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Abstract

Equations over linearly ordered semilattices are studied. For any equation
t(X) = s(X) we find irreducible components of its solution set and compute the
average number of irreducible components of all equations in n variables.

1 Introduction

This paper is devoted to the following problem. One can define a notion of an
equation over a linearly ordered semilattice Ll = {a1, a2, . . . , al} (the formal defi-
nition of an equation is given below). A set Y is algebraic if it is the solution set
of some system of equations over Ll. Let us consider an equation t(X) = s(X)
over Ll, and Y be the solution set of t(X) = s(X). One can find algebraic sets
Y1, Y2, . . . , Ym such that Y =

⋃m
i=1 Yi. One can decompose each Yi into a union of

other algebraic sets, etc. This process terminates after a finite number of steps and
gives a decomposition of Y into a union of irreducible algebraic sets Yi (the sets Yi

are called the irreducible components of Y ). Roughly speaking, irreducible algebraic
sets are “atoms” which form any algebraic set. The size and the number of such
“atoms” are important characteristics of the semilattices Ll, since there are con-
nections between irreducible algebraic sets and universal theory of linearly ordered
semilattices (see [1]). Moreover, the number of irreducible components was involved
in the estimation of lower bounds of algorithm complexity (see [2] for more details).

In this paper (Section 4) we study the properties of the irreducible components
of the solution set Y of an equation t(X) = s(X). Precisely, we prove that the union
of irreducible algebraic sets Y =

⋃m
i=1 Yi is redundant, i.e. the intersections

⋂

i∈I Yi

(|I| < m) consists of many points (Proposition 4.5). Moreover, for any equation
t(X) = s(X) in n variables we count the number m of irreducible components
(see (6)), and in Section 5 we count the average number Irr(n, l) of irreducible
components of the solution sets of equations in n variables.

2 Main definitions

Let Ll = {a1, a2, . . . , al} be the linearly ordered semilattice of l elements and a1 <
a2 < . . . < al. The multiplication in Ll is defined by ai · aj = amin(i,j). Obviously,
the linear order on Ll can be expressed by the multiplication as follows

ai ≤ aj ⇔ aiaj = ai.

A term t(X) in variables X = {x1, x2, . . . , xn} is a commutative word in letters xi.
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Let Var(t) be the set of all variables occurring in a term t(X). Following [1],
an equation is an equality of terms t(X) = s(X). Below we consider inequalities
t(X) ≤ s(X) as equations, since t(X) ≤ s(X) is the short form of t(X)s(X) = t(X).
Notice that we consider equations as ordered pairs of terms, i.e. the expressions
t(X) = s(X), s(X) = t(X) are different equations. Let Eq(n) denote the set
of all equations in X = {x1, x2, . . . , xn} variables (we assume that each t(X) =
s(X) ∈ Eq(n) contains the occurrences of all variables x1, x2, . . . , xn). An equation
t(X) = s(X) ∈ Eq(n) is said to be a (k1, k2)-equation if |Var(t) \ Var(s)| = k1
and |Var(s) \ Var(t)| = k2. For example, x1x2 = x1x3x4 is a (1, 2)-equation. Let
Eq(k1, k2, n) ⊆ Eq(n) be the set of all (k1, k2)-equations in n variables. Obviously,

Eq(n) =
⋃

(k1,k2)∈Kn

Eq(k1, k2, n), (1)

where
Kn = {(k1, k2) | k1 + k2 ≤ n} \ {(0, n), (n, 0)}.

Each equation t(X) = s(X) ∈ Eq(k1, k2, n) is uniquely defined by k1 variables
in the left part and by k2 other variables in the right part (the residuary n−k1−k2
variables should occur in both parts of the equation). Thus,

#Eq(k1, k2, n) =

(

n

k1

)(

n− k1
k2

)

.

By (1), one can compute
#Eq(n) = 3n − 2.

Remark 2.1. In this paper we consider only equations t(X) = s(X) with n > l,
i.e. the number of variables occurring in t(X) = s(X) is more than the order of the
semilattice Ll. The case n ≤ l needs the different technic and was announced in [3].

