0
0









,(35)



A POSTERIORI ESTIMATES FOR TIME-PERIODIC EDDY CURRENT PROBLEMS 9

corresponding to (31)-(32). (Weighted) mass matrices and stiffness matrix are given by

(Mh)ij = (ϕi,ϕj)Ω, (Mh,σ)ij = (σϕi,ϕj)Ω, (Kh)ij = (ν curlϕi, curlϕj)Ω,

where i, j = 1, ..., Nh. The system of linear equations for the Fourier mode k = 0 is given by
(

Mh −Kh

−Kh −α−1Mh

)(

yc
0

pc
0

)

=

(

yc
d0
0

)

.(36)

Adding up the solutions of linear systems (35) and (36), which provide approximations for the
Fourier coefficients of state and adjoint state, and inserting them in the truncated Fourier series
yields the multiharmonic finite element approximations for the state and adjoint state which are

yNh(x, t) =

N
∑

k=0

[yc
kh(x) cos(kωt) + ys

kh(x) sin(kωt)],(37)

pNh(x, t) =

N
∑

k=0

[pc
kh(x) cos(kωt) + ps

kh(x) sin(kωt)].(38)

Fast and robust solvers for the saddle point systems (35) and (36) can be found, e.g., in [29, 28]
or in [5].

Similarly we derive the multiharmonic variational problems for the forward problem: Given
uk ∈ (L2(Ω))2, find yk ∈ V = V × V = (Hcurl

0 (Ω))2 such that
∫

Ω

(

kωσ yk · v⊥
k + ν curlyk · curl vk

)

dx =

∫

Ω

uk · vk dx,(39)

for all vk ∈ V. For the case k = 0, we have: Given uc
0 ∈ L2(Ω), find yc

0 ∈ V = Hcurl

0 (Ω) such
that

∫

Ω

(

ν curlyc
0 · curl vc

0

)

dx =

∫

Ω

uc
0 · vc

0 dx(40)

for all vc
0 ∈ V . The multiharmonic finite element discretization for the forward problem leads to

the systems of linear equations as follows
(

Kh kωMh,σ

−kωMh,σ Kh

)(

yc
k

ys
k

)

=

(

uc
k

us
k

)

,(41)

and Khy
c
0
= uc

0 for k = 0.
In the next sections, we will present functional a posteriori estimates for two different problems:

first, for the PDE constraint (the time-periodic eddy current (forward) problem), and second, for
the optimal control problem’s optimality system.

6. A posteriori error estimates for the forward problem

We denote by the function η an approximation for the state function y. Let η ∈ H
curl,1
0,per (Q).

Note that η is arbitrary for now but we will choose yNh as η. Note that for the foward problem
alone, we have assumed that u ∈ L2(Q) is given and fulfills (6). We want to derive an estimate

from above for the error y − η in H
curl, 1

2

0,per (Q). The bilinear form a(y − η,v) equals
∫

Q

(

σ∂
1/2
t (y − η) · ∂1/2t v⊥ + ν curl (y − η) · curl v

)

dx dt

=

∫

Q

(

u · v − σ∂
1/2
t η · ∂1/2t v⊥ − ν curlη · curl v

)

dx dt

(42)

for all v ∈ H
curl, 1

2

0,per (Q). We define the right-hand side of (42) as a linear functional for v as follows

Fη(v) =

∫

Q

(

u · v − σ∂
1/2
t η · ∂1/2t v⊥ − ν curlη · curl v

)

dx dt.
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Theorem 1. Let η ∈ H
curl,1
0,per (Q). Let the bilinear form a(·, ·) fulfill the inf-sup condition in (26).

