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Abstract

Cyclic words are equivalence classes of cyclic permutations of ordi-

nary words. When a group is given by a rewriting relation, a rewrit-

ing system on cyclic words is induced, which is used to construct

algorithms to find minimal length elements of conjugacy classes in

the group. These techniques are applied to the universal groups of

Stallings pregroups and in particular to free products with amalga-

mation, HNN-extensions and virtually free groups, to yield simple

and intuitive algorithms and proofs of conjugacy criteria.
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1 Introduction

Rewriting systems are used in the theory of groups and monoids to specify
presentations together with conditions under which certain algorithmic prob-
lems may be solved. Typically, presentations given by convergent rewriting
systems are sought as these give rise to algorithms for the word and geodesics
problems. Recently, less stringent conditions on rewriting systems which still
allow the word problem and/or the geodesics problem to be decided, have also
been investigated: for example geodesic or geodesically perfect systems[10, 7].
In contrast to the classical case, geodesically perfect systems are confluent,
but not necessarily convergent or finite, and are designed to seek geodesics in
a group, rather than normal forms of elements. In any case, all these systems
depend on rewriting of strings of letters, or words, from the free monoid on
the generating set of a group or monoid.

In this paper we consider applications of rewriting systems to the conju-
gacy problem in groups. To this end we apply rewriting to cyclic words rather
than ordinary words. Cyclic words can be viewed as sets of all cyclic per-
mutations of standard words or, equivalently, as graphs, which are directed
labelled cycles. This allows us to construct algorithms for finding represen-
tatives of minimal length in the conjugacy classes of elements in groups.

We describe analogues of Knuth-Bendix completion for rewriting systems
on cyclic words and consider how to realise these procedures in particular sit-
uations. Our approach to the completion processes on cyclic words is rather
different from the one developed by Chouraqui in [6], where cyclic rewriting
systems are used to construct algorithmic solutions to the conjugacy and
transposition problems in monoids, under suitable conditions. One signifi-
cant difference is that we introduce certain new rewriting rules, which are
specific to the cyclic rewriting. These rules are absolutely essential but are
not “induced” by standard string rewriting. Furthermore, in [6] the rewrit-
ing systems considered are all finite, whereas here we allow infinite systems.
As in the case of geodesically perfect string rewrite systems we do not re-
quire our systems to be convergent. This allows us to construct confluent
cyclic rewriting systems which are particularly suitable for working with the
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conjugacy problem in groups.
We apply these techniques to the conjugacy problem in universal groups

of Stallings pregroups and fundamental groups of graphs of groups. As a
warm-up we give short intuitive proofs of the conjugacy criteria of free prod-
ucts with amalgamation [21] and in HNN-extensions (Collin’s Lemma) [20].
Moreover we are able to describe a linear time algorithm for the conjugacy
problem in finitely generated virtually free groups. (Epstein and Holt [8]
have constructed a linear time algorithm for the conjugacy problem in arbi-
trary hyperbolic groups. However, for this special case we give a very simple
construction based on the underlying finite rewriting system.)

Canonical examples of pregroups and their universal groups arise from
free products with amalgamation, HNN-extensions and, more generally, fun-
damental groups of graphs of groups. The conjugacy problem may behave
badly with respect to these constructions: for example in [18] an HNN ex-
tension G = HNN(H, t; t−1at = b) is constructed, where the base group H

has solvable conjugacy problem and the elements a and b of H are infinite
cyclic, but G has unsolvable conjugacy problem. Several authors have stud-
ied conditions under which amalgams, HNN-extensions and graphs of groups
do have solvable conjugacy problem, see for example [12, 13, 14, 19] and
the references therein. Our results show that the obstruction to deciding
the conjugacy problem in such groups arises only from the determination
of conjugacy of elements of length one, with respect to the corresponding
pregroup. Thus, if the conjugacy problem in the group is undecidable our
systems do not provide a computable rewriting, but they do indicate where
the difficulties are. This also gives a different view-point on the results of pa-
pers [4, 3, 5, 9] where efficient generic algorithms for the conjugacy problem
in free products with amalgamation and HNN-extensions where constructed.
These algorithms are fast correct partial algorithms that give the answer on
most (”generic”) inputs, and do not give an answer only on a negligble set
of inputs.

The structure of the paper is as follows. In Section 2 we outline the
transposition and conjugacy problems for monoids and groups and give a
brief introduction to string rewriting systems. Section 2.4 contains the defi-
nitions of cyclic words, cyclic rewriting systems and the appropriate notions
of geodesic and geodesically perfect cyclic systems, needed later in the paper.
In Section 2.5 we consider how a semi-Thue system may be “completed” to
give a larger, semi-Thue, system which is confluent on cyclic words. This is
possible under a weak termination condition, but the price is that, in general,
length increasing rules may be introduced. This leads in 2.7, 2.8 and 2.9 to
consideration of analogues of Knuth-Bendix completion processes in which
we add context sensitive rules, that rewrite transposed words directly to each
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other; when they are of some globally bounded length.
In Section 3 we describe Stallings pregroups, their universal groups and

the rewriting systems to which they are naturally associated. Section 4 con-
tains the main results on conjugacy in the universal groups of pregroups,
namely Theorem 4.4, Corollary 4.5 and Theorem 4.6. These results are ap-
plied to free products with amalgamation, HNN-extensions and virtually free
groups in Sections 5 and 6.

2 Preliminaries

2.1 Transposition, conjugacy and involution

Let M be a monoid and f, g ∈ M . Then f and g are said to be transpose,
if there exist elements r, s ∈M such that f = rs and g = sr. We write f ∼ g
to denote transposition. The elements f and g are called conjugate, if there
exists an element z ∈M such that fz = zg.

In general these definitions describe different relations. Indeed, conjugacy
is transitive, but not necessarily symmetric, while the transposition relation is
reflexive and symmetric, but not in general transitive. All transpose elements
are conjugate. If the monoid M is a group, then conjugacy is an equivalence
relation and f and g are conjugate if and only if there exists an element
z ∈M such that f = zgz−1.

Throughout Γ denotes an alphabet, which simply means it is a set, which
might be finite or infinite in this paper. An element a ∈ Γ is called a letter
and an element u in the free monoid Γ∗ is called a word. A non-empty word
can be written as u = a1⋯an, where ai ∈ Γ and n ≥ 0. The number n is then
called the length of u and denoted ∣u∣. The empty word has length 0 and is
denoted 1, as is customary for the neutral element in monoids or groups.

A crucial, but elementary fact for free monoids is that transposition is
equal to conjugacy. More precisely, in free monoids fz = zg implies that
f = rs, g = sr, and z = r(sr)m for some m ≥ 0. Essentially this implies a
straightforward algorithm for the conjugacy problem in free groups: on input
elements f and g of a free group first do cyclic reductions, to cyclically reduce
f and g. This costs only linear time. Then check whether the cyclically
reduced words f and g are transpose by searching for the word f as a factor
of the word g2. This is possible in linear time by a well-known pattern
matching algorithm, usually attributed to Knuth-Morris-Pratt [17], although
it was described earlier by Matiyasevich [22].

Frequently, sets and monoids come with an involution. An involution on
a set X is a permutation a ↦ a such that a = a. An involution of a monoid
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satisfies in addition xy = y x. If the monoid is a group G then we always
assume that the involution is given by the inverse, thus g = g−1 for group
elements. If the alphabet Γ has an involution, then it is extended to Γ∗ by
defining a1⋯an = an⋯a1 for ai ∈ Γ and n ≥ 0. From now on we always assume
that Γ is equipped with an involution ∶ Γ→ Γ. Since the identity idΓ is an
involution, this is no restriction.

2.2 Rewriting systems

Monoids and groups can be defined through a set of monoid generators Γ
and a set of defining relations S ⊆ Γ∗ × Γ∗. A subset S ⊆ Γ∗ × Γ∗ is called a
semi-Thue system, or a string rewriting system. Given S, we define a relation
Ô⇒
S

, called a one-step rewriting relation, on Γ∗ by u Ô⇒
S

v if and only if

u = pℓq and v = prq for some (ℓ, r) ∈ S.
Let X be any set and Ô⇒⊆X ×X be a relation. The iteration of at most

k steps of Ô⇒ is denoted by
≤k
Ô⇒ while the reflexive and transitive closure

of Ô⇒ is denoted by
∗
Ô⇒. We also write x ⇐Ô y and x

∗
⇐Ô y to denote

y Ô⇒ x and y
∗
Ô⇒ x, respectively. The reflexive, symmetric and transitive

closure of Ô⇒ is denoted by
∗
⇐⇒. Elements x ∈ X such that there is no y

with xÔ⇒ y are called irreducible. The relation Ô⇒ is called:

1. strongly confluent, if y⇐Ô xÔ⇒ z implies y
≤1
Ô⇒ w

≤1
⇐Ô z for some w;

2. confluent, if y
∗
⇐Ô x

∗
Ô⇒ z implies y

∗
Ô⇒ w

∗
⇐Ô z for some w and

3. Church-Rosser, if y
∗
⇐⇒ z implies y

∗
Ô⇒ w

∗
⇐Ô z for some w.

The following facts are well-known and easy to prove, see e.g. [2, 15].

1. Strong confluence implies confluence.

2. Confluence is equivalent to Church-Rosser.

A relation Ô⇒⊆ X ×X is called terminating (or Noetherian), if there is

no infinite chain

x0 Ô⇒ x1 Ô⇒⋯ xi−1 Ô⇒ xi Ô⇒⋯
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For a semi-Thue system S the equivalence relation
∗
⇐⇒
S

is a congruence,

hence the equivalence classes form a monoid which is denoted by Γ∗/S. This
is the quotient of the monoid Γ∗ when S is viewed as a set of defining relations.
We also say that S is confluent, terminating etc., whenever Ô⇒

S
has the

corresponding property.
The main interest in a terminating and confluent system S stems from

the fact that these properties (together with some other natural condition
on the computability of the one-step rewriting process) yield a procedure to
solve the word problem in the quotient monoid Γ∗/S. If Γ is finite, then
decidability of the word problem is equivalent to the ability to compute
shortlex normal forms: first we endow the alphabet Γ with a linear order ≤.
The shortlex normal form for an element g in a quotient monoid Γ∗/S is then
the lexicographically first word among all geodesic words u ∈ Γ∗ representing
g ∈M . Recall, that a word u ∈ Γ∗ is called a geodesic, if u has minimal length
among all words representing the same element as u in Γ∗/S.

Example 2.1. If the involution on Γ is without fixed points, then we
can write Γ as a disjoint union Γ = Σ∪̇Σ. Then the rewriting system S =
{aaÐ→ 1 ∣ a ∈ Γ } is strongly confluent and terminating; and the quotient
monoid Γ∗/S defines the free group F (Σ). In this case geodesics are unique.

