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Abstract

We investigate the cogrowth and distribution of geodesics in R. Thompson’s
group F .

1 Introduction

In this article we study the cogrowth and distribution of geodesics in Richard
Thompson’s group F , in an attempt to decide experimentally whether or not
F is amenable.

The cogrowth of a finitely generated group G is defined as follows. Suppose
S = {a1, . . . , ak} generates G1, and consider the Cayley graph G of (G,S). Let
rn be the number of paths in this graph of length n starting and ending at the
identity element — let us call such paths returns. Since we can concatenate
any two such paths to get another we have

rnrk ≤ rn+k (1)

and then by Fekete’s lemma (see, for example, [23])

ρ = lim sup
n→∞

r
1/n
n (2)

∗The first author acknowledges support from ARC projects DP110101104 and FT110100178.
The second author thanks NSERC of Canada for financial support.

1Formally, we consider G as the epimorphic image from the free monoid generated by S ∪ S−1,
rather than S ∪ S−1 as being a subset of G
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exists. This constant is called the cogrowth for (G,S). Since we consider
generators and their inverses to label distinct edges in G, then ρ ≤ 2k.

The connection between this growth rate and amenability was established
by Grigorchuk and independently by Cohen:

Theorem 1 ([12, 7]). Let G,S and ρ be as above. G is amenable if and only
if ρ = 2k.

Let pn be the number of returns of length n on G which do not contain
immediate reversals. Again concatenation shows that pn is supermultiplicative
so Fekete’s lemma gives

α = lim sup
n→∞

p
1/n
n (3)

exists. In this case since there are 2k(2k−1)n−1 freely reduced words of length
n in the 2k generators and their inverses, we have α ≤ 2k − 1.

The previous theorem can then be restated as:

Theorem 2 ([12, 7]). Let G,S and α be as above. G is amenable if and only
if α = 2k − 1.

Note that lim sups are required since, for example, if G has a presentation
where all relators have even length, the number of returns of odd length (with
or without immediate reversals) is 0.

In this article we compute bounds on the cogrowth rates of a number of
2-generator groups: Thompson’s group F , the free and free abelian groups
on 2 generators, Baumslag-Solitar groups, and various wreath products. Each
of these examples, apart from F , is known to be either amenable or non-
amenable. We compare the data obtained for F against these examples, to see
whether F behaves more like an amenable or a non-amenable group.

The question of the amenability of Thompson’s group F has captivated
many researchers for some time, initially since F has exponential growth but
no nonabelian free subgroups, making it a prime candidate for a counterex-
ample to von Neumann’s conjecture that a group is non-amenable if and only
if it contains a nonabelian free subgroup. In 1980 Ol’shanskii constructed
a finitely generated non-amenable group with no nonabelian free subgroups
[14], and in 1982 Adyan gave further examples [1]. In 2002 Ol’shanskii and
Sapir constructed finitely presented examples [15]. In spite of these results the
amenability or non-amenability of F remains an intensely studied problem.

In the second half of the article we extend our techniques to study the
distribution of geodesic words in Thompson’s group.

This work is in the same spirit as previous papers by Burillo, Cleary and
Wiest [5], and Arzhantseva, Guba, Lustig, and Préaux [2], who also applied
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computational techniques to consider the amenability of F . We refer the reader
to these papers for more background on Thompson’s group and the problem
of deciding its amenability computationally.

The article is organised as follows. In Section 2 we compute rigorous lower
bounds on the cogrowth by computing the dominant eigenvalue of the adja-
cency matrix of truncated Cayley graphs. We then extrapolate these bounds
to estimate the cogrowth and compare and contrast those extrapolations for
F and other groups. In Section 3 we use a weighted random sampling of ran-
dom words in the generators to estimate the exponential growth rate of trivial
words in several different groups. As a byproduct we estimate the distribution
of geodesic lengths as a function of word-length.

2 Bounding returns and cogrowth

2.1 Bounding the number of returns

Consider the Cayley graph G of some group G with finite generating set — for
the discussion at hand, let us assume that G is generated by two nontrivial
elements a, b.