A point P ∈ Ln
l is a solution of an equation t(X) = s(X) if t(P ), s(P ) define the

same element in the semilattice Ll. By the properties of linearly ordered semilattices,
a point P = (p1, p2, . . . , pn) is a solution of t(X) = s(X) iff there exist variables
xi ∈ Var(t), xj ∈ Var(s) such that pi = pj and pi ≤ pk for all 1 ≤ k ≤ n. The set of
all solutions of an equation t(X) = s(X) is denoted by V(t(X) = s(X)).

An arbitrary set of equations is called a system. The set of all solutions V(S)
of a system S = {ti(X) = si(X) | i ∈ I} is defined as

⋂

i∈I V(ti(X) = si(X)). A
set Y ⊆ Ln

l is called algebraic over Ll if there exists a system S in n variables with
V(S) = Y . An algebraic set Y is irreducible if Y is not a proper finite union of other
algebraic sets.

Proposition 2.2. Any algebraic set Y over Ll is a finite union of irreducible sets

Y = Y1 ∪ Y2 ∪ . . . ∪ Ym, Yi * Yj for all i 6= j, (2)

and this decomposition is unique up to a permutation of components.

Proof. A semilattice S is equationally Noetherian if for any infinite system S in
variables X = {x1, x2, . . . , xn} there exists a finite subsystem S′ ⊆ S with the same
solution set. According to [1], the decomposition (2) holds for any algebraic set Y
over an equationally Noetherian semilattice S. Thus, it is sufficient to prove that
Ll is equationally Noetherian.

However the condition |Eq(n)| < ∞ gives that there is not any infinite system
over Ll. Thus, Ll is equationally Noetherian.
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The subsets Yi from the union (2) are called the irreducible components of Y .
Let Y be an algebraic set over Ll defined by a system S(X). One can define an

equivalence relation ∼Y over the set of all terms in variables X as follows

t(X) ∼Y s(X) ⇔ t(P ) = s(P ) for any point P ∈ Y .

The set of ∼Y -equivalence classes is called the coordinate semilattice of Y and de-
noted by Γ(Y ) (see [1] for more details). The following statement describes the
coordinate semilattices of irreducible algebraic sets.

Proposition 2.3. A set Y is irreducible over Ll iff Γ(Y ) is embedded into Ll

Proof. Following [1], Γ(Y ) is discriminated by Ll iff Y is irreducible (see [1] for the
definition of the discrimination). However for a finite semilattice Ll the discrimina-
tion is equivalent to the embedding.

There are different algebraic sets over Ll with isomorphic coordinate semilattices.
Such sets are called isomorphic. For example, the following sets

Y1 = V({x1 ≤ x2 ≤ x3}), Y2 = V({x3 ≤ x2 ≤ x1})

has the isomorphic coordinate semilattices

Γ(Y1) = 〈x1, x2, x3 | x1 ≤ x2 ≤ x3〉 ∼= L3,

Γ(Y2) = 〈x1, x2, x3 | x3 ≤ x2 ≤ x1〉 ∼= L3.

Thus, Y1, Y2 are isomorphic.
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3 Example

Let n = 3, l = 2. We have exactly Eq(3) = 33 − 2 = 25 equations in three variables
over L2. The following table contains the information about such equations over
L2. The second column contains systems which define irreducible components of
the solution set of an equation in the first column. A cell of the table contains ↑ if
an information in this cell is similar to the cell above.

Equations Irreducible components (IC) Number of IC

x1x2x3 = x1x2x3 x1 ≤ x2 = x3 ∪ x1 = x2 ≤ x3∪ 6
x2 ≤ x1 = x3 ∪ x3 ≤ x1 = x2∪
x1 = x3 ≤ x2 ∪ x2 = x3 ≤ x1

x1 = x1x2x3, x1 ≤ x2 = x3 ∪ x1 = x2 ≤ x3∪ 3
x1x2x3 = x1 x1 = x3 ≤ x2
x2 = x1x2x3, ↑ 3
x1x2x3 = x2
x3 = x1x2x3, ↑ 3
x1x2x3 = x3
x1 = x2x3, x1 = x2 ≤ x3 ∪ x1 = x3 ≤ x2 2
x2x3 = x1
x2 = x1x3, ↑ 2
x1x3 = x2
x3 = x1x2, ↑ 2
x1x2 = x3

x1x2 = x1x3, x1 = x2 ≤ x3 ∪ x1 = x3 ≤ x2∪ 4
x1x3 = x1x2 x1 ≤ x2 = x3 ∪ x2 = x3 ≤ x1
x1x2 = x2x3, ↑ 4
x2x3 = x1x2
x1x3 = x2x3, ↑ 4
x2x3 = x1x3

