On group automorphisms in universal algebraic geometry

Artem N. Shevlyakov^{*}

March 27, 2020

Abstract

In this paper we study group equations with occurrences of automorphisms. We describe equational domains in this class of equations. Moreover, we solve a number of open problem posed in universal algebraic geometry

1 Introduction

In the classic approach to algebraic geometry over groups we are dealing with equations over a group G as expressions w(X) = 1, where w(X) is an element of G * F(X)(F(X) is the free group generated by a set of variables X). This class of equations was studied in many papers (see [1, 2] and the survey [4] for more details).

In the current paper we consider a different class of equations over a group G: now w(X) may contain the occurrences of symbols $\{\phi \mid \phi \in \operatorname{Aut}(G)\}$. Any equation of this type is called below an *equation with automorphisms*. The study of such equations is justified by many important problems in group theory. For example, the twisted conjugacy problem for a group G is equivalent to the solution of the following equation $\phi(x)u = vx$ for given $u, v \in G, \phi \in \operatorname{Aut}(G)$ (also, see this problem in [5] for equations with endomorphisms).

There is a connection between the "standard" group equations and equations with automorphisms. Indeed, for an equation $c_0 x_1 c_1 x_2 c_2 \dots c_{k-1} x_k c_k = 1$ $(c_i \in G)$ we have

$$c_{0}x_{1}c_{1}x_{2}c_{2}\dots c_{k-1}x_{k}c_{k} = (c_{0}x_{1}c_{0}^{-1})(c_{0}c_{1}x_{2}c_{1}^{-1}c_{0}^{-1})\dots$$

$$(c_{0}c_{1}c_{2}\dots c_{k-1}x_{k}c_{k-1}^{-1}\dots c_{2}^{-1}c_{1}^{-1}c_{0}^{-1})c_{0}c_{1}c_{2}\dots c_{k} = x_{1}^{c_{0}^{-1}}x_{2}^{(c_{0}c_{1})^{-1}}\dots x_{k}^{(c_{0}c_{1}c_{2}\dots c_{k-1})^{-1}}\prod c_{i}$$

$$= \phi_{1}(x_{1})\phi_{2}(x_{2})\dots \phi_{k}(x_{k})\prod c_{i},$$

where each ϕ_i is an inner automorphism of a group G. Thus, the equation above is equivalent to the following equation with automorphisms

$$\phi_1(x_1)\phi_2(x_2)\dots\phi_k(x_k)c = 1 \ (c \in G).$$

This correspondence allows us to study equations with automorphisms by methods developed for group equations. For instance, in [2] equational domains for group equations were described. In Section 3 we solve the similar problem for equations

^{*}The author was supported by Russian Fund of Fundamental Research (project 18-31-00330, the results of Sections 3) and Russian Science Foundation (project 18-71-10028, the results of Section 4)

with automorphisms. The results of Section 3 provide various examples of equational domains, so it allows to solve a number of open problems posed in universal algebraic geometry (Section 4). Namely, we solve Problem 4.4.7 from [2]. Notice that our solution implies negative answers for Problems 5.3.1-4 in [2] (the reduction of Problem 4.4.7 to Problems 5.3.1-4 was shown in [2]).

2 Definitions

All definitions below are derived from [2], where all notions of algebraic geometry were formulated for algebraic structures of arbitrary languages.

Denote by $\mathcal{L} = \{\cdot, ^{-1}, 1\}$ the standard language of group theory. Let us fix a group G and consider the extended language $\mathcal{L}(A) = \{\cdot, ^{-1}, 1\} \cup \{\phi^{(1)} \mid \phi^{(1)} \in A\}$, where the unary functional symbols $\phi^{(1)}$ correspond to a group of automorphisms $A \subseteq \operatorname{Aut}(G)$. Any group G of the language $\mathcal{L}(A)$ is called an $\mathcal{L}(A)$ -group (implicitly we fix an interpretation of the symbols ϕ to the elements of the group $A \subseteq \operatorname{Aut}(G)$).

Using the properties of automorphisms, any $\mathcal{L}(A)$ -term in variables $X = \{x_1, x_2, \ldots, x_n\}$ is equivalent to a product

$$\phi_1(x_{i_1}^{\varepsilon_1})\phi_2(x_{i_2}^{\varepsilon_2})\dots\phi_k(x_{i_k}^{\varepsilon_k}),\tag{1}$$

where $\phi_j \in A$, $x_{i_j} \in X$, $\varepsilon_j \in \{-1, 1\}$.

