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Hydra group doubles are not residually finite

Kristen Pueschel
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Abstract

In 2013, Kharlampovich, Myasnikov, and Sapir constructed the first examples of finitely presented residually

finite groups with large Dehn functions. Given any recursive function f , they produce a finitely presented

residually finite group with Dehn function dominating f . There are no known elementary examples of finitely

presented residually finite groups with super-exponential Dehn function. Dison and Riley’s hydra groups can

be used to construct a sequence of groups for which the Dehn function of the kth group is equivalent to the kth

Ackermann function. Kharlampovich, Myasnikov, and Sapir asked whether or not these groups are residually

finite. We show that these constructions do not produce residually finite groups.

Classification: 20E26, 20E06 Keywords: residual finiteness, hydra groups, Dehn function, separable subgroup

1 Introduction

The first examples of finitely presented residually finite groups with super-exponential Dehn function were con-
structed in [8]:

Theorem (Kharlampovich, Myasnikov, and Sapir). For any recursive function f : N → N, there is a finitely pre-

sented residually finite solvable group G of derived length 3 for which the Dehn function δG < f .

Their examples are sufficiently complicated that it remains interesting to find elementary examples that arise
‘in nature’. One place to look is among known elementary examples of groups with large Dehn function. In [6],
Dison and Riley introduced the hydra groups

Gk := 〈a1, . . . , ak, t | a
t
1 = a1, a

t
i = aiai−1, i > 1〉,

where we use the conventions ab := b−1ab and [a, b] = a−1b−1ab. They proved that the HNN extension

Γk = 〈Gk, p | [ait, p] = 1, ∀ 1 ≤ i ≤ k〉

over the subgroup Hk = 〈a1t, . . . , akt〉 has Dehn function equivalent to the Ackermann function Ak(n).
In [8], the authors commented that it was unknown whether or not Γk is residually finite for all k > 1, but that

they expected Γk would not be residually finite for k > 1. We confirm this.

Theorem 1.1. For all k > 1, the group Γk is not residually finite.

The free product with amalgamation

Γ′
k = 〈Gk, Gk | ait = ait, 1 ≤ i ≤ k〉

also enjoys a fast growing Dehn function. An analogous theorem holds for these groups:

Theorem 1.2. For all k > 1, the group Γ′
k is not residually finite.

Definition 1. The subgroup H ≤ G is separable in G if for all g 6∈ H , there is a finite quotient φ : G → Q such
that φ(g) 6∈ φ(H). Equivalently, H ≤ G is separable if and only if it is closed in the profinite topology of G, which
means that

H =
⋂

H<K<G
[G:K]<∞

K.

In the next section we will see that separability of the subgroup Hk in Gk is necessary for the residual finiteness
of Γk and Γ′

k. Therefore, Theorems 1.1 and 1.2 are proven via:
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Lemma 1.3. The group Hk is not separable in Gk for any k > 1.

In particular, we will show that the non-separability of H2 in G2 implies non-separability of Hk in Gk. To see
that H2 is not a separable subgroup of G2, we recognize (G2, H2) as isomorphic to an important group-subgroup
pair (GBKS , HBKS) studied by Burns, Karrass, and Solitar in [4]. Burns, Karrass, and Solitar proved that HBKS

is a non-separable subgroup of GBKS . The group GBKS was the first example of a 3-manifold group containing a
finitely presented non-separable subgroup [4] and it has been an important tool for verifying other examples of non
subgroup-separable groups. For example, Niblo and Wise showed that GBKS virtually embeds in the fundamental
group of the complement of the link of 4 circles, L. Therefore, L is not subgroup separable [11]. Further, they
showed that the fundamental groups of compact graph manifolds have only one obstruction to subgroup separabil-
ity: the existence of an embedding of L (and hence a virtual embedding of GBKS). Niblo and Wise have also shown
that GBKS contains finitely presented subgroups which are contained in no proper finite-index subgroups. That
is, there is a proper subgroupK such that finite quotients of GBKS will not witness thatK is a proper subgroup. [10].

