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On the Covering Number of Small Symmetric Groups and
Some Sporadic Simple Groups

Luise-Charlotte Kappe, Daniela Nikolova-Popova, and Exiartz

ABSTRACT. A set of proper subgroups is a covering for a group if its nngthe whole group.
The minimal number of subgroups needed to caves called the covering number ¢éf, de-
noted byo(G). Determiningo(G) is an open problem for many non-solvable groups. For
symmetric groups,,, Mar6ti determined (S,, ) for oddn with the exception of = 9 and gave
estimates for even. In this paper we determinés,,) for n = 8, 9, 10 and 12. In addition we
find the covering number for the Mathieu grolify > and improve an estimate given by Holmes
for the Janko group.

1. Introduction

Let G be a group antd = {A; | 1 < i < n} a collection of proper subgroups 6f. If
G = UA@" then A is called a cover of7. A cover is called irredundant if after the removal of

any sfué)group, the remaining subgroups do not cover the glapver of sizen is said to be
minimal if no cover ofG has fewer tham members. According to J.H.E. Coh@l[the size of
a minimal covering of~ is called the covering number, denoteddiy~). By a result of B.H.
Neumann 0], a group is the union of finitely many proper subgroups if amdl if it has a
finite noncyclic homomorphic image. Thus it suffices to fiestour attention to finite groups
when determining covering numbers of groups.

Determining the invariant(G') of a groupG and finding the positive integers which can be
covering numbers is the topic of ongoing research. It evexdates Cohn’s 1994 publication
[6]. It is a simple exercise to show that no group is the unionaaf proper subgroups. Al-
ready in 1926, Scorz&]] proved thats(G) = 3 if and only if G has a homomorphic image
iIsomorphic to the Klein-Four group, a result many timessedvered over the years. 1],
Greco characterizes groups withG) = 4 and in [L2] and [13] gives a partial characterization
of groups witho(G) = 5. For further details we refer to the survey article by Self@dg and
for recent applications of this research see for instagcarid [4].

In [6], Cohn conjectured that the covering number of any solvgtep has the form®+1,
wherep is a prime andv a positive integer, and for every integer of the fgrta-1 he determined
a solvable group with this covering number. 8], Tomkinson proves Cohn’s conjecture
and suggests that it might be of interest to investigate nmahicovers of non-solvable and in
particular simple groups. Bryce, Fedri and Serésjafarted this investigation by determining
the covering number for some linear groups such as(Pgl, PGL(2,q) or GL(2,q) after
Cohn ] had already shown that(As;) = 10 ando(S;) = 16. In [18], Lucido investigates
Suzuki groups and determines their covering numbers. Fosploradic groups, such ag,,
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Mays, Mss, Ly andO’ N, the covering numbers are establishedlis] py Holmes and she gives
estimates for those of, and VL. Some of the results irLp] are established with the help of
GAP [10], afirst in this context.

The covering numbers of symmetric and alternating groups \wwestigated by Maroti in
[19]. Forn # 7, 9, he shows that for the alternating groa4,,) > 272 with equality if
and only ifn is even but not divisible by 4. Fot = 7 and 9 Maroti establishes(A7) < 31
ando(Ay) > 80. For the symmetric groups he proves thdf,) = 2! if n is odd unless
n = 9 ando(S,) < 2" 2if nis even. Itis a natural question to ask what are the exact
covering numbers for alternating and symmetric groups liosé values ofi where Maroti
only gives estimates. Iri}] and [8] this was done for alternating groups in case of small values
of n. As mentioned earlier, Cohi®] already established(A5) = 10. In [17] it is shown that
0(A;) = 31 ando(Ag) = 71. Furthermore, Maroti's bound fot, is improved by establishing
that127 < o(Ag) < 157. Recently, it was shown ir8] thato(Ay) = 157.

The topic of this paper is to determine the covering numbarsymmetric groups of small
degree and some sporadic simple groups. We determine teeimgwumbers fo5,, in cases
whenn = 8, 9, 10, and12. In particular, we show (Sy) = 256, establishing that Maroti’s
result thato(.S,,) = 2"~! for odd n holds without exceptions. For = 8, 10 and12 we have
o(Sg) = 64, 0(S10) = 221, ando(S12) = 761, respectively. We observe that MarotP] gave
already 761 as an upper bound &diS;,). Since we can use the same methods, we establish in
addition that the Mathieu grouj/;, has covering numbex8 and improve the estimate given
for the Janko group; in [15].

Observing that(S;) = 4 ando(Ss) = 13 by [1], we know now the covering numbers §f
for all evenn < 12 and observe that in this rang¢sS,,) = 2”2, Maroti’s upper bound, is only
taken ifn is & 2-power. In the remaining cases we hayg,) < 2"* ando(S,) ~ 5(,,)-
This suggests that perhaps the valued¢s,,) is less than Maroti's bound in caseis not a
2-power. Our current methods rely on explicit tables forgigmetric groups in question and
computer calculation to carry out certain optimizationisefie are limits to the size of the group
on how far these methods can carry us and statements forajeadues ofn are extremely
difficult and require entirely different methods than thased for small values of. This will
become clearer when we discuss our methods in the following.

The methods employed here are an extension of those us#&d]inj determining a min-
imal covering of a group we can restrict ourselves to findingiaimal covering by maximal
subgroups. The conjugacy classes of subgroups for the girogpmestion can be found in GAP
[10]. To determine a minimal covering by maximal subgroupsuifises to find a minimal
covering of the conjugacy classes of maximal cyclic subgsday such subgroups of the group.
Already in [15] this method is used to determine the covering numbers obsiiogroups. Here
this method is adapted to the case of symmetric groups whemganerators of maximal cyclic
subgroups can easily be identified by their cycle structure.

The following notation is used for the disjoint cycle decaspion of a nontrivial permu-

tation. Letmy,ma,....,m;y € Nwith1l < m; < mo < ... < my andky,...,k € N. If ais
a permutation with disjoint cycle decomposition/gfcycles of lengthm,, i = 1,...,t, then
we denote the class of by (m%', ..., m*). If k; = 1, we just writem; instead ofm!. As is

customary, we suppress 1-cycles and the identity pernoatagidenoted by (1). For example,
the permutation with disjoint cycle decomposition (12)(3678) belongs to the clagg?, 4).