The error between the exact state y and η can be estimated from above as follows

|y − η|
H

curl, 1
2

≤ 1

c

(

Ccurl

F ‖R1(η, τ )‖+ ‖R2(η, τ )‖
)

(43)

with τ ∈ Hcurl,0(Q), the Friedrichs constant Ccurl

F as defined in (21), and the constant c =
1√
2
min{ν, σ}. The residual functions R1 and R2 are defined as follows

R1(η, τ ) = u− σ∂tη − curl τ and R2(η, τ ) = τ − ν curlη.(44)

Proof. For all η ∈ H
curl,1
0,per (Q) and v ∈ H

curl, 1
2

0,per (Q), the identity
(

σ∂
1/2
t η, ∂

1/2
t v⊥) =

(

σ∂tη,v
)

(45)

is valid using (19). Together with
∫

Q

curl τ · v dx dt =
∫

Q

τ · curl v dx dt ∀v ∈ H
curl,0
0 (Q) ∀ τ ∈ Hcurl,0(Q),(46)

this yields the functional Fη(v) to be represented as

Fη(v) =

∫

Q

(

(u − σ∂tη − curl τ ) · v + (τ − ν curl η) · curl v
)

dx dt ∀ τ ∈ Hcurl,0(Q).

We obtain the estimate

Fη(v) ≤ ‖R1(η, τ )‖‖v‖+ ‖R2(η, τ )‖‖curlv‖(47)

by applying the Cauchy-Schwarz inequality with the residual functions R1 and R2 defined in (44).

Applying the Friedrichs inequality for Hcurl(Ω) in (21) yields the estimate

Fη(v) ≤ ‖R1(η, τ )‖‖v‖+ ‖R2(η, τ )‖‖curlv‖ ≤
(

Ccurl

F ‖R1(η, τ )‖ + ‖R2(η, τ )‖
)

‖curl v‖.
This leads to

sup

06=v∈H
curl, 1

2

0,per (Q)

Fη(v)

|v|
H

curl, 1
2

≤ Ccurl

F ‖R1(η, τ )‖+ ‖R2(η, τ )‖.(48)

Due to (42), we have

sup

06=v∈H
curl, 1

2

0,per (Q)

a(y − η,v)

|v|
H

curl, 1
2

= sup

06=v∈H
curl, 1

2

0,per (Q)

Fη(v)

|v|
H

curl, 1
2

.

Together with applying the inf-sup condition (26), we get

|y − η|
H

curl, 1
2

≤ 1

c
sup

06=v∈H
curl, 1

2

0,per (Q)

a(y − η,v)

|v|
H

curl, 1
2

=
1

c
sup

06=v∈H
curl, 1

2

0,per (Q)

Fη(v)

|v|
H

curl, 1
2

,

which proves (43). �

Note that in case of R1(η, τ ) = 0 and R2(η, τ ) = 0, we have the eddy-current problem

(2) represented as σ∂tη + curl τ = u and τ = ν curlη, where η ∈ H
curl,1
0,per (Q) satisfies the

boundary and periodicity conditions (3) and (4) providing the solution of problem (2). Hence,
R1(y, ν curly) = 0 and R2(y, ν curly) = 0.

We define the upper bound as majorant function

M⊕
|·|(η, τ ) =

1

c

(

Ccurl

F ‖R1(η, τ )‖+ ‖R2(η, τ )‖
)

(49)

which is guaranteed and computable. The majorant can be estimated by its quadratic represen-
tative applying Young’s inequality:

M⊕
|·|(η, τ )

2 ≤ M⊕
|·|(β;η, τ )

2 =
1

c2
(

Ccurl

F

2
(1 + β)‖R1(η, ζ, τ )‖2 +

(1 + β)

β
‖R2(η, τ )‖2

)

(50)
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with the constant β > 0. Due to the Friedrichs inequality the seminorm and norm in Hcurl, 1
2 are

equivalent providing the inf-sup and sup-sup conditions

c‖y‖
H

curl, 1
2

≤ sup

06=v∈H
curl, 1

2

0,per (Q)

a(y,v)