An $\mathcal{L}(A)$ -equation is an expression t(X) = 1, where t(X) is an $\mathcal{L}(A)$ -term. An $\mathcal{L}(A)$ -system is an arbitrary set of $\mathcal{L}(A)$ -equations. The set of all solutions of an $\mathcal{L}(A)$ -system **S** in G is denoted by $V_G(\mathbf{S})$. A set $Y \subseteq G^n$ is called $\mathcal{L}(A)$ -algebraic if there exists an $\mathcal{L}(A)$ -system **S** in variables $X = \{x_1, x_2, \ldots, x_n\}$ with $Y = V_G(\mathbf{S})$.

An $\mathcal{L}(A)$ -group G is an $\mathcal{L}(A)$ -equational domain if for any n and arbitrary $\mathcal{L}(A)$ algebraic sets $Y_1, Y_2 \subseteq G^n$ the union $Y = Y_1 \cup Y_2$ is also $\mathcal{L}(A)$ -algebraic.

Theorem 2.1. ([2]) An $\mathcal{L}(A)$ -group G is an $\mathcal{L}(A)$ -equational domain iff there exists an $\mathcal{L}(A)$ -system **S** in variables x, y such that

$$V_G(\mathbf{S}) = \{(x, y) \mid x = 1 \text{ or } y = 1\}.$$

Remark 2.2. Actually, Theorem 2.1 was proved for group languages with constants, but its proof is valid for arbitrary group languages.

Let us recall the results of [2] related to group equations with no automorphisms.

Let H be a fixed subgroup of a group G. We pick elements of H as constants in the language $\mathcal{L}(H) = \mathcal{L} \cup \{h \mid h \in H\}$. Any $\mathcal{L}(H)$ -term in variables X is actually an element of the free product H * F(X), where F(X) is the free group generated by the set X. An $\mathcal{L}(H)$ -equation is an expression t(X) = 1, where t(X) is an $\mathcal{L}(H)$ -term. Naturally, one can define the notions of algebraic sets and equational domains in the language $\mathcal{L}(H)$. As we mentioned in Remark 2.2, Theorem 2.1 holds for $\mathcal{L}(H)$ -equational domains.

It was found in [2] the complete description of $\mathcal{L}(H)$ -equational domains.

Theorem 2.3. ([2]) An $\mathcal{L}(H)$ -group G is an $\mathcal{L}(H)$ -equational domain iff there are not $a, b \in G$, $a, b \neq 1$ such that

$$[a, h^{-1}bh] = 1 \text{ for any } h \in H$$

$$\tag{2}$$

(here $[x, y] = x^{-1}y^{-1}xy$).

According to Theorem 2.3, one can obtain (see [2]) few examples of $\mathcal{L}(H)$ -equational domains:

- 1. the free group F_2 of rank 2 (for $H = F_2$),
- 2. the alternating group A_5 (for $H = A_5$).

Both examples will be used below in the paper.

3 Equational domains

Let us study equations with automorphisms, and the following theorem describes equational domains in the class of $\mathcal{L}(A)$ -groups. Its proof is similar to Theorem 2.3 from [2].

Theorem 3.1. An $\mathcal{L}(A)$ -group G is an $\mathcal{L}(A)$ -equational domain iff there are not $a, b \in G, a, b \neq 1$ such that

$$[a, \phi(b)] = 1 \text{ for any } \phi \in A.$$
(3)

Proof. Let us prove the "if" statement. We have that any solution (x, y) of the $\mathcal{L}(A)$ -system $\mathbf{S} = \{[x, \phi(y)] = 1 \mid \phi \in A\}$ satisfies x = 1 or y = 1. Thus, $V_G(\mathbf{S}) = \{(x, y) \mid x = 1 \text{ or } y = 1\}$, and Theorem 2.1 concludes the proof.

Now, we prove the "only if" part of the theorem. By Theorem 2.1, there exists an $\mathcal{L}(A)$ -system **S** with the solution set $\{(x, y) \mid x = 1 \text{ or } y = 1\}$. Let w(x, y) = 1be an arbitrary $\mathcal{L}(A)$ -equation of **S**. Using the following commutator identities,

$$[s,t]^{-1} = [t,s], \ [sp,t] = [s,t]^p[p,t], \ [s^{-1},t] = [t,s]^{s^{-1}}$$

one can equivalently rewrite w(x, y) as a product

$$w(x,y) = u(x)v(y)\prod_{i} [\phi_i(x), \psi_i(y)]^{w_i(x,y)}$$

where $\phi_i, \psi_i \in A$, and $w_i(x, y), u(x), v(y)$ are $\mathcal{L}(A)$ -terms.

