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Abstract

This is the second paper in a series of three, where we take on the

unified theory of non-Archimedean group actions, length functions and

infinite words. Here, for an arbitrary group G of infinite words over an

ordered abelian group Λ we construct a Λ-tree ΓG equipped with a free

action of G. Moreover, we show that ΓG is a universal tree for G in the

sense that it isometrically embeds in every Λ-tree equipped with a free

G-action compatible with the original length function on G.

1 Introduction

The theory of group actions on Λ-trees goes back to early 1960’s. Lyndon intro-
duced abstract length functions on groups [17], axiomatizing Nielsen cancella-
tion method; he initiated the study of groups with real valued length functions.
Chiswell related such length functions with group actions on Z− and R-trees,
providing a construction of the tree on which the group acts. Tits gave the
first formal definition of an R-tree [25]. In his seminal book [24] Serre laid
down fundamentals of the theory of groups acting freely on simplicial trees. In
the following decade Serre’s novel approach unified several geometric, algebraic,
and combinatorial methods of group theory into a unique powerful tool, known
today as Bass-Serre theory. In their very influential paper [18] Morgan and
Shalen linked group actions on R-trees with topology and generalized parts of
Thurston’s Geometrization Theorem; they introduced Λ-trees for an arbitrary
ordered abelian group Λ and the general form of Chiswell’s construction. Thus,
it became clear that abstract length functions with values in Λ and group ac-
tions on Λ-trees are just two equivalent approaches to the same realm of group
theory questions. The unified theory was further developed in an important
paper by Alperin and Bass [1] where authors state a fundamental problem in
the theory of group actions on Λ-trees: find the group theoretic information car-
ried by a Λ-tree action (analogous to Bass-Serre theory), in particular, describe
finitely generated groups acting freely on Λ-trees (Λ-free groups). One of the
main breakthroughs in this direction is Rips’ Theorem, that describes finitely
generated R-free groups (see [8, 3]). The structure of finitely generated Z

n-free
and R

n-free groups was clarified in [2, 9].
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Introduction of infinite Λ-words was one of the major recent developments
in the theory of group actions. In [19] Myasnikov, Remeslennikov and Serbin
showed that groups admitting faithful representations by Λ-words act freely
on some Λ-trees, while Chiswell proved the converse [6]. This gives another
equivalent approach to group actions. Now one can bypass the axiomatic view-
point on length functions and work instead with Λ-words in the same manner
as with ordinary words in standard free groups. This allows one to bring into
the play naturally and in one package such powerful techniques as Nielsen’s
method, Stallings’ graph approach to subgroups, and Makanin-Razborov type of
elimination processes (see papers [19, 20, 11, 12, 13, 14, 7, 16, 15, 21, 22, 23]). In
the case when Λ is equal to either Zn or Z∞ all these techniques are effective, so
many algorithmic problems for Zn-free groups become decidable, in particular,
the subgroup membership problem.

In this paper for an arbitrary group G of infinite words over an ordered
abelian group Λ we construct a Λ-tree ΓG equipped with a free action of G.
Moreover, we show that ΓG is a universal tree for G in the sense that it isomet-
rically embeds in every Λ-tree equipped with a free G-action compatible with
the original length function on G. The construction is extremely simple and
natural: one just folds every pair of infinite words in G along their common
initial segments to get the tree ΓG. Furthermore, in the case Λ = Z

n the con-
struction is effective. Besides, it sheds some light on the nature of the initial
Chiswell’s argument, why it worked and where it came from.

2 Preliminaries

In this section we introduce basic notions in the theory of Λ-trees.

2.1 Λ-trees

A set Λ equipped with addition + and a partial order 6 is called a partially
ordered abelian group if

(1) 〈Λ,+〉 is an abelian group,

(2) 〈Λ,6〉 is a partially ordered set,

(3) for all a, b, c ∈ Λ, a 6 b implies a+ c 6 b + c.

An abelian group Λ is called orderable if there exists a linear order 6 on Λ,
satisfying the condition (3) above. In general, the ordering on Λ is not unique.

An ordered abelian group Λ is called discretely ordered if Λ+ has a minimal
non-trivial element (we denote it 1Λ). In this event, for any a ∈ Λ we have

a+ 1Λ = min{b | b > a}, a− 1Λ = max{b | b < a}.

For elements a, b of an ordered group Λ the closed segment [a, b] is defined
by

[a, b] = {c ∈ A | a 6 c 6 b}.
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Let X be a non-empty set and Λ an ordered abelian group. A Λ-metric on
X is a mapping p : X ×X −→ Λ such that for all x, y, z ∈ X

(M1) p(x, y) > 0,

(M2) p(x, y) = 0 if and only if x = y,

(M3) p(x, y) = p(y, x),

(M4) p(x, y) 6 p(x, z) + p(y, z).

A Λ-metric space is a pair (X, p), where X is a non-empty set and p is a
Λ-metric on X . If (X, p) and (X ′, p′) are Λ-metric spaces, an isometry from
(X, p) to (X ′, p′) is a mapping f : X → X ′ such that p(x, y) = p′(f(x), f(y))
for all x, y ∈ X .

A segment in a Λ-metric space is the image of an isometry α : [a, b]Λ → X
for some a, b ∈ Λ and [a, b]Λ is a segment in Λ. The endpoints of the segment
are α(a), α(b).

We call a Λ-metric space (X, p) geodesic if for all x, y ∈ X , there is a segment
in X with endpoints x, y and (X, p) is geodesically linear if for all x, y ∈ X , there
is a unique segment in X whose set of endpoints is {x, y}.

