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1 Introduction

In the paper [1] A. Myasnikov, A. Nikolaev, and A. Ushakov stated a group
version of the well known Knapsack problem. The motivation for our research
and initial results in this direction may be found in that paper, and further
results in [2, 3, 4].

We give a definition of Knapsack problem for groups following [1]. Let G be
an arbitrary group with a presentation G = 〈X |R〉 and solvable word problem.
Let g1, . . . , gk, g be finite words in the alphabet X ∪X−1. Then the Knapsack
Problem for the group G is stated in the following way.
Knapsack Problem. KP. Given input words g1, . . . , gk, g, decide whether

there exist integers ε1, . . . , εk such that the equality

gε11 . . . gεkk = g (1)

holds in the group G.

There are several notable questions related to KP. One such question is that
of decidability of KP for a specific class of groups K. In the case when KP is
decidable for a class K, another natural question is how computationally hard
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KP for class K is. In this regard, it is known that KP is decidable in polynomial
time for abelian and hyperbolic groups. In this work we investigate decidability
of KP for nilpotent groups.

The main results of the present paper are as follows. In Theorem 1 we prove
that Knapsack problem (KP) is undecidable for any group of nilpotency class
two if the number of generators (without torsion) of the derived subgroup is at
least 322. This theorem together with the fact that if KP is undecidable for a
subgroup then it undecidable for the whole group allows us extend our result to
certain classes of polycyclic groups, linear groups and nilpotent groups of higher
nilpotency class (≥ 3).

We draw the reader’s attention to a result of Daniel König, Markus Lohrey,
and Georg Zetzsche [4] that KP is undecidable for a direct product of sufficiently
many copies of the discrete Heisenberg group H3(Z). This implies that KP is
generally undecidable for nilpotent groups. We would like to point out that
our approach is different from that of Daniel König, Markus Lohrey, and Georg
Zetzsche. Moreover, our Theorem 1 provides an explicit bound, 322, for the
number of copies of H3(Z) in a direct product that suffices for undecidable
KP. The paper [4] also contains interesting results on Subset Sum Problem and
Knapsack problem for nilpotent, polycyclic, and co-context-free groups.

The authors are grateful to A. Miasnikov and A. Nikolaev for their advice
and discussions.

2 Preliminaries

2.1 Nilpotent groups

Recall the definition and basic properties of nilpotent groups. A group G is
called a nilpotent group of class c if it has a lower central series of length c:

G = G1 D G2 D . . . D Gc D Gc+1 = {1},

where Gk+1 = [Gk, G], k = 1, . . . , c and G1 = G.
Let X = {x1, . . . , xn} be a set of letters, and G = 〈X〉 be a free nilpotent

group of class 2. By definition, the following identity holds for group G:

∀x, y, z ∈ G [x, [y, z]] = 1 (2)

Using identity (2), the collection process in group G is organized via the
transformation

yx = xy[x, y]−1, (3)

where x, y are any elements of G. Using the equality (3) we can reduce any word
g in the alphabet X ∪X−1 to the normal form for elements of the group G:

g = xα1

1 . . . xαn

n

∏

i<j

[xi, xj ]
βij , (4)

where αi, βij ∈ Z, i, j = 1, . . . , n, i < j and [xi, xj ] = x−1
i x−1

j xixj .
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Using (2), it is not hard to show that for any two elements a, b of the group G
and α, β ∈ Z we have the following equality:

[aα, bβ] = [a, b]αβ. (5)

2.2 Knapsack problem

We stated the Knapsack problem (KP) for groups in Introduction. Recall that
the KP is called decidable for the class of groups K if for any group G ∈ K there
exists an algorithm that, given any input g1, . . . , gk, g, answers the question
whether or not the exponential group equation (1) has a solution in the group G.
We can restrict the notion of decidability of KP and explore KP for single group
or for some type of inputs of KP. In our work we concentrate on decidability of
KP for the class of nilpotent groups.

