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On the Covering Number of Small Symmetric Groups and
Some Sporadic Simple Groups

Luise-Charlotte Kappe, Daniela Nikolova-Popova, and EricSwartz

ABSTRACT. A set of proper subgroups is a covering for a group if its union is the whole group.
The minimal number of subgroups needed to coverG is called the covering number ofG, de-
noted byσ(G). Determiningσ(G) is an open problem for many non-solvable groups. For
symmetric groupsSn, Maróti determinedσ(Sn) for oddn with the exception ofn = 9 and gave
estimates forn even. In this paper we determineσ(Sn) for n = 8, 9, 10 and 12. In addition we
find the covering number for the Mathieu groupM12 and improve an estimate given by Holmes
for the Janko groupJ1.

1. Introduction

Let G be a group andA = {Ai | 1 ≤ i ≤ n} a collection of proper subgroups ofG. If

G =

n
⋃

i=1

Ai, thenA is called a cover ofG. A cover is called irredundant if after the removal of

any subgroup, the remaining subgroups do not cover the group. A cover of sizen is said to be
minimal if no cover ofG has fewer thann members. According to J.H.E. Cohn [6], the size of
a minimal covering ofG is called the covering number, denoted byσ(G). By a result of B.H.
Neumann [20], a group is the union of finitely many proper subgroups if andonly if it has a
finite noncyclic homomorphic image. Thus it suffices to restrict our attention to finite groups
when determining covering numbers of groups.

Determining the invariantσ(G) of a groupG and finding the positive integers which can be
covering numbers is the topic of ongoing research. It even predates Cohn’s 1994 publication
[6]. It is a simple exercise to show that no group is the union of two proper subgroups. Al-
ready in 1926, Scorza [21] proved thatσ(G) = 3 if and only if G has a homomorphic image
isomorphic to the Klein-Four group, a result many times rediscovered over the years. In [11],
Greco characterizes groups withσ(G) = 4 and in [12] and [13] gives a partial characterization
of groups withσ(G) = 5. For further details we refer to the survey article by Serena[22], and
for recent applications of this research see for instance [3] and [4].

In [6], Cohn conjectured that the covering number of any solvablegroup has the formpα+1,
wherep is a prime andα a positive integer, and for every integer of the formpα+1 he determined
a solvable group with this covering number. In [23], Tomkinson proves Cohn’s conjecture
and suggests that it might be of interest to investigate minimal covers of non-solvable and in
particular simple groups. Bryce, Fedri and Serena [5] started this investigation by determining
the covering number for some linear groups such as PSL(2, q), PGL(2, q) or GL(2, q) after
Cohn [6] had already shown thatσ(A5) = 10 andσ(S5) = 16. In [18], Lucido investigates
Suzuki groups and determines their covering numbers. For the sporadic groups, such asM11,
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M22, M23, Ly andO′N , the covering numbers are established in [15] by Holmes and she gives
estimates for those ofJ1 andM cL. Some of the results in [15] are established with the help of
GAP [10], a first in this context.

The covering numbers of symmetric and alternating groups were investigated by Maróti in
[19]. For n 6= 7, 9, he shows that for the alternating groupσ(An) ≥ 2n−2 with equality if
and only ifn is even but not divisible by 4. Forn = 7 and 9 Maróti establishesσ(A7) ≤ 31
andσ(A9) ≥ 80. For the symmetric groups he proves thatσ(Sn) = 2n−1 if n is odd unless
n = 9 andσ(Sn) ≤ 2n−2 if n is even. It is a natural question to ask what are the exact
covering numbers for alternating and symmetric groups for those values ofn where Maróti
only gives estimates. In [17] and [8] this was done for alternating groups in case of small values
of n. As mentioned earlier, Cohn [6] already establishedσ(A5) = 10. In [17] it is shown that
σ(A7) = 31 andσ(A8) = 71. Furthermore, Maróti’s bound forA9 is improved by establishing
that127 ≤ σ(A9) ≤ 157. Recently, it was shown in [8] thatσ(A9) = 157.

The topic of this paper is to determine the covering numbers for symmetric groups of small
degree and some sporadic simple groups. We determine the covering numbers forSn in cases
whenn = 8, 9, 10, and12. In particular, we showσ(S9) = 256, establishing that Maróti’s
result thatσ(Sn) = 2n−1 for oddn holds without exceptions. Forn = 8, 10 and12 we have
σ(S8) = 64, σ(S10) = 221, andσ(S12) = 761, respectively. We observe that Maróti [19] gave
already 761 as an upper bound forσ(S12). Since we can use the same methods, we establish in
addition that the Mathieu groupM12 has covering number208 and improve the estimate given
for the Janko groupJ1 in [15].

Observing thatσ(S4) = 4 andσ(S6) = 13 by [1], we know now the covering numbers ofSn

for all evenn ≤ 12 and observe that in this rangeσ(Sn) = 2n−2, Maróti’s upper bound, is only
taken ifn is a 2-power. In the remaining cases we haveσ(Sn) < 2n−2 andσ(Sn) ∼ 1

2

(

n
n/2

)

.
This suggests that perhaps the value forσ(Sn) is less than Maróti’s bound in casen is not a
2-power. Our current methods rely on explicit tables for thesymmetric groups in question and
computer calculation to carry out certain optimizations. There are limits to the size of the group
on how far these methods can carry us and statements for general values ofn are extremely
difficult and require entirely different methods than thoseused for small values ofn. This will
become clearer when we discuss our methods in the following.

The methods employed here are an extension of those used in [17]. In determining a min-
imal covering of a group we can restrict ourselves to finding aminimal covering by maximal
subgroups. The conjugacy classes of subgroups for the groups in question can be found in GAP
[10]. To determine a minimal covering by maximal subgroups, it suffices to find a minimal
covering of the conjugacy classes of maximal cyclic subgroups by such subgroups of the group.
Already in [15] this method is used to determine the covering numbers of sporadic groups. Here
this method is adapted to the case of symmetric groups where the generators of maximal cyclic
subgroups can easily be identified by their cycle structure.