A Λ-tree is a Λ-metric space (X, p) such that

(T1) (X, p) is geodesic,

(T2) if two segments of (X, p) intersect in a single point, which is an endpoint
of both, then their union is a segment,

(T3) the intersection of two segments with a common endpoint is also a segment.

Let X be a Λ-tree. We call e ∈ X an end point of X if, whenever e ∈ [x, y] ⊂
X either e = x or e = y. A linear subtree from x ∈ X is any linear subtree L of
X having x as an end point. L carries a natural linear ordering with x as least
element. If y ∈ L then Ly = {z ∈ L | y 6 z} is a linear subtree from y.

A maximal linear subtree from x is an X-ray from x. Observe that (Proposi-
tion 2.22 [1]) that if L,L′ are X-rays from x, x′ respectively such that L∩L′ 6= ∅
then L∩L′ is either a closed segment or L∩L′ = Lv for some v ∈ X . In fact, we
call X-rays L and L′ equivalent if L∩L′ = Lv for some v ∈ X . The equivalence
classes of X-rays for this relation are called ends of X .

We say that group G acts on a Λ-tree X if every element g ∈ G defines an
isometry g : X → X .

Note, that every group has a trivial action on a Λ-tree, that is, all its elements
act as identity.

Let a group G act as isometries on a Λ-tree X . g ∈ G is called elliptic if it
has a fixed point. g ∈ G is called an inversion if it does not have a fixed point,
but g2 does. If g is not elliptic and not an inversion then it is called hyperbolic.
For a hyperbolic element g ∈ G define a characteristic set

Axis(g) = {p ∈ X | [g−1 · p, p] ∩ [p, g · p] = {p}},
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which is called the axis of g. Axis(g) meets every 〈g〉-invariant subtree of X .
A group G acts freely and without inversions on a Λ-tree X if for all 1 6= g ∈

G, g acts as a hyperbolic isometry. In this case we also say that G is Λ-free.

2.2 Length functions

Let G be a group and Λ be an ordered abelian group. Then a function l : G→ Λ
is called a (Lyndon) length function on G if the following conditions hold

(L1) ∀ x ∈ G : l(x) > 0 and l(1) = 0,

(L2) ∀ x ∈ G : l(x) = l(x−1),

(L3) ∀ x, y, z ∈ G : c(x, y) > c(x, z) → c(x, z) = c(y, z),

where c(x, y) = 1
2 (l(x) + l(y)− l(x−1y)).

It is not difficult to derive the following two properties of Lyndon length
functions from the axioms (L1)–(L3)

• ∀ x, y ∈ G : l(xy) 6 l(x) + l(y),

• ∀ x, y ∈ G : 0 6 c(x, y) 6 min{l(x), l(y)}.

The axiom below helps to describe the connection between Λ-valued Lyndon
length functions and actions on Λ-trees.

(L4) ∀ x ∈ G : c(x, y) ∈ Λ.

Theorem 1. [4] Let G be a group and l : G → Λ a Lyndon length function
satisfying (L4). Then there are a Λ-tree (X, p), an action of G on X and a
point x ∈ X such that l = lx.

2.3 Infinite words

Let Λ be a discretely ordered abelian group with the minimal positive element
1. It is going to be clear from the context if we are using 1 as an element of Λ,
or as an integer. Let X = {xi | i ∈ I} be a set. Put X−1 = {x−1

i | i ∈ I} and
X± = X ∪X−1. A Λ-word is a function of the type

w : [1, αw] → X±,

where αw ∈ Λ, αw > 0. The element αw is called the length |w| of w.

By W (Λ, X) we denote the set of all Λ-words. Observe, that W (Λ, X)
contains an empty Λ-word which we denote by ε.

Concatenation uv of two Λ-words u, v ∈ W (Λ, X) is an Λ-word of length
|u|+ |v| and such that:

(uv)(a) =

{

u(a) if 1 6 a 6 |u|
v(a− |u|) if |u| < a 6 |u|+ |v|
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Next, for any Λ-word w we define an inverse w−1 as an Λ-word of the length
|w| and such that

w−1(β) = w(|w| + 1− β)−1 (β ∈ [1, |w|]).

A Λ-word w is reduced if w(β + 1) 6= w(β)−1 for each 1 6 β < |w|. We
denote by R(Λ, X) the set of all reduced Λ-words. Clearly, ε ∈ R(Λ, X). If the
concatenation uv of two reduced Λ-words u and v is also reduced then we write
uv = u ◦ v.

For u ∈ W (Λ, X) and β ∈ [1, αu] by uβ we denote the restriction of u on
[1, β]. If u ∈ R(Λ, X) and β ∈ [1, αu] then

u = uβ ◦ ũβ,

for some uniquely defined ũβ .
An element com(u, v) ∈ R(Λ, X) is called the (longest) common initial seg-

ment of Λ-words u and v if

u = com(u, v) ◦ ũ, v = com(u, v) ◦ ṽ

for some (uniquely defined) Λ-words ũ, ṽ such that ũ(1) 6= ṽ(1).
Now, we can define the product of two Λ-words. Let u, v ∈ R(Λ, X). If

com(u−1, v) is defined then

u−1 = com(u−1, v) ◦ ũ, v = com(u−1, v) ◦ ṽ,

for some uniquely defined ũ and ṽ. In this event put

u ∗ v = ũ−1 ◦ ṽ.