2.3 Thue systems

A semi-Thue system S is called a Thue system, if S does not contain any
length increasing rules and all length preserving rules are symmetric. This
means (ℓ, r) ∈ S implies ∣ℓ∣ ≥ ∣r∣ and that ∣ℓ∣ = ∣r∣ implies (r, ℓ) ∈ S, too.
The set S of a Thue system splits naturally into two parts S = R∪̇T , where
R contains the length reducing rules and T contains the symmetric length
preserving rules. In particular, R ∩ R−1 = ∅ and T = T −1, where, as usual,
P −1 = {(y, x) ∣ (x, y) ∈ P } for any relation P .

A Thue system S is called geodesic, if starting from any word u and
applying only length decreasing rules we eventually obtain a geodesic word

v (a shortest word in the set {v ∣ u
∗
⇐⇒
S

v}). Thus, we have u
∗
Ô⇒
R

v for some

geodesic word v.
A confluent, geodesic, Thue system is called geodesically perfect. This

means whenever u
∗
⇐⇒
S

v, then we can first compute geodesics u
∗
Ô⇒
R

û and

v
∗
Ô⇒
R

v̂, by applying length reducing rules, and then we can transform û into

v̂ by symmetric rules from T , that is û
∗
⇐⇒
T

v̂ (which in turn is equivalent
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to û
∗
Ô⇒
T

v̂). Thus the following statements are equivalent for geodesically

perfect systems.

1. u
∗
⇐⇒
S

v.

2. ∃ û, v̂ ∶ u
∗
Ô⇒
R

û
∗
Ô⇒
T

v̂
∗
⇐Ô
R

v.

2.4 Cyclic words and cyclic rewriting

There are two principal ways of introducing cyclic words over an alpha-
bet Γ. The first one is based on combinatorics of words: in this case one
defines a cyclic word as an equivalence class of the transposition relation
on Γ∗. Thus, if w ∈ Γ∗ then the cyclic word represented by w is the set
w∼ = {vu ∈ Γ∗ ∣ uv = w }. The second one, defines the cyclic word repre-
sented by w to be the directed, Γ-labelled, cycle graph Cw, such that the label
of the cycle, when read with orientation, starting at an appropriate vertex, is
w. More precisely, if w = a1 . . . an, n > 0, then Cw is a directed graph with ver-
tices v1, . . . , vn and directed edges e1 = (v1 → v2), . . . , en−1 = (vn−1 → vn), en =
(vn → v1) where each edge ei is labelled by ai In the graph-theoretic version,
an ordinary word w ∈ Γ∗ can be viewed as a directed Γ-labelled path-graph
Pw: with vertices , v1, . . . , vn+1 and edges e1 = (v1 → v2), . . . , en = (en → en+1)
with labels a1, . . . , an, respectively. If w is the empty word 1 then Pw and Cw

consist of a single vertex. We regard the combinatorial and graph theoretic
views of words and cyclic words as different aspects of the same objects and
pass from one to the other without further comment.

Graph rewriting (or transformation) is a well-established technique of
computing with graphs. We refer to the book [25] for details. In general, a
graph rewriting system consists of a set of graph rewriting rules of the form
(L,R), where L and R are graphs. To apply such a rule to a given graph G

one finds a subgraph of G isomorphic to L and replaces it by R according to
some prescribed procedure.

In our case the graphs G are cycles Cw, where w ∈ Γ∗ and the rewriting
rules are of the following two types:

1) (Pℓ, Pr) for some ℓ, r ∈ Γ∗;

2) (Cℓ,Cr) for some ℓ, r ∈ Γ∗, ℓ ≠ 1.

Application of a rule (Pℓ, Pr) to a graph Cw involves replacing some path
subgraph Pℓ of Cw by the path Pr. This can be clearly visualised as in
Figure 1. Application of the rule (Cℓ,Cr) to Cw is straightforward: if Cw
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ℓ

○
Ô⇒
(ℓ,r)

r

Figure 1: Cyclic rewriting when (ℓ, r) ∈ S and ℓ appears on the cycle.

is isomorphic to Cℓ (as a directed, labelled graph) then replace Cw by Cℓ.
Otherwise the rule does not apply. Clearly, the result of applying one of these
rules to cyclic word is a cyclic word. A rewriting system on cyclic words is
a set T of rules of the type 1) and 2). We write Cu Ô⇒

T
Cv if Cv can be

obtained from Cu by one of the rules from T . In this case we may also write

u∼
○
Ô⇒
T

v∼ or u
○
Ô⇒
T

v. The definitions of Section 2.2 apply to an arbitrary

binary relation on a set X , and in particular to the relationÔ⇒
T

on the set of

cyclic words over Γ∗. Hence, we can talk about confluent, strongly confluent,
terminating, etc. rewriting systems on cyclic words.

The subsystem of T consisting of the rules of type 1) corresponds to a
string rewriting semi-Thue system S = {(ℓ, r) ∣ (Pℓ, Pr) ∈ T}. On the other
hand, let S ⊆ Γ∗ ×Γ∗ be a semi-Thue system. Then S composed on the right

and left with the relation ∼ defines a one-step relation
○
Ô⇒
S

on cyclic words.

That is, we have u∼
○
Ô⇒
S

v∼, if and only if there are words u′ and v′ such that

u ∼ u′, u′ Ô⇒
S

v′, and v′ ∼ v. Obviously, if a rule (ℓ, r) ∈ S is applied to u∼,

then the rewriting step u∼
○
Ô⇒
(ℓ,r)

v∼ may be understood as applying the rule

(Pℓ, Pr) to the graph Pu, as in Figure 1.

By analogy with string rewriting, we denote by
⊛
Ô⇒
S

the reflexive and

transitive closure of
○
Ô⇒
S

; write u
○
⇐Ô
S

v and u
⊛
⇐Ô
S

v for v
○
Ô⇒
S

u and

v
⊛
⇐Ô
S

u, respectively; and denote by
⊛
⇐⇒
S

the reflexive, symmetric, transitive

closure of
○
Ô⇒
S

.

Neither confluence nor termination transfers from S (defined on words)

to
○
Ô⇒
S

(defined on cyclic words).

Example 2.2. 1. Let Γ = {a, b, c, d} and let S consist of the following four
rules

abc Ð→ bac, cdaÐ→ dca, bad Ð→ abd, dcbÐ→ cbd.
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To see that Ô⇒
S

is confluent it is necessary to check all four cases where

the left-hand sides of rules overlap. For example the left-hand side of
abc Ð→ bac overlaps with the left-hand side of cda Ð→ dca. Therefore
we can rewrite abcda in two ways:

bacda⇐Ô
S

abcdaÔ⇒
S

abdca.

However
bacdaÔ⇒

S
badcaÔ⇒

S
abdca,

so either way results in the same reduced word. The other three cases
are similar and so Ô⇒

S
is confluent. However, the cyclic rewriting

system defined by S is not confluent. In fact abcd∼
○
Ô⇒
S

bacd∼ and

abcd∼ = bcda∼
○
Ô⇒
S

bdca∼. Both bacd∼ and bcda∼ are irreducible and

they are not equal.

2. Let Γ = {a, b} and S = {ba Ð→ ab2}. It is not difficult to see that

Ô⇒
S

is terminating. However the relation
○
Ô⇒
S

on cyclic words is non-

terminating as

ba∼
○
Ô⇒
S

b2a∼
○
Ô⇒
S

b3a∼
○
Ô⇒
S

b4a∼
○
Ô⇒
S
⋯.

A semi-Thue system S is called C-confluent, if
○
Ô⇒
S

is confluent on cyclic

words. If W is subset of cyclic words, then we also say that S is C-confluent

on W , if
○
Ô⇒
S

is confluent on all cyclic words in W .

In the rest of the section we consider some general methods of transform-
ing confluent semi-Thue systems into C-confluent systems.

2.5 From confluence to cyclic confluence

Let S ⊆ Γ∗ × Γ∗ be a confluent semi-Thue system such that G = Γ∗/S is
a group. In this section we consider the general question (in the spirit of a
Knuth-Bendix or Shirshov-Gröbner completion) of how to enlarge the system
S by adding new rules in order to obtain another system Ŝ such that the
following hold:

1. S ⊆ Ŝ and Γ∗/S = Γ∗/Ŝ (i.e., Ŝ is a conservative extension of S);

2.
○
Ô⇒
Ŝ

is confluent on cyclic words (i.e., Ŝ is C-confluent).
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Usually, we refer to Ŝ satisfying 1 as an extension of S (omitting conserva-
tive). Ŝ satisfying 1 and 2 is termed a C-extension of S. Condition 1 ensures
that Ŝ is still confluent (since S, and hence Ŝ, is Church-Rosser).

Now we fix a confluent semi-Thue system S ⊆ Γ∗ ×Γ∗ such that G = Γ∗/S
is a group. For each letter a ∈ Γ we can choose some fixed word ã ∈ Γ∗ such
that aã = 1 in G. We extend this definition (in a unique way) to all words of
Γ∗ as follows. Define 1̃ = 1 and assume that ũ has been defined for all words
u of length at most n. Let u = va be a word of length n+1, with a ∈ Γ, v ∈ Γ∗.
Then define ũ = ã ṽ. Clearly, ̃̃w = w in G for all words w ∈ Γ∗.

For x, y ∈ Γ∗ write x > y, if x
∗
Ô⇒
S

pyq with pq ≠ 1. Then > is a partial

order on Γ∗. Since x
∗
Ô⇒
S

x = x1 (here 1 is the empty word) then x > 1

for every non-empty word x. We call the system S weakly-terminating if
the partial order > is well-founded, i.e., there are no infinite chains x1 >
x2 > x3 > ⋯. Clearly, if the system S is terminating, then it is weakly-
terminating. Moreover, every semi-Thue system without length increasing
rules is weakly-terminating. Note that the empty word 1 is irreducible in
every weakly-terminating system. In particular, such a system does not have

rules of the type 1 → xx̃ or 1 → x̃x, but xx̃
∗
Ô⇒
S

1 and x̃x
∗
Ô⇒
S

1 for any

x ∈ Γ∗, since S is Church-Rosser and 1 is irreducible.
For a system S define a semi-Thue system Ŝ by the following rules uÔ⇒

Ŝ

u′ where:

1. uÔ⇒
S

u′ (original rule).

2. u = qv and u′ = p̃rv, if exists pq Ð→ r ∈ S, p ≠ 1 ≠ q (prefix rule).

3. u = vp and u′ = vrq̃, if exists pq Ð→ r ∈ S, p ≠ 1 ≠ q (suffix rule).

4. u′ = p̃rq̃, if exists puq Ð→ r ∈ S, p ≠ 1 ≠ q (infix rule).