In the case of symmetric groups all elements of a given cyolesire are contained in the sub-
groups of a conjugacy class of maximal subgroups and theeglesmvith the respective cycle
structure are either partitioned into these subgroupssvetéxists an intersection between some
of the subgroups of the conjugacy class.
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For the groupsSs, Sy, S19, and M;,, we provide two tables which are obtained with the
help of GAP [10]. (For the groupS;2, we provide only a list of maximal subgroup conjugacy
classes and refer to previous work it0]. For the group.J;, we refer to previous work in
[15].) The first table gives the information on the conjugacyssks of maximal subgroups of
the group, such as the isomorphism type and order of the stpsssentative and the size of
each class. The second table lists the order and cycle steust each permutation generating
a maximal cyclic subgroup as well as the total of such elemienthe group together with the
distribution of these elements over the various conjugdayses. For each conjugacy class
we list how many of these elements are contained in a clagsseptative. If elements are
partitioned over the representatives, we indicate thik Witand if each element is contained in
k class representatives and each representative contaireh elements, we indicate this with
si. For some of the groups it suffices to give the second tablbbnexiated form.

For finding the covering number, the goal is to determine @dundant covering and show
that it is minimal. If the elements of a certain cycle struetare partitioned into the subgroups
of a particular conjugacy class, it is not hard to find a midic@vering for such elements.
The difficulty arises if the elements in question occur inesal/class representatives. In this
case we interpret the subgroups and group elements as danei structure with the subgroup
representatives as the sets and the group elements withebiis cycle structure as elements.
This leads to a problem in linear optimization. Here are sofibe details.

Given two finite collections of objects, call thebthandV’. Call the objects i/ elements
and the objects iV sets. Given an incidence structure betwé&eandV/, that is for every in
V and everyu in U we have eithev incident withu or v not incident withu, v € v orv & u for
short. This relation can be represented by a matrix (a;;), the incidence matrix ofV, U).
We label the columns ofl by the sets iV and the rows by the elementslih Forl < i < |V/|

andl < j < |U| we set
{1 if v; € uy,
aij =

0 if U; €u]

Let 1V be a subcollection df/. We define a column vecta{W) = (z, ..., zy)" as follows

1 ifuew,
7ol ifu; g W

Let Ax(W) = y(W) = (v, ..., yw)", a column vector of lengt{i’| with coordinateg;; > 0.

If y; = 0, thenv; & U wand ify; > 0, thenv; € U u, specificallyy; is contained in exactly;

ueW ueW
members ofV. If y; > 0fori=1,...,|V|, everyy; € V is contained in at least one member

of W and we sayV coversV'.

In our interpretation the objects i are representatives of a certain conjugacy class of
maximal subgroups and the objectslinare permutations with a certain cycle structure. The
goal is to find the minimal size d#1’| such thatit’ coversV'. If the objects inU andV" can
be suitably labeled, we can use a combinatorial argumenn¢btfie optimal solution, e.g.,
using the Erd6s-Ko-Rado Theore®] s in the case of;,. Otherwise we have to resort to
the help of computers to find optimal solutions, e.g., in thsecofS,, M, and.J;. Roughly
speaking, a system of linear inequalities with binary \aga is prepared by GARL(] and the
optimal solution is found with the help of Gurohi4]. Naturally, this approach puts a limit
on how large our groups can be. In addition, the structuré@®ftbver heavily depends on the
arithmetic nature of..
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2. The Symmetric Group Sg

The smallest symmetric group for which the covering numberot known isSs. Here we
determiner(Sg) and show that it equals the upper bound given by Maroti@. [

THEOREM 2.1. The covering number & is 64.

PROOF First we will show that there exists an irredundant covgohSs by 64 subgroups.
As can be seen from Table 2.2, all odd permutations of thepygmmerating maximal cyclic
subgroups are contained eitheihS3 or M S6. Thus the union of\/ S3 and M S6 contains all
odd permutations in question. We observe that this unios doecontain all even permutations
generating maximal cyclic subgroups, e.g., the permutatiith cycle structurd3, 5) is only
contained inM/.S1 andM S2. ThusM S1, M S3, andM .S6 cover all of Sg, and

o(Ss) < |MS1|+ |MS3| + |MS6| = 64.

LetC be the union of\/ S1, M S3, andM S6, and defindl to be the union of all elements with
cycle structureg), (3,5), or (2, 3%). The elements ofl are partitioned among thit groups of
C, soC is an irredundant covering.

It remains to be shown th&tis a minimal covering. Assume to the contrary that theretexis
a coverB3 of Sy such that3 contains fewer subgroups thén Since5 covers all the elements
of Sg, it must cover all the elements Of. Moreover,5 contains fewer subgroups thé&nso we
may assume that = (BNC) U andB = (BNC) U B, whereC’ is the set of subgroups in
C but not inB andB’ is the set of subgroups ii that are not irC. Since|B| < |C|, it must be
that|B’| < |C’|. This means thaB’ must cover some subset of elementglafore efficiently
than doeg’’.

We will now show thatdg isin BNC. If Ag ¢ BN C, then the only other way to cover the
elements of cycle structuf8, 5) is by the 56 subgroups df/ S2. Since the most efficient way
to cover the 8-cycles is by the 35 subgroups\of6 and no maximal subgroup contains both
elements of cycle structui®, 5) and8-cycles, we havé3| > 56 + 35 > |C|, a contradiction.
We concludedg € BN C.

DefineC; to be the set of subgroups @fthat are inM/.S3 andC}, to be the set of subgroups
of C"in M S6, and letll; andll,, respectively, be the elementsidfthat are in subgroups ¢f
andC}, respectively. Note thdil; andIl, are disjoint since the elements Idfare partitioned
among the subgroups 6f As can be seen from examining Table 2.2, the maximal sulpgrou
of Sg that are not irC (i.e., those isomorphic t83 x Ss, S7, PGL(2,7), or Sywr S;) contain
at most’0 elements ofl; U II,, whereas a subgroup isomorphicSpwr S, in M.S6 contains
144 elements of this set. Sin¢epartitionsll; U Il,, this means that if}, containsn subgroups,
then B’ must contain at least + 1 subgroups to cover the elementsllp. Since|B’| < |C'|,
this means both that; is nonempty and that some collectih of 5’ covers the elements of
I1; with fewer subgroups thafy. However,I1; consists only of elements with cycle structure
(2,3%), and each subgroup 6f contains exactly0 such elements. Fd#; to be smaller than
C1, some subgroup ofs would have to contain more that) elements with cycle structure
(2,3%). None does, which is a contradiction. Therefore it follohattno such covels can exist
andC is a minimal covering obs. We concluder(Sg) = 64, as desired.