The following notation is used for the disjoint cycle decomposition of a nontrivial permu-
tation. Letm1, m2, . . . , mt ∈ N with 1 < m1 < m2 < . . . < mt andk1, . . . , kt ∈ N. If α is
a permutation with disjoint cycle decomposition ofki cycles of lengthmi, i = 1, . . . , t, then
we denote the class ofα by (mk1

1 , . . . , mkt
t ). If ki = 1, we just writemi instead ofm1

i . As is
customary, we suppress 1-cycles and the identity permutation is denoted by (1). For example,
the permutation with disjoint cycle decomposition (12)(34)(5678) belongs to the class(22, 4).
In the case of symmetric groups all elements of a given cycle structure are contained in the sub-
groups of a conjugacy class of maximal subgroups and the elements with the respective cycle
structure are either partitioned into these subgroups or there exists an intersection between some
of the subgroups of the conjugacy class.
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For the groupsS8, S9, S10, andM12, we provide two tables which are obtained with the
help of GAP [10]. (For the groupS12, we provide only a list of maximal subgroup conjugacy
classes and refer to previous work in [19]. For the groupJ1, we refer to previous work in
[15].) The first table gives the information on the conjugacy classes of maximal subgroups of
the group, such as the isomorphism type and order of the classrepresentative and the size of
each class. The second table lists the order and cycle structure of each permutation generating
a maximal cyclic subgroup as well as the total of such elements in the group together with the
distribution of these elements over the various conjugacy classes. For each conjugacy class
we list how many of these elements are contained in a class representative. If elements are
partitioned over the representatives, we indicate this withP , and if each element is contained in
k class representatives and each representative containss such elements, we indicate this with
sk. For some of the groups it suffices to give the second table in abbreviated form.

For finding the covering number, the goal is to determine an irredundant covering and show
that it is minimal. If the elements of a certain cycle structure are partitioned into the subgroups
of a particular conjugacy class, it is not hard to find a minimal covering for such elements.
The difficulty arises if the elements in question occur in several class representatives. In this
case we interpret the subgroups and group elements as an incidence structure with the subgroup
representatives as the sets and the group elements with the specific cycle structure as elements.
This leads to a problem in linear optimization. Here are someof the details.

Given two finite collections of objects, call themU andV . Call the objects inV elements
and the objects inU sets. Given an incidence structure betweenU andV , that is for everyv in
V and everyu in U we have eitherv incident withu or v not incident withu, v ∈ u or v 6∈ u for
short. This relation can be represented by a matrixA = (aij), the incidence matrix of(V, U).
We label the columns ofA by the sets inU and the rows by the elements inV . For1 ≤ i ≤ |V |
and1 ≤ j ≤ |U | we set

aij =

{

1 if vi ∈ uj,

0 if vi 6∈ uj.

LetW be a subcollection ofU . We define a column vectorx(W ) = (x1, . . . , x|U |)
T as follows

xj =

{

1 if uj ∈ W,

0 if uj 6∈ W .

Let Ax(W ) = y(W ) = (y1, . . . , y|V |)
T , a column vector of length|V | with coordinatesyi ≥ 0.

If yi = 0, thenvi 6∈
⋃

u∈W

u and ifyi > 0, thenvi ∈
⋃

u∈W

u, specificallyvi is contained in exactlyyi

members ofW . If yi > 0 for i = 1, . . . , |V |, everyvi ∈ V is contained in at least one member
of W and we sayW coversV .

In our interpretation the objects inU are representatives of a certain conjugacy class of
maximal subgroups and the objects inV are permutations with a certain cycle structure. The
goal is to find the minimal size of|W | such thatW coversV . If the objects inU andV can
be suitably labeled, we can use a combinatorial argument to find the optimal solution, e.g.,
using the Erdős-Ko-Rado Theorem [9] as in the case ofS10. Otherwise we have to resort to
the help of computers to find optimal solutions, e.g., in the case ofS9, M12 andJ1. Roughly
speaking, a system of linear inequalities with binary variables is prepared by GAP [10] and the
optimal solution is found with the help of Gurobi [14]. Naturally, this approach puts a limit
on how large our groups can be. In addition, the structure of the cover heavily depends on the
arithmetic nature ofn.
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2. The Symmetric Group S8

The smallest symmetric group for which the covering number is not known isS8. Here we
determineσ(S8) and show that it equals the upper bound given by Maróti in [19].

THEOREM 2.1. The covering number ofS8 is 64.

PROOF. First we will show that there exists an irredundant covering of S8 by 64 subgroups.
As can be seen from Table 2.2, all odd permutations of the group generating maximal cyclic
subgroups are contained either inMS3 orMS6. Thus the union ofMS3 andMS6 contains all
odd permutations in question. We observe that this union does not contain all even permutations
generating maximal cyclic subgroups, e.g., the permutation with cycle structure(3, 5) is only
contained inMS1 andMS2. ThusMS1, MS3, andMS6 cover all ofS8, and

σ(S8) ≤ |MS1|+ |MS3|+ |MS6| = 64.

Let C be the union ofMS1, MS3, andMS6, and defineΠ to be the union of all elements with
cycle structure(8), (3, 5), or (2, 32). The elements ofΠ are partitioned among the64 groups of
C, soC is an irredundant covering.

It remains to be shown thatC is a minimal covering. Assume to the contrary that there exists
a coverB of S8 such thatB contains fewer subgroups thanC. SinceB covers all the elements
of S8, it must cover all the elements ofΠ. Moreover,B contains fewer subgroups thanC, so we
may assume thatC = (B ∩ C) ∪ C′ andB = (B ∩ C) ∪ B′, whereC′ is the set of subgroups in
C but not inB andB′ is the set of subgroups inB that are not inC. Since|B| < |C|, it must be
that |B′| < |C′|. This means thatB′ must cover some subset of elements ofΠ more efficiently
than doesC′.

We will now show thatA8 is in B ∩ C. If A8 6∈ B ∩ C, then the only other way to cover the
elements of cycle structure(3, 5) is by the 56 subgroups ofMS2. Since the most efficient way
to cover the 8-cycles is by the 35 subgroups ofMS6 and no maximal subgroup contains both
elements of cycle structure(3, 5) and8-cycles, we have|B| ≥ 56 + 35 > |C|, a contradiction.
We concludeA8 ∈ B ∩ C.

DefineC′
1 to be the set of subgroups ofC′ that are inMS3 andC′

2 to be the set of subgroups
of C′ in MS6, and letΠ1 andΠ2, respectively, be the elements ofΠ that are in subgroups ofC′

1

andC′
2, respectively. Note thatΠ1 andΠ2 are disjoint since the elements ofΠ are partitioned

among the subgroups ofC. As can be seen from examining Table 2.2, the maximal subgroups
of S8 that are not inC (i.e., those isomorphic toS3 × S5, S7, PGL(2, 7), or S2wrS4) contain
at most80 elements ofΠ1 ∪ Π2, whereas a subgroup isomorphic toS4wrS2 in MS6 contains
144 elements of this set. SinceC partitionsΠ1 ∪Π2, this means that ifC′

2 containsn subgroups,
thenB′ must contain at leastn + 1 subgroups to cover the elements inΠ2. Since|B′| < |C′|,
this means both thatC′

1 is nonempty and that some collectionB′
1 of B′ covers the elements of

Π1 with fewer subgroups thanC′
1. However,Π1 consists only of elements with cycle structure

(2, 32), and each subgroup ofC′
1 contains exactly40 such elements. ForB′

1 to be smaller than
C′
1, some subgroup ofS8 would have to contain more than40 elements with cycle structure

(2, 32). None does, which is a contradiction. Therefore it follows that no such coverB can exist
andC is a minimal covering ofS8. We concludeσ(S8) = 64, as desired.