‖v‖
H

curl, 1
2

≤ c‖y‖
H

curl, 1
2

(51)

for all y ∈ H
curl, 1

2

0,per (Q) with the constants c = min{ν/(1 + Ccurl
F

2
), σ}/

√
2 and c = max{σ, ν},

where we use the Friedrichs inequality (21) for the lower bound of

a(y,y) =

∫

Q

(

σ(x)∂
1/2
t y · ∂1/2t y⊥ + ν(x) curly · curl y

)

dx dt

=

∫

Q

ν(x) curly · curl y dx dt ≥ ν
∥

∥curl y
∥

∥

2 ≥ ν

1 + Ccurl
F

2

∥

∥y
∥

∥

2

Hcurl,0

following otherwise the proof for (2). This provides the majorant

M⊕
‖·‖(η, τ ) =

1

c

√

‖R1(η, τ )‖2 + ‖R2(η, τ )‖2,(52)

where we apply

Fη(v) ≤
√

‖R1(η, τ )‖2 + ‖R2(η, τ )‖2
√

‖v‖2 + ‖curlv‖2

in the estimate (47). The majorants are nonnegative. Only for η = y and τ = ν curly, the
majorants are zero.

The multiharmonic representation of the majorant (52) is given by

M⊕
‖·‖(η, τ ) =

1

c

(

T
(

‖R1
c
0(η

c
0, τ

c
0)‖2Ω + ‖R2

c
0(η

c
0, τ

c
0)‖2Ω

)

+
T

2

N
∑

k=1

(

‖R1k(ηk, τ k)‖2Ω + ‖R2k(ηk, τ k)‖2Ω
)

+ PN

)1/2

.

The term PN is called the remainder term and is fully computable

PN =
T

2

∞
∑

k=N+1

‖uk‖2Ω =
T

2

∞
∑

k=N+1

(

‖uc
k‖2Ω + ‖us

k‖2Ω
)

= ‖u− uN‖

where u ∈ L2(Q) is the given data for the forward problem, which can be expanded into a Fourier
series, and uN is its truncated Fourier expansion. The residual functions depending on the Fourier
coefficients are given by

R1
c
0(η

c
0, τ

c
0) = −curl τ c

0 + uc
0, R2

c
0(η

c
0, τ

c
0) = τ c

0 − ν curlηc
0,

and

R1k(ηk, τ k) = −kω ση⊥
k − curl τ k + uk, R2k(ηk, τ k) = τ k − ν curlηk.

7. A posteriori error estimates for the optimal control problem

We introduce the approximations for state y and adjoint state p denoted by η and ζ from the

space H
curl,1
0,per (Q). For instance, the multiharmonic finite elements approximations (37) and (38)

are suitable. As in the previous section, we derive an error estimate for the errors y−η and p− ζ
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in H
curl, 1

2

0,per (Q). The bilinear form B((y − η,p− ζ), (v, q)) defined in (29) can be represented as
∫

Q

(

(y − η) · v − ν curl (p− ζ) · curl v + σ∂
1/2
t (p− ζ) · ∂1/2t v⊥

+ ν curl (y − η) · curl q + σ∂
1/2
t (y − η) · ∂1/2t q⊥ +

1

α
(p− ζ) · q

)

dx dt

=

∫

Q

(

yd · v − η · v + ν curl ζ · curl v − σ∂
1/2
t ζ · ∂1/2t v⊥

− ν curlη · curl q − σ∂
1/2
t η · ∂1/2t q⊥ − 1

α
ζ · q

)

dx dt

(53)

for all v, q ∈ H
curl, 1

2

0,per (Q). We define the right-hand side of (53) as a linear functional of v and q

as follows

F(η,ζ)(v, q) =

∫

Q

(

yd · v − η · v + ν curl ζ · curl v − σ∂
1/2
t ζ · ∂1/2t v⊥

− ν curlη · curl q − σ∂
1/2
t η · ∂1/2t q⊥ − 1

α
ζ · q

)

dx dt.

Theorem 2. Let η, ζ ∈ H
curl,1
0,per (Q). Let the bilinear form B(·, ·) fulfill the inf-sup condition in

(30). The error between the exact state (y − η,p− ζ) can be estimated from above as follows

‖(y − η,p− ζ)‖
H

curl, 1
2

≤ 1

c

(

‖R1(η, ζ, τ )‖2 + ‖R3(η, ζ,ρ)‖2

+ ‖R2(η, τ )‖2 + ‖R4(ζ,ρ)‖2
)1/2

(54)

with τ ,ρ ∈ Hcurl,0(Q) and the constant c = (1+2max{α, 1
α})−1/2(min{ 1√

α
, ν, σ}min{√α, 1√

α
}).