It is clear that Ŝ satisfies S ⊆ Ŝ and Γ∗/S = Γ∗/Ŝ. As before
⊛
Ô⇒
Ŝ

denotes

the reflexive and transitive closure of
○
Ô⇒
Ŝ

.

Theorem 2.3. Let S ⊆ Γ∗×Γ∗ be a confluent weakly-terminating semi-Thue
system such that G = Γ∗/S is a group. Then the following hold:

1) u and v are conjugate in G if and only if u
⊛
Ô⇒
Ŝ

t
⊛
⇐Ô
Ŝ

v for some

(cyclic) word t.

2) the rewrite system
○
Ô⇒
Ŝ

is confluent on (cyclic) words.
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Proof. To prove 1) observe first (by inspection of all the rules in Ŝ) that

u
⊛
Ô⇒
Ŝ

t
⊛
⇐Ô
Ŝ

v (1)

(in fact, even u
⊛
⇐⇒
Ŝ

v) for some word t ∈ Γ∗ implies that u and v are conjugate

in G.
Assume now that u, v ∈ Γ∗ define conjugate elements in G, i.e., xux̃

∗
⇐⇒
S

v

for some x ∈ Γ∗. We claim that in this case there exists t ∈ Γ∗ for which (1)
holds. We proceed by Noetherian induction on x, i.e., by induction on the
number of predecessors of x relative to >.

Since S is Church-Rosser there exists w ∈ Γ∗ such that xux̃
∗
Ô⇒
S

w
∗
⇐Ô
S

v.

If x has no predecessors then x = 1 and the claim is obvious (in this case
t = w). Thus, we may assume that the claim holds for all y < x.

In the reduction xux̃
∗
Ô⇒
S

w the following cases may occur.

Case 1 (no overlap). Suppose one can factorise w = x′u′x′′ in such a way

that x
∗
Ô⇒
S

x′, u
∗
Ô⇒
S

u′, and x̃
∗
Ô⇒
S

x′′, then we are done since x′′x′ = 1 in G,

so x′′x′
∗
Ô⇒
S

1 (1 is S-irreducible), and hence:

u
∗
Ô⇒
S

u′
∗
⇐Ô
S

u′x′′x′ ∼ x′u′x′′ = w,

which proves the claim. Thus we may assume that there is no such factori-
sation.

Case 2 (overlap). Assume now that x
∗
Ô⇒
S

yp, u
∗
Ô⇒
S

qv such that p ≠

1, q ≠ 1 and pq Ð→ r is a rule of S. Then one has xux̃ = y(rvp̃)ỹ = v in

G and y < x. Hence, by induction, rvp̃
⊛
Ô⇒
Ŝ

t
⊛
⇐Ô
Ŝ

v for some word t ∈ Γ∗.

Notice, that we can apply a prefix rule to qv and after a transposition obtain

u
⊛
Ô⇒
Ŝ

rvp̃. Therefore, u
⊛
Ô⇒
Ŝ

t
⊛
⇐Ô
Ŝ

v and the claim holds.

The argument for the other possible overlap, when x̃
∗
Ô⇒
S

qy and u
∗
Ô⇒
S

vp,

is similar and we omit it.
Case 3 (nesting). We are left to consider the following situation: x

∗
Ô⇒
S

yp, u
∗
Ô⇒
S

s, and x̃
∗
Ô⇒
S

qz where p ≠ 1 ≠ q and psq Ð→ r is a rule of S. Again

xux̃ = y(r q̃ p̃)ỹ in G and y < x. Hence, by induction, r q̃ p̃
⊛
Ô⇒
Ŝ

t
⊛
⇐Ô
Ŝ

v,

for some word t. Applying an infix rule to s and a transposition yields

u
⊛
Ô⇒
Ŝ

r q̃ p̃. The claim follows.

11



This finishes the proof of 1). Statement 2) follows from 1) since, as

mentioned above, u
⊛
⇐⇒
Ŝ

v implies that u and v are conjugate in G.

Now we show that an extension S○ (defined below) of S which is, in this
context, extremely natural is also a C-extension of S. Define S○ to be the
extension of S obtained by adding the rules 1 → aã and 1 → ãa, for every
a ∈ Γ. Thus

S○ = S ∪ {1→ aã,1 → ãa ∣ a ∈ Γ}

and, since G = Γ∗/S is a group, S○ is indeed a C-conservative extension of S.

Theorem 2.4. Let S ⊆ Γ∗×Γ∗ be a confluent weakly-terminating semi-Thue
system such that G = Γ∗/S is a group. Then the following hold:

1) u and v are conjugate in G if and only if u
⊛
Ô⇒
S○

t
⊛
⇐Ô
S○

v for some

(cyclic) word t.

2) S○ is a C-extension of S.

Proof. If u
⊛
Ô⇒
S○

t
⊛
⇐Ô
S○

v for some word t then u and v are obviously conjugate

in G. Conversely, if u and v are conjugate in G, then by Theorem 2.3

u
⊛
Ô⇒
Ŝ

t
⊛
⇐Ô
Ŝ

v for some word t. Observe, that application of a prefix, suffix,

or infix rule from Ŝ is equivalent to a sequence of rule applications from S○,

so u
⊛
Ô⇒
Ŝ

t
⊛
⇐Ô
Ŝ

v implies u
⊛
Ô⇒
S○

t
⊛
⇐Ô
S○

v. Now the result follows.

2.6 From strong to cyclic confluence in groups

The transformation of a semi-Thue system S into the larger system S○ de-
scribed in Section 2.5 leads to length increasing rules. This is in some sense
unavoidable. Indeed, assume we have ab = c and ba = d in the quotient
M = Γ∗/S where c, d ∈ Γ are letters. In general we cannot expect that
c = d ∈ M . But c and d are transpose, so we need cyclic rewriting rules to
pass from c to d or vice versa. If we wish to do this by string rewriting and
transpositions, then we are forced to pass from c to d via cyclic words of
length at least 2. This is what happens in building Ŝ and S○.

Another idea is to introduce special rules which directly rewrite short
cyclic words into each other, if they represent distinct conjugate elements.
In this case we have rules that rewrite cyclic words, but these rules are not
induced by any string rewriting rules in the system (via equivalence relation
∼). We now make this precise.
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We start with a semi-Thue system S ⊆ Γ∗ × Γ∗, which we allow to be
infinite. Define

m(S) = sup { ∣ℓ∣ ∣ (ℓ, r) ∈ S } .

We say that S is left-bounded if m(S) < ∞. From now on we assume that
the empty word is S-irreducible and, to exclude trivial cases, that 2 ≤m(S).
To this end, we say that S is a standard semi-Thue system, if it satisfies the
two conditions above: that is

1. (1, r) ∉ S, for all non-empty words r ∈ Γ∗, and

2. 2 ≤m(S) <∞.

A cyclic word w∼ is called S-short if ∣w∣ ≤ 2m(S) − 2, and it is called
strictly S-short if ∣w∣ < 2m(S) − 2. When S is fixed we refer to such words
simply as short or strictly short.

In the following let C(S) denote any relation defined on the set of cyclic
words which satisfies the following two conditions:

C1 If u∼
○
Ô⇒
S

v∼, then (u∼, v∼) ∈ C(S), i.e.,
○
Ô⇒
S
⊆ C(S).

C2 If (u∼, v∼) ∈ C(S), then u and v are conjugate in Γ∗/S.

Later, we discuss the possibility of constructing relations C(S) with these

properties. We write u
○
Ô⇒
C(S)

v and v
○
⇐Ô
C(S)

u if (u∼, v∼) ∈ C(S) or if u∼ =

v∼. (Thus, both
○
Ô⇒
C(S)

and
○
⇐Ô
C(S)

are reflexive.) Moreover, we use
⊛
Ô⇒
C(S)

and

⊛
⇐⇒
C(S)

again, for the transitive, and for the symmetric and transitive closure,

respectively, of
○
Ô⇒
C(S)

. As C(S) is a relation on cyclic words, when we say C(S)

is confluent, or strongly confluent, unless we explicitly specify an alternative,
we mean confluent or strongly confluent on the set of all cyclic words.

Theorem 2.5. Let S ⊆ Γ∗ × Γ∗ be a standard strongly confluent semi-Thue
system such that C(S) satisfies the two conditions C1 and C2 above. Then
the following assertions are equivalent:

1.) The system C(S) is confluent.

2.) The system C(S) is confluent on all short cyclic words w. (That is if w

is short and u
⊛
⇐Ô
C(S)

w
⊛
Ô⇒
C(S)

v then there exists t such that u
⊛
Ô⇒
C(S)

t
⊛
⇐Ô
C(S)

v.)

13



Proof. We have to show only that if C(S) is confluent on all short cyclic
words, then C(S) is confluent.

First consider u
○
⇐Ô
C(S)

w
○
Ô⇒
C(S)

v where ∣w∣ ≥ 2m(S) − 1. Then the two rules

applied to the cyclic word w∼ are inherited from the semi-Thue system S.
Since w is long enough the corresponding left-hand sides overlap in the cyclic
word w at most once. Since S is strongly confluent, we see that there is some
cyclic word t such that

u
○
Ô⇒
C(S)

t
○
⇐Ô
C(S)

v.

Next, consider

u = wk

○
⇐Ô
C(S)
⋯

○
⇐Ô
C(S)

w0

○
Ô⇒
C(S)

v1
○
Ô⇒
C(S)
⋯

○
Ô⇒
C(S)

vm = v.

We may assume that m ≥ k ≥ 1. We perform an induction on (k,m) in the
lexicographical order.

If none of w0, . . . ,wk−1 is short, then by strong confluence of S we have
the following situation.

u
○
Ô⇒
C(S)

w′k
○
⇐Ô
C(S)
⋯

○
⇐Ô
C(S)

w′1
○
⇐Ô
C(S)

v1
⊛
Ô⇒
C(S)

v.

Thus, we are done by induction on m. Therefore let wℓ be a short cyclic
word where ℓ ≤ k − 1. By induction on k we see that there exists

wℓ

⊛
Ô⇒
C(S)

t
⊛
⇐Ô
C(S)

v.

Moreover, u
⊛
⇐Ô
C(S)

wℓ and C(S) is confluent on wℓ because wℓ is a short cyclic

word. Hence we find
u

⊛
Ô⇒
C(S)

t′
⊛
⇐Ô
C(S)

t
⊛
⇐Ô
C(S)

v.