The product ∗ is a partial binary operation on R(Λ, X).

An element v ∈ R(Λ, X) is termed cyclically reduced if v(1)−1 6= v(|v|).
We say that an element v ∈ R(Λ, X) admits a cyclic decomposition if v =
c−1 ◦ u ◦ c, where c, u ∈ R(Λ, X) and u is cyclically reduced. Observe that a
cyclic decomposition is unique (whenever it exists). We denote by CR(Λ, X)
the set of all cyclically reduced words in R(Λ, X) and by CDR(Λ, X) the set of
all words from R(Λ, X) which admit a cyclic decomposition.

Below we refer to Λ-words as infinite words usually omitting Λ whenever it
does not produce any ambiguity.

The following result establishes the connection between infinite words and
length functions.

Theorem 2. [19] Let Λ be a discretely ordered abelian group and X be a set.
Then any subgroup G of CDR(Λ, X) has a free Lyndon length function with
values in Λ – the restriction L|G on G of the standard length function L on
CDR(Λ, X).

The converse of the theorem above was obtained by I. Chiswell [6].
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Theorem 3. [6] Let G have a free Lyndon length function L : G → A, where
Λ is a discretely ordered abelian group. Then there exists a set X and a length
preserving embedding φ : G→ CDR(Λ, X), that is, |φ(g)| = L(g) for any g ∈ G.

Corollary 1. [6] Let G have a free Lyndon length function L : G → Λ, where
Λ is an arbitrary ordered abelian group. Then there exists an embedding φ :
G → CDR(Λ′, X), where Λ′ = Z ⊕ Λ is discretely ordered with respect to the
right lexicographic order and X is some set, such that, |φ(g)| = (0, L(g)) for
any g ∈ G.

Theorem 2, Theorem 3, and Corollary 1 show that a group has a free Lyndon
length function if and only if it embeds into a set of infinite words and this
embedding preserves the length. Moreover, it is not hard to show that this
embedding also preserves regularity of the length function.

Theorem 4. [10] Let G have a free regular Lyndon length function L : G→ Λ,
where Λ is an arbitrary ordered abelian group. Then there exists an embedding
φ : G→ R(Λ′, X), where Λ′ is a discretely ordered abelian group and X is some
set, such that, the Lyndon length function on φ(G) induced from R(Λ′, X) is
regular.

3 Universal trees

Let G be a subgroup of CDR(Λ, X) for some discretely ordered abelian group
Λ and a set X . We assume G, Λ, and X to be fixed for the rest of this section.

Every element g ∈ G is a function

g : [1, |g|] → X±,

with the domain [1, |g|] which a closed segment in Λ. Since Λ can be viewed
as a Λ-metric space then [1, |g|] is a geodesic connecting 1 and |g|, and every
α ∈ [1, |g|] we view as a pair (α, g). We would like to identify initial subsegments
of the geodesics corresponding to all elements of G as follows.

Let
SG = {(α, g) | g ∈ G,α ∈ [0, |g|]}.

Since for every f, g ∈ G the word com(f, g) is defined, we can introduce an
equivalence relation on SG as follows: (α, f) ∼ (β, g) if and only if α = β ∈
[0, c(f, g)]. Obviously, it is symmetric and reflexive. For transitivity observe
that if (α, f) ∼ (β, g) and (β, g) ∼ (γ, h) then 0 6 α = β = γ 6 c(f, g), c(g, h).
Since c(f, h) > min{c(f, g), c(g, h)} then α = γ 6 c(f, h).

Let ΓG = SG/ ∼ and ǫ = 〈0, 1〉, where 〈α, f〉 is the equivalence class of
(α, f).

Proposition 1. ΓG is a Λ-tree,
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Proof. At first we show that ΓG is a Λ-metric space. Define the metric by

d(〈α, f〉, 〈β, g〉) = α+ β − 2min{α, β, c(f, g)}.

Let us check if it is well-defined. Indeed, c(f, g) ∈ Λ is defined for every f, g ∈ G.
Moreover, let (α, f) ∼ (γ, u) and (β, g) ∼ (δ, v), we want to prove

d(〈α, f〉, 〈β, g〉) = d(〈γ, u〉, 〈δ, v〉)

which is equivalent to

min{α, β, c(f, g)} = min{α, β, c(u, v)}

since α = γ, β = δ. Consider the following cases.

(a) min{α, β} 6 c(u, v)

Hence, min{α, β, c(u, v)} = min{α, β} and it is enough to prove min{α, β}
= min{α, β, c(f, g)}. From length function axioms for G we have

c(f, g) > min{c(u, f), c(u, g)}, c(u, g) > min{c(u, v), c(v, g)}.

Hence,

c(f, g) > min{c(u, f), c(u, g)} > min{c(u, f),min{c(u, v), c(v, g)}}

= min{c(u, f), c(u, v), c(v, g)}.

Now, from (α, f) ∼ (γ, u), (β, g) ∼ (δ, v) it follows that α 6 c(u, f), β 6

c(v, g) and combining it with the assumption min{α, β} 6 c(u, v) we have

c(f, g) > min{c(u, f), c(u, v), c(v, g)} > min{α, β},

or, in other words,

min{α, β, c(f, g)} = min{α, β}.

(b) min{α, β} > c(u, v)

Hence, min{α, β, c(u, v)} = c(u, v) and it is enough to prove c(f, g) =
c(u, v).

