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Abstract

In this paper we study group equations with occurrences of automorphisms. We
describe equational domains in this class of equations. Moreover, we solve a number
of open problem posed in universal algebraic geometry

1 Introduction

In the classic approach to algebraic geometry over groups we are dealing with equa-
tions over a group G as expressions w(X) = 1, where w(X) is an element of G∗F (X)
(F (X) is the free group generated by a set of variables X). This class of equations
was studied in many papers (see [1, 2] and the survey [4] for more details).

In the current paper we consider a different class of equations over a group G:
now w(X) may contain the occurrences of symbols {φ | φ ∈ Aut(G)}. Any equation
of this type is called below an equation with automorphisms. The study of such
equations is justified by many important problems in group theory. For example,
the twisted conjugacy problem for a group G is equivalent to the solution of the
following equation φ(x)u = vx for given u, v ∈ G, φ ∈ Aut(G) (also, see this problem
in [5] for equations with endomorphisms).

There is a connection between the “standard” group equations and equations
with automorphisms. Indeed, for an equation c0x1c1x2c2 . . . ck−1xkck = 1 (ci ∈ G)
we have

c0x1c1x2c2 . . . ck−1xkck = (c0x1c
−1
0 )(c0c1x2c

−1
1 c−1

0 ) . . .

(c0c1c2 . . . ck−1xkc
−1
k−1 . . . c

−1
2 c−1

1 c−1
0 )c0c1c2 . . . ck = x

c−1

0

1 x
(c0c1)−1

2 . . . x
(c0c1c2...ck−1)

−1

k

∏

ci

= φ1(x1)φ2(x2) . . . φk(xk)
∏

ci,

where each φi is an inner automorphism of a group G. Thus, the equation above is
equivalent to the following equation with automorphisms

φ1(x1)φ2(x2) . . . φk(xk)c = 1 (c ∈ G).

This correspondence allows us to study equations with automorphisms by meth-
ods developed for group equations. For instance, in [2] equational domains for group
equations were described. In Section 3 we solve the similar problem for equations
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with automorphisms. The results of Section 3 provide various examples of equa-
tional domains, so it allows to solve a number of open problems posed in universal
algebraic geometry (Section 4). Namely, we solve Problem 4.4.7 from [2]. Notice
that our solution implies negative answers for Problems 5.3.1-4 in [2] (the reduction
of Problem 4.4.7 to Problems 5.3.1-4 was shown in [2]).

2 Definitions

All definitions below are derived from [2], where all notions of algebraic geometry
were formulated for algebraic structures of arbitrary languages.

Denote by L = {·,−1 , 1} the standard language of group theory. Let us fix a
group G and consider the extended language L(A) = {·,−1 , 1} ∪ {φ(1) | φ(1) ∈ A},
where the unary functional symbols φ(1) correspond to a group of automorphisms
A ⊆ Aut(G). Any group G of the language L(A) is called an L(A)-group (implicitly
we fix an interpretation of the symbols φ to the elements of the group A ⊆ Aut(G)).

Using the properties of automorphisms, any L(A)-term in variables X =
{x1, x2, . . . , xn} is equivalent to a product

φ1(x
ε1
i1
)φ2(x

ε2
i2
) . . . φk(x

εk
ik
), (1)

where φj ∈ A, xij ∈ X, εj ∈ {−1, 1}.
An L(A)-equation is an expression t(X) = 1, where t(X) is an L(A)-term. An

L(A)-system is an arbitrary set of L(A)-equations. The set of all solutions of an
L(A)-system S in G is denoted by VG(S). A set Y ⊆ Gn is called L(A)-algebraic if
there exists an L(A)-system S in variables X = {x1, x2, . . . , xn} with Y = VG(S).

An L(A)-group G is an L(A)-equational domain if for any n and arbitrary L(A)-
algebraic sets Y1, Y2 ⊆ Gn the union Y = Y1 ∪ Y2 is also L(A)-algebraic.

Theorem 2.1. ([2]) An L(A)-group G is an L(A)-equational domain iff there exists
an L(A)-system S in variables x, y such that

VG(S) = {(x, y) | x = 1 or y = 1}.