Let G be a free nilpotent group of class 2 and let g1, . . . , gk, g be presented
in the form (4). Using (3) and (5) we can reduce the expression gε11 . . . gεkk to
the form (4). Thus, the following proposition holds:

Proposition 1 Let G be a free two-step nilpotent n-generated group. Then KP
stated above for the group G is equivalent to a system of Diophantine equations

with unknowns ε1, . . . , εk of degree 2. Moreover, the number of linear equations

in the system is not greater than n and the number of quadratic equations is not

greater than
n(n−1)

2 .

2.3 Diophantine equations and Hilbert’s Tenth problem

Proposition 1 shows that KP for nilpotent groups is closely related to Diophan-
tine equations. This section is devoted to Diophantine equations.

A polynomial equation D(x1, . . . , xn) = 0 with integer coefficients is called
Diophantine.

In 1900 at the Second International Congress of Mathematicians D. Hilbert
presented his famous list of problems. The 10th problem is concerned with Dio-
phantine equations. The problem statement is as follows: is there an algorithm
that for any Diophantine equation answers the question whether or not this
equation has a solution in integers? In 60-70th of previous century M. Davis,
J. Robinson, H. Putnam, and Yu. Matyasevich proved that there is no algorithm
to decide whether an arbitrary Diophantine equation has solution in integers or
not. For more details on Hilbert’s Tenth Problem we refer the reader to the
book of Yu. Matiyasevich [5], which, in addition to the solution of the problem,
provides a historical survey and describes a number of applications of negative
solution of Hilbert’s Tenth Problem.

In some cases of Diophantine equations there exists an algorithm to decide
whether the equation has a solution. In [6] C. Siegel gives an algorithm for a
single Diophantine equation of degree ≤ 2. So, if we have 2-generated free two-
step nilpotent group G (which is known as Heisenberg group) by Proposition 1

the KP for any input is equivalent to a system of two linear equations and one
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quadratic equation. Such a system may be reduced to a single quadratic equa-
tion (for example, this is shown in [9]), and therefore, the following proposition
holds:

Proposition 2 The Knapsack problem for Heisenberg group is decidable on any

input.

Now we return to the question of undecidability of Diophantine equations.
From papers of Julia Robinson, Martin Davis, Hilary Putnam [7] and Yu. Matiya-
sevich [8] every recursive enumerable set W can be presented in Diophantine
form:

x ∈ W ⇐⇒ ∃x1, . . . , xn P (x, x1, . . . , xn) = 0, (6)

where the variables x1, . . . , xn are positive integers and P (x, x1, . . . , xn) is a
Diophantine polynomial. Since there exist recursively enumerable but non re-
cursive sets then there is no algorithm to decide for arbitrary Diophantine equa-
tion whether it has a solution. Moreover, if W1,W2, . . . is a list all recursively
enumerable sets, then there is a polynomial U such that for any k ∈ N

x ∈ Wk ⇐⇒ ∃x1, . . . , xn U(x, k, x1, . . . , xn) = 0. (7)

The polynomial U(x, k, x1, . . . , xn) has fixed degree and fixed number of vari-
ables. Such polynomial U is called a universal polynomial. J.P. Jones in [10, 11]
constructed a universal system of equations that can be reduced to a universal
polynomial of degree 4 with 58 unknowns. To reduce the Jones system to a
single equation we need to prepare this system (because some equations have
degree greater than 2) by transformations and substitutions which are described
by Jones. After that we introduce several new variables which are tied by linear
relations to lower the number of generators of two step nilpotent group G for
building an input for KP (see the next sections for details). We are not aware
of any published work that provides an explicit version of the universal system
of equations of degree ≤ 2, so we give this system in the present paper. In
the next sections we use this system for constructing a universal KP input and
calculating rank of nilpotent groups with undecidable KP.