Corollary 2.6. Let S ⊆ Γ∗ × Γ∗ be a standard strongly confluent semi-Thue
system such that Γ∗/S is a group and such that first, C(S) is confluent on
all short cyclic words and second, it satisfies the two conditions C1 and C2
above. Then two words u and v are conjugate in Γ∗/S if and only if there
exists a cyclic word t such that

u∼
⊛
Ô⇒
C(S)

t
⊛
⇐Ô
C(S)

v∼.
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Proof. Clearly, u∼
⊛
⇐⇒
C(S)

v∼ implies conjugacy. Now, if u and v are conjugate,

then there is some x such that xux−1
∗
⇐⇒
S

v. This implies xux−1∼
⊛
⇐⇒
C(S)

v∼. We

have xx−1
∗
Ô⇒
S

1, because S is standard and confluent, hence xux−1∼
⊛
Ô⇒
C(S)

u∼.

We conclude u∼
⊛
⇐⇒
C(S)

v∼. The result follows by Theorem 2.5.

2.7 A Knuth-Bendix-like procedure on cyclic words

If a system C(S), satisfying C1 and C2 above, is large enough to ensure

u∼
⊛
Ô⇒
C(S)

v∼ whenever u∼ and v∼ are conjugate in Γ∗/S with u short, then

we can apply Theorem 2.5; and we can use the system C(S) for solving
conjugacy in Γ∗/S. In order to construct such a system we may use a form
of Knuth-Bendix completion. This can be done in a very general way; which
is fairly standard but technical, if we work out all details. Here we wish to
restrict an analogue of Knuth-Bendix completion to short words; for which
we need some additional hypotheses.

We assume throughout this section that the alphabet Γ is well-ordered
by <. We extend this well-order to the shortlex order < on Γ∗ as usual:
we write u < v if either ∣u∣ < ∣v∣ or ∣u∣ = ∣v∣ and u = pax, u = pby with
a, b ∈ Γ such that a < b. Moreover, we extend the well-order to cyclic words
by representing a cyclic word w∼ by the minimal shortlex word in its class
w∼ = {uv ∣ vu = w }. Hence, there is well-order on the set of cyclic words.
For any relation R ⊆ Γ∗ × Γ∗ we define the descending part of R to be

R̃ = {(l, r) ∈ R ∶ l > r in the shortlex ordering}.

The new restriction we put on S is that we assume that, for all (ℓ, r) ∈ S,

we have ∣r∣ ≤ ∣ℓ∣. In particular, if w is short and w
⊛
Ô⇒
S

v, then v is short, too.

Now let C(S) satisfy C1 and C2 above. We say that (u∼, v∼) ∈ C(S) is a
short critical pair, if u∼ > v∼ (in the shortlex ordering) and for some S-short
word w we have:

u∼
○
⇐Ô
C(S)

w∼
○
Ô⇒
C(S)

v∼ (2)

We say that the critical pair (u∼, v∼) in (2) is shortlex resolved, if

u∼
⊛
Ô⇒
C̃(S)

t∼
⊛
⇐Ô
C̃(S)

v∼,

for some t with v ≥ t (where C̃(S) is the descending part of C(S)). By
resolving (u∼, v∼) we mean adding the rule (u∼, v∼) to C(S). (Note that, by
definition, u∼ > v∼.) Hence by resolving we force (u∼, v∼) to be resolved.
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If we begin by taking C(S) equal to
○
Ô⇒
S

then, by resolving short pairs,

we may form new systems which still satisfy C1 and C2. If the alphabet Γ
is finite, then this procedure of adding more rules terminates because there
are only finitely many short words. In general, there exists a limit system
C∗(S), satisfying C1 and C2 and such that all short critical pairs are shortlex
resolved, but if Γ is infinite then we may only have a semi-procedure for its
construction.

Theorem 2.7. Let S ⊆ Γ∗ × Γ∗ be a standard strongly confluent semi-Thue
system such that Γ∗/S is a group and such that, for all (ℓ, r) ∈ S, we have
∣r∣ ≤ ∣ℓ∣. Let C∗(S) be constructed as above by resolving short critical pairs.
Then the following two assertions hold:

1. The system C∗(S) is standard and confluent.

2. Two words u and v are conjugate in Γ∗/S if and only if there exists a
cyclic word t∼ such that

u∼
⊛
Ô⇒
C∗(S)

t∼
⊛
⇐Ô
C∗(S)

v∼.

Proof. By construction C∗(S) is standard. Having shortlex resolved all short
critical pairs, the descending part C̃ = C̃∗(S) of C∗(S) is terminating and

contains all new rules (u∼, v∼) added to the system
○
Ô⇒
S

. Therefore C̃ is

locally confluent on short words. Moreover, if u∼
○
Ô⇒
S

v∼ then, since < is a

total order and ∣l∣ ≥ ∣r∣ for all (l, r) ∈ S, either (u∼, v∼) or (v∼, u∼) belongs to

C̃. Hence u∼
⊛
⇐⇒
C∗(S)

v∼ if and only if u∼
⊛
⇐⇒
C̃

v∼. (Note that we don’t claim that

C̃ satisfies C1 or C2. We don’t even have S ⊆ C̃, in general.)
We are now ready to show that C∗(S) is confluent on short words. Con-

sider the following situation where w is short:

u∼
⊛
⇐Ô
C∗(S)

w∼
⊛
Ô⇒
C∗(S)

v∼.

Since ∣r∣ ≤ ∣ℓ∣ for (ℓ, r) ∈ S (and hence for all (ℓ, r) ∈ C∗(S)) we see that u

and v are short, and moreover u∼
⊛
⇐⇒
C̃

v∼. Note that the path u∼⇐⇒
C̃

u′∼⇐⇒
C̃

⋯ ⇐⇒
C̃

v∼ ( via w∼) never leaves the set of short words. Being terminating

and locally confluent, the system C̃ is confluent on short words. Hence, since

u∼
⊛
⇐⇒
C̃

v∼, there exists a cyclic word t∼ such that

u∼
⊛
Ô⇒
C̃

t∼
⊛
⇐Ô
C̃

v∼.
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As C̃ ⊆ C∗(S), we see that C∗(S) is confluent on short words, as claimed.
Finally, C∗(S) satisfies conditions C1 and C2 above; and so Corollary 2.6

applies, to give the result.

2.8 Strongly confluent Thue systems

If the system S is Thue (c.f. Section 2.3) then we may construct C∗(S)

in finitely many steps as follows. We start with C0 = C0(S) =
○
Ô⇒
S

. This

is a relation defined on the set of cyclic words where all rules are either
length decreasing or length preserving and then symmetric. We call any
such relation on cyclic words Thue.

At each step let us define a Thue relation Ci satisfying conditions C1 and
C2 above. We let Ui be the set of “unresolved short critical pairs” (u∼, v∼),
which are defined in the Thue case as follows:

u∼
○
⇐Ô
Ci

w∼
⊛
Ô⇒
Ci

w′∼
○
Ô⇒
Ci

v∼

where w is S-short, ∣w∣ = ∣w∣
′
≥ ∣u∣ ≥ ∣v∣ ≥ 1, and neither u∼

⊛
Ô⇒
Ci

v∼ nor

u∼
⊛
⇐Ô
Ci

v∼.

Note that, since ∣w∣ = ∣w∣
′
we have u∼

○
⇐Ô
Ci

w∼
⊛
⇐Ô
Ci

w′∼
○
Ô⇒
Ci

v∼, too. Thus,

for unresolved pairs we must have ∣w∣ > ∣u∣ ≥ ∣v∣ ≥ 1. (Because if, say ∣w∣ = ∣v∣,

then u∼
⊛
⇐Ô
Ci

w′∼
○
⇐Ô
Ci

v∼.)

At the next step we let Ci+1 be the relation obtained from Ci by adding
a pair (u∼, v∼) to Ci, for all (u∼, v∼) ∈ Ui, and, in addition, by adding (v∼, u∼)
whenever ∣u∼∣ = ∣v∼∣. This keeps Ci+1 Thue. Finally, we let

C∗(S) =⋃{Ci(S) ∣ i ∈ N } . (3)

Theorem 2.8. Let S be a standard, strongly confluent, Thue system, let
m = m(S) and let C∗(S) be the system defined in (3) above. Then C∗(S) =
C2m−2, and C∗(S) is a confluent, Thue system, satisfying conditions C1 and
C2.

Proof. By definition Ci are Thue for all i ≥ 0; and short words have length

at most 2m−2. When considering u∼
○
⇐Ô
Ci

w∼
⊛
Ô⇒
Ci

w′∼
○
Ô⇒
Ci

v∼ we may assume

that ∣u∣ < ∣w∣ (see above) and that u∼
○
⇐Ô

Ci∖Ci−1

w∼ (or w′∼
○
Ô⇒

Ci∖Ci−1

v∼). Thus,

at every step the words w under consideration get shorter. We conclude
C∗(S) = C2m−2(S), as claimed.
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Next, we show that C∗(S) is confluent on short cyclic words. To this end

we define an equivalence relation ≡ on cyclic words by u ≡ v if u∼
⊛
Ô⇒
C∗(S)

v∼ and

u∼
⊛
⇐Ô
C∗(S)

v∼. Thus, if u ≡ v then u∼
⊛
⇐⇒
C∗(S)

v∼ and ∣u∣ = ∣v∣. We can view C∗(S)

as a terminating rewriting system on equivalence classes [u] = {v ∣ v ≡ u }.
By construction, C∗(S) is locally confluent on classes [w], where w is short.
But together with termination, we see that C∗(S) is actually confluent on
these classes [w]. But this implies that C∗(S) is confluent on short cyclic
words, because it is Thue. Finally, C∗(S) satisfies the two conditions C1 and
C2 above. Since S is also a standard, strongly confluent semi-Thue-system,
we may apply Theorem 2.5.

2.9 Cyclic geodesically perfect systems

In this section we consider an analogue for cyclic rewriting systems of geodesi-
cally perfect string rewriting systems; and adapt our Knuth-Bendix comple-
tion process to these systems. Let S ⊆ Γ∗ × Γ∗ be a standard semi-Thue
system such that Γ∗/S is a group. A cyclic word w∼ is called geodesic (w.r.t.
S), if w is a shortest word in its conjugacy class. That is

∣w∣ =min{ ∣u∣ ∣ u ∈ Γ∗ and ∃x ∶ xux−1 = w ∈ Γ∗/S } .

A cyclic word w∼ is called quasi-geodesic (w.r.t. S), if it is either geodesic
or it is strictly S-short, but it is not equal to the neutral element in Γ∗/S.
Note that all non-trivial geodesic cyclic words are quasi-geodesic and more
importantly in 2-monadic systems every quasi-geodesic cyclic word is actually
geodesic.