Dison and Riley have constructed variations on their group-subgroup pairs that also have large distortion.
These too can be used to produce candidates for elementary examples of finitely presented groups with fast-growing
Dehn functions that might be residually finite. For w = (w1, . . . , wk), where wi is a positive word on letters in
{a1, . . . , ai−1}, consider the group

Gk(w) = 〈a1, . . . , ak | ati = aiwi, 1 ≤ i ≤ k〉.

For powers r = (r1, . . . , rk), where ri ≥ 0, consider the subgroup

Hk(r) = 〈a1t
r1 , . . . , akt

rk〉.

We prove that these cannot be used to produce residually finite groups with large Dehn function. In particular:

Theorem 1.4. Hk is a separable subgroup of Gk(w) if and only if w = (1, . . . , 1). Therefore the HNN extension

Γk(w) = 〈Gk(w), p | hp = h, h ∈ Hk〉 is residually finite only if Gk(w) = Fk × Z.

Theorem 1.5. Suppose that w = (1, . . . , 1, wc, . . . , wk) where wc 6= 1 and r = (r1, . . . , rk). Let [wc]i denote the

index of ai in wc. If
c−1
∑

i=1

[wc]iri 6= 0

then Hk(r) is a non-separable subgroup of Gk(w).

Corollary 1.6. Hk(r) is a separable subgroup of Gk if and only if r = (0, . . . , 0), that is, the subgroup is separable

only in the obvious case that Hk(r) = 〈a1, . . . , ak〉.

Remark 1. The case where
∑c−1

i=1 [wc]iri = 0 is not understood. In particular, we do not know whether or not
H3(r) ≤ G3 is separable for r = (0, 1, 0).

We conclude that an example of a residually finite group with super-exponential Dehn function is unlikely to be
found as an HNN extension over a subgroup of a hydra-like group.

The failure of residual finiteness for the groups Γk and Γ′
k leads us to ask if the word problem for Γk and Γ′

k

is solvable. After all, residual finiteness of the group G always provides a solution to the word problem for G via
McKinsey’s Algorithm [9]. Given a word w in the generators of G, the algorithm runs two processes in parallel:
one lists trivial words, looking for w, and the other lists homomorphisms to finite groups, looking to see if w ever
has non-trivial image. Our result shows that there are non-trivial elements of Γk and Γ′

k for which finite quotients
cannot be used to distinguish them from the identity element. Still, the word problems for Γk and Γ′

k are decid-
able. Indeed, Dison and Riley showed that the distortion of Hk in Gk is bounded above by a recursive function,
which implies the Membership Problem for Hk is decidable, and therefore that the Word Problem for Γk and Γ′

k is
decidable [6]. In fact, Dison, Einstein, and Riley have found a polynomial time solution to the Word Problem [5].

I wish to thank my advisor, Tim Riley, for his help, suggestions, and corrections, and Mark Sapir, for a helpful
conversation.
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2 Preliminaries

Definition 2. A group G is residually finite if every element x ∈ G− {1} has a non-trivial image in some finite
quotient of G. Equivalently, the intersection of all finite index subgroups of G is trivial.

Lemma 2.1. If Γ = 〈G, p | hp = h, h ∈ H〉 is residually finite, then H is separable in G and G is residually finite.

Proof. It is obvious that G is residually finite, since residual finiteness is inherited by subgroups. Suppose that H
is not separable. We can find g ∈ G−H such that for every homomorphism φ from G to an arbitrary finite group,
φ(g) ∈ φ(H). Consider an arbitrary map Φ : Γ → Q for Q finite. Since Φ restricts to a homomorphism on G,
Φ(g) = Φ(h) for some h ∈ H , and

Φ([p, g]) = [Φ(p),Φ(g)] = [Φ(p),Φ(h)] = Φ([p, h]) = Φ(1) = 1.

Although [p, g] is non-trivial in the free amalgamated product Γ, it is trivialized in every finite quotient of Γ.
Therefore, if H is not separable in G, Γ is not residually finite.