Any letter symbols in system below are variables except x,�z,�y,�u which
are positive integer parameters of U . The constants �z,�y,�u encode a r.e.
set which determines the universal system. So if we put �z,�y,�u that encode
a non-recursive set W , then there is no algorithm for any x ∈ W to answer the
question whether the equation have a solution. After applying transformations
to Jones system we obtain the following universal system:

Γ1 = Γ2
26, (8)

Γ2 = MU, (9)

Γ3 = B(2Γ23 −B)− 1, (10)

Γ4 = Γ23C1, (11)

Γ5 = c2, (12)
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Γ6 = Γ2
5, (13)

Γ8 = Γ2
24, (14)

Γ9 = λB, (15)

Γ10 = GH, (16)

Γ11 = F 2, (17)

Γ12 = Γ23E, (18)

Γ13 = Γ2
25, (19)

Γ14 = Γ23Γ25, (20)

Γ15 = N2, (21)

Γ16 = Y K, (22)

Γ18 = PK, (23)

Γ20 = Γ8Γ24, (24)

Γ21 = Γ2
8, (25)

Γ22 = Γ6Γ20, (26)

B = 2Γ2
1(2�z)

559+1, (27)

D1 = 1 + Γ27 + C1(Γ23 −B) + αΓ3, (28)

(Γ4 − C1)(Γ4 + C1) + 1 = D2
1, (29)

C1 = 559 +∆(Γ23 − 1), (30)

c = 1 + (Γ26 − ε)B + g, (31)

e+ 2�zΓ26l + 2�zBΓ6 + Γ7 = 2�z(1 + Γ27), (32)

l = �u + t(B − 2�z), (33)

e = �y +m(B − 2�z), (34)

S = g − 4�2
zΓ22 + lΓ24 + e(Γ8 + 4�zΓ22) + 2�zΓ9(−2�zΓ22 + Γ20 + Γ21),

(35)

T = Γ24 − 1− (Γ26 − 1)l + (Γ9 − 2λ�z)(Γ24 + Γ8) + 2�z(B − 2)Γ21, (36)

N = 16�zΓ20Γ8, (37)

R = S(Γ15 −N) + (T + 1)(Γ15 − 1), (38)

P = 2MΓ2, (39)

(K − Γ18)(K + Γ18) + Γ2
19 = 1, (40)

(2Γ25 − 2Γ16 −K)(2Γ25 − 2Γ16 +K) + Γ17 = 0, (41)

K = R+ 1 + h(P − 1), (42)

M = RY, (43)

U = Γ15w, (44)

Y = Γ15s, (45)

D = −2Γ25 − 5γ + Γ26w + Γ23(Γ25 + 4γ), (46)

I = D + oF, (47)
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(D − Γ14)(D + Γ14) + Γ13 = 1, (48)

E = iΓ13 + 1, (49)

(Γ12 − E)(Γ12 + E)− Γ11 + 1 = 0, (50)

G = Γ23 + Γ11(Γ11 − Γ23), (51)

H = 2R+ 1 + jΓ25, (52)

I2 +H(H − Γ10) = 1, (53)

Γ23 = Γ2 +M, (54)

Γ24 = 1 + Γ9 − λ, (55)

Γ25 = 2R+ 1 + C1 + ϕ, (56)

Γ26 = ε+ x, (57)

Γ27 = λ(B − 1). (58)

3 Equivalence between system of Diophantine

equations and Knapsack Problem for nilpo-

tent groups

In this section we show that any finite system of Diophantine equations is equiv-
alent to KP for some two step nilpotent group G on some input. This means
that for any finite system S of Diophantine equations there exists a group
G = 〈x1, . . . , xn〉 and input g1, . . . , gk, g which are words of alphabet X ∪X−1

such that KP for group G has solution if and only if the system S has solution.
Let S = {s1, . . . , sr} be a finite system of Diophantine equations with vari-

ables x1, . . . , xn, where si := (fi(x1, . . . , xn) = ci) is a Diophantine equation.
Since any finite system of Diophantine equations is equivalent to finite system
of equations of degree less or equal than 2, we may assume that every equation
in S written in the form

si :=





n
∑

i=1

αixi +

n
∑

i,j=1

βijxixj = γ



 , (59)

where αi, βij , γ ∈ Z.
We start by showing how to construct an input for KP equivalent to a single

quadratic Diophantine equation (59). Let a, b be generators of the group G and
[a, b] a nontrivial basic commutator in G. Below we pick elements g1, . . . , gr ∈ G

such that the gε11 . . . gεrr is equal to [a, b]
∑n

i=1
αixi+

∑n
i,j=1

βijxixj , then we put
g = [a, b]γ . KP on the obtained input will be equivalent to (59).