x1x2 = x1x2x3, x1 = x2 ≤ x3 ∪ x1 = x3 ≤ x2∪ 5
x1x2x3 = x1x2 x1 ≤ x2 = x3 ∪ x2 = x3 ≤ x1∪

x2 ≤ x1 = x3
x1x3 = x1x2x3, ↑ 5
x1x2x3 = x1x3
x2x3 = x1x2x3, ↑ 5
x1x2x3 = x2x3

One can directly compute the average number of irreducible components of al-
gebraic sets defined by equations in three variables:

Irr(3, 2) =
6 + 2(3 + 3 + 3 + 2 + 2 + 2 + 4 + 4 + 4 + 5 + 5 + 5)

25
=

90

25
= 3.6 (3)

Recall that in Section 5 we obtain the general expression for Irr(n, l) (7).
Clearly, (7) gives (3) for n = 3, l = 2 (see the proof in (8) and (9)).

4 Decompositions of algebraic sets

Let Y denote the solution set of an equation t(X) = s(X) over the semilattice
Ll = {a1, a2, . . . , al}. The table above shows that any irreducible component divides
the variables X into l classes and sorts the classes in some order. The following
definition formalizes such properties of irreducible components.
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A disjoint partition σ = (X1,X2, . . . ,Xl) of the set X = {x1, x2, . . . , xn} is called
ordered if there is a linear order ≤σ on σ: X1 ≤σ X2 ≤σ . . . ≤σ Xl. Let χσ(xi)
denote the class Xk with xi ∈ Xk.

We shall denote xi =σ xj (xi ≤σ xj) if χ(xi) = χ(xj) (respectively, χσ(xi) ≤σ

χσ(xj)).
An ordered partition σ is Y -irreducible if the set X1 (the minimal set of the

order ≤σ) contains a variable from t(X) and a variable from s(X).
For example, an equation x1x2x3 = x1 over L2 has the following Y -irreducible

partitions: ({x1}, {x2, x3}), ({x1, x2}, {x3}), ({x1, x3}, {x2}). Such partitions obvi-
ously correspond to irreducible components of V(x1x2x3 = x1) in the table above.

Any Y -irreducible partition σ defines an algebraic set Yσ as follows

Yσ = V(Sσ) = V(
⋃

xi=σxj

{xi = xj}
⋃

xi<σxj

{xi ≤ xj}).

For example, the partition σ = ({x2, x3}, {x1}) defines the system

Sσ = {x2 = x3, x2 ≤ x1, x3 ≤ x1}.

for Y = V({x1x2 = x1x3}).

Lemma 4.1. The set Yσ defined by a Y -irreducible partition σ is an irreducible
algebraic set, and moreover Γ(Yσ) ∼= Ll.

Proof. By the definition of a coordinate semilattice, Γ(Yσ) is generated by the ele-
ments {x1, x2, . . . , xn} and has the following defined relations

{xi = xj | if xi =σ xj} ∪ {xi ≤ xj | if xi ≤σ xj}.

It is easy to see that all elements xi are linearly ordered in Γ(Yσ). Thus, Γ(Yσ) is a
linearly ordered semilattice, and it is isomorphic to Ll. By Proposition 2.3, the set
Yσ is irreducible.

The following lemma gives the decomposition of the set Y = V(t(X) = s(X))
via ordered partitions.

Lemma 4.2. The set Y = V(t(X) = s(X)) is a union

Y =
⋃

σ is Y -irreducible

Yσ (4)

Proof. Let P = (p1, p2, . . . , pn) ∈ Y . One can define an equivalence relation ∼P as
follows

xi ∼P xj ⇔ pi = pj.