As noted above, an upper bound for the cogrowth ρ is 4. We can compute
lower bounds for the number of returns, and thus the cogrowth, as follows.

Consider the following sequence of finite connected subgraphs, GN of N
vertices that contain the identity.

Set G1 to be the identity vertex. Record the list of edges incident to G1.
Define G2,G3, . . . by appending edges from this list, one at a time. Once the
list is exhausted (so GN = B(1)), repeat the process. It follows that for each
GN there is an R so that B(R) ⊆ GN ⊆ B(R+ 1).

We can then define rN,n be the number of returns of length n in GN . Since

GN ⊂ GN+1, the sequence {rN,n} is supermultiplicative, so ρN = lim sup
n→∞

r
1/n
N,n

exists by Fekete’s lemma. Further we must have rn ≥ rN,n and so ρ ≥ ρN .
Hence we can bound ρ by computing ρN .

Using the Perron-Frobenius theorem (in one of its many guises — Propo-
sition V.7 from [11] for example) the growth rate ρN of such paths on GN
is given by the dominant eigenvalue of the corresponding adjacency matrix,
provided it is irreducible. We construct GN so that it is connected and so the
corresponding adjacency matrix is be irreducible.

In some cases we can also demonstrate that the adjacency matrix is aperi-
odic, which implies that the dominant eigenvalue is simple and dominates all
other eigenvalues. This also implies that the corresponding generating function
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∑
pN,nz

n has a simple pole at the reciprocal of that eigenvalue. Unfortunately
many of the matrices we study are not aperiodic, but they do have period 2.

Perhaps the easiest way to prove that the matrix is aperiodic is to show
the existence of two circuits of relatively prime length (see chapter V.5 in [11]
for example). In order to show that a matrix has period 2 it suffices (providing
the matrix is finite) to show that if there is a path of length k between any
two nodes, then there is a path of length k + 2` between those two nodes for
any `.

It follows that the adjacency matrix for GN is aperiodic whenever the group
G has a presentation with an odd length relator (since aa−1 and the odd length
relator form circuits of relatively prime lengths) and if all relators have even
length, the matrix has period 2 (since a path of length k can be made into a
path of length k + 2` by inserting (aa−1)`).

In particular we have that subgraphs of Baumslag-Solitar groups BS(p, q)
with p + q odd are aperiodic, while subgraphs of BS(p, q) with p + q even,
Thompson’s group F , Z2, Z o Z and F2 (the free group on 2 generators), all
with the usual generating sets, have period 2.

Since all of above groups except Z2 grow exponentially, and B(R) ⊆ GN ⊆
B(R + 1), then the radius of GN is O(logN). In the case of Z2 the radius of
GN is O(

√
N)

We used this method to compute ρN for a selection of groups. However,
we found significantly better bounds by considering only freely reduced words,
i.e. paths that did not contain immediate reversals, essentially since there is
less to count.

2.2 Bounding the cogrowth

Let pn be the number of returns of length n on G which do not contain imme-
diate reversals. We similarly define pN,n to be similar paths on the subgraph
GN . Again we define the exponential growth of these quantities by

α = lim sup
n→∞

p
1/n
n αN = lim sup

n→∞
p
1/n
N,n

and α ≥ αN .
In this case, we cannot now simply concatenate two freely reduced paths to

obtain another freely reduced path since it may create an immediate reversal.
Thus we do not have similar supermultiplicative relations. We can, however,
relate rn to pn and ρ to α using the following result of Kouksov [13] which we
have specialised to the case of 2 generator groups.
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Lemma 3. (from [13]) Let R(z) =
∑
rnz

n and C(z) =
∑
pnz

n be the gener-
ating functions of returns and freely reduced returns respectively. Then

C(z) =
1− z2

1 + 3z2
R

(
z

1 + 3z2

)
and equivalently

R(z) =
−1 + 2

√
1− 12z2

1− 16z2
C

(
1−
√

1− 12z2

6z

)
.

A careful generating function argument gives the second equation (and the
first is simply its inverse). Consider any freely reduced returning path; it can
be mapped to an infinite set of returning paths by replacing each edge s by
any returning path in the free group on 2 generators that does start with s−1.
At the level of generating functions, this is exactly the substitution

z 7→ 1−
√

1− 12z2

6z
.