Remark 2.2. Actually, Theorem 2.1 was proved for group languages with con-
stants, but its proof is valid for arbitrary group languages.

Let us recall the results of [2] related to group equations with no automorphisms.
Let H be a fixed subgroup of a group G. We pick elements of H as constants in

the language L(H) = L ∪ {h | h ∈ H}. Any L(H)-term in variables X is actually
an element of the free product H ∗ F (X), where F (X) is the free group generated
by the set X. An L(H)-equation is an expression t(X) = 1, where t(X) is an
L(H)-term. Naturally, one can define the notions of algebraic sets and equational
domains in the language L(H). As we mentioned in Remark 2.2, Theorem 2.1 holds
for L(H)-equational domains.

It was found in [2] the complete description of L(H)-equational domains.

Theorem 2.3. ([2]) An L(H)-group G is an L(H)-equational domain iff there are
not a, b ∈ G, a, b 6= 1 such that

[a, h−1bh] = 1 for any h ∈ H (2)

(here [x, y] = x−1y−1xy).

According to Theorem 2.3, one can obtain (see [2]) few examples of L(H)-
equational domains:
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1. the free group F2 of rank 2 (for H = F2),

2. the alternating group A5 (for H = A5).

Both examples will be used below in the paper.

3 Equational domains

Let us study equations with automorphisms, and the following theorem describes
equational domains in the class of L(A)-groups. Its proof is similar to Theorem 2.3
from [2].

Theorem 3.1. An L(A)-group G is an L(A)-equational domain iff there are not
a, b ∈ G, a, b 6= 1 such that

[a, φ(b)] = 1 for any φ ∈ A. (3)

Proof. Let us prove the “if” statement. We have that any solution (x, y) of the
L(A)-system S = {[x, φ(y)] = 1 | φ ∈ A} satisfies x = 1 or y = 1. Thus, VG(S) =
{(x, y) | x = 1 or y = 1}, and Theorem 2.1 concludes the proof.

Now, we prove the “only if” part of the theorem. By Theorem 2.1, there exists
an L(A)-system S with the solution set {(x, y) | x = 1 or y = 1}. Let w(x, y) = 1
be an arbitrary L(A)-equation of S. Using the following commutator identities,

[s, t]−1 = [t, s], [sp, t] = [s, t]p[p, t], [s−1, t] = [t, s]s
−1

one can equivalently rewrite w(x, y) as a product

w(x, y) = u(x)v(y)
∏

i

[φi(x), ψi(y)]
wi(x,y)

where φi, ψi ∈ A, and wi(x, y), u(x), v(y) are L(A)-terms.
Since (1, y), (x, 1) ∈ VG(S) for any x, y ∈ G, then u(x) = 1 and v(y) = 1 for all

x, y ∈ G. Hence, one can assume that any equation w(x, y) = 1 ∈ S is of the form

∏

i

[φi(x), ψi(y)]
wi(x,y) = 1.

Assume there exist a, b ∈ G, a, b 6= 1 with (3). We have

[a, φi
−1(ψi(b))] = 1 ⇔ aφi

−1(ψi(b)) = φi
−1(ψi(b))a⇔

φi(aφi
−1(ψi(b))) = φi(φi

−1(ψi(b))a) ⇔

φi(a)ψi(b) = ψi(b)φi(a) ⇔ [φi(a), ψi(b)] = 1

and (a, b) ∈ VG(w(x, y) = 1). Thus, the point (a, b) satisfies any equation of S, and
we obtain a contradiction VG(S) 6= {(x, y) | x = 1 or y = 1}.

Let us compare Theorem 3.1 and Theorem 2.3. Obviously, Theorem 2.3 follows
from Theorem 3.1 for A = InnH(G), where InnH(G) = {φh(g) = h−1gh | h ∈ H} is
a subgroup of the group Inn(G) of inner automorphisms.