Thus, we obtain equivalence classes {XP
1 ,XP

2 , . . . ,XP
k }. Since pi ∈ Ll, k ≤ l. One

can define a linear order xi ≤P xj if pi ≤ pj. The order ≤P induces a linear order
over the classes {Xi}. Let us fix a pair of variables xt, xs ∈ XP

1 (probably, xt, xs is
the same variable) such that xt ∈ Var(t) and xs ∈ Var(s) (such pair (xt, xs) always
exists, since P satisfies the equation t(X) = s(X)). Let us find a set Yσ with P ∈ Yσ

by the following procedure.
Procedure

Input: a set of k equivalence classes σ0 = (XP
1 ,XP

2 , . . . ,XP
k ) with the linear

order ≤P .
Output: σ = (X1,X2, . . . ,Xl) with a linear order ≤σ.
Step 0: Put σ = σ0. If l = k terminate the procedure, otherwise go to the step

1.
Step j (1 ≤ j ≤ l − k):
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1. Take an arbitrary equivalence class Xi ∈ σ = (X1,X2, . . . ,Xk+j−1) such that
|Xi| ≥ 2 and Xi contains a variable x ∈ X \ {xt, xs}. Such class always exists,
since n > l > k + j − 1.

2. Move x from Xi to a new class X ′ and define a linear order ≤σ by Xi ≤σ X ′ ≤
Xi+1. Put σ = (X1,X2, . . . ,Xi,X

′,Xi+1, . . . ,Xl+j−1). Go to the next step.

Roughly speaking, the procedure increases the number of classes preserving the
relation <σ.

After the procedure we obtain an ordered partition σ of l equivalence classes Xi.
The procedure does not move the variables xt, xs, therefore xt, xs ∈ X1 and σ is a
Y -irreducible partition.

Let us prove P ∈ Yσ = V(Sσ). An equation xi ≤ xj ∈ Sσ (one can similarly
consider an equality xi = xj ∈ Sσ) is not satisfied by P if pi > pj or equivalently
xj <P xi. Since the procedure preserves the relation <σ, we have xj <σ xi, and by
the definition of Sσ, the equation xi ≤ xj can not occur in Sσ. Thus, we came to
the contradiction.

Let us prove now Yσ ⊆ Y for each σ. Consider a point P = (p1, p2, . . . , pn) ∈
Yσ. Since σ = (X1,X2, . . . ,Xl) is a Y -irreducible partition, the class X1 contains
variables xt ∈ Var(t), xs ∈ Var(s) and pt = ps. Since X1 is the minimal class of the
order ≤σ,

xt ≤ xi ∈ Sσ, xs ≤ xi ∈ Sσ for any i ∈ [1, n] \ {t, s}.

Thus, pt = ps ≤ pi for any 1 ≤ i ≤ n, and we have

t(P ) = pt = ps = s(P ) ⇒ P ∈ V(t(X) = s(X)) = Y.

Let σ = (X1,X2, . . . ,Xl) be a Y -irreducible partition of X. Let us define a point
Pσ = (p1, p2, . . . , pn) ∈ Ln

l by

pi = ak if xi ∈ Xk.

Lemma 4.3. The point Pσ belongs to the set Yσ, and Pσ /∈ Yσ′ for each Y -
irreducible partition σ′ 6= σ. Thus, in the union (4) Yσ * Yσ′ for distinct partitions
σ, σ′.

Proof. One can directly prove that Pσ ∈ V(Sσ) = Yσ.
Let us take an irreducible partition

σ′ = (X ′
1,X

′
2, . . . ,X

′
l) 6= σ = (X1,X2, . . . ,Xl).

There exist variables xi, xj such that xi <σ xj but xi ≥σ′ xj. For the point Pσ

we have pi < pj, therefore Pσ does not satisfy the equation xi ≥ xj ∈ Sσ′ , and
Pσ /∈ Yσ′ .

According to Lemmas 4.1, 4.2, 4.3, we obtain the following statement.

Theorem 4.4. The number of Y -irreducible partitions of a set Y = V(t(X) =
s(X)) is equal to the number of irreducible components of Y .

The next statement describes the properties the union (4).

Proposition 4.5. Let (4) be a union of the irreducible components of a set
Y = V(t(X) = s(X)) over Ll. Then

6



1. a point P belongs to all Yσ iff P = (a, a, , . . . , a) for some a ∈ Ll;

2.
Yσ \

⋃

σ′ 6=σ

Yσ′ = {Pσ}

(it follows that the decomposition (4) is redundant, i.e. each point of Y \
⋃

σ{Pσ} is covered by at least two irreducible components);

3. all irreducible components are isomorphic to each other;

4. |Yσ| =
(2l−1

l

)

for each σ.

Proof. 1. Obviously, P = (a, a, . . . , a) satisfies all systems Sσ, so P ∈
⋂

σ Yσ.