Since
c(u, f) > α > c(u, v), c(v, g) > β > c(u, v),

then min{c(u, f), c(u, v), c(v, g)} = c(u, v) and

c(f, g) > min{c(u, f), c(u, v), c(v, g)} = c(u, v).

Now we prove that c(f, g) 6 c(u, v). From length function axioms for G
we have

c(u, v) > min{c(v, g), c(u, g)} = c(u, g) > min{c(v, g), c(u, v)} = c(u, v),
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that is, c(u, v) = c(u, g). Now,

c(u, v) = c(u, g) > min{c(u, f), c(f, g)},

where min{c(u, f), c(f, g)} = c(f, g) since otherwise we have c(u, v) >

c(u, f) > α - a contradiction. Hence, c(u, v) > c(f, g) and we have
c(f, g) = c(u, v).

By definition of d, for any 〈α, f〉, 〈β, g〉 we have

d(〈α, f〉, 〈β, g〉) = d(〈β, g〉, 〈α, f〉) > 0,

d(〈α, f〉, 〈α, f〉) = 0.

If
d(〈α, f〉, 〈β, g〉) = α+ β − 2min{α, β, c(f, g)} = 0

then α + β = 2min{α, β, c(f, g)}. It is possible only if α = β 6 c(f, g) which
implies 〈α, f〉 = 〈β, g〉. Finally, we have to prove the triangle inequality

d(〈α, f〉, 〈β, g〉) 6 d(〈α, f〉, 〈γ, h〉) + d(〈β, g〉, 〈γ, h〉)

for every 〈α, f〉, 〈β, g〉, 〈γ, h〉 ∈ ΓG. The inequality above is equivalent to

α+ β − 2min{α, β, c(f, g)} 6 α+ γ

−2min{α, γ, c(f, h) + β + γ − 2min{β, γ, c(g, h)}}

which comes down to

min{α, γ, c(f, h)}+min{β, γ, c(g, h)} 6 min{α, β, c(f, g)}+ γ.

First of all, observe that for any α, β, γ ∈ Λ the triple (min{α, β}, min{α, γ},
min{β, γ}) is isosceles. Hence, by Lemma 1.2.7(1) [5], the triple

(min{α, β, c(f, g)}, min{α, γ, c(f, h)}, min{β, γ, c(g, h)})

is isosceles too. In particular,

min{α, β, c(f, g)} > min{min{α, γ, c(f, h)}, min{β, γ, c(g, h)}}

= min{α, β, γ, c(f, h), c(g, h)}.

Now, if
min{α, β, γ, c(f, h), c(g, h)} = min{α, γ, c(f, h)}

then min{β, γ, c(g, h)} = γ and

min{α, γ, c(f, h)}+min{β, γ, c(g, h)} 6 min{α, β, c(f, g)}+ γ

holds. If
min{α, β, γ, c(f, h), c(g, h)} = min{β, γ, c(g, h)}
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then min{α, γ, c(f, h)} = γ and

min{α, γ, c(f, h)}+min{β, γ, c(g, h)} 6 min{α, β, c(f, g)}+ γ

holds again. So, d is a Λ-metric.

Finally, we want to prove that ΓG is 0-hyperbolic with respect to ǫ = 〈0, 1〉
(and, hence, with respect to any other point in ΓG). It is enough to prove that
the triple

((〈α, f〉 · 〈β, g〉)ǫ, (〈α, f〉 · 〈γ, h〉)ǫ, (〈β, g〉 · 〈γ, h〉)ǫ)

is isosceles for every 〈α, f〉, 〈β, g〉, 〈γ, h〉 ∈ ΓG. But by definition of d the above
triple is isosceles if and only if

(min{α, β, c(f, g)}, min{α, γ, c(f, h)}, min{β, γ, c(g, h)})

is isosceles which holds.

So, ΓG is a Λ-tree.

Since G is a subset of CDR(Λ, X) and every element g ∈ G is a function
defined on [1A, |g|] with values in X± then we can define a function

ξ : (ΓG − {ǫ}) → X±, ξ(〈α, g〉) = g(α).

It is easy to see that ξ is well-defined. Indeed, if (α, g) ∼ (α1, g1) then α =
α1 6 c(g, g1), so g(α) = g1(α1). Moreover, since every g ∈ G is reduced then
ξ(p) 6= ξ(q)−1 whenever d(p, q) = 1A.

ξ can be extended to a function

Ξ : geod(ΓG)ǫ → R(Λ, X),

where geod(ΓG)ǫ = {(ǫ, p] | p ∈ ΓG}, so that

Ξ( (ǫ, 〈α, g〉] )(t) = g(t), t ∈ [1A, α].

That is, Ξ( (ǫ, 〈α, g〉] ) is the initial subword of g of length α, and

Ξ( (ǫ, 〈|g|, g〉] ) = g.

On the other hand, if g ∈ G and α ∈ [1A, |g|] then the initial subword of g
of length α uniquely corresponds to Ξ( (ǫ, 〈α, g〉] ). If (α, g) ∼ (α1, g1) then
α = α1 6 c(g, g1), and since g(t) = g1(t) for any t ∈ [1A, c(g, g1)] then

Ξ( (ǫ, 〈α, g〉] ) = Ξ( (ǫ, 〈α1, g1〉] ).

Lemma 1. Let u, v ∈ R(Λ, X). If u ∗ v is defined then u ∗ a is also defined,
where v = a ◦ b. Moreover, u ∗ a is an initial subword of either u or u ∗ v.

Proof. The proof follows from Figure 3.
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u v
c c -1

a

u a*
a

u a*

Figure 1: Possible cancellation diagrams in Lemma 1.