By a theorem of Baumslag and Tretkoff, this necessary condition is actually sufficient: if G is residually finite
and H is separable, then Γ is residually finite [1].

Remark 2. For any property P , if H is not P-separable, then Γ is not residually P . Berlai has shown that for
P the properties of solvability and amenability, so long as G is residually P , failure to be P-separable is the only
obstruction to Γ being residually P [2].

Lemma 2.2. Suppose that H < G. Take H < G to be another copy of our group-subgroup pair. If H is not

separable in G, then Γ′ = 〈G,G | ait = ait, 1 ≤ i ≤ k〉 = G ∗H=H G is not residually finite.

Proof. We will show that if g ∈ G − H is an element that cannot be separated from H in finite quotients, that
the non-trivial element g−1g ∈ Γ′ is trivialized in every finite quotient, so Γ′ is not residually finite. An arbitrary
map Φ from Γ′ to a finite group Q will factor as a pair of maps ψ, φ : G→ Q. By the definition of amalgamation,
ψ(h) = φ(h) for all h ∈ H . To see that g−1g is trivialized, we show that the functions φ and ψ agree on g as well.
Construct Ψ : G→ Q×Q, which is (ψ, φ). This new target group is still finite, and the image of H is contained in
the diagonal. As Ψ(g) ∈ Ψ(H) ⊂ ∆, this implies that ψ(g) = φ(g). Therefore Φ(g−1g) = 1.

Remark 3. If taking the direct product of groups preserves property P (eg. solvability, amenability), then if H is
not P-separable in G, the same proof as above implies that Γ′ = 〈G,G | H = H〉 is not residually-P . Kahrobaei has
shown that for P the properties of solvability and amenability, so long as G is residually P , failure to be P-separable
is the only obstruction to Γ′ being residually P [7].

We will use Lemmas 2.1 and 2.2 to show that the HNN extensions Γk and the amalgamated products Γ′
k are

not residually finite, by recognizing that the subgroup Hk is not separable in Gk.

Definition 3. A group G is Hopfian if every surjective endomorphism of G is an automorphism.

In 1971 Gilbert Baumslag proved in [3]:

Lemma 2.3. Finitely generated free-by-cyclic groups are residually finite, and therefore Hopfian.

In particular, as the groups Gk are free-by-cyclic, they are Hopfian, so to check that endomorphisms are auto-
morphisms we need only check that they are surjective.

3 Hk is not a separable subgroup of Gk

Lemma 3.1. H2 is not a separable subgroup of G2.

Proof. To show that G2 is not H2-separable, we use the result of Burns, Karrass, and Solitar [4] that

HBKS = 〈α−1, yα−1y−2α〉 ≤ GBKS = 〈α, β, y | αy = αβ, βy = β〉

is not separable. We demonstrate an automorphism φ of G2 from which the isomorphism carrying (G2, φ(H2)) to
(GBKS , HBKS) is clear. Recall the presentation

H2 = 〈a1t, a2t〉 ≤ G2 = 〈a1, a2, t | a
t
1 = a1, a

t
2 = a2a1〉 = 〈a1, a2, t | [a1, t] = 1, [a2, t] = a1〉.
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Consider the map:

a2 7→ a−2
2 ta2

t 7→ a−1
2 t−1a2 = a1t

−1

a1 7→ a1.

We verify that φ is an endomorphism:

[φ(a1), φ(t)] = [a1, a1t
−1] = a−1

1 ta−1
1 a1a1t

−1 = 1 = φ([a1, t]),

[φ(a2), φ(t)] = [a−2
2 ta2, a

−1
2 t−1a2] = [a−1

2 t, t−1]a2 = a−1
2 (t−1a2ta

−1
2 tt−1)a2 = [a2, t] = a1 = φ(a1).