Let us consider a point Q = (q1, q2, . . . , qn) with qi < qj. It is clear that Q
does not satisfy any set Yσ with xi ≥σ xj. Thus, Q /∈

⋂

σ Yσ.

2. In Lemma 4.3 we proved Pσ ∈ Yσ. By the definition, only the point Pσ

makes all inequalities ≤ of the system Sσ strict. Thus, for any point P =
(p1, p2, . . . , pn) ∈ Yσ \ {Pσ} there exists an equation xi ≤ xj ∈ Sσ such that
pi = pj. Below we find an irreducible partition σ′ with P ∈ Yσ′ .

Let σ = (X1,X2, . . . ,Xl), xi ∈ Xi′ and without loss of generality one can
assume that xj ∈ Xi′+1. If i

′ 6= 1 we put σ′ = (X ′
1,X

′
2, . . . ,X

′
l) where

X ′
k =











Xk if k 6= i′, k 6= i′ + 1,

(Xi′+1 \ {xj}) ∪ {xi} if k = i′ + 1,

(Xi′ \ {xi}) ∪ {xj} if k = i′
(5)

Since X ′
1 = X1, σ′ is a Y -irreducible partition. The system Sσ′ contains

xj ≤ xi instead of xi ≤ xj ∈ Sσ. Since other relations in the systems Sσ′ ,Sσ

are the same, P ∈ V(Sσ′) = Yσ′ .

Suppose now i′ = 1. Without loss of generality we assume xi ∈ Var(t). By the
definition of a Y -irreducible partition, there exists a variable xk ∈ X1∩Var(s).
If xj ∈ Var(t) we can define σ′ by (5). In this case X ′

1 contains variables
xj ∈ Var(t), xk ∈ Var(s), so σ′ is an Y -irreducible partition and P ∈ Yσ′ .
Otherwise (xj ∈ Var(s)), one can take xk instead xi and repeat all reasonings
above.

3. The statement immediately follows from Lemma 4.1.

4. For σ = (X1,X2, . . . ,Xl) the number |Yσ| is equal to the number of sequences
X1 ≤ X2 ≤ . . . ≤ Xl with Xi ∈ {a1, a2, . . . , al}. According to combinatorics,
the number of such monotone sequences is

(2l−1
l

)

.

5 Average number of irreducible components

Let
{

n
m

}

be the Stirling number of the second kind. By the definition,
{

n
m

}

is the
number of all partitions of an n-element set into m non-empty unlabelled subsets.
The number

{

n
m

}∗
= m!

{

n
m

}

obviously equals the number of all partitions of n-

element set into m labelled non-empty subsets. Thus, there are exactly
{

n
l

}∗
ordered

partitions σ = (X1,X2, . . . ,Xl) of the set of variables X, |X| = n into l equivalence
classes. An ordered partition σ = (X1,X2, . . . ,Xl) is not Y -irreducible if either
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X1 ⊆ Var(t) \ Var(s) or X1 ⊆ Var(s) \ Var(t) For a (k1, k2)-equation t(X) = s(X)
there exists

k1
∑

i=1

(

k1
i

){

n− i

l − 1

}∗

partitions σ with X1 ⊆ Var(t) \Var(s). Similarly, there exist

k2
∑

i=1

(

k2
i

){

n− i

l − 1

}∗

partitions σ with X1 ⊆ Var(s) \Var(t).
By Theorem 4.4, for a (k1, k2)-equation t(X) = s(X) the number of irreducible

components (Y -irreducible partitions) equals

Irr(k1, k2, n, l) =

{

n

l

}∗

−

k1
∑

i=1

(

k1
i

){

n− i

l − 1

}∗

−

k2
∑

i=1

(

k2
i

){

n− i

l − 1

}∗

. (6)

The average number of irreducible components of algebraic sets defined by equations
from Eq(n) is

Irr(n, l) =

∑

(k1,k2)∈Kn
#Eq(k1, k2, n)Irr(k1, k2, n, l)

#Eq(n)
=

∑n−1
k1=0

∑n−k1
k2=0 #Eq(k1, k2, n)Irr(k1, k2, n, l)−#Eq(0, n, n)Irr(0, n, n, l)

#Eq(n)

Below we compute Irr using the following denotations:

1. A
(1)
= B: an expression B is obtained from A by the binomial theorem

(a+ b)n =

n
∑

i=0

(

n

i

)

aibn−i.