Now, a Thue relation C(S) on cyclic words, satisfying C1 and C2 above,
is called quasi-geodesic, if by applying a sequence of length reducing rules
from C(S) to a cyclic word w∼ we eventually derive a quasi-geodesic cyclic
word u∼. In order to be geodesically perfect C(S) must satisfy stronger
conditions: C(S) is called geodesically perfect if, by applying a sequence of
length reducing rules from C(S) to a cyclic word w∼, we eventually derive a
geodesic cyclic word u∼. Moreover, if two geodesics u∼ and v∼ can both be
derived from w∼, then it must be possible to rewrite u∼ into v∼ using only
length preserving rules from C(S). Note that every geodesically perfect Thue
system on cyclic words is confluent.

Now, if S ⊆ Γ∗×Γ∗ is a Thue system then we say that S is C-quasi-geodesic

if the system
○
Ô⇒
S

, on cyclic words, is quasi-geodesic. The following result

shows that a geodesic Thue system is innately C-quasi-geodesic.
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Theorem 2.9. Let S ⊆ Γ∗ × Γ∗ be a standard, geodesic, Thue system. Then
S is C-quasi-geodesic.

Proof. We have to show the following: if u∼
⊛
⇐⇒
S

w∼ and ∣u∣ < ∣w∣, then either

a length reducing rule applies to the cyclic word w∼ or w∼ is strictly S-short.

To begin with let u∼
⊛
⇐⇒
S

w∼. Then there is a sequence u = w0, . . . ,wℓ = w

such that wi−1 and wi are related in one of the following three ways:

wi−1Ô⇒
S

wi or wi−1 ⇐Ô
S

wi or wi−1 ∼ wi.

First, we claim that there exist m ∈ N and u1, u2 ∈ Γ∗ such that u1uk−mu2

∗
⇐⇒
S

wk, for all k >m.
This is true for ℓ = 0 with m = 0. For ℓ ≥ 1 the result holds by induction

for v = w1, . . . ,wℓ = w with some m ∈ N and v1, v2 ∈ Γ∗. Now, if uÔ⇒
S

v, then

we have v1uk−mv2
∗
Ô⇒
S

v1vk−mv2
∗
⇐⇒
S

wk, for all k > m. Similarly, if u⇐Ô
S

v,

then we have v1uk−mv2
∗
⇐Ô
S

v1vk−mv2
∗
⇐⇒
S

wk, for all k >m. Now, let u = u2u1

and v = u1u2. Define m′ =m + 1. We have:

v1u1u
k−m−1u2v2

∗
⇐⇒
S

v1v
k−mv2

∗
⇐⇒
S

wk, for all k >m.

Replacing m, u1 and u2 with m′, v1u1, and u2v2, respectively, we see that
the claim holds.

Next, assume that we have ∣u∣ < ∣w∣ and choose m, u1 and u2 as above.

Take k large enough to make ∣wk∣ > ∣u1uk−mu2∣. Since u1uk−mu2

∗
⇐⇒
S

wk and

S is geodesic, a length reducing rule (ℓ, r) ∈ S applies to wk. If ∣ℓ∣ ≤ ∣w∣, then
the same rule applies to the cyclic word w∼, and we are done. In the other
case, w is strictly S-short, and we are done, too.

In the next section of the paper we shall be concerned with standard,
geodesically perfect, Thue string rewriting systems S, which are 2-monadic:

that is m(S) = 2. For the rewriting system
○
Ô⇒
S

induced by such S, there

is a particularly simple form of Knuth-Bendix completion. In this case we
consider an short critical pair (u∼, v∼) to be “unresolved” if it arises from the
situation

u∼
○
⇐Ô
S

w∼
○
Ô⇒
S

v∼, (4)

where w is short and ∣w∣ > ∣u∣ ≥ ∣v∣ ≥ 1. We resolve the short critical pair
of (4) by adding the rules (u∼, v∼) and (v∼, u∼). Let C†(S) be the system

obtained from
○
Ô⇒
S

by resolving all short critical pairs of the form (4). Note
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that if (u∼, v∼) is a short critical pair then both u and v are strictly short
and non-trivial so, S being 2-monadic, we have ∣u∣ = ∣v∣ = 1.

Corollary 2.10. Let S ⊆ Γ∗ × Γ∗ be a standard, 2-monadic, geodesically
perfect, Thue system, such that Γ∗/S is a group, and C†(S) is confluent.
Then C†(S) satisfies C1 and C2 and is geodesically perfect. Moreover two
cyclic words u∼ and v∼ are conjugate in Γ∗/S if and only if there exists a
cyclic word t∼ such that

u∼
⊛
Ô⇒
C†(S)

t∼
⊛
⇐Ô
C†(S)

.

Proof. By construction C† = C†(S) satisfies C1 and C2. Two elements u, v ∈

Γ∗ are conjugate if and only if u∼
⊛
⇐⇒
C†

v∼; so the final statement holds if C† is

confluent. Therefore it is sufficient to prove that C† is geodesically perfect.

Consider w
⊛
Ô⇒
C†

v such that v has minimal length with this property (so

is geodesic) and let w
⊛
Ô⇒
C†

u be some maximal derivation using only length

reducing rules from the cyclic rewriting system C†. Clearly, ∣u∣ ≥ ∣v∣; and
Theorem 2.9 implies that S is C-quasi-geodesic so either ∣u∣ = ∣v∣ or u is
strictly S-short. We have to show that we can transform u into v by length
preserving rules from C†. This is clear, if v is not strictly S-short, because
then ∣u∣ = ∣v∣, and C† is confluent and Thue. For m(S) = 2, a strictly S-short

word v is either a letter or the empty word 1. But if v = 1 we have w
∗
Ô⇒
S

v

because S is a confluent semi-Thue system and 1 is irreducible ; and it follows

from the definitions of
⊛
Ô⇒
C†

and u that u = 1 as well. There remains the case

v ∈ Γ. Since S is C-quasi-geodesic we have ∣u∣ = 1, too. As C† is confluent
and Thue we can transform the letter u into v, by applying length preserving
rules of C†.

3 Stallings’ pregroups and their universal groups

We now turn to the notion of pregroup in the sense of Stallings, [27], [28]. A
pregroup is a set P with a distinguished element ε, equipped with a partial
multiplication (a, b) ↦ ab which is defined for (a, b) ∈ D, where D ⊆ P × P ,
and an involution a ↦ a, satisfying the following axioms, for all a, b, c, d ∈ P .
(By “ab is defined” we mean that (a, b) ∈ D.)

(P1) aε and εa are defined and aε = εa = a;

(P2) aa and aa are defined and aa = aa = ε;
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(P3) if ab is defined, then so is ba, and ab = b a;

(P4) if ab and bc are defined, then (ab)c is defined if and only if a(bc) is
defined, in which case

(ab)c = a(bc);

(P5) if ab, bc, and cd are all defined then either abc or bcd is defined.

It is shown in [11] that (P3) follows from (P1), (P2), and (P4), hence can be
omitted.

For a, b ∈ P we write ab ∈ P , to mean that ab is defined. Also we use the
notation [ab] to indicate that ab ∈ P and, under the partial multiplication,
(a, b) ↦ [ab]. This notation is extended recursively to products of more than
two elements of P : if w ∈ P ∗, where the notation has been established for
words shorter than w, and w has a factorisation w = uv, such that u, v ∈ P
and [u][v] is defined, we write w ∈ P and use [w] to denote the product
[u][v] ∈ P . (Note though that, for example, [abc] means only that one of
[ab]c or a[bc] belongs to P . (cf. Lemma 3.2.))

The set P can be considered as a possibly infinite alphabet. The axioms
above lead to the following definitions of Thue systems Sε, S(P ) and the
universal group U(P ).

Definition 3.1. 1. The system Sε ⊆ P ∗ × P ∗ is defined by the following
rules:

ε Ð→ 1 (= the empty word)
ab Ð→ [ab] if (a, b) ∈D
ab ←→ [ac][cb] if (a, c), (c, b) ∈D

2. Let Γ = P ∖ { ε}. The system S(P ) ⊆ Γ∗ × Γ∗ is defined as follows:

ab Ð→ 1 if (a, b) ∈D and [ab] = ε.
ab Ð→ [ab] if (a, b) ∈D and [ab] ≠ ε.
ab ←→ [ac][b] if (a, c), (c, b) ∈D, and (a, b) ∉D.

We say that S(P ) is the Thue system associated with P .

3. The universal group U(P ) of a pregroup P is the group

U(P ) = Γ∗/ { ℓ = r ∣ (ℓ, r) ∈ S(P ) } .

Tietze transformations may be applied to the presentation P ∗/Sε to give
the presentation Γ∗/S(P ); so U(P ) ≅ P ∗/Sε.

A reduced word is an element p1⋯pn of P ∗ such that all pi ∈ Γ and [pipi+1] ∉
P , for i from 1 to n − 1.
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The relationships between a pregroup, these rewriting systems and the
universal group rest on several key lemmas, the most important of which we
restate here for completeness.

Lemma 3.2 ([27]). Let a, b, c, d, g, h ∈ P .

1.) If ab ∈ P then [ab]b ∈ P and [abb] = a.

2.) If ab ∉ P but ac and cb ∈ P then [ac][cb] ∉ P .

3.) If abc is a reduced word and ad, db ∈ P then [ad][db]c is a reduced word.

4.) If ab ∉ P but ac, cb, bd ∈ P then cbd ∈ P . (That is [cb]d ∈ P from which
it follows that [c[bd]] = [[cb]d].)

5.) If gb, bh, gbc, cbh ∈ P , but gh /∈ P then bc ∈ P .

Proof. 1.) Apply (P4) to the triple a, b, b.

2.) Use 1.) and apply (P4) to the triple [ac], c and b.

3.) From the above [ad][db] is reduced and ddb ∈ P . If dbc ∈ P then
consider the four element product ad[db]c. From (P5), either ab ∈ P or
bc ∈ P , a contradiction.

4.) Consider the four elements [ac], c, b and d, of P . The product of each
adjacent pair is defined, so (P5) implies either ab = [ac][cb] ∈ P , or
cbd ∈ P .

5.) Consider the product of four elements g[gb]c[cbh]. By hypothesis we
have gbc, bh ∈ P . Moreover, [gb]c[cbh] = gh ∉ P . Hence, by (P5) we
conclude g[gb]c = [bc] ∈ P.

As a consequence of Lemma 3.2.3.) and 4.) the set of reduced words
coincides with the set of S(P )-geodesic and the set of Sε-geodesic words.

The length preserving rule ←→ of Sε is the length 2 case of Stallings’
interleaving relation ≈ defined on words in P ∗ as follows. If ai, ci ∈ P , for
i = 1, . . . n, and ci−1ai, aici and ci−1aici ∈ P with c0 = cn = ε, then

a1⋯an ≈ b1⋯bn,

where bi = [ci−1aici]. Stallings used Lemma 3.2 to show that interleaving
is an equivalence relation on reduced words and this equivalence relation is
central to the proof of Theorem 3.4.1) in [27]. Another approach is taken in
[7], based on the following lemma, which is again proved using Lemma 3.2.
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Lemma 3.3. The Thue system Sε is strongly confluent.