(]
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Label| Isomorphism Type Group Ordern Class Size
MS1 Ag 20160 1
MS2 S3 X Ss 720 56
MS3 Sy X Sg 1440 28
MS4 Sy 5040 8
MS5 Sowr Sy 384 105
MS6 Sywr Ss 1152 35
MST PGL(2,7) 336 120

Table 2.1. Conjugacy classes of maximal subgroupsof

MS1| MS2| MS3 | MS4 | MS5| MS6 | MST
Order| C.S. | Size | (1) | (56) | (28) | (8) |(105)| (35) |(120)
ODD

4 [(22,4)]1260] 0o | o | 90, 0 | 365 | 1805 | ©

6 | (23)| 1120 0 | 1005 | 160, | 420, | O | 965 | ©
6 |(2,32)|1120| O | 40, | 40,P| O |32 | O 0

6 6 |13360 O | O [120,P| 840, |32,P| O | 56,
8 8 |5040| 0 | O 0 0 |48,P|144,P| 84,
10 | (2,5) | 4032| 0 |72,P|144,P|504,P| O 0 0
12 | (3,4) | 3360| 0 |60,P| O [420,P| O |96, P | O
EVEN

4 | (24) | 2520 P |90,P| 180, | 630, |24,P| 72,P | O
6 | (26)|330| P | 0 |120,P| O |32,P] 192, | O

7 7 | 5760 P | O 0 |720,P| 0 0 |48,P
15 | (35) | 2688| P |48,P| O 0 0 0 0

Table 2.2. Inventory of elements generating maximal cysliiogroups
in Sg across conjugacy classes of maximal subgroups.

3. The Symmetric Group Sy

In this section we will determine the exact covering numides the case missing irp],
where the covering numbers 16y, with n odd were determined with the exceptionof 9.

THEOREM 3.1. The covering number & is 256.

This together with Theorem 1.1 i49] yields the following corollary.

COROLLARY 3.2. Letn > 3 be an odd integer. Then(S,,) = 2" 1.

To prove the main result of this section, we need the follgnwproposition.

PROPOSITION3.3. The84 subgroups ofi/,53 form a minimal covering of the elements with

cycle structurg3, 6) in So.
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PROOFE We prove this computationally with the help of the softw@wP [10] and Gurobi
[14]. Using the GAP program as given in FunctiBri for G = Sy and the conjugacy classes
MS3, MS6, and M S7 of maximal subgroups, we are setting up the equations réadgb
Gurobi for the elements of typg, 6). The Gurobi output shows that a minimal covering of
these elements consists&f subgroups from\/ 53, M S6, andM S7. Since the elements with
cycle structurd3, 6) are partitioned into the subgroups of MS3, these 84 subgroapstitute
a minimal covering of these elements. O

We note that the GAP output addressed in the above proposisiavell as an abbreviated
Gurobi output of these calculations is given at the end ofi®&e8. For further details we refer
tohttp://ww. mat h. bi nghant on. edu/ nenger/ coveri ngs/. Now we are ready
to prove our theorem.

PROOF OFTHEOREM 3.1. We will show first that there exists a covering 8§ by 256
subgroups. As can be seen with the help of GAB,[the 9-cycles inSy are only contained in
Ay, the only subgroup id/.S1. Thus it suffices to show that the odd permutations gengratin
maximal cyclic subgroups can be covered5% subgroups.

As can be seen from Table 3.2, listing the odd permutatiomergéing maximal cyclic
subgroups inSy, the elements with cycle structufe, 5) and(2,7) are only contained in the
subgroups of\/.S2 and M S4, respectively. Since these elements are partitioned h@stib-
groups of the respective classes, the full classes have added to the covering. As one can
see from Table 3.2, the odd permutations generating maxiydiit subgroups not covered by
the subgroups of/.S2 and M S4 are theS-cycles and the elements with cycle struct(Be6).
Thus adding the subgroups 8153 and M S5 to those ofAM/S1, M S2 and M S4 provides a
covering ofSy. We conclude

o(Sy) < |MS1| + |MS2| + |MS3| + |MS4| + | MS5| = 256.

It remains to be shown that any covering$sfcontains at least56 subgroups. As pointed
out earlier, none of the subgroups/afsS1, M.S2 andM S4 can be omitted since the respective
elements are partitioned into these subgroups. 8Fbgcles are partitioned into the nine sub-
groups ofM S5 with 5040 elements in each subgroup. On the other hand, each suchrglsme
contained in two subgroups af S7 with 108 8-cycles in each subgroup. Obviously, replacing
subgroups from\/ S5 by those from)M S7 increases the number of subgroups needed for cov-
ering these elements. Hence the nine subgroups of MS5 tidesdi minimal covering of the
8-cycles.

Label | Isomorphism Type Group Order Class Size
MS1 Ag 18140 1
MS2 Sy X Ss 2880 126
MS3 S3 X Sg 4320 84
MS4 Sy x Cy 10080 36
MS5 Ss 40320 9
MS6 Szwr S3 1296 280
MS7 AGL(2,3) 432 840

Table 3.1. Conjugacy classes of maximal subgrougs, of
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Order| C.S | Size | MS2 | MS3 | MS4 | MS5 | MS6|MST7
4 | (22,4) 11340 180, | 270, | 630, |1260,P | 162, | O
6 | (2,3) | 2520 | 220,, | 270y | 490, | 1120, | 36, | O
6 |(2,3%) 10080 160, | 360; |280,P |1120,P|36,P| O
6 6 |10080| O |120,P| 8405 | 3360; |36,P| 56,
6 |(23,3)| 2520 | 605 | 30,P | 210, 0 36, | O
6

8

(3,6) | 20160 O |240,P| O 0 | 288, | 72
8 |45360, O 0 0 |5040,P| O | 108,
10 | (2,5) | 18144| 144, P | 432, | 1008, | 4032, | O 0

12 | (3,4) | 15120 360 |180,P |420,P| 3360, | O 0
14 | (2,7) | 25920/ © 0 |720,P| O 0 0
20 | (4,5) | 18144|144,P| O 0 0 0 0

Table 3.2 Inventory of odd permutations generating maxoyelic subgroups
in Sy across conjugacy classes of maximal subgroups.