A very general result for generating functions then links the dominant
singularity of R(z) to the value of ρ:

Theorem 4. ([11], page 240.) If f(z) is analytic at 0 and ρ is the modulus of
a singularity nearest to the origin, then the coefficient fn = [zn]f(z) satisfies:

lim sup
n→∞

|fn|−
1/n = ρ

Combining these two results (and using the positivity of rn, pn) we obtain

Corollary 5. The constants ρ and α are related by

ρ =
α2 + 3

α

Further if β is a lower bound for α, then β′ =
β2 + 3

β
is an lower bound for ρ.

We are unable to prove a similar exact relationship between ρN and αN ,
but we do have the following bound:

Lemma 6. For a fixed value of N we have ρN ≤
α2
N + 3

αN
.

Proof. Consider the generating functions of returns and freely reduced returns
on Gn.

RN (z) =
∑
n≥0

rN,nz
n CN (z) =

∑
n≥0

pN,nz
n
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It suffices to show that

CN (z) ≥ 1− z2

1 + 3z2
RN

(
z

1 + 3z2

)
or equivalently

RN (z) ≤ −1 + 2
√

1− 12z2

1− 16z2
CN

(
1−
√

1− 12z2

6z

)

within the respective radii of convergence. Let ω be any freely reduced re-
turning path of length k in GN — this path contributes zk to the generating

function CN (z). The substitution z 7→ 1−
√

1− 12z2

6z
maps ω to an infinite

set of non-reduced returning paths by replacing each edge with freely reduced
words from F2. Some of the resulting words will lie entirely within GN and so
be enumerated by the generating function RN (z). However an infinite number
of these words will not be contained in GN . These words are enumerated by

−1 + 2
√

1− 12z2

1− 16z2
CN

(
1−
√

1− 12z2

6z

)

but not by RN (z). Thus the inequality follows.

To compute αN we relate it to the dominant eigenvalue of an adjacency
matrix. Unfortunately there is no simple way to reuse the adjacency matrix
of GN , in order to enumerate paths without immediate reversal. Instead we
construct a new graph HN which encodes freely reduced paths in G as follows:
HN has N vertices labeled by pairs (1,−) or (g, s) where g ∈ G and s ∈ S.
The vertex (1,−) corresponds to being at the identity vertex of G, and (g, s)
to being at the group element g ∈ G after having just read a letter s. The
edges of HN are

E(HN ) = {((g, s), (h, t)) ∈ (V (HN ))2 | h = gt and st 6= 1} (4)

So a path (1,−), (g1, s1), (g2, s2), . . . (gk, sk) corresponds to a path in G starting
at 1 with g1 = s1, g2 = s1s2, . . . gk = s1s2 . . . sk a freely reduced word.

We construct HN using a breadth-first search similar to the construction
of GN , starting with H1 = (1,−) and appending vertices one at a time so that
{g ∈ G | (g, s) ∈ HN} lies between two balls of a given radius. It follows that
HN is necessarily connected, and the corresponding adjacency matrices are
irreducible.

We then compute the growth rate of paths (and so freely reduced returns)
on HN by computing the dominant eigenvalue of the corresponding adjacency
matrix.

6



2.3 Exact lower bounds

Since each node of GN has outdegree at most 4 and those of the HN excluding
(1,−) have outdegree at most 3 (vertices on the boundary may have smaller
degree) the corresponding adjacency matrices are sparse. We found that the
power method and Rayleigh quotients (see [20] for example) converged very
quickly to the dominant eigenvalue and so the growth rate.

We constructed GN and HN for many different values of N ranging between
102 and 107. Our calculations on Thompson’s group F as well as the Baumslag-
Solitar groups BS(2, 2), BS(2, 3) and BS(3, 5), yielded the following result.

Theorem 7. The following are exact lower bounds on the cogrowth, α, of the
indicated groups.

BS(2, 2) ≥ 2.5904 BS(2, 3) ≥ 2.42579 BS(3, 5) ≥ 2.06357

Thompson’s group ≥ 2.17329

This implies that the growth rate of all trivial words, ρ, in these groups are
bounded as indicated.