Consider the linear part of (59). For every summand αixi, i = 1, . . . , n
we put gi = [a, b]αi and get gε11 . . . gεnn = [a, b]

∑
n
i=1

αiεi . Thus, we assume that
xi = εi.

Turn to the quadratic part of (59). For every summand βijxixj we assign
four new elements of input (we assume that in previous steps we constructed r
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elements of input):

gr+1 = a−βij · c1,

gr+2 = b−1 · c2,

gr+3 = aβij · c−1
1 ,

gr+4 = b · c−1
2 ,

where c1, c2 ∈ [G,G] are non-trivial commutators that have not appeared pre-
viously in construction of the input. Then

K = g
εr+1

r+1 g
εr+2

r+2 g
εr+3

r+3 g
εr+4

r+4 = a−βijεr+1b−εr+2aβijεr+3bεr+4c
εr+1−εr+3

1 c
εr+2−εr+4

2 .

Setting that the exponents of commutators c1 and c2 are equal to zero in
element g is equivalent to the condition εr+1 = εr+3 and εr+2 = εr+4. As a
result we have K = [a, b]βijεr+1εr+2 . Now we need to tie the values of εr+1 to
εi and εr+2 to εj . To do that we apply the same trick as in the previous case.
Let c3 be a non-trivial commutator that we have never used before. We put
g′i = gic3 and g′r+1 = gr+1c

−1
3 , then we replace gi by g′i and gr+1 by g′r+1 in the

input. The imposed restrictions give us εr+1 = εi = xi. Then we repeat the
same with εr+2 and εj. Proceeding in the same way with all other quadratic
summands we finally get the following exponential expression:

gε11 . . . gεkk = [a, b]
∑

n
i=1

αixi+
∑

n
i,j=1

βijxixj ,

where xi = εi, i = 1, . . . , n. Then we set g = [a, b]γ and obtain the exponential
equation gε11 . . . gεkk = g in group G equivalent to Diophantine equation (59).

It is easy to see that if we have an arbitrary finite system S of l quadratic
Diophantine equations we can build an input for KP that realizes all equations
in the system S as powers of l basic commutators ([a, b], [a, c], [c, d], e.t.c., where
a, b, c, d, . . . are generators of G) as described above. Thus, for any finite system
S and any nilpotent group G with sufficiently many basic commutators (recall
that, besides l basic commutators for equations of S, we need more commutators
to realize bindings between variables of KP) we can construct an input on which
KP for the group G is equivalent to system S.

From the above we have the following

Proposition 3 For any finite system of Diophantine equations exists a finitely

generated free group G of nilpotency class 2 and an input g1, . . . , gk, g ∈ G such

that KP on this input has solution in G if and only if the system S has solution

in N ∪ {0}.

Now we briefly describe another, more general, approach to establishing
equivalence between KP for nilpotent groups and decidability of Diophantine
equations. This reduction may be more convenient than the one described above
in case of an arbitrary Diophantine equation (or any finite system of equations)
of degree greater than 2.

We begin by defining the notion of a Diophantine term by induction as
follows.
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Definition 1 1. Every constant is a term.

2. Every variable is a term.

3. For every two terms t1 and t2 the t1 + t2 and t1t2 are terms.

A term is called simple if it is a constant or a variable.

We can present any Diophantine equation as equality of two terms t1 = t2.
There are many ways to express a given polynomial as a combination of sums and
products of Diophantine terms. For example, we may present the polynomial
f(x) = x2 − 1 as sum of two terms: x2 and −1 and then x2 is a product of
x and x, or we may look at f(x) as the product of x − 1 and x + 1. We can
represent computation scheme of a term as a binary tree where leafs are simple
terms and internal vertices are symbols of multiplication “·” or addition “+”.