Parts 1) and 2) of the following theorem are from Stallings [27]. Part 3)
is from [7].

Theorem 3.4 ([27],[7]). Let P be a pregroup. Then the following hold.

1) P embeds into U(P ).

2) If g and h are reduced words P ∗ then g =U(P ) h if and only if h is an
interleaving of g.

3) S(P ) is a geodesically perfect Thue system.

Proof. 1) is a direct consequence of Lemma 3.3 and the remark following the
proof of Proposition 3.6. 2) follows from 3) and Lemma 3.2. The proof of 3)
is given in [7]: however, for completeness we give a proof. Consider a word
u = a1⋯an with ai ∈ Γ such that aiai+1 is not defined in P for 1 ≤ i < n. Assume
that after a sequence of applications of symmetric rules, we can apply a length
reducing one. We have to show that some length reducing rule applies to u.
We may assume that the sequence of applications of symmetric rules is not
empty, but as short as possible. The corresponding word contains a factor
abcd with a, b, c, d ∈ Γ and neither ab, bc nor cd defined in P . Applying
the last symmetric rule yields a[bx][xc]d. The length reducing rule cannot
then apply to [bx][xc], since this is not defined, by Lemma 3.2.2.), and so
must apply to a[bx] or [xc]d. In both cases we have a contradiction to
Lemma 3.2.3.).

Remark 3.5. Every group G is the universal pregroup of some pregroup P .
Indeed, G = U(G). Moreover, Theorem 3.4 tells us that every pregroup P

can be defined as a subset P ⊆ G inside a group G such that 1 ∈ P , a ∈ P
implies a−1 ∈ P , and P satisfies the axiom (P5). Having such a subset the
domain D becomes D = { (a, b) ∈ P ×P ∣ ab ∈ P }.

3.1 Amalgamated products and HNN-extensions

The guiding example of an universal group in the sense of Stallings is the
amalgamated product G = A ∗H B of two groups over a common subgroup
H = A ∩ B. In this case P = A ∪ B forms a pregroup with U(P ) = G. In
this case, for a, b ∈ P , the product ab is defined in P if and only if a, b ∈ A or
a, b ∈ B. The verification of (P5) is straightforward.

The other obvious example of an universal group is the case where G =
HNN(H, t; t−1At = B) is an HNN-extension over two isomorphic subgroups
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A,B in some base groupH . (That is there is an isomorphism ϕ ∶ AÐ→ B and
“t−1At = B” denotes the set of relations of the form t−1at = aϕ, for all a ∈ A.)
In this case we can choose P =H ∪Ht−1H ∪HtH . Again, the verification of
(P5) is straightforward.

3.2 Fundamental groups of graph of groups

The notion of the fundamental group of a graph of groups generalises amal-
gamated product and HNN-extension to a much broader class. The concept
of a graph of groups is due to Serre and the development of Bass-Serre theory
has been a major achievement in modern group theory. We refer to the books
[26], [1], and to [24] for the background.

A virtually free group is a group G having a free subgroup of finite index.
They are related to graphs of groups as follows.

Proposition 3.6. Let G be a finitely generated group. The following condi-
tions are equivalent.

1. G is the fundamental group of a finite connected graph of groups where
all vertex groups are finite.

2. G is the universal group of some finite pregroup.

3. G can be presented by some finite geodesic system.

4. G is virtually free.

Propostion 3.6 is taken from [7, Cor. 8.7] and combines several results
from the literature. It follows from [24], [7], [16], and [23].

4 Conjugacy in universal groups

We shall apply Theorem 2.5 and Corollary 2.10 to the universal group of
a pregroup and in particular to the conjugacy problem. For this we fix
a pregroup P , we let U(P ) be its universal group; and denote by Sε and
S = S(P ) the Thue systems of Defintion 3.1. Let C†(Sε) and C†(S) be the
cyclic rewriting systems defined by resolving short critical pairs in the sense
of Section 2.9.

A cyclically reduced word is a cyclic word over Γ∗ which is geodesic with
respect to the rewriting system C†(S). We also refer to words w ∈ w∼ as
cyclically reduced if w∼ is cyclically reduced. In particular all elements of Γ
are cyclically reduced.
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Lemma 4.1. Let g ∈ P ∗ be a cyclically reduced word and let h ∈ P ∗ be a word
such that h∼ is obtained from g∼ by applying a sequence of length preserving
rules of C†(Sε). Then h∼ is cyclically reduced and ∣h∣ = ∣g∣.

Proof. By induction it is enough to prove the case where h∼ is obtained from
g∼ by applying a single rule. If g ∈ P then g ≠ ε, as ε is not cyclically reduced,
so g ∈ Γ, and the result follows.

If ∣g∣ = n ≥ 2 then there exists a word g1⋯gn ∈ g∼ and an element c ∈ P
such that gigi+1 ∉ P for all i (subscripts modulo n), g1c ∈ P , cg2 ∈ P and f =
[g1c][cg2]⋯gn ∈ h∼. As g1⋯gng1⋯gn is reduced, it follows from Lemma 3.2,
2.) & 3.) that f 2 is reduced. Therefore f , and so also h, is cyclically reduced,
as required.

This lemma suggests that cyclically reduced cyclic words under cyclic
rewriting should play the role of reduced words under standard rewriting.
This works as expected, with the exception of the behaviour of words of
length 1. From Theorem 3.4, two elements of Γ are equivalent under S only
if they are equal in Γ. However this is not true of cyclic words of length 1 and
the system C†(S), and we often have to treat words of length one separately
in what follows.

Let u = a1⋯an ∈ Γ∗ with ai ∈ Γ. A cyclic permutation of u is any element
of u∼. Thus, a cyclic permutation is the same as a transposition in Γ∗. Let
n ≥ 2. If for i = 1, . . . n, there are elements bi, ci ∈ P such that ci−1ai, aici are
in P , and bi = [ci−1aici] (subscripts modulo n), then any element of v∼, where
v = b1⋯bn is called a cyclic interleaving of u; and u∼ is also called a cyclic
interleaving of v∼. A preconjugation of u by c ∈ P (when n ≥ 2) is the cyclic
interleaving v = [ca1]a2⋯an−1[anc].

For u ∈ Γ (i.e., n = 1) a cyclic interleaving of u by c ∈ P is defined as
v = [cuc] in case that cuc ∈ P is defined. A preconjugation is defined to be a
cyclic interleaving in this case.

In all cases every cyclic interleaving of u may be obtained by a cyclic per-
mutation, followed by an interleaving, followed by a preconjugation. More-
over every cyclic interleaving of u is conjugate to u in U(P ). The following
lemma describes more precisely how these definitions are related.

Lemma 4.2. Let g and h be cyclically reduced words over Γ∗. If ∣g∣ = 1
then h is a cyclic interleaving of g if and only if h∼ is obtained from g∼ by
applying a length preserving rule from C†(S). If ∣g∣ ≥ 2, then the following
are equivalent.

1.) h∼ is obtained from g∼ by the application of a finite sequence of length
preserving rules from C†(S).
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2.) There exists a word f , obtained from g by a cyclic permutation followed
by a single preconjugation, such that h =U(P ) f .

3.) h is a cyclic interleaving of g.

Proof. First consider the case n = 1. Then h is a cyclic interleaving of g if
only if there exists b ∈ P such that either bg or gb ∈ P and [bgb] = h ∈ P . On
the other hand, there is a symmetric rule in C†(S) transforming g∼ to h∼ if
and only if there exists b ∈ P such that either bg ∈ P and [bg]b Ô⇒

S
h (in

which case b[bg]Ô⇒
S

g); or gb ∈ P and b[gb]Ô⇒
S

h.

Now suppose n ≥ 2. We show first that 3.) implies 1.). If 3.) holds then
there exist gi, ai ∈ P such that ai−1gi, giai and ai−1giai ∈ P and h is a cyclic
permutation of h1⋯hn, where hi = [ai−1giai]. Therefore, we may successively
apply symmetric rules of S to g∼ to obtain (h1⋯hn)∼ = h∼ as required.

Next we show that 1.) implies 2.). If 1.) holds then there exist words
g0, . . . , gn in Γ∗ such that g0 = g, h ∈ gn∼ and gi+1∼ is obtained by applying
a symmetric rule of C†(S) to gi∼. If n = 0 then h is a cyclic permutation
of g and there is nothing further to do. Assume then that n > 0. From
Lemma 4.1 gi is cyclically reduced for all i. By definition there exists a word
g0 = a1 . . . an ∈ g∼ and an element c ∈ P such that a1c ∈ P , ca2 ∈ P and
g1 = b1⋯bn, where b1 = [a1c], b2 = [ca2] and bi = ai, for i ≥ 2. By induction,
there exists a word f1, obtained from g1 by a cyclic permutation followed
by a single preconjugation, such that h =U(P ) f1. There are several cases to
consider, depending on which cyclic permutation of g1 is taken. Assume f1
is a preconjugation of a cyclic permutation bi+1⋯bi of g1, where 0 ≤ i ≤ n − 1.
That is, there exists d ∈ P such that dbi+1 ∈ P , bid ∈ P and f1 = ci+1⋯ci, where
ci+1 = [dbi+1], ci = [bid] and cj = bj , if j ≠ i, i + 1. Thus

f1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1c2 = [d[a1c]][[ca2]d] if i = 0 and n = 2

c1c2⋯cn = [d[a1c]][ca2]⋯[and] if i = 0 and n ≥ 3

c2c3⋯cnc1 = [d[ca2]]a3⋯an[[a1c]d] if i = 1

c3⋯cnc1c2 = [da3]⋯an[a1c][[ca2]d] if i = 2

ci+1⋯cnc1c2⋯ci = [dai+1]⋯an[a1c][ca2]⋯[aid] if i ≥ 3

If i ≥ 3 then n ≥ 3 and, as i + 1 ≤ n, we have c1c2 =U(P ) a1a2 so

h =U(P ) f1 =U(P ) [dai+1]⋯a1a2⋯[aid],

a preconjugation of the cyclic permutation ai+1⋯ai of g.
If i = 2 then Lemma 3.2.4.) applied to the four elements [a1c], [ca2], c

and d, shows that [cca2d] = [a2d] ∈ P . Therefore c1c2 =U(P ) [a1c][ca2d] =U(P )
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a1[a2d] and
f1 =U(P ) [da3]⋯ana1[a2d],

as required.
If i = 1 then from Lemma 3.2.5.) it follows that cd ∈ P so

f1 =U(P ) [(cd)a2]a3⋯an[a1(cd)],

as required.
If i = 0 and n ≥ 3 then the result follows, by symmetry, from the case

i = 2, leaving the case i = 0 and n = 2. As g is cyclically reduced, a1a2a1a2
is a reduced word and therefore so is [a1c][ca2][a1c][ca2]. Hence [a1c][ca2]
is cyclically reduced. Applying Lemma 3.2.4.) to [ca2], d, [a1c] and c, gives
da1 ∈ P . Similarly a2d ∈ P and the result follows as before.