BS(2, 2) ≥ 3.78522 BS(2, 3) ≥ 3.66250 BS(3, 5) ≥ 3.51736

Thompson’s group ≥ 3.55368

Note that all of these bounds were computed using information from HN
and Corollary 5. We observed that the bounds obtained from GN were worse
— typically differing in the second or third significant digit. We also note that
the above result for BS(2, 3) is improves on a result in [9] (the preprint was
withdrawn by the authors since it contained an error).

These computations were done on a desktop computer using about 4Gb of
memory. It should be noted that while our techniques require both exponential
time and memory, it was memory that was the constraining factor. We did
implement some simple space-saving methods. Perhaps the most effective of
these was to store elements as geodesic words in the generators rather than
as their more standard normal forms (eg tree-pairs for Thompson’s group or
words in the normal form implied by Britton’s lemma for the Baumslag-Solitar
groups). These geodesic words could then be stored as bit-strings rather than
ASCII strings. We believe that by running these computations on a computer
with more memory we could improve the bounds, but the returns are certainly
diminishing.

2.4 Extrapolation and comparison

The results of the previous section can be extended by considering the sequence
of lower bounds αN and using simple numerical methods to extrapolate them
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to N → ∞. This required only minimal changes to our computations; after
computing the adjacency matrix of HN for the maximal value of N , we com-
puted the dominant eigenvalue of submatrices. The corresponding estimate of
the eigenvector was then used as an initial vector for estimating the eigenvalue
of the next submatrix. This meant that we could compute a sequence of lower
bounds in not much more time than it took to compute our best bounds.

In Figure 1 we have plotted αN against 1/logN for three non-amenable
Baumslag-Solitar groups and F . We found that this gave approximately linear

Figure 1: A plot of cogrowth lower bounds αN against 1/logN. We see that the
groups that known to be non-amenable are converging to numbers strictly below
3. The Thompson’s group sequence has a clear upward inflection (as N → ∞ or
1/logN → 0) and so it is difficult to estimate whether the limit is 3 or less than 3.

plots and so this suggests that

αN ≈ α∞ − λ/logN.

Since αN is a monotonically increasing sequence and is bounded above by 3,
we have that αN → α∞ exists. Unfortunately we cannot prove that α∞ = α,
but certainly α∞ ≤ α.

Note that the curves terminate at N = 107 but start at different N -values.
This is because the graphs GN do not contain freely-reduced loops for small
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values of N . The smallest value of N for which GN contains a freely reduced
loop depends on the length of the relations of the group and on the details of
the breadth-first search used to construct the graph.

One can observe that the Baumslag-Solitar groups all seem to behave sim-
ilarly and that the sequences of bounds are clearly converging to constants
strictly less than 3. This is completely consistent with the non-amenability of
these groups. Thompson’s group behaves quite differently — in particular we
see that the curve has some upward inflection (as x→ 0) and it makes it very
unclear as to whether or not α∞ converges to 3 or below 3.

For the sake of comparison we decided to repeat the above analysis for a
set of amenable groups and so we computed similar sequences of lower bounds
for BS(1, 2), BS(1, 3),Z2 and Z o Z. These results are plotted in Figure 2.

Figure 2: A plot of cogrowth lower bounds αN against 1/logN. We see that the
groups that known to be amenable are clearly converging to 3. Again we see that
Thompson’s group behaves quite differently.

Note that no sequence gives a perfectly straight line and so to estimate α∞
we fitted the data to the form

αn = α∞ + λ/(logN)δ.

We varied the number of data points by removing small-N points and we also
varied the value of δ. For any fixed number of points we varied δ to find a
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value that minimised the R2 statistic. This gives an “optimal” value of α∞
and λ.

For some groups, we found that these optimal values were quite sensitive to
changes in δ, while other groups were quite robust. To include some measure
of this systematic error we moved δ through a range of values so that the R2

statistic was allowed to move to 5% below its optimal value. These results are
summarised in Tables 1 and 2.