Since $(1, y), (x, 1) \in V_G(\mathbf{S})$ for any $x, y \in G$, then u(x) = 1 and v(y) = 1 for all $x, y \in G$. Hence, one can assume that any equation $w(x, y) = 1 \in \mathbf{S}$ is of the form

$$\prod_{i} [\phi_i(x), \psi_i(y)]^{w_i(x,y)} = 1.$$

Assume there exist $a, b \in G$, $a, b \neq 1$ with (3). We have

$$[a, \phi_i^{-1}(\psi_i(b))] = 1 \Leftrightarrow a\phi_i^{-1}(\psi_i(b)) = \phi_i^{-1}(\psi_i(b))a \Leftrightarrow$$
$$\phi_i(a\phi_i^{-1}(\psi_i(b))) = \phi_i(\phi_i^{-1}(\psi_i(b))a) \Leftrightarrow$$
$$\phi_i(a)\psi_i(b) = \psi_i(b)\phi_i(a) \Leftrightarrow [\phi_i(a), \psi_i(b)] = 1$$

and $(a,b) \in V_G(w(x,y) = 1)$. Thus, the point (a,b) satisfies any equation of **S**, and we obtain a contradiction $V_G(\mathbf{S}) \neq \{(x,y) \mid x = 1 \text{ or } y = 1\}$.

Let us compare Theorem 3.1 and Theorem 2.3. Obviously, Theorem 2.3 follows from Theorem 3.1 for $A = \text{Inn}_H(G)$, where $\text{Inn}_H(G) = \{\phi_h(g) = h^{-1}gh \mid h \in H\}$ is a subgroup of the group Inn(G) of inner automorphisms.

Moreover, if a group G is an $\mathcal{L}(H)$ -equational domain, then G is an $\mathcal{L}(A)$ equational domain for any $A \supseteq \operatorname{Inn}_H(G)$. Therefore, the alternating group A_5 is
an $\mathcal{L}(A)$ -equational domain for $A = \operatorname{Aut}(A_5)$. The free group F_2 of rank 2 is also

an $\mathcal{L}(A)$ -equational domain for $A = \operatorname{Aut}(F_2)$. However, the following statement provides F_2 to be an equational domain with a cyclic group of automorphisms.

Example 3.2. Let F_2 be the free group of rank 2, and a, b be free generators. Let ϕ denote the automorphism $\phi(a) = b$, $\phi(b) = a$. Then Theorem 3.1 states that F_2 is an $\mathcal{L}(A)$ -equational domain for $A = \langle \phi \rangle$.

The following two statements also follow from Theorem 3.1.

Corollary 3.3. If a group G has a nontrivial center Z(G), then G is not an $\mathcal{L}(A)$ -equational domain for any $A \subseteq \operatorname{Aut}(G)$.

Proof. Let $a \in Z(G) \setminus \{1\}$ be a central element. Hence, a commute with any $\phi(a)$, and the pair (a, a) satisfies (3) for all ϕ .

Corollary 3.4. Let G be an $\mathcal{L}(A_0)$ -equational domain for some $A_0 \subseteq \operatorname{Aut}(G)$, and $H = \prod G$ be a direct power of G indexed by a set I. In other words, any element of H is an ordered tuple $(g_i \mid i \in I)$. Let \mathcal{P} be a set of permutations of I such that \mathcal{P} is transitive on I (i.e. for any pair $i, j \in I$ there exists $\pi \in \mathcal{P}$ with $\pi(i) = j$). Let us define automorphisms of H as follows:

$$f_{\phi}((g_i \mid i \in I)) = (\phi(g_i) \mid i \in I), \tag{4}$$

$$\sigma_{\pi}((g_i \mid i \in I)) = (g_{\pi(i)} \mid i \in I), \tag{5}$$

where $\phi \in A_0$, $\pi \in \mathcal{P}$. Let $A \subseteq \operatorname{Aut}(H)$ denote the group generated by $\{f_{\phi}, \sigma_{\pi} \mid \phi \in A_0, \pi \in \mathcal{P}\}$. Then the $\mathcal{L}(A)$ -group H is an $\mathcal{L}(A)$ -equational domain.

Proof. Let us take $\mathbf{a} = (a_i \mid i \in I), \mathbf{b} = (b_i \mid i \in I) \in H$, $\mathbf{a}, \mathbf{b} \neq 1$. Since \mathcal{P} transitively acts on I, there exists $\psi \in A$ and an index $i \in I$ such that $a_i \neq 1, c_i \neq 1$ where $\psi(\mathbf{b}) = \mathbf{c} = (c_i \mid i \in I)$.