�
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Label Isomorphism Type Group Order Class Size

MS1 A8 20160 1

MS2 S3 × S5 720 56

MS3 S2 × S6 1440 28

MS4 S7 5040 8

MS5 S2wrS4 384 105

MS6 S4wrS2 1152 35

MS7 PGL(2, 7) 336 120

Table 2.1. Conjugacy classes of maximal subgroups ofS8.

MS1 MS2 MS3 MS4 MS5 MS6 MS7

Order C.S. Size (1) (56) (28) (8) (105) (35) (120)

ODD

4 (22, 4) 1260 0 0 902 0 363 1805 0

6 (2,3) 1120 0 1005 1604 4203 0 963 0

6 (2, 32) 1120 0 402 40, P 0 323 0 0

6 6 13360 0 0 120, P 8402 32, P 0 562

8 8 5040 0 0 0 0 48, P 144, P 842

10 (2,5) 4032 0 72, P 144, P 504, P 0 0 0

12 (3,4) 3360 0 60, P 0 420, P 0 96, P 0

EVEN

4 (2,4) 2520 P 90, P 1802 6302 24, P 72, P 0

6 (2,6) 3360 P 0 120, P 0 32, P 1922 0

7 7 5760 P 0 0 720, P 0 0 48, P

15 (3,5) 2688 P 48, P 0 0 0 0 0

Table 2.2. Inventory of elements generating maximal cyclicsubgroups
in S8 across conjugacy classes of maximal subgroups.

3. The Symmetric Group S9

In this section we will determine the exact covering number of S9, the case missing in [19],
where the covering numbers forSn with n odd were determined with the exception ofn = 9.

THEOREM 3.1. The covering number ofS9 is 256.

This together with Theorem 1.1 in [19] yields the following corollary.

COROLLARY 3.2. Letn ≥ 3 be an odd integer. Thenσ(Sn) = 2n−1.

To prove the main result of this section, we need the following proposition.

PROPOSITION3.3. The84 subgroups ofMS3 form a minimal covering of the elements with
cycle structure(3, 6) in S9.
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PROOF. We prove this computationally with the help of the softwareGAP [10] and Gurobi
[14]. Using the GAP program as given in Function8.1 for G = S9 and the conjugacy classes
MS3, MS6, andMS7 of maximal subgroups, we are setting up the equations readable by
Gurobi for the elements of type(3, 6). The Gurobi output shows that a minimal covering of
these elements consists of84 subgroups fromMS3, MS6, andMS7. Since the elements with
cycle structure(3, 6) are partitioned into the subgroups of MS3, these 84 subgroups constitute
a minimal covering of these elements. �

We note that the GAP output addressed in the above proposition as well as an abbreviated
Gurobi output of these calculations is given at the end of Section 8. For further details we refer
to http://www.math.binghamton.edu/menger/coverings/. Now we are ready
to prove our theorem.

PROOF OFTHEOREM 3.1. We will show first that there exists a covering ofS9 by 256
subgroups. As can be seen with the help of GAP [10], the9-cycles inS9 are only contained in
A9, the only subgroup inMS1. Thus it suffices to show that the odd permutations generating
maximal cyclic subgroups can be covered by255 subgroups.

As can be seen from Table 3.2, listing the odd permutations generating maximal cyclic
subgroups inS9, the elements with cycle structure(4, 5) and(2, 7) are only contained in the
subgroups ofMS2 andMS4, respectively. Since these elements are partitioned into the sub-
groups of the respective classes, the full classes have to beadded to the covering. As one can
see from Table 3.2, the odd permutations generating maximalcyclic subgroups not covered by
the subgroups ofMS2 andMS4 are the8-cycles and the elements with cycle structure(3, 6).
Thus adding the subgroups ofMS3 andMS5 to those ofMS1, MS2 andMS4 provides a
covering ofS9. We conclude

σ(S9) ≤ |MS1|+ |MS2|+ |MS3|+ |MS4|+ |MS5| = 256.

It remains to be shown that any covering ofS9 contains at least256 subgroups. As pointed
out earlier, none of the subgroups ofMS1, MS2 andMS4 can be omitted since the respective
elements are partitioned into these subgroups. The8-cycles are partitioned into the nine sub-
groups ofMS5 with 5040 elements in each subgroup. On the other hand, each such element is
contained in two subgroups ofMS7 with 108 8-cycles in each subgroup. Obviously, replacing
subgroups fromMS5 by those fromMS7 increases the number of subgroups needed for cov-
ering these elements. Hence the nine subgroups of MS5 constitute a minimal covering of the
8-cycles.

Label Isomorphism Type Group Order Class Size

MS1 A9 18140 1

MS2 S4 × S5 2880 126

MS3 S3 × S6 4320 84

MS4 S2 × C7 10080 36

MS5 S8 40320 9

MS6 S3wrS3 1296 280

MS7 AGL(2, 3) 432 840

Table 3.1. Conjugacy classes of maximal subgroups ofS9.

http://www.math.binghamton.edu/menger/coverings/
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Order C.S Size MS2 MS3 MS4 MS5 MS6 MS7

4 (22, 4) 11340 1802 2702 6302 1260, P 1624 0

6 (2,3) 2520 22011 2709 4907 11204 364 0

6 (2, 32) 10080 1602 3603 280, P 1120, P 36, P 0

6 6 10080 0 120, P 8403 33603 36, P 562

6 (23, 3) 2520 603 30, P 2103 0 364 0

6 (3,6) 20160 0 240, P 0 0 2884 723

8 8 45360 0 0 0 5040, P 0 1082

10 (2,5) 18144 144, P 4322 10082 40322 0 0

12 (3,4) 15120 360 180, P 420, P 33602 0 0

14 (2,7) 25920 0 0 720, P 0 0 0

20 (4,5) 18144 144, P 0 0 0 0 0

Table 3.2 Inventory of odd permutations generating maximalcyclic subgroups
in S9 across conjugacy classes of maximal subgroups.