The results for all the groups except Thompson’s group are as one might
expect — the amenable groups all give estimates of α∞ close to 3, and the
non-amenable groups give α∞ < 3. Hence it would appear as though this tech-
nique is a reasonable test to differentiate amenable and non-amenable groups.
Unfortunately it is not sufficiently sensitive to determine the amenability of
Thompson’s group. In particular we find that the results are too sensitive to
variations in δ and to removal of low-N data points. A possible reason for this
atypical behaviour is the presence of nested wreath products which converge
very slowly to their asymptotic behaviour.

Because of this, we turn to numerical methods based on random sampling
and approximate enumeration.

Group Number Optimal δ range α∞ estimate
of points R2 Value

BS(2, 2)
4501 0.998 1.74± 0.05 2.682± 0.007
2500 0.998 1.85± 0.13 2.672± 0.009

BS(2, 3)
4501 0.999 1.36± 0.04 2.597± 0.012
2500 0.999 1.57± 0.07 2.562± 0.009

BS(3, 5)
4101 0.998 1.33± 0.05 2.29± 0.01
2000 0.998 1.65± 0.19 2.24± 0.03

F
3947 0.998 0.83± 0.07 2.79± 0.08
2000 0.998 0.93± 0.16 2.69± 0.12
1700 0.998 0.65± 0.21 2.95± 0.38

Table 1: Results of fitting eigenvalue data for non-amenable groups and Thompson’s
group. The Baumslag-Solitar groups all give good results, but Thompson’s group
does not. There is some upward drift in the estimate of α∞ as one cuts out small N
data, but at the same time the error in the estimates blows up.
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Group Number Optimal δ range α∞ estimate
of points R2 Value

BS(1, 2)
4501 0.99975 1.7316± 0.0225 3.0158± 0.0031642
2500 0.99981 1.9472± 0.0552 2.9975± 0.0031542

BS(1, 3)
4501 0.99894 1.354± 0.046 3.0722± 0.016473
2500 0.99855 1.54± 0.151 3.0261± 0.026664

Z2 4501 0.99613 5.1624± 0.1134 3.002± 0.000364
2500 0.99932 10.996± 0.154 3± 1.7248× 10−6

Z o Z 3947 0.99925 0.8592± 0.0436 3.1807± 0.050903
2000 0.99915 1.0237± 0.1251 3.0476± 0.082052

F
3947 0.99796 0.83± 0.072 2.7866± 0.083778
2000 0.99869 0.9344± 0.1548 2.6917± 0.12318
1700 0.99848 0.6464± 0.2016 2.9532± 0.38051

Table 2: Results of fitting eigenvalue data for amenable groups and Thompson’s
group. All the amenable groups give good results quite close to 3, though Z o Z is
not as good as the others. Also note that since balls in Z2 grow quadratically with
radius rather than exponentially, better results can be obtained by fitting against
1/Nδ rather than 1/(logN)δ.

2.5 An aside — cogrowth series

As a byproduct of our computations we obtained the first few terms of the
cogrowth series for all of these groups. It is well know that the number of trivial

words in Z2 is given by
(
2n
n

)2
(see A002894 [22]); the corresponding generating

function is not algebraic and is expressible as a complete elliptic integral of the
first kind. The number of trivial words in F2 is just the number of returning
paths in a quadtree and its generating function is 3(1 + 2

√
1− 12z2)−1 (see

A035610 [22]).
Unfortunately we have been unable to find (using tools such as GFUN

[21]) any useful explicit or implicit expressions for the cogrowth series (or
the generating functions) for any of the other groups we have examined. For
completeness we include our data in Table 3.