On the other hand, the elements with cycle strucfg@ré) are partitioned into th&4 sub-
groups ofM S3 with 240 elements in each subgroup and each such element is contaifoen
subgroups of\/.S6 with 288 elements in each subgroup. Thus potentially there couldhlze-a
rangement that the elements with cycle structdré) in six subgroups of\/ .53 can be covered
by five subgroups frond/S6. However, as shown in Propositi@3, this is not the case, and
the84 subgroups of\/ 53 constitute a minimal covering of these elements. Moredterpnly
class of subgroups containing bdtttycles and elements with cycle structBe6) is M S7.
However, each subgroup of S7 contains a combined total @80 8-cycles and elements with
cycle structurg3, 6), and so cannot possibly be a better cover than usirfg and /7S5, in
each of which a subgroup covers at le2¢d such elements. We conclud€sS,) > 255 and
thuso(Sy) = 256. O

4. The Symmetric Group Sy

In this section we determine the covering numbelSgf. It turns out to be less than the
upper bound o2!°~2 given by Maroti in [L9].

THEOREM4.1. The covering number df;, is 221.

Before we can prove Theorem 4.1, we have to establish sompanatery results involving
combinatorics and incidence matrices leading to an agmicaf a result due to Erdés, Ko and
Rado P] (see also Theorem 5.1.2 if]).

1

THEOREM 4.2. [9] Let Ay,..., A, bem k-subsets of am-setS, k£ < ;n, which are

pairwise nondisjoint. Them < (7~}). The upper bound for is best possible. It is attained

when theA; are precisely thé-subsets of which contain a chosen fixed elementsof
In our application we consider the following incidence sture. We let
U= {(]{]1,]%'2,]{73) sk, ko ks € {0, 1,.. ,9} and k; < ko < ]i]g)}

and
V ={(u,u) :u,u’ € U with unu' = 0}.
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We define an incidence relation betweérand 1 as follows. Forv = (u,u’) € V we say
v € ujif u=wu;oru = u;, andv ¢ u; otherwise. For this choice @f andV we make the
following claim.

PropPOsSITION4.3. Let U, V and the incidence relation between them defined as above.
Then there exists a subcollectidovi* of U with |IW*| = 84 which coversl” and every subcol-
lectionW of U with || < |W*| does not covel’. SpecificallyJ}* can be chosen as — D,
where

D = {(0,ka, ks) : ko, ks € {1,2,...,9}, ky < k3}.

PROOF We haveU| = 120 and|V| = 2100. Thus the incidence matrix of U andV is a
2100 x 120 matrix with exactly two entries equal to 1 in each row, since
U; = ((k?l, ko, k?g), (k’i, k’é, k’é)) € v; ifand Only if (k’l, ko, k’g) = u; or (k’i, k’é, k’é) = U;. With
x(U) = (1,...,1)T we havedz(U) = (2,...,2)T. Letu,u’ € U withunu' = 0 and let
X = U —A{u,v'}. Theny(X) contains a zero entry and= (u, ') is not covered byX. On
the other hand, removing any subget, ..., w,} of U with pairwise non-trivial intersection,
i.e.u; Nu; # 0, thenforX = U — {uy,...,u} the vectory(X) has all non-zero entries. The
largest number of sets we can remove frorhas the cardinality of a maximal set with pairwise
non-trivial intersection. Applying Theorem 4.2 with= 10 andk = 3, we obtain(;’) = 36 for
the cardinality of such a set. Specifically, = {(0, k1, ko) : k1 < ko, k1, ks € {1,...,9}} 1S
such a set. LetV* = U — D. Theny(WW*) has all entries> 0. On the other hand, for any set
W with |W| < |W*| there existu, ' € W, the complement ofV in U, such thatu N ' = ()
and thugy(W) has at least one zero entry. O

The following corollary establishes a minimal covering bé telements of typé3?, 4) by
certain subgroups from/ S3 (see Table 4.2). Since these subgroups are isomorphic}taS,,
we can label them by the letters fixed by the respeciiveHence we have

MS3 = {H(k’l,kfg,k?g) ckq, ko, k3 € {0, 1,.. .,9},k1 < ky < kfg}

COROLLARY 4.4. LetD = {H(0, kg, k3) : ko, ks € {1,2,...,9},ky < k3}. ThenD =
MS3 — D, the complement d in M S3, is a minimal covering of the elements of tyé, 4)
in Sio.

PROOF. By Table 4.2, there arg)400 elements of typé3?, 4) in Syo. EachH (ky, ko, k3) €
M S3 contains 840 such elements and each element of(Bfpe) is in exactly two subgroups
of MS3. There are exactly six cyclic subgroups generated by eleradrtype (32, 4) in the
intersection of (u) and H (u’) with u = (ky, ko, k3) andu’ = (k}, k%, k%) with each such cyclic
subgroup of order 12 containing four elements of typg 4). Thus any two member& (u)
and H (u") of MS3 with u N« = () share exactly 24 elements of typ#, 4). The six cyclic
subgroups of order 12 can be represente¢t asy;), i = 1,2, 3, wheret = v - v’ oru=! - o/
andcy; is a 4-cycle in{jy, ja, js, ja }, the complement ofky, ko, ks, k1, k5, K5} in {0,1,...,9},
SpeCifica”yC41 = (j17j27,j37j4); Cqo = (j17j37j27,j4) andC43 = (,j17,j27j47j3>- Forunu' =0
we consider

T(u,u')={g € {t-cy):t=u-u or u'u';i=1,23;|g =12}.

We have|T'(u,u’)] = 24. The 50400 elements of type&3?, 4) are partitioned into th€100
equivalence classeB(u,u'). Identifying M.S3 with U of Proposition 4.3 and setting =
{T(u,u);unu = 0}, we have the same incidence structure as in Propositionrél3te
conclusion of the corollary follows immediately. O

Now we are ready to prove Theorem 4.1.
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PROOF OFTHEOREM4.1. By Table 4.2 and Corollary 4.4 we see that
MS1UMS5U MST7UD = S, since all permutations generating maximal cyclic subgsou
in Sy are contained in the union of these subgroups. Hence

o(S10) < IMSTUMS5UMSTUD| =1+ 10+ 126 + 84 = 221.

It remains to be shown that the covering obtained by2®ie subgroups is minimal, i.e.
o(S10) > 221. First we will show that the 26 subgroups ofl/.S7 and any nine subgroups of
M S5 constitute a minimal covering of the odd permutations gatneyg maximal cyclic sub-
groups and not involved in/S3. We observe that th&)-cycles are partitioned into the three
conjugacy classes/ S6, M S7 and M S8. SinceM S7 contains onlyl26 subgroups versus the
945 and 2520 subgroups, respectively, of the other two classes,fitesubgroups ofM S7
constitute a minimal covering of thE-cycles inS;,. Next we will show that any nine sub-
groups of M S5 are a minimal covering of th&-cycles inSj,. It is obvious that a minimal
covering of the 8-cycles cannot be obtained from using sulygs fromAM S4, M S6 or M S8.
Let MS5 = {Sg(j);z' = 0,...,9} with Sg(j) =~ Sy and fixed point.. Any 8-cycle in S}, has
two fixpoints, sayi; andi,. After removingS(Z), all 8-cycles inSyy are still covered by the
remaining subgroups in/S5. Removing an additional subgroup frahiS5, saySé”), leaves
thoses-cycles with fixed pointg; andi, uncovered. Thus any nine subgroups\ét5 consti-
tute a minimal covering of th&-cycles inSy,. It can be seen now from Table 4.2 that all odd
permutations generating maximal cyclic subgroups andmolved in)/S3 are covered by the
subgroups of\/,S7 and any nine subgroups 61 55.