The residual functions R1, R2, R3 and R4 are defined as follows

R1(η, ζ,ρ) = σ∂tζ − curlρ+ η − yd, R2(η, τ ) = τ − ν curlη,(55)

R3(η, ζ, τ ) = σ∂tη + curl τ + α−1ζ, R4(ζ,ρ) = ρ− ν curlζ.(56)

Proof. Using identities (45) and (46) for τ ,ρ ∈ Hcurl,0(Q), we can represent the functional
F(η,ζ)(v, q) as

F(η,ζ)(v, q) =

∫

Q

(

yd · v − η · v + ν curl ζ · curl v − σ∂tζ · v + (τ · curl q − curl τ · q)

− ν curlη · curl q − σ∂tη · q − 1

α
ζ · q + (−ρ · curl v + curlρ · v)

)

dx dt

=

∫

Q

(

(yd − η − σ∂tζ + curlρ) · v + (τ − ν curlη) · curl q

+ (−σ∂tη − 1

α
ζ − curl τ ) · q + (ν curl ζ − ρ) · curl v

)

dx dt.

We obtain the following estimate by applying the Cauchy-Schwarz inequality:

F(η,ζ)(v, q) ≤ ‖R1(η, ζ,ρ)‖‖v‖+ ‖R2(η, τ )‖‖curl q‖+ ‖R3(η, ζ, τ )‖‖q‖+ ‖R4(ζ,ρ)‖‖curlv‖,
with the residual functions R1, R2, R3 and R4 defined in (55)-(56). Together with

F(η,ζ)(v, q) ≤
√

‖R1(η, ζ,ρ)‖2 + ‖R2(η, τ )‖2 + ‖R3(η, ζ, τ )‖2 + ‖R4(ζ,ρ)‖2‖(v, q)‖Hcurl,0

and ‖(v, q)‖Hcurl,0 ≤ ‖(v, q)‖
H

curl, 1
2

, applying (30) and (53) to

c‖(y − η,p− ζ)‖
H

curl, 1
2

≤ sup

06=(v,q)∈(H
curl, 1

2

0,per (Q))2

B((y − η,p− ζ), (v, q))

‖(v, q)‖
H

curl, 1
2

= sup

06=(v,q)∈(H
curl, 1

2

0,per (Q))2

F(η,ζ)(v, q)

‖(v, q)‖
H

curl, 1
2
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we arrive at (54). �

We derive the inf-sup and sup-sup conditions also for the seminorm providing error estimates
for the seminorm of the optimality system. We can prove that

c|(y,p)|
H

curl, 1
2

≤ sup

06=(v,q)∈(H
curl, 1

2

0,per (Q))2

B((y,p), (v, q))
|(v, q)|

H
curl, 1

2

≤ c|(y,p)|
H

curl, 1
2

(57)

for all (y,p) ∈ (H
curl, 1

2

0,per (Q))2, where the constants are now given as c = 1√
2
min{ν, σ}min{α, 1

α}
and c = max{1, 1 + Ccurl

F
2}max{1, 1

α , ν, σ}. The proof follows the one of Lemma 3, where addi-
tionally we estimate

∣

∣B((y,p), (v, q))
∣

∣ ≤ max{1, 1
α
, ν, σ}|(y,p)|

H
curl, 1

2

|(v, q)|
H

curl, 1
2

≤ max{1, 1
α
, ν, σ}

(

(1 + Ccurl

F

2
)‖curlp‖2 +

∥

∥∂
1/2
t p

∥

∥

2
+ (1 + Ccurl

F

2
)‖curly‖2

+
∥

∥∂
1/2
t y

∥

∥

2)1/2(
(1 + Ccurl

F

2
)‖curl v‖2 +

∥

∥∂
1/2
t v

∥

∥

2
+ (1 + Ccurl

F

2
)‖curl q‖2

+
∥

∥∂
1/2
t q

∥

∥

2)1/2 ≤ c |(y,p)|
H

curl, 1
2

|(v, q)|
H

curl, 1
2

by applying the Friedrichs inequality (21). The lower bound is computed by inserting the simplified
test function (v, q) = (− 1√