Since G is an $\mathcal{L}(A_0)$ -equational domain, there exists $\phi \in A_0$ with

$$[a_i, \phi(c_i)] \neq 1$$

Therefore,

$$[\mathbf{a}, f_{\phi}(\psi(\mathbf{b}))] \neq 1$$

and Theorem 3.1 completes the proof.

4 One problem from universal algebraic geometry

The book [2] contains an open problem (Problem 4.4.7), which can be equivalently formulated as follows: is there an algebraic structure \mathcal{A} of an appropriate language L such that

- 1. \mathcal{A} is an *L*-equational domain;
- 2. \mathcal{A} is q_{ω} -compact;
- 3. \mathcal{A} is not u_{ω} -compact.

We solve this problem in the class of $\mathcal{L}(A)$ -groups. Let us give all necessary definitions.

Let $A \subseteq \operatorname{Aut}(H)$ be a subgroup of automorphisms of a group H. An $\mathcal{L}(A)$ -group H is q_{ω} -compact if for any $\mathcal{L}(A)$ -system **S** and an $\mathcal{L}(A)$ -equation w(X) = 1 such that

$$V_H(\mathbf{S}) \subseteq V_H(w(X) = 1) \tag{6}$$

there exists a finite subsystem $\mathbf{S}' \subseteq \mathbf{S}$ with

$$V_H(\mathbf{S}') \subseteq V_H(w(X) = 1). \tag{7}$$

An $\mathcal{L}(A)$ -group H is u_{ω} -compact if for any $\mathcal{L}(A)$ -system **S** and $\mathcal{L}(A)$ -equations $w_i(X) = 1 \ (1 \le i \le m)$ such that

$$V_H(\mathbf{S}) \subseteq \bigcup_{i=1}^m V_H(w_i(X) = 1)$$
(8)

there exists a finite subsystem $\mathbf{S}' \subseteq \mathbf{S}$ with

$$V_H(\mathbf{S}') \subseteq \bigcup_{i=1}^m V_H(w_i(X) = 1)$$
(9)

Let us define a group solving the problem above. Let G be a finite group such that G is an $\mathcal{L}(A_0)$ -equational domain for $A_0 = \operatorname{Aut}(G)$ (for example, one may take $G = A_5$). Following Corollary 3.4, we define the $\mathcal{L}(A)$ -group $H = \Pi G$ for $I = \mathbb{Z}$, $\mathcal{P} = \{\pi\}$ (where π is a permutation $\pi(n) = n + 1$ over \mathbb{Z}), and A is generated by the automorphisms f_{ϕ}, σ_{π} (4,5).

We denote the subgroup generated by $\{f_{\phi} \mid \phi \in \operatorname{Aut}(G)\} \subseteq A$ by A_G . The automorphism σ_{π} is denoted by σ below. By the definition, σ acts on an element $(g_i \mid i \in \mathbb{Z})$ by

$$\sigma(g_i) = g_{i+1}.$$

Thus, we should prove that H is

- 1. an $\mathcal{L}(A)$ -equational domain (it immediately follows from Corollary 3.4);
- 2. q_{ω} -compact (Lemma 4.7);
- 3. not u_{ω} -compact (Lemma 4.1).

Below we will use the following denotation

$$\sigma_k(x) = \begin{cases} \underbrace{\sigma(\sigma(\dots\sigma(x)\dots))}_{k \text{ times}} \text{ for } k > 0, \\ \underbrace{\sigma^{-1}(\sigma^{-1}(\dots\sigma^{-1}(x)\dots))}_{k \text{ times}} \text{ for } k < 0, \\ \\ x \text{ for } k = 0 \end{cases}$$

The automorphism σ commute with any f_{ϕ} , i.e. $\sigma(f_{\phi}(h)) = f_{\phi}(\sigma(h))$ for all $h \in H$. Hence any equation over the $\mathcal{L}(A)$ -group H can be written in the following form

$$\sigma_{k_1}(f_1(x_{j_1}^{\varepsilon_1}))\sigma_{k_2}(f_2(x_{j_2}^{\varepsilon_2}))\dots\sigma_{k_l}(f_l(x_{j_l}^{\varepsilon_l})) = 1,$$

$$(10)$$

where $f_i \in A_G$, $\varepsilon_i \in \{-1, 1\}$, $k_j \in \mathbb{Z}$.

Lemma 4.1. The $\mathcal{L}(A)$ -group H is not u_{ω} -compact.