By Corollary 4.4, the84 subgroups o> constitute a minimal covering of the elements of
type (32, 4). We observe now that tie9 subgroups of\/.S7 U D U Cy, whereC, = {Sé“;z’ =
1,2,...,9} constitute a minimal covering of the elements of typ& 4), the 10-cycles and the
8-cycles, since these elements are mutually not containgtkirespective subgroups covering
the other types of elements. However, not all odd permutatgenerating maximal cyclic
subgroups are containedd,S7UDUC,, specifically the elements of tyg, 7) and(3, 6) with
fixpoint 0. AddingS{'” to the covering, we obtain that tRe0 subgroups of\/S7 U M S5UD
minimally cover the odd permutations 8f, generating maximal cyclic subgroups. A look at
Table 4.2 shows that the only even permutations generatagmal cyclic subgroups and not
contained inM S5 and M S7 are the elements of typ@, 7). They are partitioned intd/.S3
and M S1. Adding the single subgroup a¥/ 51, which is isomorphic tad,,, to the cover
yields o(Sy) > |MS1 U MS5U MS7UD| = 221. This together with the above leads to

o(Sy0) = 221. O

Label | Isomorphism Type Group Order Class Size

MS1 Aqg 1814400 1

MS2 Sy X Sg 17280 210

MS3 Sz X Sy 30240 120

MS4 Sy X Sg 80640 45

MS5 Sy 362880 10

MS6 Sowr S 3840 945

MS7 Sswr Sy 28800 126

MS8 PIL(2,9) 1440 2520

Table 4.1. Conjugacy classes of maximal subgroups, of
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Order | C.S. Size | MS1| MS2 | MS3 MS4
OoDD

4 (22,4) | 56700 | O 10804 | 18904 | 37803
4 (2,4%) | 56700 0 5402 0 1260, P
6 (23,3) | 25200 | O 4804 8404 16803
6 (2,32%) | 50400 0 12005 | 16804 | 2240,
6 (22,6) | 75600 0 | 360,P 0 33602
6 (3,6) | 201600 O | 960,P | 1680, P 0
8 8 226800 O 0 0 5040, P
10 10 362880 O 0 0 0
12 (32,4) | 50400 0 240, P | 840 0
14 (2,7) | 259200 O 0 2160, P | 5760, P
20 (4,5) | 181440 0 | 964,P 0 0
30 | (2,3,5) | 120960 O 0 1008, P | 2688, P
EVEN
6 (2, 151200| P | 720, P | 725202 | 67202
8 (8, 226800 P 0 0 5040, P
9 403200 P 0 0 0
12 (4,6) | 151200( P | 720,P 0 0
12 | (2,3,4) | 151200 P | 14402 | 25202 | 3360, P
21 (3,7) | 172800 P 0 1440, P 0
Order | C.S Size MS5 MS6 | MS7T | MSS
OoDD
4 (22,4) | 56700 | 113405 | 1803 9002 0
4 (2,4%) | 56700 0 3005 | 18004 904
6 (23,3) | 25200 | 2520, P 0 6003 0
6 (2,32) | 50400 | 100802 | 1603 8002 0
6 (22,6) | 75600 0 2403 | 24004 0
6 (3,6) | 201600| 20160, P 0 0 2403
8 8 226800| 45360 | 240, P 0 1802
10 10 362880 0 384, P | 2880, P | 144, P
12 (32,4) | 50400 0 1603 0 0
14 (2,7) | 259200| 25920, P 0 0 0
20 (4,5) | 181440| 18144, P 0 1440, P 0
30 | (2,3,5) | 120960 0 0 960, P 0
EVEN
6 (2,6) | 151200| 302402 | 160, P 0 0
8 (8,2) | 226800 0 240, P | 36002 | 1802
9 9 403200| 40320, P 0 0 0
12 (4,6) | 151200 0 160, P | 24002 0
12 | (2,3,4) | 151200| 15120, P 0 1200, P 0
21 (3,7) | 172800 0 0 0 0

Table 4.2. Inventory of elements generating maximal cyslibgroups

5. The Symmetric Group Si2

in S0 across conjugacy classes of maximal subgroups.

In [19], Mar6ti gives an upper bound for the covering numbefgf, which is lower than
the general upper bound given there. We will show here thabibund is indeed the covering

number ofSy,.

THEOREM 5.1. The covering number ;5 is 761.
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PROOF As noted by Maroti 19, p. 104], the covering number 6f, is at most 761, since
S12 may be written as the union of all subgroups conjugate;tar S,, S11 x S1, S1p X Sa, Sy X
S3, andA;», which correspond to the classesSs, M.S2, M S3, M S4, andM S1, respectively,
of Table 5.1. Indeed, we will show that this is in fact a miniroaver of S, by demonstrating
that there is a particular class of maximal cyclic subgrabpsis minimally covered by one of
these five classes.

First, we examine the elements with cycle structlr), i.e., thel2-cycles ofS,. It is
not hard to see that the classes of maximal subgroups corgdi?-cycles are all imprimitive
subgroups in the class@$S5, M S8, M S9, andM S10 (a12-cycle preserves such an imprimi-
tive decomposition of twelve elements), and also the suljggof class\/ S11. Moreover, it is
easy to see that thi2-cycles must be partitioned in each of the clasggss, M S8, M S9, and
M S10, respectively, since &-cycle stabilizes a unique imprimitive decomposition oétwe
elements. Since th&2-cycles are partitioned among the subgroups in cladgées, M S8,
MS9, and M S10, respectively, and// S5 has the fewest number of subgroups, remowing
subgroups from\/,S5 from the cover would require at leastt- 1 replacements from the other
classes. On the other hand, ttiecycles are not partitioned i/ 511, and simple computation
using GAP [LO] shows that each such subgroup contaiag different 12-cycles. Removing
even one subgroup frod/ S5, which contain$6400 different12-cycles, would require at least
[86400/220] = 393 different subgroups from/S11 to replace it. Since there are onlg2 to-
tal subgroups inV/ S5, it is easy to see that the unique minimal covering of the makcyclic
subgroups generated bg-cycles uses thé62 subgroups from\/.S5.