On the other hand, the elements with cycle structure(3, 6) are partitioned into the84 sub-
groups ofMS3 with 240 elements in each subgroup and each such element is containedin four
subgroups ofMS6 with 288 elements in each subgroup. Thus potentially there could be an ar-
rangement that the elements with cycle structure(3, 6) in six subgroups ofMS3 can be covered
by five subgroups fromMS6. However, as shown in Proposition3.3, this is not the case, and
the84 subgroups ofMS3 constitute a minimal covering of these elements. Moreover,the only
class of subgroups containing both8-cycles and elements with cycle structure(3, 6) is MS7.
However, each subgroup ofMS7 contains a combined total of180 8-cycles and elements with
cycle structure(3, 6), and so cannot possibly be a better cover than usingMS3 andMS5, in
each of which a subgroup covers at least240 such elements. We concludeσ(S9) > 255 and
thusσ(S9) = 256. �

4. The Symmetric Group S10

In this section we determine the covering number ofS10. It turns out to be less than the
upper bound of210−2 given by Maróti in [19].

THEOREM 4.1. The covering number ofS10 is 221.

Before we can prove Theorem 4.1, we have to establish some preparatory results involving
combinatorics and incidence matrices leading to an application of a result due to Erdős, Ko and
Rado [9] (see also Theorem 5.1.2 in [2]).

THEOREM 4.2. [9] Let A1, . . . , Am be m k-subsets of ann-setS, k ≤ 1
2
n, which are

pairwise nondisjoint. Thenm ≤
(

n−1
k−1

)

. The upper bound form is best possible. It is attained
when theAi are precisely thek-subsets ofS which contain a chosen fixed element ofS.

In our application we consider the following incidence structure. We let

U = {(k1, k2, k3) : k1, k2, k3 ∈ {0, 1, . . . , 9} and k1 < k2 < k3)}

and
V = {(u, u′) : u, u′ ∈ U with u ∩ u′ = ∅}.
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We define an incidence relation betweenU andV as follows. Forv = (u, u′) ∈ V we say
v ∈ uj if u = uj or u′ = uj, andv 6∈ uj otherwise. For this choice ofU andV we make the
following claim.

PROPOSITION 4.3. Let U , V and the incidence relation between them defined as above.
Then there exists a subcollectionW ∗ of U with |W ∗| = 84 which coversV and every subcol-
lectionW of U with |W | < |W ∗| does not coverV . Specifically,W ∗ can be chosen asU −D,
where

D = {(0, k2, k3) : k2, k3 ∈ {1, 2, . . . , 9}, k2 < k3}.

PROOF. We have|U | = 120 and|V | = 2100. Thus the incidence matrixA of U andV is a
2100× 120 matrix with exactly two entries equal to 1 in each row, since
uj = ((k1, k2, k3), (k

′
1, k

′
2, k

′
3)) ∈ vi if and only if (k1, k2, k3) = uj or (k′

1, k
′
2, k

′
3) = uj. With

x(U) = (1, . . . , 1)T we haveAx(U) = (2, . . . , 2)T . Let u, u′ ∈ U with u ∩ u′ = ∅ and let
X = U − {u, u′}. Theny(X) contains a zero entry andv = (u, u′) is not covered byX. On
the other hand, removing any subset{u1, . . . , ut} of U with pairwise non-trivial intersection,
i.e.ui ∩ uj 6= ∅, then forX = U − {u1, . . . , ut} the vectory(X) has all non-zero entries. The
largest number of sets we can remove fromU has the cardinality of a maximal set with pairwise
non-trivial intersection. Applying Theorem 4.2 withn = 10 andk = 3, we obtain

(

9
2

)

= 36 for
the cardinality of such a set. Specifically,D = {(0, k1, k2) : k1 < k2, k1, k2 ∈ {1, . . . , 9}} is
such a set. LetW ∗ = U −D. Theny(W ∗) has all entries> 0. On the other hand, for any set
W with |W | < |W ∗| there existu, u′ ∈ W , the complement ofW in U , such thatu ∩ u′ = ∅
and thusy(W ) has at least one zero entry. �

The following corollary establishes a minimal covering of the elements of type(32, 4) by
certain subgroups fromMS3 (see Table 4.2). Since these subgroups are isomorphic toS3×S7,
we can label them by the letters fixed by the respectiveS7. Hence we have

MS3 = {H(k1, k2, k3) : k1, k2, k3 ∈ {0, 1, . . . , 9}, k1 < k2 < k3}.

COROLLARY 4.4. Let D = {H(0, k2, k3) : k2, k3 ∈ {1, 2, . . . , 9}, k2 < k3}. ThenD =
MS3 −D, the complement ofD in MS3, is a minimal covering of the elements of type(32, 4)
in S10.

PROOF. By Table 4.2, there are50400 elements of type(32, 4) in S10. EachH(k1, k2, k3) ∈
MS3 contains 840 such elements and each element of type(32, 4) is in exactly two subgroups
of MS3. There are exactly six cyclic subgroups generated by elements of type(32, 4) in the
intersection ofH(u) andH(u′) with u = (k1, k2, k3) andu′ = (k′

1, k
′
2, k

′
3) with each such cyclic

subgroup of order 12 containing four elements of type(32, 4). Thus any two membersH(u)
andH(u′) of MS3 with u ∩ u′ = ∅ share exactly 24 elements of type(32, 4). The six cyclic
subgroups of order 12 can be represented as〈t · c4i〉, i = 1, 2, 3, wheret = u · u′ or u−1 · u′

andc4i is a 4-cycle in{j1, j2, j3, j4}, the complement of{k1, k2, k3, k′
1, k

′
2, k

′
3} in {0, 1, . . . , 9},

specificallyc41 = (j1, j2, j3, j4), c42 = (j1, j3, j2, j4) andc43 = (j1, j2, j4, j3). Foru ∩ u′ = ∅
we consider

T (u, u′) = {g ∈ 〈t · c4i〉 : t = u · u′ or u−1u′; i = 1, 2, 3; |g| = 12}.

We have|T (u, u′)| = 24. The 50400 elements of type(32, 4) are partitioned into the2100
equivalence classesT (u, u′). Identifying MS3 with U of Proposition 4.3 and settingV =
{T (u, u′); u ∩ u′ = ∅}, we have the same incidence structure as in Proposition 4.3 and the
conclusion of the corollary follows immediately. �

Now we are ready to prove Theorem 4.1.
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PROOF OFTHEOREM 4.1. By Table 4.2 and Corollary 4.4 we see that
MS1 ∪MS5 ∪MS7 ∪ D̄ = S10, since all permutations generating maximal cyclic subgroups
in S10 are contained in the union of these subgroups. Hence

σ(S10) ≤ |MS1 ∪MS5 ∪MS7 ∪ D̄| = 1 + 10 + 126 + 84 = 221.