3 Distribution of geodesic lengths

In this section we broaden our study from the growth rate of trivial words to
the distribution of geodesic lengths of all words by sampling random words. In
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n F BS(1,2) BS(1,3) BS(2,2) BS(2,3) BS(3,5) Z o Z
0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 10 0 0 0 0 0
6 0 0 12 12 0 0 0
7 0 20 0 0 14 0 0
8 0 64 40 40 0 0 16
9 0 96 0 0 28 0 0
10 20 338 264 224 60 20 72
11 0 736 0 0 84 0 0
12 64 2052 1604 1236 240 64 272
13 0 5208 0 0 564 0 0
14 336 13336 9748 7252 1090 280 1504
15 0 36330 0 0 2760 0 0
16 1160 92636 61720 41192 6492 1048 8576
17 0 248816 0 0 13496 0 0
18 5896 665196 412072 247272 33728 4660 46080
19 0 1771756 0 0 75768 0 0
20 24652 4776094 2750960 1491136 174760 17964 257160
21 0 12848924 0 0 411234 0 0
22 117628 34765448 18725784 9119452 958364 77508 1475592

Table 3: The first few terms of the cogrowth series C(z) for various groups, i.e. the
number of freely reduced words equivalent to the identity. The first few terms of the
returns series R(z) can be obtained from the above using Lemma 3.

previous work of Burillo et al [5], random words in Thompson’s group F were
sampled using simple sampling; words were grown by appending generators
one-by-one uniformly at random. Those authors observed only very trivial
words and so then sampled uniformly at random from a subset of those words,
namely the set of words with balanced numbers of each generator and their
inverses. Again, very few trivial words were observed. Indeed if Thompson’s
group is non-amenable, the probability of observing a trivial word using simple
sampling will decay exponentially quickly.

We will proceed along a similar line but using a more powerful random sam-
pling method based on flat-histogram ideas used in the FlatPERM algorithm
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[17, 18]. Each sample word is grown in a similar manner to simple sampling
— append one generator at a time chosen uniformly at random. The weight of
a word of n symbols is simply 1, so that the total weight of all possible words
at any given length is just 4n. As the word grows we keep track of its geodesic
length. We now deviate from simple sampling by “pruning” and “enriching”
the words.

Consider a word of length n, geodesic length ` and weight W . If we have
“too many” samples of such words, then with probability 1/2 prune the current
sample or otherwise continue to grow the current sample but with weight 2W .
Similarly if we have “too few” samples of the current length and geodesic
length, then enrich by making 2 copies of the current word and then growing a
sample from both each with weight W/2. Of course, one is free to play around
with the precise meaning of “too few” or “too many”. We refer the reader to
[17, 18] for more details on the implementation of this algorithm. The mean
weight (multiplied by 4n) of all samples of length n and geodesic length `, cn,`,
is then an estimate of the number of such words.

In order to run the above algorithm we need to be able to compute the
geodesic length of the element generated by a given random word. Computing
geodesic lengths from a normal form is, in general, a very difficult problem and
remains stubbornly unsolved for many interesting groups, such as BS(2, 3).
Because of this we restrict our studies to Thompson’s group and a number of
different wreath products.

• Thompson’s group — a method for computing the geodesic length of an
element from its tree-pair representation was first given by Fordham [4],
though we found it easier to implement the method of Belk and Brown
[3].

• Wreath products — we use the results of [6] to find the geodesic lengths
in Z o Z, Z o (Z o Z) and Z o F2.

We note that the geodesic problem for Baumslag-Solitar groups has recently
been solved in the cases BS(1, n) [10] and BS(n, kn) [8], but we have not
implemented these approaches.

3.1 Distributions

We used the random sampling algorithm described above to estimate the dis-
tribution of geodesic lengths in Thompson’s group F , as well as Z oZ, Z oF2 and
Z o (Z oZ). Each run took approximately 1 day on a modest desktop computer.
To visualise the results, we started by normalising the data by dividing by the
total number of words (i.e. 4n or 6n). The resulting peak-heights still decay
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with length, and we found that multiplying by
√
n compensated for this. The

normalised distributions are plotted in Figures 3, 4 and 5.
In each case we see similar behaviour. At short word lengths (i.e. small n)

the distribution of geodesic lengths is quite wide, but settles to what appears
to be a bell-shaped distribution at moderate lengths. This suggests that the
geodesic length has an approximately Gaussian distribution about the mean
length and that the tails of the distribution are exponentially suppressed. This
also explains why the normalising factor of

√
n works well.

If this is indeed the case, then we expect that trivial words, having geodesic
length zero, will be exponentially fewer than 4n — implying that Thompson’s
group is non-amenable. Unfortunately things cannot be so simple, because the
same reasoning would imply that Z o Z is non-amenable.