Next, we examine the elements with cycle structiet, 5). These elements are only con-
tained in the classek/ 54, M S6, andM S7. Since elements with this cycle structure preserve
a unique intransitive partition of twelve elements into ce¢ of size nine (by thé-cycle and
the4-cycle) and one set of size three (by hieycle), the elements with cycle structufe 4, 5)
are partitioned among the subgroups\éf4. Similar reasoning shows that these elements are
also partitioned inV/.S6 and M S7, respectively. Arguing as we did for tie-cycles above, we
see that the unique minimal covering of these elements he€2® subgroups from the class
M S4.

We now examine the elements with cycle struct{r€?). These elements are only con-
tained in the classe®/.S3 and M S7. While these elements are partitioned in clags 3, they
are not partitioned in clas&/ S7. On the other hand, each subgroup)éf53 contains72576
elements with cycle structur@, 5%), whereas each subgroup in clag&S7 contains12096
elements with this cycle structure. Hence removing anyectibbn of subgroups from/.S3 re-
quires at least2576,/12096 = 6 times as many subgroups frald.S7, and the unique minimal
covering of these elements uses @esubgroups from\/.S3.

Looking at the elements with cycle structuig 7), we see that these are contained only
in subgroups of the classég52, M S6, and M S7. As with elements examined above, these
are partitioned among these three classes, so we see thatitjue minimal covering of these
elements uses thie subgroups from\/ 52.

Finally, we examine the elements with cycle struct{ir€r). These elements are contained
in the subgroups of the classkkS1 andM S7, and they are partitioned among the subgroups of
M S7. SinceM S1 only contains one subgroup (the alternating grelyp), the unique minimal
cover of the elements with cycle structufe 7) uses the single subgroup froliS1.

It only remains to be shown now that no collection of subgeoiipm A/ S7 is a more effi-
cient cover of some elements with cycle struct{#et, 5), (2, 5?), (4,7), and(5, 7) collectively
than those listed above. First, in order to cover all the elewith cycle structuré, 7) which
are contained i, the single subgroup i/ S1, we would need alf92 subgroups of\/ S7,
which is larger than our bound G61. To cover the elements that are lost when a single sub-
group of M S2 isomorphic toS;; is removed 330 subgroups of\/.S7 are required. However,
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the 462 subgroups of\/ S5 are still needed, so this is a total @2 subgroups, more than our
current bound of61. Hence we need only consider the elements with cycle stri€tu4, 5)
and (2,5?). However, one subgroup df/S7 contains10080 elements with cycle structure
(3,4,5) and12096 elements with cycle structug, 52) for a total 0f22176 elements of one of
these two types, whereas one subgroup/f3 contains72576 elements with cycle structure
(2,5%), and one subgroup df/ 54 contains36288 elements with cycle structuf8, 4, 5). Since
the elements are partitioned acrdds$'3 and M S4, this shows that no collection of subgroups
of M S7 can possibly be a more efficient cover.

Putting this all together, we see that each of the clad6€8$, M S2, M S3, M S4, andM S5
is necessary in a minimal cover; on the other hand, these fagses together form a cover.
Therefore, these five classes together form the unique rairgover of the elements of;,,

and the covering number 6f, is 761. O
Label | Isomorphism Type Group Order Class Size
MS1 Aqs 239500800 1
MS2 S11(xS1) 39916800 12
MS3 St X S 7257600 66
M S4 Sg X S5 2177280 220
MS5 Sewr So 1036800 462
MS6 Sg X Sy 967680 495
MS7 S7 x Ss 604800 792
MS8 Sywr S3 82944 5775
MS9 Sowr Sg 46080 10395
MS10 Sawr Sy 31104 15400
MS11 PGL(2,11) 1320 362880

Table 5.1. Conjugacy classes of maximal subgroups of

6. TheMathieu Group M,

Only as recently as 2010, it was shown by Holmes and Mar@tiéhthat for the Mathieu
group M, we havel3l < o(Mi,) < 222. Here we will determine the exact covering number
of M.

THEOREM 6.1. The covering number @i/, is 208.

Before we can prove this theorem, we need a proposition wgies a minimal covering for
the elements with cycle structufe, 6). (We note that\/;, is represented here as a permutation
group embedded int6,5.) In fact, the minimal cover found contains subgroups frémee
different conjugacy classes of subgroups. This seems tofipgt & this context and explains
why the covering number for the groug,» was not determined any earlier despite its relatively
small order. The use of GAP and Gurobi led to this breakthnoug

PROPOSITIONG.2. There exists a covering of the elements with cycle stru¢tu® in M/,
by 130 subgroups, and this covering is minimal. This covering islenap of120 subgroups
isomorphic toPSL(2, 11) from M S5, eight subgroups isomorphic @, x S5 from A58, and
two subgroups isomorphic (@ x Cy) : Dg in M S10.

PROOF. Using the GAP 10] program listed in Functio8.1 for the elements with cycle
structure(6, 6) in M, and the appropriate maximal subgroups\éf,, Gurobi [14] finds that
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there exists a covering of the elements with cycle structéré) by 130 subgroups id/.S5,

M S8, M S10, and that this covering is minimal.

O

A list of generators for the subgroups 6f,, contained in this can be found on line at
http://ww. mat h. bi nghant on. edu/ nenger/ coveri ngs/. Now we are ready to

prove our theorem.