It remains to be shown that the covering obtained by the221 subgroups is minimal, i.e.
σ(S10) ≥ 221. First we will show that the126 subgroups ofMS7 and any nine subgroups of
MS5 constitute a minimal covering of the odd permutations generating maximal cyclic sub-
groups and not involved inMS3. We observe that the10-cycles are partitioned into the three
conjugacy classesMS6, MS7 andMS8. SinceMS7 contains only126 subgroups versus the
945 and2520 subgroups, respectively, of the other two classes, the126 subgroups ofMS7
constitute a minimal covering of the10-cycles inS10. Next we will show that any nine sub-
groups ofMS5 are a minimal covering of the8-cycles inS10. It is obvious that a minimal
covering of the 8-cycles cannot be obtained from using subgroups fromMS4, MS6 or MS8.
Let MS5 = {S

(i)
9 ; i = 0, . . . , 9} with S

(i)
9

∼= S9 and fixed pointi. Any 8-cycle in S10 has
two fixpoints, sayi1 and i2. After removingS(i)

9 , all 8-cycles inS10 are still covered by the
remaining subgroups inMS5. Removing an additional subgroup fromMS5, sayS(i2)

9 , leaves
those8-cycles with fixed pointsi1 andi2 uncovered. Thus any nine subgroups ofMS5 consti-
tute a minimal covering of the8-cycles inS10. It can be seen now from Table 4.2 that all odd
permutations generating maximal cyclic subgroups and not involved inMS3 are covered by the
subgroups ofMS7 and any nine subgroups ofMS5.

By Corollary 4.4, the84 subgroups ofD constitute a minimal covering of the elements of
type(32, 4). We observe now that the219 subgroups ofMS7 ∪ D ∪ C0, whereC0 = {S(i)

9 ; i =
1, 2, . . . , 9} constitute a minimal covering of the elements of type(32, 4), the10-cycles and the
8-cycles, since these elements are mutually not contained inthe respective subgroups covering
the other types of elements. However, not all odd permutations generating maximal cyclic
subgroups are contained inMS7∪D∪C0, specifically the elements of type(2, 7) and(3, 6) with
fixpoint 0. AddingS(10)

9 to the covering, we obtain that the220 subgroups ofMS7∪MS5∪D
minimally cover the odd permutations ofS10 generating maximal cyclic subgroups. A look at
Table 4.2 shows that the only even permutations generating maximal cyclic subgroups and not
contained inMS5 andMS7 are the elements of type(3, 7). They are partitioned intoMS3
andMS1. Adding the single subgroup ofMS1, which is isomorphic toA10, to the cover
yieldsσ(S10) ≥ |MS1 ∪ MS5 ∪ MS7 ∪ D| = 221. This together with the above leads to
σ(S10) = 221. �

Label Isomorphism Type Group Order Class Size

MS1 A10 1814400 1

MS2 S4 × S6 17280 210

MS3 S3 × S7 30240 120

MS4 S2 × S8 80640 45

MS5 S9 362880 10

MS6 S2wrS5 3840 945

MS7 S5wrS2 28800 126

MS8 PΓL(2, 9) 1440 2520

Table 4.1. Conjugacy classes of maximal subgroups ofS10.
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Order C.S. Size MS1 MS2 MS3 MS4

ODD

4 (22, 4) 56700 0 10804 18904 37803

4 (2, 42) 56700 0 5402 0 1260, P

6 (23, 3) 25200 0 4804 8404 16803

6 (2, 32) 50400 0 12005 16804 22402

6 (22, 6) 75600 0 360, P 0 33602

6 (3, 6) 201600 0 960, P 1680, P 0

8 8 226800 0 0 0 5040, P

10 10 362880 0 0 0 0

12 (32, 4) 50400 0 240, P 8402 0

14 (2, 7) 259200 0 0 2160, P 5760, P

20 (4, 5) 181440 0 964, P 0 0

30 (2, 3, 5) 120960 0 0 1008, P 2688, P

EVEN

6 (2, 6) 151200 P 720, P 725202 67202

8 (8, 2) 226800 P 0 0 5040, P

9 9 403200 P 0 0 0

12 (4, 6) 151200 P 720, P 0 0

12 (2, 3, 4) 151200 P 14402 25202 3360, P

21 (3, 7) 172800 P 0 1440, P 0

Order C.S. Size MS5 MS6 MS7 MS8

ODD

4 (22, 4) 56700 113402 1803 9002 0

4 (2, 42) 56700 0 3005 18004 904

6 (23, 3) 25200 2520, P 0 6003 0

6 (2, 32) 50400 100802 1603 8002 0

6 (22, 6) 75600 0 2403 24004 0

6 (3, 6) 201600 20160, P 0 0 2403

8 8 226800 45360 240, P 0 1802

10 10 362880 0 384, P 2880, P 144, P

12 (32, 4) 50400 0 1603 0 0

14 (2, 7) 259200 25920, P 0 0 0

20 (4, 5) 181440 18144, P 0 1440, P 0

30 (2, 3, 5) 120960 0 0 960, P 0

EVEN

6 (2, 6) 151200 302402 160, P 0 0

8 (8, 2) 226800 0 240, P 36002 1802

9 9 403200 40320, P 0 0 0

12 (4, 6) 151200 0 160, P 24002 0

12 (2, 3, 4) 151200 15120, P 0 1200, P 0

21 (3, 7) 172800 0 0 0 0

Table 4.2. Inventory of elements generating maximal cyclicsubgroups
in S10 across conjugacy classes of maximal subgroups.

5. The Symmetric Group S12

In [19], Maróti gives an upper bound for the covering number ofS12, which is lower than
the general upper bound given there. We will show here that this bound is indeed the covering
number ofS12.

THEOREM 5.1. The covering number ofS12 is 761.
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PROOF. As noted by Maróti [19, p. 104], the covering number ofS12 is at most 761, since
S12 may be written as the union of all subgroups conjugate toS6wrS2, S11×S1, S10×S2, S9×
S3, andA12, which correspond to the classesMS5, MS2, MS3, MS4, andMS1, respectively,
of Table 5.1. Indeed, we will show that this is in fact a minimal cover ofS12 by demonstrating
that there is a particular class of maximal cyclic subgroupsthat is minimally covered by one of
these five classes.