Moreover, if a group G is an L(H)-equational domain, then G is an L(A)-
equational domain for any A ⊇ InnH(G). Therefore, the alternating group A5 is
an L(A)-equational domain for A = Aut(A5). The free group F2 of rank 2 is also
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an L(A)-equational domain for A = Aut(F2). However, the following statement
provides F2 to be an equational domain with a cyclic group of automorphisms.

Example 3.2. Let F2 be the free group of rank 2, and a, b be free generators. Let
φ denote the automorphism φ(a) = b, φ(b) = a. Then Theorem 3.1 states that F2

is an L(A)-equational domain for A = 〈φ〉.

The following two statements also follow from Theorem 3.1.

Corollary 3.3. If a group G has a nontrivial center Z(G), then G is not an
L(A)-equational domain for any A ⊆ Aut(G).

Proof. Let a ∈ Z(G) \ {1} be a central element. Hence, a commute with any φ(a),
and the pair (a, a) satisfies (3) for all φ.

Corollary 3.4. Let G be an L(A0)-equational domain for some A0 ⊆ Aut(G),
and H = ΠG be a direct power of G indexed by a set I. In other words, any element
of H is an ordered tuple (gi | i ∈ I). Let P be a set of permutations of I such that
P is transitive on I (i.e. for any pair i, j ∈ I there exists π ∈ P with π(i) = j). Let
us define automorphisms of H as follows:

fφ((gi | i ∈ I)) = (φ(gi) | i ∈ I), (4)

σπ((gi | i ∈ I)) = (gπ(i) | i ∈ I), (5)

where φ ∈ A0, π ∈ P. Let A ⊆ Aut(H) denote the group generated by {fφ, σπ | φ ∈
A0, π ∈ P}. Then the L(A)-group H is an L(A)-equational domain.

Proof. Let us take a = (ai | i ∈ I),b = (bi | i ∈ I) ∈ H, a,b 6= 1. Since P
transitively acts on I, there exists ψ ∈ A and an index i ∈ I such that ai 6= 1, ci 6= 1
where ψ(b) = c = (ci | i ∈ I).

Since G is an L(A0)-equational domain, there exists φ ∈ A0 with

[ai, φ(ci)] 6= 1.

Therefore,
[a, fφ(ψ(b))] 6= 1,

and Theorem 3.1 completes the proof.

4 One problem from universal algebraic ge-

ometry

The book [2] contains an open problem (Problem 4.4.7), which can be equivalently
formulated as follows: is there an algebraic structure A of an appropriate language
L such that

1. A is an L-equational domain;

2. A is qω-compact;

3. A is not uω-compact.

4



We solve this problem in the class of L(A)-groups. Let us give all necessary
definitions.

Let A ⊆ Aut(H) be a subgroup of automorphisms of a group H. An L(A)-group
H is qω-compact if for any L(A)-system S and an L(A)-equation w(X) = 1 such
that

VH(S) ⊆ VH(w(X) = 1) (6)

there exists a finite subsystem S′ ⊆ S with

VH(S′) ⊆ VH(w(X) = 1). (7)

An L(A)-group H is uω-compact if for any L(A)-system S and L(A)-equations
wi(X) = 1 (1 ≤ i ≤ m) such that

VH(S) ⊆

m⋃

i=1

VH(wi(X) = 1) (8)

there exists a finite subsystem S′ ⊆ S with

VH(S′) ⊆
m⋃

i=1

VH(wi(X) = 1) (9)

Let us define a group solving the problem above. Let G be a finite group such
that G is an L(A0)-equational domain for A0 = Aut(G) (for example, one may take
G = A5). Following Corollary 3.4, we define the L(A)-group H = ΠG for I = Z,
P = {π} (where π is a permutation π(n) = n + 1 over Z), and A is generated by
the automorphisms fφ, σπ (4,5).

We denote the subgroup generated by {fφ | φ ∈ Aut(G)} ⊆ A by AG. The
automorphism σπ is denoted by σ below. By the definition, σ acts on an element
(gi | i ∈ Z) by

σ(gi) = gi+1.

Thus, we should prove that H is

1. an L(A)-equational domain (it immediately follows from Corollary 3.4);

2. qω-compact (Lemma 4.7);

3. not uω-compact (Lemma 4.1).