Let t1 = t1(ε1, . . . , εn) and t2 = t2(ε1, . . . , εn) be Diophantine terms such
that gε11 . . . gεrr = h · [a, b]t1 [c, d]t2 and the powers of [a, b] and [c, d] in g and h are
equal to zero. Thus, to describe how to construct an input for KP equivalent
to a given Diophantine polynomial we need to show, for two terms t1, t2, how
to extend the input to realize the following: terms t1 + t2, t1 · t2 and equations
t1 = t2, t1 = γ, where γ ∈ Z.

(t1 = γ) : to satisfy this condition we introduce one new input element:

gr+1 = [a, b]c1,

where c1 is a basic commutator in G which has not been used before, and
set g′ = gcγ1 .

(t1 = t2) : in this case we introduce two new input elements:

gr+1 = [a, b]−1c1,

gr+2 = [c, d]−1c−1
1 ,

then gε11 . . . g
εr+2

r+2 = [a, b]t1−εr+1 [c, d]t2−εr+2c
εr+1−εr+2

1 , which gives us t1 =
εr+1 = εr+2 = t2 (provided that the powers of [a, b], [c, d], and c1 in g
are 0 ).

(t1 + t2) :

gr+1 = [a, b]−1c1,

gr+2 = [c, d]−1c1,

then gε11 . . . g
εr+2

r+2 = [a, b]t1−εr+1 [c, d]t2−εr+2c
εr+1+εr+2

1 , which gives us ct1+t2
1

provided that the powers of [a, b] and [c, d] in the element g are 0.

(t1 · t2) :

gr+1 = [a, b]x−1 · c1,

gr+2 = [c, d]y−1 · c2,

gr+3 = x · c−1
1 ,

gr+4 = y · c−1
2 ,
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then

gε11 . . . g
εr+2

r+2 = [a, b]t1−εr+1 [c, d]t2−εr+2

c
εr+1−εr+3

1 c
εr+2−εr+4

2

x−εr+1y−εr+2xεr+3yεr+4

which gives us [x, y]t1·t2 provided that the powers of [a, b], [c, d], c1, c2 in g
are 0.

4 Nilpotent groups with undecidable KP

In previous section we described two reductions of any Diophantine equation or
a system of Diophantine equations to KP in a nilpotent group G with sufficient
number of generators. Now we want to give a lower bound for the number
of basic commutators in G′ of a torsion free two step nilpotent group G with
undecidable KP. We do not aim to get the lowest possible bound for the number
of commutators in a group G, but we note some simple transformations of the
original Jones system of equations to reduce the number of generators. We omit
a full description of the input for KP (because it contains 334 elements of input)
which is equivalent to the system of equations (8) – (58). However, we give an
example that clarifies the process of input construction.

Consider an equation (40):

(K − Γ18)(K + Γ18) + Γ2
19 = 1.

Let a,b be generators of G such that the commutator [a, b], along with commu-
tators c1, . . . , c7, have never been used before. Then we put

g1 = a−1c1c3, (for K)

g2 = a−1c1c4, (for − Γ18)

g3 = b−1c2c
−1
3 , (for K)

g4 = b−1c2c4, (for Γ18)

g5 = ac−1
1 ,

g6 = bc−1
2 .

Thus, the elements g1, . . . , g6 are used to construct the term that corresponds
to (K −Γ18)(K +Γ18). The next input elements g7, g8, g9, g10 serve in a similar
capacity for Γ2

19,

g7 = a−1c5c7,

g8 = b−1c6c
−1
7 ,

g9 = ac−1
5 ,

g10 = bc−1
6 .

9



Finally, the right hand side of KP expression is given by

g = [a, b]1,

and all commutators c1, . . . , c7 have zero power in the element g.

gε11 . . . gε66 = a−ε1−ε2b−ε3−ε4aε5bε6cε1+ε2−ε5
1 cε3+ε4−ε6

2 cε1−ε3
3 cε2+ε4

4 =

= [a, b](ε1+ε2)(ε3+ε4)cε1−ε3
3 cε2+ε4

4 =

= [a, b](ε1+ε2)(ε1−ε2) = (put ε1 = K, ε2 = Γ18)

= [a, b](K−Γ18)(K+Γ18).

gε77 gε88 gε99 gε1010 = a−ε7b−ε8aε9bε10cε7−ε9
5 cε8−ε10

6 cε7−ε8
7 =

= [a, b]ε7ε8cε7−ε8
7 =

= [a, b]ε
2
7 = (put ε7 = Γ19)

= [a, b]Γ
2
19 .