First, we examine the elements with cycle structure(12), i.e., the12-cycles ofS12. It is
not hard to see that the classes of maximal subgroups containing 12-cycles are all imprimitive
subgroups in the classesMS5, MS8, MS9, andMS10 (a12-cycle preserves such an imprimi-
tive decomposition of twelve elements), and also the subgroups of classMS11. Moreover, it is
easy to see that the12-cycles must be partitioned in each of the classesMS5, MS8, MS9, and
MS10, respectively, since a12-cycle stabilizes a unique imprimitive decomposition of twelve
elements. Since the12-cycles are partitioned among the subgroups in classesMS5, MS8,
MS9, andMS10, respectively, andMS5 has the fewest number of subgroups, removingn
subgroups fromMS5 from the cover would require at leastn + 1 replacements from the other
classes. On the other hand, the12-cycles are not partitioned inMS11, and simple computation
using GAP [10] shows that each such subgroup contains220 different 12-cycles. Removing
even one subgroup fromMS5, which contains86400 different12-cycles, would require at least
⌈86400/220⌉ = 393 different subgroups fromMS11 to replace it. Since there are only462 to-
tal subgroups inMS5, it is easy to see that the unique minimal covering of the maximal cyclic
subgroups generated by12-cycles uses the462 subgroups fromMS5.

Next, we examine the elements with cycle structure(3, 4, 5). These elements are only con-
tained in the classesMS4, MS6, andMS7. Since elements with this cycle structure preserve
a unique intransitive partition of twelve elements into oneset of size nine (by the5-cycle and
the4-cycle) and one set of size three (by the3-cycle), the elements with cycle structure(3, 4, 5)
are partitioned among the subgroups ofMS4. Similar reasoning shows that these elements are
also partitioned inMS6 andMS7, respectively. Arguing as we did for the12-cycles above, we
see that the unique minimal covering of these elements uses the220 subgroups from the class
MS4.

We now examine the elements with cycle structure(2, 52). These elements are only con-
tained in the classesMS3 andMS7. While these elements are partitioned in classMS3, they
are not partitioned in classMS7. On the other hand, each subgroup ofMS3 contains72576
elements with cycle structure(2, 52), whereas each subgroup in classMS7 contains12096
elements with this cycle structure. Hence removing any collection of subgroups fromMS3 re-
quires at least72576/12096 = 6 times as many subgroups fromMS7, and the unique minimal
covering of these elements uses the66 subgroups fromMS3.

Looking at the elements with cycle structure(4, 7), we see that these are contained only
in subgroups of the classesMS2, MS6, andMS7. As with elements examined above, these
are partitioned among these three classes, so we see that theunique minimal covering of these
elements uses the12 subgroups fromMS2.

Finally, we examine the elements with cycle structure(5, 7). These elements are contained
in the subgroups of the classesMS1 andMS7, and they are partitioned among the subgroups of
MS7. SinceMS1 only contains one subgroup (the alternating groupA12), the unique minimal
cover of the elements with cycle structure(5, 7) uses the single subgroup fromMS1.

It only remains to be shown now that no collection of subgroups fromMS7 is a more effi-
cient cover of some elements with cycle structure(3, 4, 5), (2, 52), (4, 7), and(5, 7) collectively
than those listed above. First, in order to cover all the elements with cycle structure(5, 7) which
are contained inA12, the single subgroup inMS1, we would need all792 subgroups ofMS7,
which is larger than our bound of761. To cover the elements that are lost when a single sub-
group ofMS2 isomorphic toS11 is removed,330 subgroups ofMS7 are required. However,
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the462 subgroups ofMS5 are still needed, so this is a total of792 subgroups, more than our
current bound of761. Hence we need only consider the elements with cycle structure (3, 4, 5)
and (2, 52). However, one subgroup ofMS7 contains10080 elements with cycle structure
(3, 4, 5) and12096 elements with cycle structure(2, 52) for a total of22176 elements of one of
these two types, whereas one subgroup ofMS3 contains72576 elements with cycle structure
(2, 52), and one subgroup ofMS4 contains36288 elements with cycle structure(3, 4, 5). Since
the elements are partitioned acrossMS3 andMS4, this shows that no collection of subgroups
of MS7 can possibly be a more efficient cover.

Putting this all together, we see that each of the classesMS1,MS2, MS3, MS4, andMS5
is necessary in a minimal cover; on the other hand, these five classes together form a cover.
Therefore, these five classes together form the unique minimal cover of the elements ofS12,
and the covering number ofS12 is 761. �

Label Isomorphism Type Group Order Class Size

MS1 A12 239500800 1

MS2 S11(×S1) 39916800 12

MS3 S10 × S2 7257600 66

MS4 S9 × S3 2177280 220

MS5 S6wrS2 1036800 462

MS6 S8 × S4 967680 495

MS7 S7 × S5 604800 792

MS8 S4wrS3 82944 5775

MS9 S2wrS6 46080 10395

MS10 S3wrS4 31104 15400

MS11 PGL(2, 11) 1320 362880

Table 5.1. Conjugacy classes of maximal subgroups ofS12.

6. The Mathieu Group M12

Only as recently as 2010, it was shown by Holmes and Maróti in[16] that for the Mathieu
groupM12 we have131 ≤ σ(M12) ≤ 222. Here we will determine the exact covering number
of M12.

THEOREM 6.1. The covering number ofM12 is 208.

Before we can prove this theorem, we need a proposition whichgives a minimal covering for
the elements with cycle structure(6, 6). (We note thatM12 is represented here as a permutation
group embedded intoS12.) In fact, the minimal cover found contains subgroups from three
different conjugacy classes of subgroups. This seems to be afirst in this context and explains
why the covering number for the groupM12 was not determined any earlier despite its relatively
small order. The use of GAP and Gurobi led to this breakthrough.

PROPOSITION6.2. There exists a covering of the elements with cycle structure(6, 6) in M12

by 130 subgroups, and this covering is minimal. This covering is made up of120 subgroups
isomorphic toPSL(2, 11) fromMS5, eight subgroups isomorphic toC2 × S5 fromMS8, and
two subgroups isomorphic to(C4 × C4) : D6 in MS10.

PROOF. Using the GAP [10] program listed in Function8.1 for the elements with cycle
structure(6, 6) in M12 and the appropriate maximal subgroups ofM12, Gurobi [14] finds that
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there exists a covering of the elements with cycle structure(6, 6) by 130 subgroups inMS5,
MS8, MS10, and that this covering is minimal. �

A list of generators for the subgroups ofM12 contained in this can be found on line at
http://www.math.binghamton.edu/menger/coverings/. Now we are ready to
prove our theorem.