Proof. Since H is an $\mathcal{L}(A)$ -equational domain, there are no $\mathbf{a}, \mathbf{b} \in H$ such that $\mathbf{a}, \mathbf{b} \neq 1$ and $[\mathbf{a}, \phi(\mathbf{b})] = 1$ for any $\phi \in A$. Hence, any solution of the $\mathcal{L}(A)$ -system $\mathbf{S} = \{[x, \phi(y)] = 1 \mid \phi \in A\}$ satisfies either x = 1 or y = 1. Thus, the following inclusion

$$V_H(\mathbf{S}) \subseteq V_H(x=1) \cup V_H(y=1).$$

holds.

Let **S'** be a finite subsystem of **S** and $n = \max\{|k| \mid \sigma_k \text{ occurs in } \mathbf{S'}\}$. Define $\mathbf{a} = (a_i \mid i \in \mathbb{Z}), \mathbf{b} = (b_i \mid i \in \mathbb{Z})$ such that

$$a_i = \begin{cases} g, \text{ if } i = 0\\ 1, \text{ otherwise} \end{cases} \quad b_i = \begin{cases} g, \text{ if } i = n+1\\ 1, \text{ otherwise} \end{cases}$$

where $g \in G \setminus \{1\}$.

Let $A' = \{\phi \mid [x, \phi(y)] = 1 \in \mathbf{S}'\}$ (i.e. A' is the set of all ϕ such that the equation $[x, \phi(y)] = 1$ belongs to S') be a finite set of automorphisms. By the choice of \mathbf{b} , the element $\phi(\mathbf{b})$ has 1 at the 0-th coordinate for each $\phi \in A'$. Therefore, $\phi(\mathbf{b})$ commutes with \mathbf{a} and we obtain $(\mathbf{a}, \mathbf{b}) \in V_H(\mathbf{S}')$. Since $\mathbf{a} \neq 1$, $\mathbf{b} \neq 1$, then the inclusion

$$V_H(\mathbf{S}') \subseteq V_H(x=1) \cup V_H(y=1)$$

fails. Thus, H is not u_{ω} -compact.

There is a correspondence between $\mathcal{L}(A)$ -systems over H and $\mathcal{L}(A_0)$ -systems over G. Let **S** be an $\mathcal{L}(A)$ -system in variables $X = \{x_1, x_2, \ldots, x_n\}$. The system **S** defines an $\mathcal{L}(A_0)$ -system $\gamma(\mathbf{S})$ over G in infinite number of variables $Y = \{y_{ij} \mid i \in \mathbb{Z}, 1 \leq j \leq n\}$ (below $\varepsilon_i \in \{-1, 1\}$):

$$\sigma_{k_1}(f_1(x_{j_1}^{\varepsilon_1}))\sigma_{k_2}(f_2(x_{j_2}^{\varepsilon_2}))\dots\sigma_{k_l}(f_l(x_{j_l}^{\varepsilon_l})) = 1 \Leftrightarrow$$

$$f_1(y_{k_1+k\ j_1}^{\varepsilon_1})f_2(y_{k_2+k\ j_2}^{\varepsilon_2})\dots f_l(y_{k_l+k\ j_l}^{\varepsilon_l}) = 1 \in \gamma(\mathbf{S}) \text{ for all } k \in \mathbb{Z}.$$
(11)

In other words, $\gamma(\mathbf{S})$ is the coordinate-wise version of \mathbf{S} over the direct power $H = \Pi G$.

Example 4.2. If $S = \{\sigma(x_1)x_2 = 1\}$ then

$$\gamma(\mathbf{S}) = \{\dots, y_{-11}y_{-22} = 1, y_{01}y_{-12} = 1, y_{11}y_{02} = 1, y_{21}y_{12} = 1, y_{31}y_{22} = 1, \dots\} = \{y_{k1}y_{(k-1)2} = 1 \mid k \in \mathbb{Z}\}.$$

By the definition, any $\mathcal{L}(A_0)$ -equation $u(Y) = 1 \in \gamma(\mathbf{S})$ may come from several $\mathcal{L}(A)$ -equations $W = \{w_i(X) = 1\}$ of the system \mathbf{S} . Let us take an arbitrary equation $w_i(X) = 1$ from W and denote this correspondence by $\gamma^{-1}(u(Y) = 1) = \{w_i(X) = 1\}$.

Remark 4.3. Below we will omit brackets in map compositions, i.e. we will write $\alpha\beta(x)$ instead of $\alpha(\beta(x))$.