α
(p+ p⊥),

√
α(y − y⊥)) yielding

|(v, q)|
H

curl, 1
2

≤
√
2max{

√
α,

1√
α
}|(y,p)|

H
curl, 1

2

and

B((y,p), (v, q)) = 1√
α
(ν curlp, curlp) +

√
α(ν curly, curly)

+
1√
α
(σ∂

1/2
t p, ∂

1/2
t p) +

√
α(σ∂

1/2
t y, ∂

1/2
t y)

≥ ν√
α
‖curlp‖2 + ν

√
α‖curly‖2 + σ√

α

∥

∥∂
1/2
t p

∥

∥

2
+ σ

√
α
∥

∥∂
1/2
t y

∥

∥

2
.

Using both estimates leads to the inf-sup condition in (57) with constant c. Applying the Friedrichs
inequality (21) to the functional F(η,ζ)(v, q) as follows

F(η,ζ)(v, q) ≤Ccurl

F ‖R1(η, ζ,ρ)‖‖curlv‖+ ‖R2(η, τ )‖‖curlq‖
+ Ccurl

F ‖R3(η, ζ, τ )‖‖curlq‖+ ‖R4(ζ,ρ)‖‖curlv‖,

leads to the majorant for the seminorm

M⊕
|·|(η, ζ, τ ,ρ) =

1

c

(

Ccurl

F (‖R1(η, ζ, τ )‖+ ‖R3(η, ζ,ρ)‖) + ‖R2(η, τ )‖+ ‖R4(ζ,ρ)‖
)

.(58)

The majorant can be estimated by it’s quadratic representative applying Young’s inequality:

M⊕
|·|(η, ζ, τ ,ρ)

2 ≤M⊕
|·|(β1, β2, β3;η, ζ, τ ,ρ)

2

=
1

c2
(

Ccurl

F

2
(1 + β1)(1 + β2)‖R1(η, ζ, τ )‖2

+ Ccurl

F

2 (1 + β1)(1 + β3)

β1
‖R3(η, ζ,ρ)‖2

+
(1 + β1)(1 + β2)

β2
‖R2(η, τ )‖2 +

(1 + β1)(1 + β3)

β1β3
‖R4(ζ,ρ)‖2

)

.

(59)
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with the constants β1, β2, β3 > 0. The multiharmonic representation of (??) is given by

M⊕
‖·‖(η, ζ, τ ,ρ) =

1

c

(

T
(

‖R1
c
0(η

c
0,ρ

c
0)‖2Ω + ‖R2

c
0(η

c
0, τ

c
0)‖2Ω + ‖R3

c
0(ζ

c
0, τ

c
0)‖2Ω

+ ‖R4
c
0(ζ

c
0,ρ

c
0)‖2Ω

)

+
T

2

N
∑

k=1

(

‖R1k(ηk, ζk,ρk)‖2Ω + ‖R2k(ηk, τ k)‖2Ω

+ ‖R3k(ηk, ζk, τ k)‖2Ω + ‖R4k(ζk,ρk)‖2Ω
)

+QN

)1/2

.