Label | Isomorphism Type | Group Orden Class Size
MS1 M, 7920 12
MS2 Miq 7920 12
MS3 PTL(2,9) 1440 66
MS4 PTL(2,9) 1440 66
MS5 PSL(2,11) 660 144
MS6 | (C5 x C3) : (Cy x Sy) 432 220
MST | (C3 x C3) : (Cy x Sy) 432 220
MS8 S5 x Cy 240 396
MS9 2144 . Gy 192 495
MS10 (Cy x Cy) : Dyg 192 495
MS11 Ay x S; 72 1320

Table 6.1. Conjugacy classes of maximal subgroup®of

Order| C.S. | Size | MS1 MS2 | MS3 | MS4 | MS5H
(12) (12) (66) | (66) | (144)
6 |(2,3,6)| 15840| 1320, P | 1320, P | 240, P | 240,P| O
6 (6,6) | 7920 0 0 0 0 110,
8 (8,2) | 11880 0 1980 0 360 0
8 (4,8) | 11880 1980 0 360 0 0
10 | (2,10)| 9504 0 0 144, P | 144, P 0
11 (11) | 17280| 1440, P | 1440, P 0 0 120, P
Order| C.S. | Size | MS6 | MS7 | MS8 | MS9 | MS10 | MS11
(220)| (220) | (396) | (495)| (495) | (1320)
6 |(2,3,6)| 15840| 144 | 144 0 |32,P 0 24
6 (6,6) | 7920| O 0 60 0 32 6, P
8 (8,2) 11880 O 108 0 |24,P| 24, P 0
8 (4,8) | 11880 108 0 0 |24,P| 24, P 0
10 | (2,10)| 9504 | O 0 |24,P| O 0 0
11 (11) | 17280 O 0 0 0 0 0

Table 6.2. Inventory of elements generating maximal cysliiogroups
in M5 across conjugacy classes of maximal subgroups.
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PROOF OFTHEOREM 6.1. It can be easily seen from Table 6.2 that the subgroups.$i
and MS4 cover all elements i, generating maximal cyclic subgroups with the exception of
elements of cycle structul@, 6). By Propositior6.2there exists a covering of the elements of
cycle structur€6, 6) by 130 subgroups in\/ S5, M S8, andM S10. Thus

o(Myy) < [MS1| 4 |MS4| + 130 = 12 + 66 + 130 = 208.

It remains to be shown that any covering/df, contains at least 208 subgroups. As can be
seen from Table 6.2, a covering of the-cycles needs to contain at led&tsubgroups of\/ S1
or M S2. Similarly, a covering of the elements of cycle struct(zel0) needs to contain the 66
subgroups of\/.S3 or M S4. Since the covering of the elements with cycle structét®) by
the 130 subgroups from\/ S5, M S8, and M S10 is minimal by Propositiors.2, it follows that
o(Miz) > 124 66 + 130 = 208. We concluder (M) = 208. O

7. The Janko Group J;

In [15] it was shown by Holmes thaitl65 < o(J;) < 5415 for the Janko group;. Using
similar methods employed in this paper feyand M5, we were able to improve these bounds.
It should be noted here that longer computation times on ponerful machines would likely
improve these bounds.

To better utilize the results froni}], we will follow Holmes and use notation from the
Atlas [7] rather than representing the groups as a permutation gasugone in the previous
cases. Recall that conjugacy classes of elements are nantled brders of their elements and
a capital letter. They are written in descending order otredimer size. Here is our improved
estimate fow (.J;).

THEOREM 7.1. For the covering number of the Janko grodpwe have’281 < o(J;) <
0414.

PROOF In [15] it is determined that all 540 maximal subgroups isomorphic Gy : Cs
and all2926 maximal subgroups isomorphic 8 x D;, are needed in a minimal covering.
The only remaining elements generating maximal cyclic soings that need to be covered
are those of typa1A and7A. Holmes shows in15] that only maximal subgroups isomor-
phic to PSL(2,11) are needed to cover all elements of tyided, and also only maximal sub-
groups isomorphic t@’s : C; : C3 are needed to cover elements of typé Using the GAP
program [L0] as given in Functior8.1 for G = .J; and the maximal subgroups isomorphic
to PSL(2,11), we are setting up the equations readable by Gurbdji for the elements of
type 11A. The Gurobi output then tells us that a minimal covering & #tements of this
type consists of at leadB6 and at most 96 subgroups isomorphic tBSL.(2,11). Similarly,
preparing the linear equations for Gurobi using Func@®ohfor G = J; and the maximal
subgroups isomorphic t65 : C; : C; for the elements of typ&A, the Gurobi output shows
that the number of subgroups of this type needed to coverefigective elements is between
629 and 752. (We have included the files produced by GAP which are read bol® on
htt p: // ww. mat h. bi nghant on. edu/ nenger/ coveri ngs/.) Therefore, we find
that the subgroup covering number .6f is betweenl 540 + 2926 + 629 + 186 = 5281 and
1540 + 2926 + 752 + 196 = 5414. (]

8. GAP Code

In this section, we start with the code used in GAB][to create the output files read by
Gurobi [14]. Any solution to the system of equations encoded in the wutprresponds to a
subgroup cover of the elements, and any time the “best avgéand the “best bound” found
by Gurobi are identical, Gurobi has found a minimal subgrooyer. In short, GAP is used to
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create a system of linear inequalities, the optimal sofutmwhich corresponds to a minimal
cover. Gurobi then performs a linear optimization on thistegn of linear inequalities.

For the case oby, addressed in Propositiéh3, we include the output of Functio® 1 as
well as an abbreviated table of the Gurobi output. A comphatée of this output can be found
athtt p: // www. mat h. bi nghant on. edu/ nenger/ coveri ngs/. The corresponding
output of FunctiorB.1, together with the generators for the subgroups in the nahaover of
elements with cycle structur@, 6) in M, and the linear programs produced fér, can be
found at the same website.

FUNCTION 8.1. GAP function to create the output files to be read by Gurob

#Subgr oupCoveri ngNunber takes as input a group $G$, a list of
#el ements $L$, a list of maxi mal subgroups $MB, and the nane of a
#file of type .Ip to which output is witten.

Subgr oupCoveri ngNunber: = functi on(G, El enent Li st,
Maxi mal Subgr oupLi st, fil enane)

| ocal nmaxs, maxconjs, X, y, tenp, elts, eltconjs, output,
Nunber Subgr oups, Nunber El enents, i, j, FilteredSubgrouplndices

#Subgr oup covering nunber first conputes all conjugate subgroups
#of those in the |ist Maximal SubgrouplLi st.

maxs: = [];

for x in Maxi mal SubgroupLi st do
maxconj s: = Conj ugat eSubgr oups( G X) ;
for y in maxconjs do

Add( mexs, VY);

od;

od;

Nunmber Subgr oups: = Lengt h( naxs) ;

#Al'l cyclic subgroups generated by the conjugates of the elenents
#in ElementList are stored in the irredundant list elts.

elts:=1]];

for x in ElenmentlList do

el tconj s: = AsLi st (Conj ugacyd ass(G x));
for y in eltconjs do

if not Goup(y) in elts then

Add(elts, Goup(y));

fi;

od;

od;

Nunber El ement s: = Length(elts);

#Subgr oupCoveri ngNunber now begins witing to the output file.
#Each variable r1, r2,... represents a binary variable that takes
#on the value 0 or 1. (A 1 represents the subgroup being included
# in the covering; a 0 neans it’s not included.)