The two latter expressions are equivalent to the following system:































ε1 + ε2 = ε5;
ε3 + ε4 = ε6;
ε1 = ε3;
ε2 = −ε4;
ε7 = ε8 = ε9 = ε10;
(ε1 + ε2)(ε1 − ε2) + ε27 = 1;

Combining everything together we get

gε11 . . . gε1010 = [a, b](K−Γ18)(K+Γ18)+Γ2
19 = [a, b],

which gives us the desired equation (40).
Finally, we need 167 basic commutators in the group G to interpret all

equations (8)–(58). If any variable occurs n + 1 times in our system, then we
need another n commutators to tie these variables. Additionally, we need 155
commutators to tie the same variables in the equations. Hence the total number
of commutators to realize the system (8)–(58) is 167+155 = 322. The input for
KP is given by elements g1, . . . , g334, g, which depend on four integer parameters
x,�z,�y,�u.

Based on previous computations we have the following

Lemma 1 Let G be a torsion free group of nilpotency class 2 with rank([G,G]) >
322, then for every recursively enumerable set W exists an input IW = {g1, . . . , g334, g}
such that

x ∈ W iff KP has a solution in the group G for the input IW .
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Proof. For every recursively enumerable setW there exist parameters�z,�y,�u

such that an integer x lies in W if and only if the system SW (x,�z,�y,�u)
has a solution. Since rank([G,G]) > 322 we can construct an input IW =
{g1, . . . , g334, g} for KP such that the corresponding instance of KP for G has a
solution if and only if the system SW has a solution. �

Theorem 1 Let G be a torsion free group of nilpotency class 2 and rank([G,G]) >
322, then group G has undecidable KP problem.

Proof. There is set a W that is recursively enumerable but is not enumerable.
The statement follows by applying Lemma 1 to this set W . �

5 Corollaries

In this section we give corollaries of Theorem 1.

Corollary 1 Let G be a free group of nilpotency class 2 with n generators. If

n is at least 26 then the group G has undecidable KP.

Proof. Note that G has n(n−1)
2 basic commutators. Since it is enough to have

322 basic commutators, we see that 26 generators suffice. �

Corollary 2 Let G be a group of nilpotency class 2, H be its torsion subgroup,

G1 = G/H be the corresponding quotient group. If rank([G1, G1]) > 322, then
the group G has undecidable KP.

Corollary 3 If n ≥ 53 then KP is undecidable for groups UTn(Z), GLn(Z),
SLn(Z).

Proof. Denote by Fk the free 2-step nilpotent group of rank k with generators
X = {x1, . . . , xk}. By Corollary 1 the KP is undecidable for the group F26.
By the theorem of Jennings every finitely generated torsion-free nilpotent group
can be embedded into UTn(Z). Willem A. De Graaf and Werner Nickel [12] give
the algorithm that constructs this embedding. Hence the KP is undecidable for
UTn(Z) and we only need to get an estimate of n. The algorithm described by
De Graaf and Nickel embeds the group Fk in UTn(Z), where n = k + C2

k . We
construct an embedding ρ which embeds Fn into UT2n+1(Z).

For every generator xi of the group Fn we define an (n+1)× (n+1) matrix
Mi,

Mi =



















i+ 1

0
...

i 1
...
0
1 0 · · · 1 · · · 0



















.
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Then we define the images of all xi as the following (2n+1)× (2n+1) matrices,

ρ(xi) =

























1
. . . Mi

1

1
. . .

1

























.