Now, since for every 〈α, g〉 ∈ ΓG, Ξ( (ǫ, 〈α, g〉] ) is an initial subword of
g ∈ G then by Lemma 1, f ∗Ξ( (ǫ, 〈α, g〉] ) is defined for any f ∈ G. Moreover,
again by Lemma 1, f ∗ Ξ( (ǫ, 〈α, g〉] ) is an initial subword of either f or f ∗ g.
More precisely,

f ∗ Ξ( (ǫ, 〈α, g〉] ) = Ξ( (ǫ, 〈|f | − α, f〉] )

if f ∗ Ξ( (ǫ, 〈α, g〉] ) is an initial subword of f , and

f ∗ Ξ( (ǫ, 〈α, g〉] ) = Ξ( (ǫ, 〈|f |+ α− 2c(f−1, g), f ∗ g〉] )

if f ∗ Ξ( (ǫ, 〈α, g〉] ) is an initial subword of f ∗ g.

Hence, we define a (left) action of G on ΓG as follows:

f · 〈α, g〉 = 〈|f |+ α− 2min{α, c(f−1, g)}, f〉

if α 6 c(f−1, g), and

f · 〈α, g〉 = 〈|f |+ α− 2min{α, c(f−1, g)}, f ∗ g〉

if α > c(f−1, g).

The action is well-defined. Indeed, it is easy to see that f ·〈α, g〉 = f ·〈α1, g1〉
whenever (α, g) ∼ (α1, g1).

Lemma 2. The action of G on ΓG defined above is isometric.

Proof. Observe that it is enough to prove

d(ǫ, 〈α, g〉) = d(f · ǫ, f · 〈α, g〉)

for every f, g ∈ G. Indeed, from the statement above it is going to follow that
the geodesic tripod (ǫ, 〈|g|, g〉, 〈|h|, h〉) is isometrically mapped to the geodesic
tripod (〈|f |, f〉, f · 〈|g|, g〉, f · 〈|h|, h〉) and isometricity follows.
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We have

d(ǫ, 〈α, g〉) = d(〈0, 1〉, 〈α, g〉) = 0 + α− 2min{0, α, c(1, g)} = α,

d(f · ǫ, f · 〈α, g〉) = d(〈|f |, f〉, f · 〈α, g〉).

Consider two cases.

(a) α 6 c(f−1, g)

Hence,
d(〈|f |, f〉, f · 〈α, g〉) = d(〈|f |, f〉, 〈|f | − α, f〉)

= |f |+ |f |−α−2min{|f |, |f |−α, c(f, f)} = |f |+ |f |−α−2(|f |−α) = α.

(b) α > c(f−1, g)

Hence,

d(〈|f |, f〉, f · 〈α, g〉) = d(〈|f |, f〉, 〈|f |+ α− 2c(f−1, g), f ∗ g〉)

= |f |+ |f |+ α− 2c(f−1, g)− 2min{|f |, |f |+ α− 2c(f−1, g), c(f, f ∗ g})

= 2|f |+ α− 2c(f−1, g)− 2min{|f |+ α− 2c(f−1, g), c(f, f ∗ g)}.

Let f = f1 ◦ c
−1, g = c ◦ g1, |c| = c(f−1, g). Then |f |+ α− 2c(f−1, g) =

|f1|+α−c(f−1, g) > |f1|. At the same time, c(f, f ∗g) = |f1|, so min{|f |+
α− 2c(f−1, g), c(f, f ∗ g)} = |f1| and

d(〈|f |, f〉, f ·〈α, g〉) = 2|f |+α−2c(f−1, g)−2|f1| = 2|f |+α−2|c|−2|f1| = α

.

Proposition 2. The action of G on ΓG defined above is free and Lǫ(g) = |g|.
Moreover, ΓG is minimal with respect to this action if and only if G contains a
cyclically reduced element h ∈ G, that is, |h2| = 2|h|.

Proof. Cialm 1. The stabilizer of every x ∈ ΓG is trivial.

Next, suppose f · 〈α, g〉 = 〈α, g〉. First of all, if α = 0 then |f | + α −
2min{α, c(f−1, g)} = |f | then |f | = α = 0. Also, if c(f−1, g) = 0 then |f |+α−
2min{α, c(f−1, g)} = |f |+ α which has to be equal to α form our assumption.
In both cases f = 1 follows.

Assume f 6= 1 (which implies α, c(f−1, g) 6= 0) and consider the following
cases.

(a) α < c(f−1, g)

Hence, from
〈α, g〉 = 〈|f | − α, f〉

we get α = |f | − α 6 c(f, g). In particular, |f | = 2α.
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Consider the product f ∗ g. We have

f = f1 ◦ com(f−1, g)−1, g = com(f−1, g) ◦ g1.

Since α < c(f−1, g) then we have com(f−1, g) = cα ◦ c, |cα| = α. Hence,

f = f1 ◦ c
−1 ◦ c−1

α , g = cα ◦ c ◦ g1.

On the other hand, from |f | = 2α we get |f1| + |c| = α 6 c(f, g), so,
com(f, g) has f1 ◦ c as initial subword. That is, g = f1 ◦ c ◦ g2, but
now comparing two representations of g above we get cα = f1 ◦ c−1 and
cα ∗ c 6= cα ◦ c - a contradiction.