2. A
(2)
= B: an expression B is obtained from A by the following identity of

binomial coefficients
(

a

b

)(

b

c

)

=

(

a

c

)(

a− c

b− c

)

.

3. A
(3)
= B: an expression B is obtained from A by the recurrence relation of

Stirling numbers
{

a+ 1

b

}

= b

{

a

b

}

+

{

a

b− 1

}

.

4. A
(4)
= B: an expression B is obtained from A by the following identity of

Stirling numbers
{

a+ 1

b+ 1

}

=
a
∑

i=0

(

a

i

){

i

b

}

.

Remark that in the last formula one can change the sum
∑a

i=0 to
∑a

i=c (c < b),
since

{

c
b

}

= 0 for c < b.

8



We have

#Eq(0, n, n)Irr(0, n, n, l) =

(

n

0

)(

n

n

)

(

{

n

l

}∗

−

n
∑

i=1

(

n

i

){

n− i

l − 1

}∗
)

=

{

n

l

}∗

−

n
∑

i=1

(

n

n− i

){

n− i

l − 1

}∗

=

{

n

l

}∗

−

n−1
∑

j=0

(

n

j

){

j

l − 1

}∗

=

{

n

l

}∗

−(l−1)!

n−1
∑

j=0

(

n

j

){

j

l − 1

}

(4)
=

{

n

l

}∗

− (l − 1)!

({

n+ 1

l

}

−

{

n

l − 1

})

(3)
=

{

n

l

}∗

− (l − 1)!l

{

n

l

}

= 0,

n−1
∑

k1=0

n−k1
∑

k2=0

#Eq(k1, k2, n)Irr(k1, k2, n) =

n−1
∑

k1=0

n−k1
∑

k2=0

(

n

k1

)(

n− k1
k2

)

(

{

n

l

}∗

−

k1
∑

i=1

(

k1
i

){

n− i

l − 1

}∗

−

k2
∑

i=1

(

k2
i

){

n− i

l − 1

}∗
)

=

n−1
∑

k1=0

n−k1
∑

k2=0

(

n

k1

)(

n− k1
k2

){

n

l

}∗

−

n−1
∑

k1=0

n−k1
∑

k2=0

(

n

k1

)(

n− k1
k2

) k1
∑

i=1

(

k1
i

){

n− i

l − 1

}∗

−

n−1
∑

k1=0

n−k1
∑

k2=0

(

n

k1

)(

n− k1
k2

) k2
∑

i=1

(

k2
i

){

n− i

l − 1

}∗

= S1 − S2 − S3,

where

S1 =

{

n

l

}∗ n−1
∑

k1=0

(

n

k1

)

2n−k1
(1)
=

{

n

l

}∗

(3n − 1),

S2
(2)
=

n−1
∑

k1=0

k1
∑

i=1

(

n

k1

)(

k1
i

){

n− i

l − 1

}∗ n−k1
∑

k2=0

(

n− k1
k2

)

(1)
=

n−1
∑

k1=0

k1
∑

i=1

(

n

i

)(

n− i

k1 − i

){

n− i

l − 1

}∗

2n−k1 =

n−1
∑

i=1

(

n

i

){

n− i

l − 1

}∗ n−1
∑

k1=i

(

n− i

k1 − i

)

2n−k1 =

n−1
∑

i=1

(

n

i

){

n− i

l − 1

}∗ n−i−1
∑

j=0

(

n− i

j

)

2n−i−j =

n−1
∑

i=1

(

n

i

){

n− i

l − 1

}∗





n−i
∑

j=0

(

n− i

n− i− j

)

2n−i−j − 1





(1)
=

n−1
∑

i=1

(

n

i

){

n− i

l − 1

}∗
(

3n−i − 1
)

.

Computing

n−1
∑

i=1

(

n

i

){

n− i

l − 1

}∗

= (l−1)!
n−1
∑

j=1

(

n

j

){

j

l − 1

}

(4)
= (l−1)!

({

n+ 1

l

}

−

{

n

l − 1

})

(3)
=

(l − 1)!l

{

n

l

}

=

{

n

l

}∗

,

we obtain

S2 =

n−1
∑

i=1

(

n

i

){

n− i

l − 1

}∗

3n−i −

{

n

l

}∗

= S(n, l)−

{

n

l

}∗

,

9



where

S(n, l) =
n−1
∑

i=1

(

n

i

){

n− i

l − 1

}∗

3n−i.