Label Isomorphism Type Group Order Class Size

MS1 M11 7920 12

MS2 M11 7920 12

MS3 PΓL(2, 9) 1440 66

MS4 PΓL(2, 9) 1440 66

MS5 PSL(2,11) 660 144

MS6 (C3 × C3) : (C2 × S4) 432 220

MS7 (C3 × C3) : (C2 × S4) 432 220

MS8 S5 × C2 240 396

MS9 21+4 : S3 192 495

MS10 (C4 × C4) : D12 192 495

MS11 A4 × S3 72 1320

Table 6.1. Conjugacy classes of maximal subgroups ofM12.

Order C.S. Size MS1 MS2 MS3 MS4 MS5

(12) (12) (66) (66) (144)

6 (2,3,6) 15840 1320, P 1320, P 240, P 240, P 0

6 (6,6) 7920 0 0 0 0 1102

8 (8,2) 11880 0 1980 0 360 0

8 (4,8) 11880 1980 0 360 0 0

10 (2,10) 9504 0 0 144, P 144, P 0

11 (11) 17280 1440, P 1440, P 0 0 120, P

Order C.S. Size MS6 MS7 MS8 MS9 MS10 MS11

(220) (220) (396) (495) (495) (1320)

6 (2,3,6) 15840 144 144 0 32, P 0 24

6 (6,6) 7920 0 0 60 0 32 6, P

8 (8,2) 11880 0 108 0 24, P 24, P 0

8 (4,8) 11880 108 0 0 24, P 24, P 0

10 (2,10) 9504 0 0 24, P 0 0 0

11 (11) 17280 0 0 0 0 0 0

Table 6.2. Inventory of elements generating maximal cyclicsubgroups
in M12 across conjugacy classes of maximal subgroups.

http://www.math.binghamton.edu/menger/coverings/
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PROOF OFTHEOREM 6.1. It can be easily seen from Table 6.2 that the subgroups inMS1
and MS4 cover all elements inM12 generating maximal cyclic subgroups with the exception of
elements of cycle structure(6, 6). By Proposition6.2there exists a covering of the elements of
cycle structure(6, 6) by 130 subgroups inMS5, MS8, andMS10. Thus

σ(M12) ≤ |MS1|+ |MS4|+ 130 = 12 + 66 + 130 = 208.

It remains to be shown that any covering ofM12 contains at least 208 subgroups. As can be
seen from Table 6.2, a covering of the11-cycles needs to contain at least12 subgroups ofMS1
orMS2. Similarly, a covering of the elements of cycle structure(2, 10) needs to contain the 66
subgroups ofMS3 or MS4. Since the covering of the elements with cycle structure(6, 6) by
the130 subgroups fromMS5, MS8, andMS10 is minimal by Proposition6.2, it follows that
σ(M12) ≥ 12 + 66 + 130 = 208. We concludeσ(M12) = 208. �

7. The Janko Group J1

In [15] it was shown by Holmes that5165 ≤ σ(J1) ≤ 5415 for the Janko groupJ1. Using
similar methods employed in this paper forS9 andM12, we were able to improve these bounds.
It should be noted here that longer computation times on morepowerful machines would likely
improve these bounds.

To better utilize the results from [15], we will follow Holmes and use notation from the
Atlas [7] rather than representing the groups as a permutation groupas done in the previous
cases. Recall that conjugacy classes of elements are named by the orders of their elements and
a capital letter. They are written in descending order of centralizer size. Here is our improved
estimate forσ(J1).

THEOREM 7.1. For the covering number of the Janko groupJ1 we have5281 ≤ σ(J1) ≤
5414.

PROOF. In [15] it is determined that all1540 maximal subgroups isomorphic toC19 : C6

and all2926 maximal subgroups isomorphic toS3 × D10 are needed in a minimal covering.
The only remaining elements generating maximal cyclic subgroups that need to be covered
are those of type11A and7A. Holmes shows in [15] that only maximal subgroups isomor-
phic toPSL(2, 11) are needed to cover all elements of type11A, and also only maximal sub-
groups isomorphic toC3

2 : C7 : C3 are needed to cover elements of type7A. Using the GAP
program [10] as given in Function8.1 for G = J1 and the maximal subgroups isomorphic
to PSL(2, 11), we are setting up the equations readable by Gurobi [14] for the elements of
type 11A. The Gurobi output then tells us that a minimal covering of the elements of this
type consists of at least186 and at most196 subgroups isomorphic toPSL(2, 11). Similarly,
preparing the linear equations for Gurobi using Function8.1 for G = J1 and the maximal
subgroups isomorphic toC3

2 : C7 : C3 for the elements of type7A, the Gurobi output shows
that the number of subgroups of this type needed to cover the respective elements is between
629 and 752. (We have included the files produced by GAP which are read by Gurobi on
http://www.math.binghamton.edu/menger/coverings/.) Therefore, we find
that the subgroup covering number ofJ1 is between1540 + 2926 + 629 + 186 = 5281 and
1540 + 2926 + 752 + 196 = 5414. �

8. GAP Code

In this section, we start with the code used in GAP [10] to create the output files read by
Gurobi [14]. Any solution to the system of equations encoded in the output corresponds to a
subgroup cover of the elements, and any time the “best objective” and the “best bound” found
by Gurobi are identical, Gurobi has found a minimal subgroupcover. In short, GAP is used to

http://www.math.binghamton.edu/menger/coverings/


COVERING NUMBERS OF SMALL SYMMETRIC GROUPS 15

create a system of linear inequalities, the optimal solution to which corresponds to a minimal
cover. Gurobi then performs a linear optimization on this system of linear inequalities.

For the case ofS9, addressed in Proposition3.3, we include the output of Function8.1 as
well as an abbreviated table of the Gurobi output. A completetable of this output can be found
athttp://www.math.binghamton.edu/menger/coverings/. The corresponding
output of Function8.1, together with the generators for the subgroups in the minimal cover of
elements with cycle structure(6, 6) in M12 and the linear programs produced forJ1, can be
found at the same website.

FUNCTION 8.1. GAP function to create the output files to be read by Gurobi.
#SubgroupCoveringNumber takes as input a group $G$, a list of
#elements $L$, a list of maximal subgroups $M$, and the name of a
#file of type .lp to which output is written.