Lemma 4.4. For any $\mathcal{L}(A_0)$ -equation

$$f_1(y_{i_1\ j_1}^{\varepsilon_1})f_2(y_{i_2\ j_2}^{\varepsilon_2})\dots f_l(y_{i_l\ j_l}^{\varepsilon_l}) = 1$$
(12)

and any number $k \in \mathbb{Z}$ the equation

$$f_1(y_{i_1+k\ j_1}^{\varepsilon_1})f_2(y_{i_2+k\ j_2}^{\varepsilon_2})\dots f_l(y_{i_l+k\ j_l}^{\varepsilon_l}) = 1$$
(13)

also belongs to $\gamma(\mathbf{S})$.

Further, if $P = (p_{ij} \mid i \in \mathbb{Z}, 1 \le j \le n) \in V_G(\gamma(\mathbf{S}))$ then any shift $\sigma_k(P) = (s_{ij} \mid i \in \mathbb{Z}, 1 \le j \le n)$, $s_{ij} = p_{i+k \ j}$ ($k \in \mathbb{Z}$) is also a solution of $\gamma(\mathbf{S})$.

Proof. Observe that the system \mathbf{S} from Example 4.2 clearly satisfies the statements of this lemma.

The first statement directly follows from the definition of the system $\gamma(\mathbf{S})$. Let us prove the second one.

Assume there exists an $\mathcal{L}(A_0)$ -equation (12) with $f_1(s_{i_1 \ j_1}^{\varepsilon_1})f_2(s_{i_2 \ j_2}^{\varepsilon_2})\dots f_l(s_{i_l \ j_l}^{\varepsilon_l}) \neq 1$ or, equivalently,

$$f_1(p_{i_1+k\ j_1}^{\varepsilon_1})f_2(p_{i_2+k\ j_2}^{\varepsilon_2})\dots f_l(p_{i_l+k\ j_l}^{\varepsilon_l}) \neq 1$$
(14)

However, $\gamma(\mathbf{S})$ contains the equation u(Y) = 1 (13), and, by (14), we have $u(P) \neq 1 \Rightarrow P \notin V_G(\gamma(\mathbf{S}))$.

Let $\mathbf{S}_0, \mathbf{S}_1$ be $\mathcal{L}(A_0)$ -systems in variables $Y = \{y_{ij} \mid i \in \mathbb{Z}, 1 \leq j \leq n\}$. We say that $\mathbf{S}_0, \mathbf{S}_1$ are Z-equivalent for a given $Z \subseteq Y$ if the projections of $V_G(\mathbf{S}_0)$ and $V_G(\mathbf{S}_1)$ onto the coordinates Z are the same (in other words, for each $P = (p_{ij} \mid i \in \mathbb{Z}, 1 \leq j \leq n) \in V_G(\mathbf{S}_k)$ there exists $Q = (q_{ij} \mid i \in \mathbb{Z}, 1 \leq j \leq n) \in V_G(\mathbf{S}_{1-k})$ with $p_{ij} = q_{ij}$ for each $y_{ij} \in Z, k \in \{0, 1\}$.

Lemma 4.5. Let \mathbf{S}_0 be an $\mathcal{L}(A_0)$ -system in variables $Y = \{y_{ij} \mid i \in \mathbb{Z}, 1 \leq j \leq n\}$ over a finite group G. Then for any finite $Z \subseteq Y$ there exists a finite Z-equivalent subsystem $\mathbf{S}_1 \subseteq \mathbf{S}_0$.

Proof. The statement immediately follows from the finiteness of the group G.

Let us denote a subsystem of an $\mathcal{L}(A_0)$ -system $\gamma(\mathbf{S})$ by $\gamma_Z(\mathbf{S})$, if $\gamma_Z(\mathbf{S})$ is Z-equivalent to $\gamma(\mathbf{S})$.

Let Z be a set of variables occurring in an $\mathcal{L}(A_0)$ -system $\gamma(\mathbf{S})$. The system $\gamma(\mathbf{S})$ may contain subsystems which are Z-equivalent to $\gamma(\mathbf{S})$ (as it proved above, for finite Z such subsystems always exist). Let us denote the class of such systems by $Z(\gamma(\mathbf{S}))$. We pick an arbitrary system from $Z(\gamma(\mathbf{S}))$ and denote it by $\gamma_Z(\mathbf{S})$.

Suppose an $\mathcal{L}(A_0)$ -system $\gamma_Z(\mathbf{S})$ was constructed by an $\mathcal{L}(A)$ -system \mathbf{S} and a finite set Z. By the definition, $\gamma^{-1}\gamma_Z(\mathbf{S}) \subseteq \mathbf{S}$ is the set of equations from \mathbf{S} which were essentially used in the construction of $\gamma_Z(\mathbf{S})$. One can apply the operator γ to $\gamma^{-1}\gamma_Z(\mathbf{S})$ and obtain a new $\mathcal{L}(A_0)$ -system $\gamma\gamma^{-1}\gamma_Z(\mathbf{S})$.