(b) α = c(f−1, g)

We have f = f1 ◦ c−1
α , g = cα ◦ g1, |cα| = α. From 〈α, g〉 = 〈|f | − α, f〉

we get α = |f | − α 6 c(f, g), so |f | = 2α and |f1| = α. Since |f1| =
α 6 c(f, g) then g = f1 ◦ g2 from which it follows that f1 = cα. But then
f1 ∗ c−1

α 6= f1 ◦ c−1
α - contradiction.

(c) α > c(f−1, g)

Hence, from
〈α, g〉 = 〈|f |+ α− 2c(f−1, g), f ∗ g〉

we get α = |f |+α−2c(f−1, g) 6 c(g, f ∗g). In particular, |f | = 2c(f−1, g).

Consider the product f ∗ g. We have

f = f1 ◦ c
−1, g = c ◦ g1,

where c = com(f−1, g). Hence, |f1| = |c| < α 6 c(g, f ∗ g) = c(g, f1 ◦ g1).
It follows that g = f1 ◦ g2 and, hence, c = f1 which is impossible.

Cialm 2. Lǫ(g) = |g|

We have Lǫ(g) = d(ǫ, g · ǫ). Hence, by definition of d

d(〈0, 1〉, g · 〈0, 1〉) = d(〈0, 1〉, 〈|g|, g〉) = 0 + |g| − 2min{0, |g|, c(1, g)} = |g|.

Cialm 3. ΓG is minimal with respect to the action if and only if G contains
a cyclically reduced element h ∈ G, that is, |h2| = 2|h|.

Suppose there exists a cyclically reduced element h ∈ G. Let ∆ ⊂ ΓG be a
G-invariant subtree.

First of all, observe that ǫ /∈ ∆. Indeed, if ǫ ∈ ∆ then f · ǫ ∈ ∆ for every
f ∈ G and since ∆ is a tree then [ǫ, f · ǫ] ∈ ∆ for every f ∈ G. At the same
time, ΓG is spanned by [ǫ, f · ǫ], f ∈ G, so, ∆ = ΓG - a contradiction.

Let u ∈ ∆. By definition of ΓG there exists g ∈ G such that u ∈ [ǫ, g · ǫ].
Observe that Ag ⊆ ∆. Indeed, for example by Theorem 1.4 [5], if [u, p] is the
bridge between u and Ag then p = Y (g−1 · u, u, g · u). In particular, p ∈ ∆
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and since for every v ∈ Ag there exist g1, g2 ∈ CG(g) such that v ∈ [g1 · p, g2 · p]
then Ag ⊆ ∆.

Observe that if g is cyclically reduced then ǫ ∈ Ag, that is, ǫ ∈ ∆ - a
contradiction. More generally, ∆ ∩ Af = ∅ for every cyclically reduced f ∈ G.
Hence, let [p, q] be the bridge between Ag and Ah so that p ∈ Ag, q ∈ Ah.
Then by Lemma 2.2 [5], [p, q] ⊂ Agh, in particular, p, q ∈ Agh. It follows that
Agh ⊆ ∆, q ∈ Agh ∩Ah, and ∆ ∩Ah 6= ∅ - a contradiction.

Hence, there can be no proper G-invariant subtree ∆.

Now, suppose G contains no cyclically reduced element. Hence, ǫ /∈ Af

for every f ∈ G. Let ∆ be spanned by Af , f ∈ G. Obviously, ∆ is G-
invariant. Indeed, let u ∈ [p, q], where p ∈ Af , q ∈ Ag for some f, g ∈ G. Then
h · u ∈ [h · p, h · q], where h · p ∈ h · Af = Ahfh−1 , h · q ∈ h · Ag = Ahgh−1 , that
is, h ∈ ∆.

Finally, ǫ ∈ ΓG −∆.

Proposition 3. If (Z, d′) is a Λ-tree on which G acts freely as isometries, and
w ∈ Z is such that Lw(g) = |g|, g ∈ G then there is a unique G-equivariant
isometry µ : ΓG → Z such that µ(ǫ) = w, whose image is the subtree of Z
spanned by the orbit G · w of w.

Proof. Define a mapping µ : ΓG → Z as follows

µ(〈α, f〉) = x if d′(w, x) = α, d′(f · w, x) = |f | − α.

Observe that µ(ǫ) = µ(〈0, 1〉) = w

Claim 1. µ is an isometry.

Let 〈α, f〉, 〈β, g〉 ∈ ΓG. Then by definition of d we have

d(〈α, f〉, 〈β, g〉) = α+ β − 2min{α, β, c(f, g)}.

Let x = µ(〈α, f〉), y = µ(〈β, g〉). Then By Lemma 1.2 [5] in (Z, d′) we have

d′(x, y) = d(w, x) + d(w, y)− 2min{d(w, x), d(w, y), d(w, z)},

where z = Y (w, f · w, g · w). Observe that d(w, x) = α, d(w, y) = β. At the
same time, since Lw(g) = |g|, g ∈ G then

d(w, z) =
1

2
(d(w, f ·w)+d(w, g·w)−d(f ·w, g·w)) =

1

2
(|f |+|g|−|f−1g|) = c(f, g),

and

d(µ(〈α, f〉), µ(〈β, g〉)) = d′(x, y) = α+β−2min{α, β, c(f, g)} = d(〈α, f〉, 〈β, g〉).

Claim 1. µ is equivariant.

We have to prove
µ(f · 〈α, g〉) = f · µ(〈α, g〉).