One obvious difference between the graphs is the movement of the peak
of the distribution, that is the rate of growth of the mean geodesic length.
It is clear that the mean geodesic length of Z o F2 grows linearly, and so the
group has a nontrivial rate of escape — exactly as one would expect of a non-
amenable group. Similarly we see that the mean geodesic lengths of the other
wreath products grow sublinearly, so their rates of escape are zero. When we
examine the movement of the peak of Thompson’s group’s distribution, things
are less clear; the mean geodesic length appears to be very nearly linear.

Estimating the mean geodesic length for Thompson’s group was substan-
tially easier. We constructed 212 random words of length 216. As each word
was constructed generator-by-generator, the geodesic length was computed
and added to our statistics. So while there is correlation between the geodesic
lengths at different word lengths within a given sample, there is no correla-
tion between samples. This took approximately 3 days on a modest desktop
computer. Our data is plotted in Figure 6.

We assume that the mean geodesic length grows as nν . Linear regression
on a log-log plot estimates ν ≈ 0.98. Further, if we fit a moving “window”,
we find that the local estimates of ν increase as the positioning of the window
increases. This strongly suggests that the mean geodesic length grows linearly.

To test linearity further, we generated a small number words of length
220 = 1048576. It took approximately 1 hour to generate each word and
compute the corresponding geodesic length, so this was too slow to generate
meaningful statistics. In each case we observed that the ratio /̀n appeared
to converge to approximately 0.28. Of course, this does not preclude more
exotic sublinear behaviour such as nν(log n)θ. Such logarithmic corrections
are extremely difficult to detect or rule out.

We now estimate the rate of escape by assuming linear growth with a
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Figure 3: A plot of the normalised distribution of the number of words cn,` of length
n and geodesic length ` in Thompson’s group F . Notice that the peak position is
quite stable, indicating that the mean geodesic length grows roughly linearly with
word length.

polynomial subdominant correction term

〈`〉n = An+ bnδ. (5)

Our estimates were quite sensitive to changes in δ:

δ 0 1/4 1/3 1/2 2/3 3/4

A 0.281 0.279 0.279 0.276 0.272 0.267
b 176 17 8.0 1.8 0.47 0.25

. (6)

Hence we conclude that the rate of escape is approximately 0.27 with an error
of ±0.01.

We would like to conclude that this positive rate of escape implies that
Thompson’s group is non-amenable, however there are examples of amenable
groups with nontrivial rate of escape. The group Z3 o Z2 is amenable but
has positive rate of escape [19]. Unfortunately, computing geodesics in this
group is equivalent to solving the traveling salesman problem on Z3 [16] and
so beyond these techniques.
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Figure 4: A plot of the normalised distribution of the number of words cn,` of length
n and geodesic length ` in Z o Z. Observe that the peak position is clearly moving
towards the left of the plot suggesting that the mean geodesic length grows sublin-
early.

4 Conclusions

We have computed exact lower bounds on the cogrowth of several groups
including Thompson’s group F . In particular, the cogrowth (α) of Thompson’s
group must be greater than 2.17329. By extrapolating the sequences of lower
bounds we see that the bounds for the amenable groups clearly converge to
3, while those of the non-amenable groups converge to numbers strictly less
than 3. Thompson’s group appears to behave quite differently from the other
groups we examined. Our extrapolations do not give clear results, though
perhaps they point towards non-amenability.

To further probe this group we used flat histogram methods to estimate
the distribution of geodesic lengths in random words. The data suggests
that geodesic lengths have an approximately Gaussian distribution about their
mean length. Similar Gaussian distributions were observed for other groups,
both amenable and non-amenable.

The mean geodesic length of the amenable groups studied grow sublinearly,
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Figure 5: Plot of the normalised distribution of the number of words cn,` of length n
and geodesic length ` in Z oF2 (left) and Z o (Z oZ) (right). Observe that the peak is
quite stable in the left-hand plot indicating the mean geodesic length is linear, while
the right-hand plot the peak shows clear a left drift indicating that the geodesics
grow sublinearly.