φ is also surjective:

a1 = φ(a1)

a2 = φ((a2t)
−1)

t = φ(t−1a1)

Because G2 is Hopfian, and φ is a surjective endomorphism, it must be an automorphism. The image of a1t is

a1a
−1
2 t−1a2 = [a2, t]a

−1
2 t−1a2 = a−1

2 t−1a2ta
−1
2 t−1a2 = (a−1

2 t−1a2)t(a
−1
2 t−1a2),

and noting that t and a−1
2 t−1a2 commute, we can write φ(a1t) = ta−1

2 t−2a2. The image of a2t is a
−1
2 . Therefore

φ(H2) = 〈a−1
2 , ta−1

2 t−2a2〉.

The isomorphism between (G2, φ(H2)) and (GBKS , HBKS) is apparent from their definitions. By [4], HBKS is not
a separable subgroup of GBKS , and therefore H2 is not a separable subgroup of G2.

Next we show that the non-separability of Hk in Gk follows from the non-separability of H2 in G2. There is
a natural inclusion G2 →֒ Gk which is just a1 7→ a1, a2 7→ a2, t 7→ t. In the following we will abuse notation and
write G2 and H2 for the image in Gk of G2 and H2 under the inclusion. Dison and Riley develop a description of
elements of G2 ∩Hk in [6], which we include here for the convenience of the reader:
Assign an order to the elements {a1, . . . , ak}, which we will call ‘priority’: ai+1 > ai for all i.

Definition 4. The piece decomposition of a word u ∈ Fk = 〈a1, . . . , ak〉, is a grouping u ∼= π1 · · ·πl where πi are
maximal words without occurrences of a±1

k , except possibly with prefix ak or suffix a−1
k .

For example, a1a
−1
2 a21a2a

−1
1 a2a

2
1a

−2
2 has piece decomposition (a1a

−1
2 )(a21)(a2a

−1
1 )(a2a

2
1a

−1
2 )(a−1

2 ), where the
parentheses indicate the different pieces. This piece-decomposition can be recursively defined. In particular, words
containing no ak can be broken into pieces with respect to the next highest priority letter occurring.

Lemma 3.2 (Dison and Riley). A word w = tru represents an element of Hk if and only if u has piece decomposition

u = π1 · · ·πl and these pieces satisfy that for p0 = r, there is a pi such that tpiπi+1 ∈ Hkt
pi+1 and pl = 0. When

pi+1 exists satisfying tpiπi+1 ∈ Hkt
pi+1 , it is unique.

Lemma 3.3 (Dison and Riley). G2 ∩Hk = H2.

Proof. From the definition, it is clear that H2 ⊂ G2 ∩ Hk. Suppose that w ∈ G2 ∩ Hk. Using the free-by-cyclic
normal form for Gk, rewrite w = tru where u ∈ 〈a1, . . . , ak〉. Observe that as w ∈ G2, this is also in the normal form
for G2, so u ∈ 〈a1, a2〉. By Lemma 3.2, this word is in Hk if and only if u has a piece decomposition u = π1 · · ·πl
and a tuple (p0 = r, p1, . . . , pl−1, pl = 0), such that tpiπi+1 ∈ Hkt

pi+1 . The maximum priority letter that can
occur in a word in G2 ∩Hk is a2. As tpiπi+1 ∈ Hkt

pi+1 contains no letters of priority greater than 2, we get that
tpiπi+1 ∈ H2t

pi+1 for all i. From Lemma 3.2 we have that w ∈ H2. Therefore G2 ∩Hk = H2.

Lemma 3.4. The intersection of a subgroup H < G with a separable subgroup S < G is separable in H.

Proof. As S is separable, S =
⋂

S≤K<G
[G:K]<∞

K. So

S ∩H =









⋂

S≤K<G
[G:K]<∞

K









∩H =
⋂

S≤K<G
[G:K]<∞

(K ∩H)
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and we have expressed S ∩ H as the intersection of a family of finite-index subgroups in H , since K ∩ H is finite
index in H .