Below we will use the following denotation

σk(x) =







σ(σ(. . . σ
︸ ︷︷ ︸

k times

(x) . . .)) for k > 0,

σ−1(σ−1(. . . σ−1

︸ ︷︷ ︸

k times

(x) . . .)) for k < 0,

x for k = 0

The automorphism σ commute with any fφ, i.e. σ(fφ(h)) = fφ(σ(h)) for all
h ∈ H. Hence any equation over the L(A)-group H can be written in the following
form

σk1(f1(x
ε1
j1
))σk2(f2(x

ε2
j2
)) . . . σkl(fl(x

εl
jl
)) = 1, (10)

where fi ∈ AG, εi ∈ {−1, 1}, kj ∈ Z.

Lemma 4.1. The L(A)-group H is not uω-compact.
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Proof. Since H is an L(A)-equational domain, there are no a,b ∈ H such that
a,b 6= 1 and [a, φ(b)] = 1 for any φ ∈ A. Hence, any solution of the L(A)-system
S = {[x, φ(y)] = 1 | φ ∈ A} satisfies either x = 1 or y = 1. Thus, the following
inclusion

VH(S) ⊆ VH(x = 1) ∪VH(y = 1).

holds.
Let S′ be a finite subsystem of S and n = max{|k| | σk occurs in S′}. Define

a = (ai | i ∈ Z), b = (bi | i ∈ Z) such that

ai =

{

g, if i = 0

1, otherwise
bi =

{

g, if i = n+ 1

1, otherwise

where g ∈ G \ {1}.
Let A′ = {φ | [x, φ(y)] = 1 ∈ S′} (i.e. A′ is the set of all φ such that the equation

[x, φ(y)] = 1 belongs to S′) be a finite set of automorphisms. By the choice of b,
the element φ(b) has 1 at the 0-th coordinate for each φ ∈ A′. Therefore, φ(b)
commutes with a and we obtain (a,b) ∈ VH(S′). Since a 6= 1, b 6= 1, then the
inclusion

VH(S′) ⊆ VH(x = 1) ∪VH(y = 1)

fails. Thus, H is not uω-compact.

There is a correspondence between L(A)-systems over H and L(A0)-systems
over G. Let S be an L(A)-system in variables X = {x1, x2, . . . , xn}. The system S

defines an L(A0)-system γ(S) over G in infinite number of variables Y = {yij | i ∈
Z, 1 ≤ j ≤ n} (below εi ∈ {−1, 1}):

σk1(f1(x
ε1
j1
))σk2(f2(x

ε2
j2
)) . . . σkl(fl(x

εl
jl
)) = 1 ⇔

f1(y
ε1
k1+k j1

)f2(y
ε2
k2+k j2

) . . . fl(y
εl
kl+k jl

) = 1 ∈ γ(S) for all k ∈ Z. (11)

In other words, γ(S) is the coordinate-wise version of S over the direct power
H = ΠG.

Example 4.2. If S = {σ(x1)x2 = 1} then

γ(S) = {. . . , y−11y−22 = 1, y01y−12 = 1, y11y02 = 1, y21y12 = 1, y31y22 = 1, . . .} =

{yk1y(k−1)2 = 1 | k ∈ Z}.

By the definition, any L(A0)-equation u(Y ) = 1 ∈ γ(S) may come from several
L(A)-equations W = {wi(X) = 1} of the system S. Let us take an arbitrary
equation wi(X) = 1 from W and denote this correspondence by γ−1(u(Y ) = 1) =
{wi(X) = 1}.

Remark 4.3. Below we will omit brackets in map compositions, i.e. we will write
αβ(x) instead of α(β(x)).

Lemma 4.4. For any L(A0)-equation

f1(y
ε1
i1 j1

)f2(y
ε2
i2 j2

) . . . fl(y
εl
il jl

) = 1 (12)

and any number k ∈ Z the equation

f1(y
ε1
i1+k j1

)f2(y
ε2
i2+k j2

) . . . fl(y
εl
il+k jl

) = 1 (13)

also belongs to γ(S).
Further, if P = (pij | i ∈ Z, 1 ≤ j ≤ n) ∈ VG(γ(S)) then any shift σk(P ) = (sij |

i ∈ Z, 1 ≤ j ≤ n), sij = pi+k j (k ∈ Z) is also a solution of γ(S).