Figure 6: Plot of the mean geodesic length divided by nν ; for ν = 0.98, 0.99 and 1.
This data strongly suggests that Thompson’s group has a nontrivial rate of escape.
Note that the statistical error was smaller than the symbols used.

while those of ZoF2 and Thompson’s group are observed to grow linearly. Using
simple sampling we estimate that the mean geodesic length of Thompson’s
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group does indeed grow linearly and that the rate of escape is 0.27± 0.01.
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21–35. Birkhäuser, Basel, 2007.

[6] S. Cleary and J. Taback. Metric properties of the lamplighter group as
an automata group. Geometric Methods In Group Theory: AMS Special
Session Geometric Group Theory, October 5-6, 2002, Northeastern Uni-
versity, Boston, Massachusetts: Special Session At The First Joint Mee,
372:207, 2005.

[7] Joel M. Cohen. Cogrowth and amenability of discrete groups. J. Funct.
Anal., 48(3):301–309, 1982.

[8] V. Diekert and J. Laun. On computing geodesics in Baumslag-Solitar
groups. Internat. J. Algebra Comput., 21(1–2):119–145, 2011.

[9] K. Dykema and D. Redelmeier. Lower bounds for the spectral radii
of adjacency operators on Baumslag-Solitar groups. Arxiv preprint
arXiv:1006.0556, 2010.

[10] M. Elder. A linear-time algorithm to compute geodesics in solvable
Baumslag-Solitar groups. Illinois J. Math., 54(1):109–128, 2010.

18

http://arxiv.org/abs/1006.0556


[11] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge Univ
Pr, 2009.

[12] R. I. Grigorchuk. Symmetrical random walks on discrete groups. In
Multicomponent random systems, volume 6 of Adv. Probab. Related Topics,
pages 285–325. Dekker, New York, 1980.

[13] D. Kouksov. On rationality of the cogrowth series. Proceedings of the
American Mathematical Society, 126(10):2845–2847, 1998.

[14] Alexander Yu. Ol’shanskii. On the question of the existence of an invariant
mean on a group. Uspekhi Mat. Nauk, 35(4(214)):199–200, 1980.

[15] Alexander Yu. Ol’shanskii and Mark V. Sapir. Non-amenable finitely
presented torsion-by-cyclic groups. Publ. Math. Inst. Hautes Études Sci.,
No. 96:43–169 (2003), 2002.

[16] Walter Parry. Growth series of some wreath products. Trans. Amer.
Math. Soc., 331(2):751–759, 1992.

[17] T. Prellberg and J. Krawczyk. Flat histogram version of the pruned and
enriched Rosenbluth method. Physical review letters, 92(12):120602, 2004.

[18] T. Prellberg, J. Krawczyk, and A. Rechnitzer. Polymer Simulations with
a Flat Histogram Stochastic Growth Algorithm. In Computer simulation
studies in condensed-matter physics XVI: proceedings of the seventeenth
workshop, Athens, GA, USA, February 16-20, 2004, page 122. Springer
Verlag, 2006.

[19] David Revelle. Rate of escape of random walks on wreath products and
related groups. Ann. Probab., 31(4):1917–1934, 2003.

[20] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial
Mathematics, 2003.

[21] Bruno Salvy and Paul Zimmermann. Gfun: a Maple package for the
manipulation of generating and holonomic functions in one variable. ACM
Transactions on Mathematical Software, 20(2):163–177, 1994.

[22] N. J. A. Sloane (ed). The On-Line Encyclopedia of Integer Sequences.
published electronically at http://oeis.org/.

[23] J.H. van Lint and R.M. Wilson. A course in combinatorics. Cambridge
Univ Pr, 2001.

19

http://oeis.org/

	1 Introduction
	2 Bounding returns and cogrowth
	2.1 Bounding the number of returns
	2.2 Bounding the cogrowth
	2.3 Exact lower bounds
	2.4 Extrapolation and comparison
	2.5 An aside — cogrowth series

	3 Distribution of geodesic lengths
	3.1 Distributions

	4 Conclusions
	5 Acknowledgments