Proof of Lemma 1.3. By Lemma 3.4, if G2 ∩ Hk is not separable in G2, then Hk is not separable in Gk. By
Lemma 3.3, G2 ∩Hk = H2, so since H2 is not separable in G2, Hk is not separable in Gk.

Lemmas 2.1 and 2.2 showed that separability of Hk in Gk is a necessary condition for residual finiteness of Γk

and Γ′
k, so the non-separability of Hk in Gk shown in Lemma 1.3 implies Theorems 1.1 and 1.2.

4 Generalizations of the Hydra Groups

In the last section we saw that for every k, Hk is not a separable subgroup of Gk. We were interested in these
groups because Dison and Riley showed that Hk is distorted like the Ackermann function Ak in Gk, which forces the
Dehn function of the doubles to be large. In this section we consider other pairs for which the machinery of Dison
and Riley show that the analogous HNN extensions and free products with amalgamation will have exponential or
superexponential Dehn function. We will show that these groups too are not residually finite.

The following proposition is an extension of the example of Burns, Karrass, and Solitar in [4]. It is the key to
proving Theorem 1.4: the subgroup Hk is separable in the generalized hydra group Gk(w) only when Gk(w) =
Fk × Z.

Proposition 4.1. If r > 0, the subgroup H2(r, 1) = 〈a1t
r, a2t〉 < G2 is not separable.

Remark 4. For every s ∈ Z there is an automorphism, ηs of G2 which carries H2(r, 0) to H2(r, s), defined by
ηs(a2) = a2t

s−1, ηs(t) = t. Observe that ηs(a1) = ηs([a2, t]) = [a2t
s, t] = (a2a

s
1)

−1(a2a
s+1
1 ) = a1. Below we will

actually prove that H2(r, 0) is not separable.

Remark 5. We restrict to the case r > 0 in order to be able to apply the techniques of Dison and Riley. In particular,
we wish to have the analogue of Lemma 3.2 in order to prove Lemma 4.3.

Remark 6. If there was an automorphism φ of G2 carrying H2 onto H2(r, 0), the result would follow immediately.
Suppose that there was such an automorphism φ. Let q : G2 → Gab

2 = 〈a2, t | [a2, t] = 1〉 be the abelianization map.
The automorphism φ : G2 → G2 descends to φab, an automorphism of the abelianization Gab

2 . The restriction of φ
to H2, called φ

res, will descend to an isomorphism from q(H2) to q(H2(r, 0)), which agrees with the restriction to
q(H2) of φab. Note that q(H2) = q(G2), and q(H2(r, 0)) = 〈tr, a2〉. When r > 1, this is a proper subgroup of Gab

2 .
This is a contradiction. Because φab and φresab have the same domain and φresab is a restriction of φab, they should
be the same function. However, these maps have different ranges. Therefore the proof of the proposition requires
more than an application of Lemma 1.3.

Lemma 4.2. 〈t〉 ∩H2(r, 0) = {1}

Proof. Suppose for the contradiction that there is a non-trivial element of the intersection. It can be expressed
either as an element of H2(r, 0) or as an element of 〈t〉:

(a1t
r)α1aβ1

2 · · · (a1t
r)αnaβn

2 = tm

for some αi, βi and m 6= 0 . There is a van Kampen diagram for the word w = (a1t
r)α1aβ1

2 · · · (a1t
r)αnaβn

2 t−m

over the G2 presentation: 〈a1, a2, t | a
t
1 = a1, a

t
2 = a2a1〉 = 〈a1, a2, t | a

t
1 = a1, t

a2 = ta−1
1 〉. From the second

presentation it is clear that there are a2 corridors in any van Kampen diagram for which the boundary word contains
either an a2 or a−1

2 . See Bridson and Gersten [3] for a detailed account of corridors in van Kampen diagrams. Since
the word w contains the letter a2, there are a2-corridors. A corridor is innermost if the boundary word it cuts off is
a word on only the generators a1 and t. There are always at least two innermost corridors, so at least one of them
will cut off a word δ, which is of the form (a1t

r)αi for some i. The word along the side of the a2 corridor will either
be a power tka−k

1 or tk, call it γ. The word δγ−1 = 1, but we note that this equality is not possible, as there is a
non-zero index sum of either a1 or t in δγ−1.