6



Proof. Observe that the system S from Example 4.2 clearly satisfies the statements
of this lemma.

The first statement directly follows from the definition of the system γ(S). Let
us prove the second one.

Assume there exists an L(A0)-equation (12) with
f1(s

ε1
i1 j1

)f2(s
ε2
i2 j2

) . . . fl(s
εl
il jl

) 6= 1 or, equivalently,

f1(p
ε1
i1+k j1

)f2(p
ε2
i2+k j2

) . . . fl(p
εl
il+k jl

) 6= 1 (14)

However, γ(S) contains the equation u(Y ) = 1 (13), and, by (14), we have
u(P ) 6= 1 ⇒ P /∈ VG(γ(S)).

Let S0,S1 be L(A0)-systems in variables Y = {yij | i ∈ Z, 1 ≤ j ≤ n}. We say
that S0,S1 are Z-equivalent for a given Z ⊆ Y if the projections of VG(S0) and
VG(S1) onto the coordinates Z are the same (in other words, for each P = (pij |
i ∈ Z, 1 ≤ j ≤ n) ∈ VG(Sk) there exists Q = (qij | i ∈ Z, 1 ≤ j ≤ n) ∈ VG(S1−k)
with pij = qij for each yij ∈ Z, k ∈ {0, 1}.

Lemma 4.5. Let S0 be an L(A0)-system in variables Y = {yij | i ∈ Z, 1 ≤ j ≤ n}
over a finite group G. Then for any finite Z ⊆ Y there exists a finite Z-equivalent
subsystem S1 ⊆ S0.

Proof. The statement immediately follows from the finiteness of the group G.

Let us denote a subsystem of an L(A0)-system γ(S) by γZ(S), if γZ(S) is Z-
equivalent to γ(S).

Let Z be a set of variables occurring in an L(A0)-system γ(S). The system γ(S)
may contain subsystems which are Z-equivalent to γ(S) (as it proved above, for
finite Z such subsystems always exist). Let us denote the class of such systems by
Z(γ(S)). We pick an arbitrary system from Z(γ(S)) and denote it by γZ(S).

Suppose an L(A0)-system γZ(S) was constructed by an L(A)-system S and a
finite set Z. By the definition, γ−1γZ(S) ⊆ S is the set of equations from S which
were essentially used in the construction of γZ(S). One can apply the operator γ to
γ−1γZ(S) and obtain a new L(A0)-system γγ−1γZ(S).

Let us summarize all simple properties of the systems
S, γ(S), γZ (S), γ

−1γZ(S), γγ
−1γZ(S):

1. S, γ−1γZ(S) are L(A)-systems and their solutions belong to Hn;

2. γ(S), γZ(S), γγ
−1γZ(S) are L(A0)-systems and coordinates of their solutions

belong to G;

3. the systems γZ(S), γ
−1γZ(S) are finite for finite Z;

4. we have the inclusions γ−1γZ(S) ⊆ S, γZ(S) ⊆ γγ−1γZ(S) ⊆ γ(S).

5. the L(A0)-systems γγ−1γZ(S), γZ(S), γ(S) are Z-equivalent.

Lemma 4.6. Let C be a finite set of pairs (i, j), i ∈ Z, 1 ≤ j ≤ n Then γγ−1γZ(S)
is Zk-equivalent to γ(S) for any set Zk = {yi+k j | (i, j) ∈ C}, k ∈ Z.