Let us summarize all simple properties of the systems $\mathbf{S}, \gamma(\mathbf{S}), \gamma_Z(\mathbf{S}), \gamma^{-1}\gamma_Z(\mathbf{S}), \gamma\gamma^{-1}\gamma_Z(\mathbf{S})$:

- 1. $\mathbf{S}, \gamma^{-1}\gamma_Z(\mathbf{S})$ are $\mathcal{L}(A)$ -systems and their solutions belong to H^n ;
- 2. $\gamma(\mathbf{S}), \gamma_Z(\mathbf{S}), \gamma\gamma^{-1}\gamma_Z(\mathbf{S})$ are $\mathcal{L}(A_0)$ -systems and coordinates of their solutions belong to G;
- 3. the systems $\gamma_Z(\mathbf{S}), \gamma^{-1}\gamma_Z(\mathbf{S})$ are finite for finite Z;
- 4. we have the inclusions $\gamma^{-1}\gamma_Z(\mathbf{S}) \subseteq \mathbf{S}, \ \gamma_Z(\mathbf{S}) \subseteq \gamma\gamma^{-1}\gamma_Z(\mathbf{S}) \subseteq \gamma(\mathbf{S}).$
- 5. the $\mathcal{L}(A_0)$ -systems $\gamma \gamma^{-1} \gamma_Z(\mathbf{S}), \gamma_Z(\mathbf{S}), \gamma(\mathbf{S})$ are Z-equivalent.

Lemma 4.6. Let C be a finite set of pairs (i, j), $i \in \mathbb{Z}$, $1 \le j \le n$ Then $\gamma \gamma^{-1} \gamma_Z(\mathbf{S})$ is Z_k -equivalent to $\gamma(\mathbf{S})$ for any set $Z_k = \{y_{i+k \ j} \mid (i, j) \in C\}, k \in \mathbb{Z}$.

Proof. Let us take a point $P = (p_{ij} \mid i \in \mathbb{Z}, 1 \leq j \leq n) \in V_G(\gamma \gamma^{-1} \gamma_Z(\mathbf{S}))$ and consider the shift $R = \sigma_k(P) = (r_{ij} \mid i \in \mathbb{Z}, 1 \leq j \leq n), r_{ij} = p_{i+k j}$. According to Lemma 4.4, R is a solution of $V_G(\gamma \gamma^{-1} \gamma_Z(\mathbf{S}))$. By the Z-equivalence, there exists a point $R' = (r'_{ij} \mid i \in \mathbb{Z}, 1 \leq j \leq n) \in V_G(\gamma(\mathbf{S}))$ with $r'_{ij} = r_{ij} = p_{i+k j}$ for any $(i, j) \in C$. By Lemma 4.4, the point $R'' = \sigma_{-k}(R'), R'' = (r''_{ij} \mid i \in \mathbb{Z}, 1 \leq j \leq n)$ is a solution of $\gamma(\mathbf{S})$. By the definition of R'', for each $(i, j) \in C$ we have $r''_{i+k j} =$ $r'_{ij} = r_{ij} = p_{i+k j}$, and, therefore, $\gamma \gamma^{-1} \gamma_Z(\mathbf{S})$ is Z_k -equivalent to $\gamma(\mathbf{S})$. **Lemma 4.7.** The $\mathcal{L}(A)$ -group H is q_{ω} -compact.

Proof. Suppose an $\mathcal{L}(A)$ -system **S** and an $\mathcal{L}(A)$ -equation w(X) = 1 (10) satisfy (6). The $\mathcal{L}(A)$ -term w(X) defines the set of pairs

$$C = \{(k_1, j_1), (k_2, j_2), \dots, (k_l, j_l)\}.$$

Let us put $\mathbf{S}' = \gamma^{-1} \gamma_Z(\mathbf{S})$ for $Z = \{y_{ij} \mid (i, j) \in C\}$ and prove (7). Assume there exists a point $(\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_n) \in \mathcal{V}_H(\mathbf{S}') \setminus \mathcal{V}_H(w(X) = 1), \mathbf{h}_j \in H$. In other words, there exists $P = (p_{ij} \mid i \in \mathbb{Z}, 1 \leq j \leq n) \in \mathcal{V}_G(\gamma \gamma^{-1} \gamma_Z(\mathbf{S})) \setminus \mathcal{V}_G(\gamma(w(X)) = 1)$.