Lemma 4.3. The word [t−1, a−2
2 t−1a22] 6∈ H2(r, 0) when r ≥ 1.
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Proof. The analogue of Lemma 3.2 holds for H2(r, 0). That is, we can decide whether or not a word in 〈a1, a2〉 is
in H2(r, 0) by considering whether the rewriting can be carried out on each successive piece.

ta−2
2 ta22t

−1a−2
2 t−1a22 = (a2a

−1
1 )−2(a2a

−2
1 )2(a2a

−1
1 )−2a22 = (a1a

−1
2 )(a−1

1 )(a2a
−1
1 a−1

2 )(a1)(a2)

where the parentheses in the final line separate the different pieces. There is no p such that a1a
−1
2 ∈ H2(r, 0)t

−p.
Suppose that there is. Then

ht−p = a1a
−1
2 ⇒ h = a1a

−1
2 tp = tpa1−p

1 a−1
2 ⇒ tpa1−p

1 = ha2 ∈ H2(r, 0).

We can rewrite tpa1−p
1 ∈ H2(r, 0), as (a1t

r)1−ptr(p−1)+p ∈ H2(r, 0), and since a1t
r ∈ H2(r, 0), it follows that

tr(p−1)+p ∈ H2(r, 0). Lemma 4.2 implies that r(p − 1) + p = 0, so p(r + 1) = r. Since r > 0, we get p =
r

1 + r
,

which is not an integer. Thus [t−1, a−2
2 t−1a22] 6∈ H2(r, 0).

Proof of Proposition 4.1. For r > 0, the arguments of Burns, Karrass, and Solitar can be translated directly to work
for this easy variation of their example [4]. For the convenience of the reader, we repeat their argument (almost)
verbatim. We drop all decoration and use H to refer to H2(r, 0) throughout this proof.

Let T be the infinitely generated group 〈tk | [tk, tk+1] = 1, k ∈ Z〉. To make calculations easier, Burns, Karrass,
and Solitar rewrite G2 as the HNN extension G2 = 〈T , a2 | k ∈ Z, ta2

k = tk+1〉. In our original presentation,

tk = ta
k
2 . This implies that a1 = [a2, t] = a−1

2 t−1a2t = t−1
1 t0, and the word [t−1, a−2

2 t−1a22] = [t−1
0 , t−1

2 ].

Given an arbitrary finite-index subgroup L satisfying H < L, Burns, Karrass, and Solitar find a subgroup
N < L ∩ T such that

H ∩ T < N ⊳ T .

Analysis of the quotient T /N will imply that the word [t−1, a−2
2 t−1a22] is contained in N ⊂ L. According to Lemma

4.3, [t−1, a−2
2 t−1a22] is not an element of H . As L is an arbitrary finite index subgroup containing H , this implies

that H is not separable.

If L is a finite-index subgroup L < G, the core of L, core(L) = ∩g∈GL
g, is a finite-index normal subgroup.

Moreover, core(L) ∩ T is still normal and finite index in T . The group N above is given by (H ∩ T )(core(L) ∩ T ).
The majority of the work of this proof is in showing that N is normal in T .

Lemma 4.4. H ∩ T = 〈t−1
i tr+1

i−1 | i ∈ Z〉.

Proof. Notice that all elements of T have trivial a2 index sum, since every element in the generating set has zero
a2 index sum: ti = ta

i
2 . The elements of H with trivial a2 index sum are all generated by a2 conjugates of a1t

r, so

H ∩ T ≤ 〈(a1t
r)a

i−1

2 | i ∈ Z〉 = 〈(t−1
1 tr+1

0 )a
i−1

2 | i ∈ Z〉 = 〈t−1
i tr+1

i−1 | i ∈ Z〉. The other inclusion is clear.

Claim. N = (H ∩ T )(core(L) ∩ T ) is normal in T .