#First, we wite that we want to mnimze the sumof all the
#vari ables, i.e., we want to nminimze the nunber of subgroups
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#i ncl uded in the covering.

output := QutputTextFile( filenane, false );;
Set Print Formatti ngSt atus(output, false);
AppendTo(out put, "M ninize\n");

for i in [1..Nunber Subgroups] do
AppendTo(out put, Concatenation( " + r", String(i)));
od;
AppendTo(out put, "\ n Subject To\n");

#For each subgroup Hin elts, we require that His a subgroup
#of at |east one maxi mal subgroup in the covering. This
#corresponds to the sumover all the variables representing
#maxi mal subgroups containing H being at least 1. Note that
#Q@urobi interprets > as ‘‘less than or equal."

for i in [1..NunberEl enents] do
Fi | t eredSubgroupl ndi ces: = Filtered([1..Nunber Subgr oups],
j -> (1sSubgroup(maxs[j],elts[i])));

for j in FilteredSubgrouplndices do

AppendTo(out put, " + r", String(j));

od;

AppendTo(out put, " > 1\n");

od;

#This | ast part specifies that each variable is **Binary," i.e., that

#it can only take on the value O or the value 1.

AppendTo(out put, "\\ Variables\n");
AppendTo( out put, "Bi nary\ n");
for i in [1..NunberSubgroups] do
AppendTo(out put, Concatenation( "r", String(i), "\n"));
od;

AppendTo(out put, "End\ n");
Cl oseStream out put);
return maexs;

#The function returns the Iist of maxi mal subgroups.

end;

As a sample of the output of Functi@l we will show how the calculations proceed for
the elements with cycle structu(g, 6) in the groupSy. First, we use GAP to create a file that
is readable by the optimization software Gurobi:

gap> G = SymmetricG oup(9);

Sym( [ 1..9])
gap> max: = Maxi mal Subgr oupCl assReps( G ;

[ At( [ 1..9]1), Goup([ (1,23,4,5), (1,2), (6,7,8,9), (6,7) 1),
Goup([ (1,2 3,4,56), (1,2), (7,8,9), (7,8) 1),
Goup([ (1,2,3,4,56,7), (1,2), (89 1),
Goup([ (1,2, 3,4,56,7,8), (1,2) 1),

Goup([ (1,2,3), (1,2), (4,5,6), (4,5, (7,8,9), (7,8),
(1,4,7)(2,5,8)(3,6,9), (1,4)(2,5)(3,6) 1),
Goup([ (4,7)(5,8)(6,9), (2,7,6)(3,4,8), (1,2,3)(4,5,6)(7,8,9) 1) 1
gap> M= [nmax[ 3], max[6], max[7]];
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[ Goup([ (2,2,3,4,5,6), (1,2), (7,8,9), (7,8) 1),

Goup([ (1,2,3), (1,2), (4,5,6), (4,5, (7,8,9), (7,8),
(1,4,7)(2,5,8)(3,6,9), (1,4)(2,5)(3,6) 1),

Goup([ (4,7)(5,8)(6,9), (2,7,6)(3,4,8), (1,2,3)(4,5,6)(7,8,9) 1) 1

gap> 0:= (1,2,3)(4,5,6,7,8,9);

(1,2,3)(4,5,6,7,8,9)

gap> L:= [g];

[ (1,2,3)(4,5,6,7,8,9) 1]

gap> Read(" Prograns/ Subgr oupCoveri ngNunber. g");

gap> | : = SubgroupCoveri ngNunmber (G L, M "S9.Ip");

gap> tine;

218128

Note that only one element with cycle structyse6) is needed in the list since all elements

with the same cycle structure are conjugate in a symmetooamr We next use Gurobi to
optimize this system of linear equations. We have removetedmes of the output here for the
sake of brevity, although the full output is available oelt

htt p: // ww. mat h. bi nghant on. edu/ nenger/ coveri ngs/.

gurobi > m = read("S9.1p")

Read LP format nodel fromfile S9.1p

Reading tinme = 0.09 seconds

(null): 10080 rows, 1204 colums, 80640 nonzeros

gur obi > m optim ze()

Optinize a nodel with 10080 rows, 1204 col unmms and 80640 nonzer os
Found heuristic solution: objective 423

Presolve tinme: 0.10s

Presol ved: 10080 rows, 1204 col umtms, 80640 nonzer os

Vari abl e types: 0 continuous, 1204 integer (1204 binary)

Root rel axation: objective 7.000000e+01, 2182 iterations, 0.19 seconds

Nodes | Current Node | (hj ecti ve Bounds [ Wor k
Expl Unexpl | Obj Depth Intlinf | Incunbent Best Bd Gap | It/ Node Tine
0 0 70.00000 0 280 423.00000 70.00000 83.5% - Os
H 0 0 180. 0000000  70. 00000 61.1% - 0s
H 0 0 123. 0000000  70. 00000 43.1% - 0s
H 0 0 84. 0000000  70.00000 16.7% - 0s
0 0 70.65138 0 285 84.00000 70.65138 15.9% - 1s
0 0 70.78547 0 289 84.00000 70.78547 15.7% - 14s
0 0 70.98212 0 290 84.00000 70.98212 15.5% - 28s

104 36 79. 66667 12 272 84. 00000 77.51814 7.72% 1228 389s
345 56 82. 42501 8 376 84. 00000 78.08711 7.04% 839 412s
490 28 80. 48307 7 349 84. 00000 78.08715 7.04% 761 430s
606 3 cut of f 7 84. 00000 78.08715 7.04% 724 441s
698 2 79. 66022 9 315 84. 00000 79.66022 5.17% 688 450s

Cutting pl anes:
Zero hal f: 107

Expl ored 717 nodes (514185 sinplex iterations) in 453.03 seconds
Thread count was 8 (of 8 avail abl e processors)

Optinal solution found (tol erance 1.00e-04)
Best objective 8.400000000000e+01, best bound 8.400000000000e+01, gap 0.0%


http://www.math.binghamton.edu/menger/coverings/

18 LUISE-CHARLOTTE KAPPE, DANIELA NIKOLOVA-POPQOVA, AND ERC SWARTZ

The “Best objective” is the best actual solution that wasbbhy Gurobi, and the size of this
solution is 84. The “best bound” is the size of the best loveermal that Gurobi could determine
for a solution to this system of equations, and this lowernabis also 84. Therefore, we
conclude that the covering of the elements with cycle stmedB, 6) in Sy by the84 subgroups
in MS3 is minimal.
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