We have

$$\gamma(w(X) = 1) = \{ f_1(y_{k_1+k \ j_1}^{\varepsilon_1}) f_2(y_{k_2+k \ j_2}^{\varepsilon_2}) \dots f_l(y_{k_l+k \ j_l}^{\varepsilon_l}) = 1 \mid k \in \mathbb{Z} \}$$

and there exists $k \in \mathbb{Z}$ such that

$$f_1(p_{k_1+k\ j_1}^{\varepsilon_1})f_2(p_{k_2+k\ j_2}^{\varepsilon_2})\dots f_l(p_{k_l+k\ j_l}^{\varepsilon_l}) \neq 1$$

By Lemma 4.6, there exists a point $Q = (q_{ij} \mid i \in \mathbb{Z}, 1 \leq j \leq n) \in V_G(\gamma(\mathbf{S}))$ with $q_{i+k,j} = p_{i+k,j}$ for any $(i,j) \in C$. Therefore, $w(Q) \neq 1$.

Thus, $Q \in V_G(\gamma(\mathbf{S})) \setminus V_G(\gamma(w(X) = 1))$. The point Q defines $R = (\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n) \in H^n$, $\mathbf{r}_j = (q_{ij} \mid i \in \mathbb{Z})$ such that $R \in V_G(\mathbf{S}) \setminus V_G(w(X) = 1)$, and we obtain a contradiction with (6).

5 Conclusions

The construction of the group H from Corollary 3.4 is close to the notion of wreath product. In particular, the group H from Section 4 is structurally similar to the wreath product $G \wr \mathbb{Z}$.

This correspondence allows us to remind an important problem of universal algebraic geometry posed by B. Plotkin [3].

Problem (B. Plotkin [3]). Let $H = A \wr B$ be the wreath product of the groups A and B.

- 1. When H is q_{ω} -compact?
- 2. When H is q_{ω} -compact but not equationally Noetherian (a group is equationally Noetherian if the subsystem $\mathbf{S}' \subseteq \mathbf{S}$ in (7) does not depend on an equation w(X) = 1?
- 3. Is H necessarily q_{ω} -compact if both A, B q_{ω} -compact?

Let us explain the assertion of the problem above. Originally, B. Plotkin posed it for group equations in the "standard" language $\mathcal{L} = \{\cdot, ^{-1}, 1\}$. However, in [6] the Problem was partially solved for languages with constants.

Theorem 5.1. [6] If a group A is not abelian and B is infinite, then H is not q_{ω} -compact in the language with constants $\mathcal{L}(H) = \mathcal{L} \cup \{h \mid h \in H\}$.

Thus, for the language $\mathcal{L}(H)$ the following problem remains open.

Problem. Let us consider the class of $\mathcal{L}(H)$ -equations. Is $H q_{\omega}$ -compact (equationally Noetherian) for abelian A?

In the conclusion of the whole paper, we should discuss other ways to solve Problems 4.4.7, 5.3.1-4 from [2]. Usually (see [2]), the negative solution of a problem in universal algebraic geometry may be found in structures of pure relational languages, since such languages admit a very simple view of equations. However, we cannot solve Problems 5.3.1-4 in relational languages. For this reason, we had to develop the algebraic geometry over equations with automorphisms. Thus, one can formulate a problem.

Problem. Is there an algebraic structure \mathcal{A} of pure relational language L such that

- 1. \mathcal{A} is an *L*-equational domain,
- 2. \mathcal{A} is q_{ω} -compact,
- 3. \mathcal{A} is not u_{ω} -compact?

References

- G. Baumslag, A. Myasnikov, V. Remeslennikov, Algebraic geometry over groups I: Algebraic sets and ideal theory, J. Algebra, 219 (1999), 16–79.
- [2] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, Algebraic geometry over algebraic structures, Novosibirsk, SB RAS (2016), 243p (Russian).
- B. Plotkin, Problems in algebra inspired by universal algebraic geometry, J. Math. Sci., 139(4) (2006), 6780–6791.
- [4] V. A. Roman'kov, Equations over groups, Groups, Complexity, Cryptol., 4(2) (2012), 191–239.
- [5] V. A. Roman'kov, On solvability of equations with endomorphisms in nilpotent groups, Sib. Elektron. Mat. Izv., 13 (2016), 716–725
- [6] A. Shevlyakov, M. Shahryary, Direct products, varieties, and compactness conditions, Groups Complexity Cryptology, 9(2) (2017) 159–166.

The information of the author: Artem N. Shevlyakov Sobolev Institute of Mathematics 644099 Russia, Omsk, Pevtsova st. 13 Phone: +7-3812-23-25-51.

Omsk State Technical University 644050 Russia, Omsk, pr. Mira, 11

e-mail: a_shevl@mail.ru