Notice that H ∩ T and core(L) ∩ T are invariant under conjugation by a2. Therefore N is invariant under

conjugation by a2. We will next establish that (H ∩ T )t
±1

0 ⊂ N by considering where conjugation by t±1
0 sends the

generators t−1
i tr+1

i−1 .

Lemma 4.5. If i < 0, then (t−1
i tr+1

i−1 )
t
±1

0 ∈ H ∩ T .

Proof. For i < 0, both t−1
0 t

(r+1)i

i ∈ H ∩ T and t
(r+1)i

i t−1
0 ∈ H ∩ T , as

t−1
0 t

(r+1)i

i = t−1
0 t

(r+1)
−1 (t

−(r+1)
−1 t

(r+1)2

−2 ) · · · (t
−(r+1)i−1

i+1 t
(r+1)i

i ) = t−1
0 t

(r+1)
−1 (t−1

−1t
(r+1)
−2 )(r+1) · · · (t−1

i+1t
r+1
i )(r+1)i−1

,

where the second equality holds since [tk, tk+1] = 1 for all k. The same kind of rewriting shows t
(r+1)i

i t−1
0 ∈ H ∩T .

Next (t−1
i tr+1

i−1 )
t0 can be rewritten using words of the form t−1

0 t
(r+1)i

i :

t−1
0 t−1

i tr+1
i−1 t0 = t−1

0 t
(r+1)i

i (t
−(r+1)i

i t−1
i tr+1

i−1 t
(r+1)i

i )t
−(r+1)i

i t0 = (t−1
0 t

(r+1)i

i )(t−1
i tr+1

i−1 )(t
−1
0 t

(r+1)i

i )−1.
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Since t−1
i tr+1

i−1 and t−1
0 t

(r+1)i

i are in H ∩ T , so is (t−1
i tr+1

i−1 )
t0 ∈ H ∩ T . Similarly,

t0t
−1
i tr+1

i−1 t
−1
0 = (t

(r+1)i

i t−1
0 )−1(t−1

i tr+1
i−1 )(t

(r+1)i

i t−1
0 )−1 ∈ H ∩ T .

For the other half of the generators, we can only show the following weaker lemma:

Lemma 4.6. If l > 0, then (t−1
l tr+1

l−1 )
t
±1

0 ∈ (H ∩ T )(core(L) ∩ T ).

Proof. Because core(L) ∩ T is finite index in T , there exists tit
−1
j ∈ core(L) ∩ T with i − j < 0. Indeed

there are infinitely many generators and only finitely many cosets of core(L) ∩ T . Since core(L) ∩ T is nor-

mal, ti−jt
−1
0 = (tit

−1
j )a

−j
2 ∈ core(L) ∩ T . By conjugating ti−jt

−1
0 by a

(i−j)k
2 we get t(i−j)(k+1)t

−1
(i−j)k ∈ core(L) ∩ T

for all k ∈ Z. Stringing these elements together, we get that t(i−j)kt
−1
0 ∈ core(L) ∩ T for all k ∈ Z.

Given l > 0, choose n = (i− j)k such that n > l. Then

t0t
−1
l tr+1

l−1 t
−1
0 = (t0t

−1
n )(tnt

−1
l tr+1

l−1 t
−1
n )(tnt

−1
0 ) = (t0t

−1
n )(t0t

−1
l−nt

r+1
l−1−nt

−1
0 )a

n
2 (tnt

−1
0 )

Lemma 4.5 implies that the middle term is an element of H ∩ T , as l − n < 0, and H ∩ T is invariant under
conjugation by a2. The conjugating terms tnt

−1
0 ∈ core(L) ∩ T and so t0t

−1
l tr+1

l−1 t
−1
0 ∈ (H ∩ T )(core(L) ∩ T ).