Finally, to show that 2.) implies 3.), suppose that h =U(P ) f , where

f = [bg1]g2⋯gn−1[gnb],

and
g = gi+1⋯gng1⋯gi,

for some i. Then, from Lemma 4.1, f is cyclically reduced and hence, from
Theorem 3.4, h is an interleaving of f . From Lemma 3.2, it follows that h is
a cyclic interleaving of g.

Lemma 4.3. The system C†(Sε) is confluent.

Proof. The system Sε is standard and it is strongly confluent by Lemma 3.3.
Thus, by Theorem 2.5 it is enough to show that C†(Sε) is confluent on all
short cyclic words. Thus we have to consider the situation:

d∼
⊛
⇐Ô
C†(Sε)

w∼
⊛
Ô⇒
C†(Sε)

e∼, (5)

where w is short. We must show that

d∼
⊛
Ô⇒
C†(Sε)

t∼
⊛
⇐Ô
C†(Sε)

e∼,

for some t∼. As w∼ is a short cyclic word we have ∣w∼∣ ≤ 2. If w = 1 in U(P ),
then u

∗
Ô⇒
Sε

1, for all u
⊛
⇐⇒
C†(Sε)

w, and we may take t∼ = 1. Thus, we may

assume 1 ≤ ∣w∼∣ and w ≠ 1 ∈ U(P ). If ∣w∼∣ = 1 then w∼ is cyclically reduced,
since w ≠ ε. Hence all rules involved in (5) are symmetric and we may take
t∼ = w∼. Thus, from now on in the proof we may assume ∣w∼∣ = 2. Since all
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length preserving rules in
○
Ô⇒
C†(Sε)

are symmetric, we are done if d ∉ Γ or e ∉ Γ.

Thus, as suggested by the notation we have d, e ∈ Γ. Again, since length
preserving rules are symmetric, we may assume that the situation is

d∼
○
⇐Ô
C†(Sε)

w0∼
○
⇐⇒
C†(Sε)

⋯
○
⇐⇒
C†(Sε)

wk ∼
○
Ô⇒
C†(Sε)

e∼,

where all wi have length 2. As w0∼ is not cyclically reduced, Lemma 4.1
implies that no wi∼ is cyclically reduced. Hence, for all i there exists ei ∈ Γ

such that wi∼
○
Ô⇒
C†(Sε)

ei ∈ Γ. It therefore suffices to show that if

d∼
○
⇐Ô
C†(Sε)

u∼
○
⇐⇒
C†(Sε)

v∼
○
Ô⇒
C†(Sε)

e∼,

where ∣u∣ = ∣v∣ = 2 and ∣d∣ = ∣e∣ = 1, then

d∼
⊛
⇐⇒
C1

e∼,

where C1 is the length preserving part of C†(Sε). We may assume that
u∼ = (ab)∼ with a, b ∈ Γ, [ab] = d ∈ Γ, and that there exists c ∈ Γ such that
either v∼ = ([ac][cb])∼ or v = ([ca][bc])∼. If v∼ = ([ac][cb])∼ then

d∼
○
⇐Ô
C†(Sε)

v∼
○
Ô⇒
C†(Sε)

e∼,

so d∼
○
⇐⇒
C1

e∼ and we are done.

Assume then that v∼ = ([ca][bc])∼. If ba ∈ P then

d∼
○
⇐Ô
C†(Sε)

u∼
○
Ô⇒
C†(Sε)

[ba]∼,

and so d∼
○
⇐⇒
C1

[ba]∼. Also

e∼
○
⇐Ô
C†(Sε)

v∼
○
Ô⇒
C†(Sε)

[ba]∼,

so e∼
○
⇐⇒
C1

[ba]∼
○
⇐⇒
C1

d∼, as required.

Therefore we may assume that ba ∉ P . Applying (P5) to the elements c,
a, b and c we have cab or abc ∈ P . Also, from Lemma 3.2.3.), [bc][ca] ∉ P .
As v∼ is not cyclically reduced it follows that [ca][bc] ∈ P , so we have

d∼
○
⇐Ô
C†(Sε)

([cab]c)∼
○
Ô⇒
C†(Sε)

[cabc]∼ or d∼
○
⇐Ô
C†(Sε)

(c[abc])∼
○
Ô⇒
C†(Sε)

[cabc]∼,
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and in both cases
d∼

○
⇐⇒
C1

[cabc]∼.

Moreover,

e∼
○
⇐Ô
C†(Sε)

v∼
○
Ô⇒
C†(Sε)

[cabc]∼,

so d∼
○
⇐⇒
C1

[cabc]∼
○
⇐⇒
C1

e, as required.

Having established the confluence of C†(Sε) we may get rid of the letter
ε and the rule εÐ→ 1. That is: we switch back to the system S = S(P ).

Theorem 4.4. Let S ⊆ Γ∗ × Γ∗ be the Thue system associated with P , c.f.
Defintion 3.1. Then C†(S) is geodesically perfect.

Proof. The system S = S(P ) is a standard 2-monadic Thue system. The
confluence of C†(S) follows from Lemma 4.3. By Theorem 3.4 the semi-Thue
system S is geodesically perfect. The result follows by Corollary 2.10.

Corollary 4.5. Cyclically reduced elements are minimal length representa-
tives of their conjugacy class in U(P ). Let g and f be cyclically reduced
elements of Γ∗ such that g is conjugate to f in U(P ). Then the following
hold.

1. g and f have the same length.

2. If g ∉ P , i.e., ∣g∣ ≥ 2, then we can transform the cyclic word g∼ into the
cyclic word f∼ by a sequence of at most ∣g∣ length preserving rules from
C†(S).

3. If g ∈ P , i.e., ∣g∣ = 1, then we can transform g into f by a sequence of
preconjugations.

Proof. Immediate by the confluence of C†(S) and Lemma 4.2.

The following theorem is the main result in this section. It makes state-
ment 2 of Corollary 4.5 much more precise.

Theorem 4.6. Let g and f be a cyclically reduced elements of Γ∗ such that
g is conjugate to f in U(P ). Let g = g1⋯gn with gi ∈ P and n = ∣g∣ ≥ 2. Then,
we may obtain f , as an element in U(P ), by a single cyclic permutation
followed by a preconjugation. More precisely, we have

f = [bgi]⋯gng1⋯[gi−1b] ∈ U(P ),

where b ∈ P and bgi, gi−1b ∈ P .
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Proof. This follows directly from Corollary 4.5.

We may strengthen the statement of Theorem 4.6 for pregroups which
satisfy certain extra conditions. First, in any pregroup P we can define a
canonical subgroup by

GP = {x ∈ P ∣ (x, y), (y, x) ∈D, ∀y ∈ P } .

We say that P satisfies the extra axiom (P6) if the following is true.

(f, g) ∉D ∧ (f, b) ∈D ∧ (b, g) ∈D Ô⇒ b ∈ GP . (P6)

Axiom (P6) holds for the standard pregroups defining amalgamated prod-
ucts or HNN-extensions (as in Section 3.1), but it does not hold in general
for the pregroup defining the fundamental group of a graph of groups, as
given in [24].

Remark 4.7. If P satisfies the axiom (P6) then the element b ∈ P in the
statement of Theorem 4.6 is necessarily in the canonical subgroup GP .

We say that P satisfies the extra axiom (P7) if the following is true.

(y, z) ∈ D ∧ (x, [yz]) ∈D ∧ [yz] ∉ GP ∧ s ∈ {x,x} ∧ t ∈ {y, z}
Ô⇒ {(s, t), (t, s)} ⊂ D.

(P7)

First note that (P7) implies axiom (P6). To see this, suppose that b, f and
g satisfy the hypotheses of (P6). Let z = g, y = [bg] and x = [fb]. Then
(y, z) ∈ D, [yz] = b and (x, [yz]) = (x, b) = ([fb], b) ∈ D. If [yz] ∉ GP then
(P7) gives (x, y) ∈ D and this implies that (fb, bg) ∈ D, from which we infer
(f, g) ∈ D, a contradiction. Thus we must have [yz] ∈ GP and (P6) holds.

Axiom (P7) holds for the standard pregroup defining an amalgamated
product, but not, in general, for the standard pregroup defining an HNN-
extension (as in Section 3.1). In contrast the following axiom (P8) holds for
the standard pregroup of an HNN-extension, but not for that of an amalga-
mated product.

(a, b) ∈D ∧ [ab] = c Ô⇒ a ∈ GP ∨ b ∈ GP ∨ c ∈ GP . (P8)

Again, axiom (P8) implies axiom (P6). Indeed, consider the condition (b, g) ∈
D. If we have [bg] ∈ GP , then (f, b) ∈ D implies (f, g) ∈ D, contrary to the
hypothesis of (P6). Given (f, g) ∉ D, we can exclude g ∈ GP . Thus, (P8)
yields the implication of (P6).

In pregroups in which axiom (P7) holds, elements of P behave well with
respect to preconjugation.

30



Lemma 4.8. Let P be a pregroup satisfying axiom (P7), let H = GP be its
canonical subgroup and let a, b ∈ P . If c ∈ P is a preconjugate of both a and
b then either c ∈H or b is a preconjugate of a.

Proof. Let c = [uau] = [vbv], for some u, v ∈ P . Then either ua ∈ P or au ∈ P .
Assume ua ∈ P . We have b = [vcv] ∈ P , so either vc ∈ P or cv ∈ P . Assume
c = [[ua]u] ∉ H . Then vc ∈ P together with (P7) implies uv ∈ P . Similarly
cv ∈ P implies uv ∈ P . By symmetry, if au ∈ P and c ∉ H then again uv ∈ P .
Therefore, either c ∈H or b = [(vu)a(uv)], a preconjugate of a.

In pregroups in which axiom (P8) holds, elements of P ∖GP behave well
with respect to preconjugation.

Lemma 4.9. Let P be a pregroup satisfying axiom (P8) and H = GP its
canonical subgroup. Let a ∈ P ∖H and b ∈ P .

1.) If b is a preconjugate of a then b = [hah], for some element h ∈H.

2.) If b is conjugate to a then b is a preconjugate of a.