The term QN is called the remainder term and is fully computable

QN =
T

2

∞
∑

k=N+1

‖ydk‖2Ω =
T

2

∞
∑

k=N+1

(

‖yd
c
k‖2Ω + ‖yd

s
k‖2Ω

)

= ‖yd − ydN‖

where yd ∈ L2(Q) is the given desired state, which can be expanded into a Fourier series, and ydN

is its truncated Fourier expansion. The residual functions depending on the Fourier coefficients
are given by

R1
c
0(η

c
0,ρ

c
0) = −curlρc

0 + ηc
0 − yd

c
0, R2

c
0(η

c
0, τ

c
0) = τ c

0 − ν curlηc
0,

R3
c
0(ζ

c
0, τ

c
0) = curl τ c

0 + α−1ζc
0, R4

c
0(ζ

c
0,ρ

c
0) = ρc

0 − ν curl ζc
0,

and

R1k(ηk, ζk,ρk) = −kω σζ⊥
k − curlρk + ηk − ydk, R2k(ηk, τ k) = τ k − ν curlηk,

R3k(ηk, ζk, τ k) = −kω ση⊥
k + curl τ k + α−1ζk, R4k(ζk,ρk) = ρk − ν curl ζk.

8. Numerical experiments

First numerical tests are presented here. We show the results for two numerical examples:
one for the state equation and one for the corresponding optimal control problem. We choose
the conductivity and reluctivity parameters to be σ = ν = 1 here. The computational domain is
chosen as the unit cube Ω = [0, 1]3. We compute the discretized solution by applying the MINRES
method, see [44], together with the preconditioner

(

Kh + kωMh,σ 0
0 Kh + kωMh,σ

)

(60)

for the saddle point system (41) reformulated as
(

kωMh,σ −Kh

−Kh −kωMh,σ

)(

ys
k

yc
k

)

=

(

−uc
k

−us
k

)

for the forward problem. For the optimal control problem, we use the preconditioners








Kh + kωMh,σ 0 0 0
0 Kh + kωMh,σ 0 0
0 0 α−1(Kh + kωMh,σ) 0
0 0 0 α−1(Kh + kωMh,σ)









(61)

and
(

Kh + kωMh,σ 0
0 α−1(Kh + kωMh,σ)

)

(62)

for (35) and (41), the latter one for k = 0. Preconditioners of this type have been previously
discussed in [29, 38, 54], in the latter two for time-periodic parabolic problems. We present the
results for different Fourier modes. For evaluation of the majorant performance, we present the
so called efficiency index values computed by

Ieff =
M⊕

|·|(β;η, τ )
2

‖y − η‖
H

curl, 1
2
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for the forward problem and

Ieff =
M⊕

|·|(β1, β2, β3;η, ζ, τ ,ρ)
2

‖(y − η,p− ζ)‖
H

curl, 1
2

for the optimal control problem. We present the results for the majorants (50) and (59), since
we can use optimization with respect to the parameters β and β1, β2, β3 in order to derive better
efficiency indices.

The numerical tests were computed in Matlab (MATLAB R2022a) on a computer with Intel(R)
Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz processor with 16.0 GB RAM and 512 MB system
memory. We used the Fast FEM assembly: edge elements toolbox ([53]) for computing the finite
element discretization including mass and stiffness matrices and load vector.

8.1. Forward problem.

We have chosen the given data

u(x, t) = (0, 0, et(cos t+ (2π2 + 1) sin t) sinπx1 sinπx2)
T

for which the exact solution is given by

y(x, t) = (0, 0, et sin t sinπx1 sinπx2)
T .(63)

In Table 1, we present the results for the minimization of the majorant M⊕
|·|(β;η, τ )

2 with respect

to β for the mode k = 1 including computational times in seconds ctime for computing the
minimization of the majorants. The corresponding error norm, which is used to compute the
efficiency index of the majorant for k = 1 is given by 1.52e+02. The iteration stopped at iteration
8 with the stopping criterion being the value of the error between iteration steps smaller than
1e − 04. In Table 2, we present the results for the k = 0 mode. The corresponding error norm,

iteration ctime β M⊕
|·|(β;η1, τ 1)

2 Ieff

1 2.605e-03 1.000 2.246e+02 1.473990
2 2.119e-03 1.166 2.089e+02 1.370469
3 2.722e-03 1.275 2.005e+02 1.315729
4 4.290e-03 1.320 1.975e+02 1.295754
5 6.208e-03 1.332 1.967e+02 1.290793
6 2.071e-03 1.334 1.966e+02 1.289807
7 1.129e-03 1.335 1.965e+02 1.289624
8 1.383e-03 1.335 1.965e+02 1.289590