Proof. Let us take a point P = (pij | i ∈ Z, 1 ≤ j ≤ n) ∈ VG(γγ
−1γZ(S)) and

consider the shift R = σk(P ) = (rij | i ∈ Z, 1 ≤ j ≤ n), rij = pi+k j. According to
Lemma 4.4, R is a solution of VG(γγ

−1γZ(S)). By the Z-equivalence, there exists
a point R′ = (r′ij | i ∈ Z, 1 ≤ j ≤ n) ∈ VG(γ(S)) with r′ij = rij = pi+k j for any
(i, j) ∈ C. By Lemma 4.4, the point R′′ = σ−k(R

′), R′′ = (r′′ij | i ∈ Z, 1 ≤ j ≤ n)
is a solution of γ(S). By the definition of R′′, for each (i, j) ∈ C we have r′′i+k j =

r′ij = rij = pi+k j , and, therefore, γγ
−1γZ(S) is Zk-equivalent to γ(S).
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Lemma 4.7. The L(A)-group H is qω-compact.

Proof. Suppose an L(A)-system S and an L(A)-equation w(X) = 1 (10) satisfy (6).
The L(A)-term w(X) defines the set of pairs

C = {(k1, j1), (k2, j2), . . . , (kl, jl)}.

Let us put S′ = γ−1γZ(S) for Z = {yij | (i, j) ∈ C} and prove (7). Assume there
exists a point (h1,h2, . . . ,hn) ∈ VH(S′) \ VH(w(X) = 1), hj ∈ H. In other words,
there exists P = (pij | i ∈ Z, 1 ≤ j ≤ n) ∈ VG(γγ

−1γZ(S)) \ VG(γ(w(X)) = 1).
We have

γ(w(X) = 1) = {f1(y
ε1
k1+k j1

)f2(y
ε2
k2+k j2

) . . . fl(y
εl
kl+k jl

) = 1 | k ∈ Z}

and there exists k ∈ Z such that

f1(p
ε1
k1+k j1

)f2(p
ε2
k2+k j2

) . . . fl(p
εl
kl+k jl

) 6= 1

By Lemma 4.6, there exists a point Q = (qij | i ∈ Z, 1 ≤ j ≤ n) ∈ VG(γ(S))
with qi+k j = pi+k j for any (i, j) ∈ C. Therefore, w(Q) 6= 1.

Thus, Q ∈ VG(γ(S)) \ VG(γ(w(X) = 1)). The point Q defines R =
(r1, r2, . . . , rn) ∈ Hn, rj = (qij | i ∈ Z) such that R ∈ VG(S) \ VG(w(X) = 1),
and we obtain a contradiction with (6).

5 Conclusions

The construction of the group H from Corollary 3.4 is close to the notion of wreath
product. In particular, the group H from Section 4 is structurally similar to the
wreath product G ≀ Z.

This correspondence allows us to remind an important problem of universal
algebraic geometry posed by B. Plotkin [3].

Problem (B. Plotkin [3]). Let H = A ≀ B be the wreath product of the groups A
and B.

1. When H is qω-compact?

2. When H is qω-compact but not equationally Noetherian (a group is equation-
ally Noetherian if the subsystem S′ ⊆ S in (7) does not depend on an equation
w(X) = 1)?

3. Is H necessarily qω-compact if both A,B qω-compact?

Let us explain the assertion of the problem above. Originally, B. Plotkin posed
it for group equations in the “standard” language L = {·,−1 , 1}. However, in [6]
the Problem was partially solved for languages with constants.

Theorem 5.1. [6] If a group A is not abelian and B is infinite, then H is not
qω-compact in the language with constants L(H) = L ∪ {h | h ∈ H}.

Thus, for the language L(H) the following problem remains open.

Problem. Let us consider the class of L(H)-equations. Is H qω-compact (equa-
tionally Noetherian) for abelian A?

In the conclusion of the whole paper, we should discuss other ways to solve
Problems 4.4.7, 5.3.1-4 from [2]. Usually (see [2]), the negative solution of a prob-
lem in universal algebraic geometry may be found in structures of pure relational
languages, since such languages admit a very simple view of equations.
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However, we cannot solve Problems 5.3.1-4 in relational languages. For this rea-
son, we had to develop the algebraic geometry over equations with automorphisms.
Thus, one can formulate a problem.

Problem. Is there an algebraic structure A of pure relational language L such that

1. A is an L-equational domain,

2. A is qω-compact,

3. A is not uω-compact?
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