Now we show that the map ρ extends to an embedding of Fn into UT2n+1(Z).
Denote by U the image of Fn. Images of all generators xi are denoted by
mi = ρ(xi). It is easy to see that for any distinct i and j we have [mi,mj] 6=
E, [mi,mj ] = [mj ,mi]

−1, and [[mi,mj ],mk] = E for any i, j, k = 1, . . . , n,
where E is the (2n + 1) × (2n + 1) identity matrix. Thus an image under the
map ρ of any word in the alphabet X ∪X−1 can be reduced to an expression

mα1

1 . . .mαn
n

∏

y
βij

ij in the group U , where αi, βij ∈ Z, i < j, yij = [mi,mj ],
so the group U is a two step nilpotent group with generators m1, . . . ,mn. To
claim that the map ρ : Fn → UT2n+1(Z) is embedding, it remains to prove
that the map ρ has a trivial kernel. In other words, it suffices to show that

mα1

1 . . .mαn
n

∏

y
βij

ij = E iff αi = 0 and βij = 0, i, j = 1, . . . , n, i < j.

Let mα1

1 . . .mαn
n

∏

y
βij

ij = E, then mα1

1 . . .mαn
n =

∏

y
−βij

ij . Since every yij
commutes with mi, i = 1, . . . , n, we get the following,

[mα1

1 . . .mαn
n ,mi] = [

∏

y
βij

ij ,mi],

∏

y
αj

ji = E.

Recall that U ′ = [U,U ] is an abelian subgroup of UT2n+1(Z), so U ′ is torsion

free and the latter equality holds iff αi = 0, i = 1, . . . , n. Similarly,
∏

y
βij

ij = E
iff βij = 0, i, j = 1, . . . , n, i < j. Therefore, F26 is embeddable into UT53(Z), so
UTr(Z), r ≥ 53, has undecidable KP. Since UT53(Z) is a subgroup of GLn(Z),
SLn(Z), n ≥ 53, then GLn(Z), SLn(Z) have undecidable KP for n ≥ 53.

Lemma 2 Let G be a finitely generated polycyclic group and H be a normal

subgroup of G such that the quotient group G/H has undecidable KP. Then

group G has undecidable KP.

Proof. Assume that the groupG has decidable KP, that is there is an algorithm
that solves KP problem in G. Let A denote the quotient group G/H . Suppose
we have an input for KP in the group A: a1H, a2H, . . . , akH, aH , where ai, a ∈
G. To solve KP we are required to find numbers ǫ1, . . . , ǫn ∈ Z such that

(a1H)ǫ1(a2H)ǫ2 . . . (akH)ǫk = aH. (60)

This equation is equivalent to the following:

aǫ11 Haǫ22 H . . . aǫkk H = aH,
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aǫ11 aǫ22 . . . aǫkk H = aH,

∃h ∈ H aǫ11 aǫ22 . . . aǫkk h = a.

If H is a finitely generated polycyclic group then there exists b1, . . . , bm ∈ H
such that for any h ∈ H there are integers k1, . . . , km that h = bk1

1 . . . bkm
m .

Hence if we solve KP problem aǫ11 aǫ22 . . . aǫkk bk1

1 . . . bkm
m = a in the group G, we

get solution of KP (60) in the group A. This contradicts the assumption that
the group A has undecidable KP. �

Corollary 4 Let G be a polycyclic group and Fit(G) have rank of derived sub-

group greater or equals than 322. Then KP is undecidable in G.

Proof. Since G is a polycylcic group then F = Fit(G) is a nilpotent group.
Thus F ′ = F/[[F, F ], F ] is a nilpotent class two group with rank of derived
subgroup greater or equal to 322. By Theorem 1 the KP is undecidable for F ′

and by Lemma 2 the KP is undecidable for the group G.

Corollary 5 Let G be a nilpotent group of class c ≥ 3 with lower central series

G = G1 D G2 D . . . D Gc D Gc+1 = {1},

where Gk+1 = [Gk, G], k = 1, . . . , c. Let N be the quotient group G/G3. If

rank([N,N ]) > 322 then the group G has undecidable KP.

Proof. The group N has undecidable KP by Corollary 1. Hence, the group G
has undecidable KP problem by Lemma 2. �
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