Table 1. The majorant M⊕
|·|(β;ηk, τ k)

2 for k = 1 and the corresponding

efficiency indices with respect to β in the majorant minimization (forward prob-
lem).

which is used to compute the efficiency index of the majorant is given by 5.18e + 01. Stopping
criterion for the minimization is again being the value of the error between iteration steps smaller
than 1e − 04. The results show a proper minimization with respect to β. Computational times
are stay similar for all iteration steps.

iteration ctime β M⊕
|·|(β;η

c
0, τ

c
0)

2 Ieff

1 2.691e-03 1.000 1.093e+02 2.111
2 2.669e-03 1.725 1.015e+02 1.959
3 2.217e-03 1.968 1.011e+02 1.951

Table 2. The majorant M⊕
|·|(β;η

c
0, τ

c
0)

2 for k = 0 and the corresponding effi-

ciency indices with respect to β in the majorant minimization (forward problem).
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8.2. Optimal control problem.

The given desired state is chosen as

yd(x, t) = (0, 0, et(sin t+ (2π2 + 1)((2π2 + 1) sin t− cos t)) sinπx1 sinπx2)
T

which has the same solution (63) for the cost parameter α = 1. In Table 3, we present the majorant
values, efficiency indices and computational times in seconds ctime for different cost parameter
values α for mode k = 0. In Table 4, we present the majorant values, efficiency indices and
computational times in seconds ctime for different cost parameter values α for mode k = 1. The
minimization with respect to β1, β2, β3 stopped usually after two iteration steps. The results show
an efficient performance for the majorant. The robustness with respect to different cost parameter
values matches the results regarding the preconditioners (62) and (61) for applying preconditoned
MINRES on the discretized systems of the optimality system. Computational times stay similar
for all single computations.

α ctime M⊕
|·|

2
Ieff

1e-04 3.466e-03 2.851e+05 1.788
1e-03 3.350e-03 2.854e+05 1.790
1e-02 4.157e-03 2.854e+05 1.790
1e-01 3.398e-03 2.853e+05 1.790
1e+00 4.364e-03 2.849e+05 1.787
1e+01 4.076e-03 2.805e+05 1.759
1e+02 3.156e-03 2.431e+05 1.518
1e+03 3.305e-03 2.345e+05 1.471
1e+04 4.958e-03 2.329e+05 1.461

Table 3. The majorant M⊕
|·|(β1, β2, β3;η

c
0, τ

c
0, ζ

c
0,ρ

c
0)

2 for k = 0 and the corre-

sponding efficiency indices (optimal control problem).

α ctime M⊕
|·|

2
Ieff

1e-04 3.301e-03 4.983e+05 1.819
1e-03 4.666e-03 5.317e+05 2.373
1e-02 9.359e-03 5.317e+05 2.351
1e-01 4.302e-03 5.316e+05 1.455
1e+00 4.164e-03 5.265e+05 3.279
1e+01 3.334e-03 5.216e+05 1.798
1e+02 4.553e-03 4.838e+05 1.527
1e+03 4.768e-03 4.733e+05 1.486
1e+04 3.726e-03 4.718e+05 1.480

Table 4. The majorant M⊕
|·|(β1, β2, β3;η1, τ 1, ζ1,ρ1)

2 for k = 1 and the corre-

sponding efficiency indices (optimal control problem).

9. Conclusions and outlook

In this work, we present the derivation of a posteriori error estimates for time-periodic eddy
current problems including a standard time-periodic boundary value problem and a corresponding
optimal control problem, where the forward problem is the PDE-constraint. The estimates are
guaranteed, sharp, and fully computable. We discuss also a proper discretization method, the
multiharmonic finite element method, for this type of problems and present first computational
results. We have presented here the derivation of the upper bounds for the forward and optimal
control problems. The derivation of lower bounds would lead to a fully computable error bound
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from above and below. Its topic and computational experiments are part of a subsequent work of
the author.
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