Let x = µ(〈α, g〉), y = µ(f · 〈α, g〉). By definition of µ we have d′(w, x) =
α, d′(g · w, x) = |g| − α.
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(a) α 6 c(f−1, g)

Hence,
f · 〈α, g〉 = 〈|f | − α, f〉.

and to prove y = f · x it is enough to show that d′(w, f · x) = |f | − α and
d′(f · w, f · x) = α.

Observe that the latter equality holds since d′(f ·w, f · x) = d′(w, x) = α.
To prove the former one, by Lemma 1.2 [5] we have

d(w, f · x) = d′(w, f · w) + d′(f · x, f · w)

−2min{d′(w, f · w), d′(f · x, f · w), d′(f · w, z)},

where z = Y (w, f · w, (fg) · w). Also,

d′(f · w, z) =
1

2
(d′(f · w,w) + d′(f · w, (fg) · w)− d′(w, (fg) · w))

=
1

2
(|f |+ |g| − |f−1g|) = c(f−1, g).

Since, d′(w, f · w) = |f |, d′(f · x, f · w) = α then min{d′(w, f · w), d′(f ·
x, f · w), d′(f · w, z)} = α, and

d′(w, f · x) = |f |+ α− 2α = |f | − α.

(b) α > c(f−1, g)

Hence,
f · 〈α, g〉 = 〈|f |+ α− 2c(f−1, g), f ∗ g〉.

and to prove y = f · x it is enough to show that d′(w, f · x) = |f | + α −
2c(f−1, g) and d′(f · x, (fg) · w) = |fg| − (|f |+ α− 2c(f−1, g)).

Observe that d′(f · x, (fg) · w) = d′(x, gw) = |g| − α = |fg| − (|f | + α −
2c(f−1, g)), so the latter equality holds.

By Lemma 1.2 [5] we have

d(w, f · x) = d′(w, f · w) + d′(f · x, f · w)

−2min{d′(w, f · w), d′(f · x, f · w), d′(f · w, z)},

where z = Y (w, f · w, (fg) · w). Also,

d′(f · w, z) =
1

2
(d′(f · w,w) + d′(f · w, (fg) · w)− d′(w, (fg) · w))

=
1

2
(|f |+ |g| − |f−1g|) = c(f−1, g).

d′(w, f ·w) = |f |, d′(f ·x, f ·w) = α, so min{d′(w, f ·w), d′(f ·x, f ·w), d′(f ·
w, z)} = d′(f · w, z) = c(f−1, g), and

d(w, f · x) = |f |+ α− 2c(f−1, g).
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Claim 1. µ is unique.

Observe that if µ′ : ΓG → Z is another equivariant isometry such that
µ′(ǫ) = w then for every g ∈ G we have

µ′(〈|g|, g〉) = µ′(g · 〈0, 1〉) = g · µ′(〈0, 1〉) = g · w.

That is, µ′ agrees with µ on G ·ǫ, hence µ = µ′ because isometries preserve
geodesic segments.

Thus, µ is unique. Moreover, µ(ΓG) is the subtree of Z spanned by G ·w.

4 Examples

Here we consider two examples of subgroups of CDR(Λ, X), where Λ = Z
2 and

X an arbitrary alphabet, and explicitly construct the corresponding universal
trees for these groups.

Example 1. Let F = F (X) be a free group with basis X and the standard length
function | · |, and let u ∈ F a cyclically reduced element which is not a proper
power. If we assume that Z2 = 〈1, t〉 is the additive group of linear polynomials
in t ordered lexicographically then the HNN-extension

G = 〈F, s | us = u〉

embeds into CDR(Z2, X) under the following map φ:

φ(x) = x, ∀ x ∈ X,

φ(s)(β) =

{

u(α), if β = m|u|+ α,m > 0, 1 6 α 6 |u|,
u(α), if β = t−m|u|+ α,m > 0, 1 6 α 6 |u|.

Γ1

g h

G

Figure 2: ΓG as a Z-tree of Z-trees.
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It is easy to see that |φ(s)| = t and φ(s) commutes with u in CDR(Z2, X).
To simplify the notation we identify G with its image φ(G).

Every element g of G can be represented as the following reduced Z
2-word

g = g1 ◦ s
δ1 ◦ g2 ◦ · · · ◦ gk ◦ s

δk ◦ gk+1,

where [gi, u] 6= 1. Now, according to the construction described in Section 3,
the universal tree ΓG consists of the segments in Z

2 labeled by elements from G
which are glued together along their common initial subwords.

Thus, ΓG can be viewed as a Z-tree of Z-trees which are Cayley graphs of
F (X) and every vertex Z-subtree can be associated with a right representative
in G by F . The end-points of the segments [1, |g|] and [1, |h|] labeled respectively
by g and h belong to the same vertex Z-subtree if and only if h−1g ∈ F .

g

g Axis(u).

h Axis(u).'

1

h

h'

Figure 3: Adjacent Z-subtrees in ΓG.

In other words, ΓG is a “more detailed” version of the Bass-Serre tree T for
G, in which every vertex is replaced by the Cayley graph of the base group F
and the adjacent Z-subtrees of ΓG corresponding to the representatives g and h
are “connected” by means of s± which extends g ·Axis(u) to h′ ·Axis(u), where
h′−1h ∈ F and g−1h ∈ s±F .

The following example is a generalization of the previous one.