SubgroupCoveringNumber:= function(G, ElementList,
MaximalSubgroupList, filename)

local maxs, maxconjs, x, y, temp, elts, eltconjs, output,
NumberSubgroups, NumberElements, i, j, FilteredSubgroupIndices;

#Subgroup covering number first computes all conjugate subgroups
#of those in the list MaximalSubgroupList.

maxs:= [];

for x in MaximalSubgroupList do
maxconjs:= ConjugateSubgroups(G,x);
for y in maxconjs do
Add(maxs, y);
od;
od;

NumberSubgroups:= Length(maxs);

#All cyclic subgroups generated by the conjugates of the elements
#in ElementList are stored in the irredundant list elts.

elts:= [];

for x in ElementList do
eltconjs:= AsList(ConjugacyClass(G,x));
for y in eltconjs do
if not Group(y) in elts then
Add(elts, Group(y));
fi;
od;
od;

NumberElements:= Length(elts);

#SubgroupCoveringNumber now begins writing to the output file.
#Each variable r1, r2,... represents a binary variable that takes
#on the value 0 or 1. (A 1 represents the subgroup being included
# in the covering; a 0 means it’s not included.)

#First, we write that we want to minimize the sum of all the
#variables, i.e., we want to minimize the number of subgroups

http://www.math.binghamton.edu/menger/coverings/
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#included in the covering.

output := OutputTextFile( filename, false );;
SetPrintFormattingStatus(output, false);
AppendTo(output,"Minimize\n");

for i in [1..NumberSubgroups] do
AppendTo(output, Concatenation( " + r", String(i)));

od;
AppendTo(output,"\n Subject To\n");

#For each subgroup H in elts, we require that H is a subgroup
#of at least one maximal subgroup in the covering. This
#corresponds to the sum over all the variables representing
#maximal subgroups containing H being at least 1. Note that
#Gurobi interprets > as ‘‘less than or equal."

for i in [1..NumberElements] do
FilteredSubgroupIndices:= Filtered([1..NumberSubgroups],

j -> (IsSubgroup(maxs[j],elts[i])));
for j in FilteredSubgroupIndices do
AppendTo(output, " + r", String(j));
od;
AppendTo(output, " > 1\n");
od;

#This last part specifies that each variable is ‘‘Binary," i.e., that
#it can only take on the value 0 or the value 1.

AppendTo(output, "\\ Variables\n");
AppendTo(output,"Binary\n");
for i in [1..NumberSubgroups] do

AppendTo(output, Concatenation( "r", String(i), "\n"));
od;

AppendTo(output,"End\n");
CloseStream(output);
return maxs;

#The function returns the list of maximal subgroups.

end;

As a sample of the output of Function8.1 we will show how the calculations proceed for
the elements with cycle structure(3, 6) in the groupS9. First, we use GAP to create a file that
is readable by the optimization software Gurobi:

gap> G:= SymmetricGroup(9);
Sym( [ 1 .. 9 ] )
gap> max:= MaximalSubgroupClassReps(G);
[ Alt( [ 1 .. 9 ] ), Group([ (1,2,3,4,5), (1,2), (6,7,8,9), (6,7) ]),

Group([ (1,2,3,4,5,6), (1,2), (7,8,9), (7,8) ]),
Group([ (1,2,3,4,5,6,7), (1,2), (8,9) ]),
Group([ (1,2,3,4,5,6,7,8), (1,2) ]),
Group([ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8),

(1,4,7)(2,5,8)(3,6,9), (1,4)(2,5)(3,6) ]),
Group([ (4,7)(5,8)(6,9), (2,7,6)(3,4,8), (1,2,3)(4,5,6)(7,8,9) ]) ]

gap> M:= [max[3], max[6], max[7]];
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[ Group([ (1,2,3,4,5,6), (1,2), (7,8,9), (7,8) ]),
Group([ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8),

(1,4,7)(2,5,8)(3,6,9), (1,4)(2,5)(3,6) ]),
Group([ (4,7)(5,8)(6,9), (2,7,6)(3,4,8), (1,2,3)(4,5,6)(7,8,9) ]) ]

gap> g:= (1,2,3)(4,5,6,7,8,9);
(1,2,3)(4,5,6,7,8,9)
gap> L:= [g];
[ (1,2,3)(4,5,6,7,8,9) ]
gap> Read("Programs/SubgroupCoveringNumber.g");
gap> l:= SubgroupCoveringNumber(G,L,M, "S9.lp");;
gap> time;
218128

Note that only one element with cycle structure(3, 6) is needed in the listL since all elements
with the same cycle structure are conjugate in a symmetric group. We next use Gurobi to
optimize this system of linear equations. We have removed some lines of the output here for the
sake of brevity, although the full output is available online at
http://www.math.binghamton.edu/menger/coverings/.

gurobi> m = read("S9.lp")
Read LP format model from file S9.lp
Reading time = 0.09 seconds
(null): 10080 rows, 1204 columns, 80640 nonzeros
gurobi> m.optimize()
Optimize a model with 10080 rows, 1204 columns and 80640 nonzeros
Found heuristic solution: objective 423
Presolve time: 0.10s
Presolved: 10080 rows, 1204 columns, 80640 nonzeros
Variable types: 0 continuous, 1204 integer (1204 binary)

Root relaxation: objective 7.000000e+01, 2182 iterations, 0.19 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 70.00000 0 280 423.00000 70.00000 83.5% - 0s
H 0 0 180.0000000 70.00000 61.1% - 0s
H 0 0 123.0000000 70.00000 43.1% - 0s
H 0 0 84.0000000 70.00000 16.7% - 0s

0 0 70.65138 0 285 84.00000 70.65138 15.9% - 1s
0 0 70.78547 0 289 84.00000 70.78547 15.7% - 14s
0 0 70.98212 0 290 84.00000 70.98212 15.5% - 28s

...

104 36 79.66667 12 272 84.00000 77.51814 7.72% 1228 389s
345 56 82.42501 8 376 84.00000 78.08711 7.04% 839 412s
490 28 80.48307 7 349 84.00000 78.08715 7.04% 761 430s
606 3 cutoff 7 84.00000 78.08715 7.04% 724 441s
698 2 79.66022 9 315 84.00000 79.66022 5.17% 688 450s

Cutting planes:
Zero half: 107

Explored 717 nodes (514185 simplex iterations) in 453.03 seconds
Thread count was 8 (of 8 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 8.400000000000e+01, best bound 8.400000000000e+01, gap 0.0%

http://www.math.binghamton.edu/menger/coverings/
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The “Best objective” is the best actual solution that was found by Gurobi, and the size of this
solution is 84. The “best bound” is the size of the best lower bound that Gurobi could determine
for a solution to this system of equations, and this lower bound is also 84. Therefore, we
conclude that the covering of the elements with cycle structure(3, 6) in S9 by the84 subgroups
in MS3 is minimal.
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