From Lemmas 4.5 and 4.6, we have that each of the generators of H ∩ T is conjugated by t0 and t−1
0 into

N = (H ∩T )(core(L)∩T ). From the normality of core(L)∩T , we get ((H ∩T )(core(L)∩T ))t
±1

0 = N , and we can

conjugate N t
±1

0 ⊂ N by ak2 for k ∈ Z to get N t
±1

k ⊂ N . Therefore N is a normal subgroup of T .

That [t−1
0 , t−1

2 ] is in N follows easily from N being normal in T . Indeed, since t−1
0 t

(r+1)i

i ∈ H ∩ T for i < 0, it

follows that t
(r+1)i

i N = t0N . In the quotient T /N , the images of ti and t0 commute when i < 0. When i > 0, we

can rewrite [t0, ti] = [t−i, t0]
ai
2 = 1a

i
2 = 1, so they too commute in the quotient. Therefore T /N is an abelian group

and [t−1
0 , t−1

2 ] ∈ N . Since H and core(L) are subgroups of L and N = (H ∩T )(core(L)∩T ), it follows that N ≤ L.
Therefore [t−1

0 , t−1
2 ] is an element of L but not of H2(r, 0), and so H2(r, 0) is not a separable subgroup of G2.

Consider the group Gk(w) = 〈a1, . . . , ak, t | a
t
1 = a1w1, . . . , a

t
k = akwk〉, where w = (w1, . . . , wk), with each wi a

positive word on the generators {a1 . . . ai−1}. Recall the statement of Theorem 1.4: The subgroupHk = Hk(1, . . . , 1)
is separable in Gk(w) if and only if w = (1, . . . , 1).

Proof of Theorem 1.4. If w = (1, . . . , 1), then Gk = Fk × 〈t〉. Gk is subgroup separable, so in particular, Hk is
separable. If w 6= (1, . . . , 1), then Gk(w) hasw with initial segment of the form (1, . . . , 1, wc, . . . , wk) where wc is the
first non-trivial word. The subgroup 〈wc, ac, t〉 is isomorphic to G2 and the subgroup 〈wct

|wc|, act〉 is isomorphic to
the subgroup H2(|wc|, 1), where |wc| is the length of wc in 〈a1, . . . , ac−1〉. Proposition 4.1 implies that this subgroup
is not separable in 〈wc, ac, t〉. Since 〈wct

|wc|, act〉 is the intersection Hk(w)∩ 〈wc, ac, t〉, Lemma 3.4 implies that Hk

is not separable in Gk(w).

The most general form for which the methods of Dison and Riley apply are Hk(r) ≤ Gk(w). We are able to
get only a partial characterization of separability in this case, which is a generalization of Theorem 1.4 and its proof.

Recall the statement of Theorem 1.5: Suppose that w = (1, . . . , 1, wc, . . . , wk) and r = (r1, . . . , rk), with con-

ditions on w, r as above. Let [wc]i denote the index sum of ai in wc. If
∑c−1

i=1 [wc]iri 6= 0, then Hk(r) is not a
separable subgroup of Gk(w).

Proof of Theorem 1.5. We examine the subgroup 〈ac, wc, t | w
t
c = wc, a

t
c = acw〉, which is isomorphic to G2. The

subgroup given by

〈wct
∑c−1

i=1
[wc]iri , act〉

is isomorphic to H2(
∑c

i=1[wc]iri, 1), and by Lemma 4.1, this subgroup is not separable if
∑c

i=1[wc]iri 6= 0.
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Remark 7. Separability of Hk in Gk for the case that
∑c

i=1[wc]iri = 0 is not established by the argument above.
The most basic examples for which our method fails are those of the form

Gc+1(w) = 〈a1, . . . , ac, ac+1, t | a
t
i = ai, i < c, atc = acwc, a

t
c+1 = ac+1wc+1〉

and
Hc+1(r) = 〈a1, . . . , ac−1, act

rc , ac+1〉.

The simplest case of this failure is the group G3 = 〈a1, a2, t | at1 = a1, a
t
2 = a2a1, a

t
3 = a3a2〉 with subgroup

H3(r) = 〈a1, a2t, a3〉.
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