Let us compute

S3 =

n−1
∑

k1=0

n−k1
∑

i=1

n−k1
∑

k2=i

(

n

k1

)(

n− k1
i

)(

n− k1 − i

k2 − i

){

n− i

l − 1

}∗

=

n−1
∑

k1=0

n−k1
∑

i=1

(

n

k1

)(

n− k1
i

){

n− i

l − 1

}∗ n−k1
∑

k2=i

(

n− k1 − i

k2 − i

)

(1)
=

n−1
∑

k1=0

n−k1
∑

i=1

(

n

k1

)(

n− k1
i

){

n− i

l − 1

}∗

2n−k1−i (2)
=

n−1
∑

k1=0

n−k1
∑

i=1

(

n

i

)(

n− i

n− k1 − i

){

n− i

l − 1

}∗

2n−k1−i =

n
∑

i=1

(

n

i

){

n− i

l − 1

}∗

2n−i

n−i
∑

k1=0

(

n− i

k1

)

2−k1
(1)
=

n
∑

i=1

(

n

i

){

n− i

l − 1

}∗

2n−i

(

1 +
1

2

)n−i

=

n
∑

i=1

(

n

i

){

n− i

l − 1

}∗

3n−i = S(n, l)+

(

n

n

){

n− n

l − 1

}∗

= S(n, l).

Finally, we obtain

Irr(n, l) =
S1 − S2 − S3 − 0

3n − 2
=

{

n
l

}∗
(3n − 1)− (S(n, l) −

{

n
l

}∗
)− S(n, l)

3n − 2
=

3n
{

n
l

}∗
− 2S(n, l)

3n − 2
. (7)

Let us compute Irr(n, 2) using the following identities of the Stirling numbers

{

n

1

}

= 1,

{

n

2

}

= 2n−1 − 1.

We have

S(n, 2) =

n−1
∑

i=1

(

n

i

)

· 1 · 3n−i =

n−1
∑

i=1

(

n

i

)

3n−i (1)
= 4n − 3n − 1,

therefore

Irr(n, 2) =
3n · 2(2n−1 − 1)− 2(4n − 3n − 1)

3n − 2
=

6n − 2 · 4n + 2

3n − 2
. (8)

In particular, n = 3 gives

Irr(3, 2) =
63 − 2 · 43 + 2

33 − 2
=

90

25
= 3.6 (9)

that coincides with (3).
The following statement gives the estimation of Irr(n, l).

Proposition 5.1. The number Irr(n, l) satisfies

1

3

{

n

l

}∗

≤ Irr(n, l) ≤

{

n

l

}∗

10



Proof. One can bound S(n, l) as follows

S(n, l) ≤ 3n−1
n−1
∑

i=1

(

n

j

){

j

l − 1

}∗
(4)
= 3n−1(l − 1)!

({

n+ 1

l

}

−

{

n

l − 1

})

(3)
=

3n−1(l − 1)!l

{

n

l

}

= 3n−1

{

n

l

}∗

,

and similarly

S(n, l) ≥ 3

n−1
∑

i=1

(

n

j

){

j

l − 1

}∗

= 3

{

n

l

}∗

.

Thus,

Irr(n, l) ≤
3n
{

n
l

}∗
− 2 · 3

{

n
l

}∗

3n − 2
=

{

n

l

}∗ 3n − 6

3n − 2
≤

{

n

l

}∗

,

and

Irr(n, l) ≥
3n
{

n
l

}∗
− 2 · 3n−1

{

n
l

}∗

3n − 2
=

{

n

l

}∗ 3n − 2 · 3n−1

3n − 2
≥

{

n

l

}∗ 3n − 2 · 3n−1

3n
=

1

3

{

n

l

}∗

.

Proposition 5.2. For a fixed l and n → ∞ we have the asymptotic equivalence

Irr(n, l) ∼ ln.

Proof. Using the following explicit formula for Stirling numbers

{

n

l

}

=
1

l!

l
∑

j=0

(−1)l−j

(

l

j

)

jn,

we obtain
{

n
l

}

∼ ln for fixed l and n → ∞. By Proposition 5.1, we have

Irr(n, l) ∼

{

n

l

}∗

= l!

{

n

l

}

∼ l!ln ∼ ln.
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