Proof. 1. If b = [c ac], where c ∈ P , then either ca ∈ P or ac ∈ P . By
symmetry, assume ca ∈ P . If c ∉ H then (P8) implies [ca] = h ∈ H , so
c = ah. Thus b = [cac] = [hah], as required.

2. From Corollary 4.5.3 there exist a sequence of elements a = b0, . . . , bn =
b, of P , such that bi+1 is a preconjugation of bi, for all i. As each
preconjugation is by an element of H it follows that b is in fact a
preconjugate of a.

5 The conjugacy problem in amalgamated prod-

ucts and HNN-extensions

5.1 Conjugacy in amalgamated products

As in Section 3.1, the defining pregroup for the group G = A ∗H B can be
chosen to be P = A ∪B; and the common subgroup H is then equal to the
canonical subgroup GP . Therefore P satisfies (P6). Conjugacy of elements
of a free product with amalgamation is described in [21], which now follows
easily from of Corollary 4.5 and Theorem 4.6 as we show below. First we
state the theorem.

31



Theorem 5.1 ([21], Thm. 4.6). Let G = A ∗H B. Every element of G is
conjugate to a cyclically reduced element of G. (That is an element g which
can be written as g = g1⋯gn with gi ∈ A ∪B and either n = 1 or gi−1 and gi
do not lie in the same factor for all i ∈ Z/nZ.) If g is a cyclically reduced
element of G then the following hold.

1. If g is conjugate to h ∈ H then g ∈ A ∪B and there exists a sequence
h,h1, . . . , hℓ, g where hi ∈ H and consecutive terms are conjugate in
some factor.

2. If 1 does not hold and g is conjugate to an element f ∈ A ∪ B, then
g and f belong to the same factor, A or B, and they are conjugate in
that factor.

3. If n = ∣g∣ ≥ 2, then 1 and 2 do not hold. If g is conjugate to a cyclically
reduced element f , then f can be written as f = h−1gi⋯gng1⋯gi−1h, for
some h ∈H and i with 1 ≤ i ≤ n.

Proof. Assertion 3 is a trivial consequence of Theorem 4.6. Indeed, for n ≥ 2
Theorem 4.6 says that f = b−1gi⋯gng1⋯gi−1b where b, b−1gi, gi−1b ∈ A ∪ B.
However, P satisfies (P6), hence b ∈ H by Remark 4.7. Moreover, 1 or 2
implies n = 1 by Corollary 4.5, 1.

Thus, let n = 1 and g, p ∈ A ∪ B be conjugate to each other. Applying
Corollary 4.5, 3, there is a sequence p = p0, p1, . . . , pℓ = g where consecutive
terms are preconjugate, i.e., consecutive terms are conjugate in some factor.
From Lemma 4.8, either every pi is in H or the sequence may be shortened.
Thus, if g is not conjugate to any h ∈H , we may assume g ∈ A∖H and l = 1,
so p is a preconjugate of g; that is of the form a−1ga for some a ∈ A. Hence
p = a−1ga ∈ A ∖H , giving 2.

Otherwise every pi is in H and 1 holds.

5.2 Conjugacy in HNN-extensions

As in Section 3.1, for G = HNN(H, t; t−1At = B) the defining pregroup can
be chosen as P = H ∪Ht−1H ∪HtH ; and the base group H is then equal to
the canonical subgroup GP . Therefore P satisfies (P8).

The word problem inG can be solved, if we can effectively perform Britton
reductions, see e.g. in [20]: we read non-trivial elements in G as words over
H ∖{ 1} and in t±1. Whenever we see a factor in t−1At, then we replace it by
the corresponding factor in B. Similarly, whenever we see a factor in tBt−1,
then we replace it by the corresponding factor in A. This leads to a normal
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form where each g becomes an element in H : that is, for some uniquely
defined t-sequence of minimal length n ≥ 1, the element g has the form

g = h0t
ε1h1⋯tεn−1hn−1t

εnhn.

In order to perform a cyclic reduction we remove h0tε1h1 from the left and
put it at the right. We continue with Britton and cyclic reductions for as long
as possible and eventually reach a (Britton) cyclically reduced form. Clearly
every cyclically reduced form g, with non-trivial t-sequence, is conjugate to
and element of the form

tε1z1⋯tεn−1zn−1tεnzn, (6)

where tε1 , . . . , tεn is the t-sequence of g, zi ∈H and, for all i we have

tεizit
εi+1 ∉ t−1At ∪ tBt−1,

(subscripts modulo n). Cyclically reduced elements which either belong to
H or are written in the form of (6) are called standard cyclically reduced
elements of G. In terms of the pregroup P , every pregroup cyclically reduced
word can be written as a preconjugate, by an element of H , of a standard
cyclically reduced word; and conversely, every standard cyclically reduced
word is cyclically reduced with respect to P .

The conjugacy theorem for HNN-extensions, Collins’ Lemma, can be
found in [20, Chapter IV, Theorem 2.5], and is stated for standard cycli-
cally reduced words. In analogy to amalgamated products we restate it as
follows.

Theorem 5.2 (D.J. Collins (1969)). Let G = HNN(H, t; t−1At = B) be an
HNN-extension over two isomorphic subgroups A,B in some base group H.
Every element of G is conjugate to a standard cyclically reduced element. Let
g and f be conjugate, standard cyclically reduced elements of G. Then the
following (mutually exclusive) statements hold.

1. If f ∈ A∪B then there exists a sequence f = c0, c1, . . . , cℓ = g of elements
of A ∪ B, such that, for i = 1, . . . , ℓ, we have ci = k−1i t−δici−1tδiki, with
ki ∈H, δi = ±1 and t−δici−1tδi ∈ t−1At ∪ tBt−1.

2. If g is not conjugate to an element of A ∪B and f ∈ H then g and f

are conjugate by an element of the base group H.

3. If f is not in H then there exist n ≥ 1, zi ∈ H, εi = ±1, 1 ≤ j ≤ n and
c ∈ A ∪ B, such that g = tε1z1⋯tεnzn and f has t-sequence of length n

and is equal in G to

c−1tεjzj⋯tεnzntε1z1⋯tεj−1zj−1c,

with c ∈ A, if εj = −1; and c ∈ B, if εj = 1.
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Proof. As in the proof of Theorem 5.1, it follows from Theorem 4.6 that if g =
tε1z1⋯tεnzn, where n ≥ 2, then f is equal inG to c−1tεjzj⋯tεnzntε1z1⋯tεj−1zj−1c,
for some c ∈ P , and as (P6) holds we have c ∈H .

The pregroup P for G satisfies (P8) and H is the canonical subgroup.
Therefore P ∖ H = HtH ∪ Ht−1H . Hence, if f = tεz, for some z ∈ H and
ε = ±1, then from Corollary 4.5 and Lemma 4.9 every cyclically reduced
conjugate of f has the form c−1tεzc, for some c ∈ H . Since g and f are
standard, statement 3 holds in both these cases.

This leaves the case where f ∈H . As in the proof of Theorem 5.1, applying
Corollary 4.5, 3, there is a sequence f = p0, p1, . . . , pℓ = g of elements of P ,
where consecutive terms are preconjugate, say pi = q−1i pi−1qi, with qi ∈ P . If
pi ∈ P ∖H then, from Lemma 4.9, the sequence may be shortened, at least
while ℓ > 1. Then, since pℓ−1 ∈ H we have, from (P8), g ∈ H . Hence we may
assume that either pi ∈ H , for i = 0, . . . , ℓ. Again, if qi ∈ H and ℓ > 1 then
the sequence may be shortened, so we may assume that either qi ∈ P ∖H , for
i = 1, . . . , ℓ; or that ℓ = 1.

Applying (P8), q−1i pi−1qi = pi ∈ H , with qi ∉H , implies that pi is conjugate
to an element of A∪B. If g is not conjugate to an element of A∪B it follows
that ℓ = 1, and q1 ∈H , as required in statement 2. Otherwise 1 holds.

6 The conjugacy problem in virtually free groups

We consider only the case of finitely generated virtually free groups. Virtually
free groups are hyperbolic, and it has been shown by Epstein and Holt [8]
that the conjugacy problem for hyperbolic groups can be solved in linear
time. Hence, the following is a special case of [8]. However, our algorithm is
much simpler and more direct. It can be implemented in a straightforward
way using finite pregroups.

Proposition 6.1. The conjugacy problem in finitely generated virtually free
groups can be solved in linear time.

Proof. A finitely generated virtually free groupG is the universal group U(P )
of some finite pregroup P , see Propostion 3.6. As above let Γ = P ∖ {ε}.

By a standard procedure involving Theorem 3.4 we can compute cyclically
reduced elements in linear time. Thus, we may assume that our input words
are given as g = g1⋯gn and f = f1⋯fn with gi, fi ∈ Γ such that both sequences
are cyclically reduced. For n = 1 we can use table look-up. Hence we may
assume n ≥ 2 henceforth.

Now, let us put a linear order on Γ. Then the shortlex normal form of g
begins with a letter [g1a1] such that the geodesic length of a1g2⋯gn is n − 1.
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But this implies a1g2 ∈ P . Thus, working from left to right we may compute
the shortlex normal form of g, in linear time; and we may assume that this
is g1⋯gn

We know f = [bgi]⋯gng1⋯[gi−1b] ∈ U(P ) by Theorem 4.6. Thus, bfb =
gi⋯gng1⋯gi−1 and the number of all bfb is bounded by a constant dependent
only on the order of P . Hence, we may assume that f = gi⋯gng1⋯gi−1. Since
the word problem in finitely generated virtually free groups can be solved in
linear time (e.g., using the system S(P ) or by computing the shortlex normal
form), we may assume 2 < i < n. (We also see that the conjugacy problem
can be solved in quadratic time: but our goal is linear time.)

Now, the shortlex normal form of g2 can be written as

g1⋯gn−1[gna1][a1g1a2]⋯[angn],

for appropriate ai ∈ P . As a consequence,

fai = gi⋯gn−1[gna1][a1g1a2]⋯[ai−1gi−1ai].

However, the word gi⋯gn−1[gna1][a1g1a2]⋯[ai−1gi−1ai] is in shortlex normal
form. Therefore the shortlex normal form of f is f ′[ai−1gi−1], where

f ′ = gi⋯gn−1[gna1][a1g1a2]⋯[ai−2gi−2ai−1].

Thus, it is enough to compute the shortlex normal form f̂ = f ′p, of f .
Erasing the last letter p yields f ′. We can run the pattern matching algorithm
of Knuth-Morris-Pratt, in linear time, in order to obtain a list (i1, . . . , ik) with
2 < ij < n where the pattern f ′ appears as gij⋯gn−1[gna1][a1g1a2]⋯[aij−2gij−2aij−1].
All that remains is to verify whether or not [paij ] = [aij−1gij−1aij ], for one
index in the list.
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