Example 2. Let F = F (X) be a free group with basis X and the standard
length function | · |, and let u, v ∈ F be cyclically reduced elements which is not
a proper powers and such that |u| = |v|. The HNN-extension

H = 〈F, s | us = v〉

embeds into CDR(Z2, X) under the following map ψ:

ψ(x) = x, ∀ x ∈ X,

ψ(s)(β) =

{

u(α), if β = m|u|+ α,m > 0, 1 6 α 6 |u|,
v(α), if β = t−m|v|+ α,m > 0, 1 6 α 6 |v|.
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It is easy to see that |ψ(s)| = t and u ◦ ψ(s) = ψ(s) ◦ v in CDR(Z2, X). Again,
to simplify the notation we identify H with its image ψ(H).

The structure of ΓH is basically the same as the structure of ΓG in Example
1. The only difference is that the adjacent Z-subtrees of ΓH corresponding to the
representatives g and h are “connected” by means of s± which extends g·Axis(u)
to h′ · Axis(v), where h′−1h ∈ F and g−1h ∈ s±F .

g

g Axis(u).

h Axis(v).'

1

h

h'

Figure 4: Adjacent Z-subtrees in ΓH .

5 Effective Λ-trees

In this section we introduce some basic notions concerning effectiveness when
dealing with groups of infinite words and corresponding universal trees.

5.1 Infinite words viewed as computable functions

We say that a group G = 〈Y 〉, Y = {y1, . . . , ym} has an effective representation
by Λ-words over an alphabet X if G ⊂ CDR(Λ, X) and

(ER1) each function yi : [1, |yi|] → X± is computable, that is, one can effectively
determine yi(α) for every α ∈ [1, |yi|] and i ∈ [1,m],

(ER2) for every i, j ∈ [1,m] and every αi ∈ [1, |yi|], αj ∈ [1, |yj|] one can effec-
tively compute c(hi, hj), where hi = y±1

i |[αi,|yi|], hj = y±1
j |[αj ,|yj|].

Observe that since every yi is computable, y−1
i is computable too for every

i ∈ [1,m]. Next, it is obvious that concatenation of computable functions is
computable, as well as restriction of a computable function to a computable

domain. Thus, if gi ∗ gj = hi ◦ hj , where gi = yδii = hi ◦ c, gj = y
δj
j =

c−1 ◦ hj, δi, δj = ±1, then both hi and hj are computable as restrictions hi =
gi |[1,α], hj = gj |[α+1,|gj |] for α = |c| = c(g−1

i , gj), and so is gi ∗ gj . Now, using

(ER2) twice we can determine c((gi ∗ gj)−1, gk), where gk = yδkk , δk = ±1.
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Indeed, c((gi ∗ gj)−1, gk) = c(h−1
j ◦ h−1

i , gk), so, if c(h−1
j , gk) < |h−1

j | then

c((gi ∗gj)−1, gk) = c(h−1
j , gk) which is computable by (ER2), and if c(h−1

j , gk) >

|h−1
j | then c((gi ∗ gj)−1, gk) = |hj | + c(h−1

i , hk), where hk = gk |[|hj |+1,|gk|] –

again, all components are computable and so is c((gi ∗gj)−1, gk). It follows that
y±1
i ∗ y±1

j ∗ y±1
k is a computable function for every i, j, k ∈ [1,m]. Continuing in

the same way by induction one can show that every finite product of elements
from Y ±1, that is, every element of G given as a finite product of generators and
their inverses, is computable as a function defined over a computable segment
in Λ to X±. Moreover, for any g, h ∈ G one can effectively find com(g, h) as
a computable function. In particular, we automatically get a solution to the
Word Problem in G provided G has an effective representation by Λ-words over
an alphabet X .

5.2 Computable universal trees

Suppose G has an effective representation by Λ-words over an alphabet X and
let ΓG be the universal Λ-tree for G. According to the construction in Section
3, every point of ΓG can be viewed as a pair (α, g), where g ∈ G and α ∈ [0, |g|].
Such a pair is not unique but given another pair (β, f) we can effectively find
out if both pair define the same point of ΓG. Indeed, (α, g) ∼ (β, f) if and only
if α = β ∈ [0, c(f, g)] and c(f, g) can be found effectively.

Next, according to the definition given in Section 3, for f ∈ G and (α, g)
representing a point in ΓG, the image of (α, g) is defined as follows

f · (α, g) = (|f |+ α− 2min{α, c(f−1, g)}, f)

if α 6 c(f−1, g), and

f · (α, g) = (|f |+ α− 2min{α, c(f−1, g)}, f ∗ g)

if α > c(f−1, g). Since G has an effective representation by Λ-words, it follows
that c(f−1, g) can be found effectively and f ∗g is a computable function. Thus,
f · (α, g) can be determined effectively.

Summarizing the discussion above we prove the following result.

Theorem 5. Let G be a finitely generated group which has an effective repre-
sentation by Λ-words over an alphabet X and let ΓG be the universal Λ-tree for
G. Then

(1) ΓG can be constructed effectively in the sense that there exists a procedure
(infinite in general) which builds ΓG and every point of ΓG appears in the
process after finitely many steps,

(2) the action of G on ΓG is effective in the sense that given a representative
of a point v ∈ ΓG and an element g ∈ G, one can effectively compute a
representative of g · v.
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Proof. Let G = 〈Y 〉, where Y is finite. The procedure building ΓG enumerates
all finite words in the alphabet Y ±1 and finds the corresponding computable
functions. According to the construction of Section 3, every point of ΓG can be
viewed as a pair (α, g), where g ∈ G and α ∈ [0, |g|], so eventually every point
of ΓG appears in the process. This concludes the proof of (1).

Finally, (2) follows from the discussion preceding the theorem.
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