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GENERIC SUBGROUPS OF GROUP AMALGAMS

Benjamin Fine, Alexei Myasnikov, Gerhard Rosenberger

Abstract. For many groups the structure of finitely generated subgroups is generically simple.
That is with asymptotic density equal to one a randomly chosen finitely generated subgroup has
a particular well-known and easily analyzed structure. For example a result of D.B.A.Epstein
says that a finitely generated subgroup of GL(n,R) is generically a free group. We say that a
group G has the generic free group property if any finitely generated subgroup is generically
a free group. Further G has the strong generic free group property if given randomly
chosen elements g1, ..., gn in G then generically they are a free basis for the free subgroup
they generate. In this paper we show that for any arbitrary free product of finitely generated
infinite groups satisfies the strong generic free group property. There are also extensions to
more general amalgams - free products with amalgamation and HNN groups. These results
have implications in cryptography. In particular several cryptosystems use random choices of
subgroups as hard cryptographic problems. In groups with the generic free group property any
such cryptosystem may be attackable by a length based attack.

1. Introduction

If P is a group property and G is a group then we say that subgroups of G are generically
P if a randomly chosen subgroup H of G generically has property P. Equivalently this
means that the asymptotic density (see section 2) of subgroups H of G that have property
P is one. For example a result of D.B.A.Epstein [E] says that a finitely generated subgroup
of GL(n,R) is generically a free group. In particular this can be applied to the classical
Modular group PSL(2,Z) so that with asymptotic density one, n randomly chosen 2 × 2
projective integral matrices of determinant one generate a free group. Recall that group
theoretically the Modular group PSL(2,Z) is a nontrivial free prduct Z2 ? Z3. Although
this result and Epstein’s proof seem specialized to linear groups (see section 3), this type of
behavior turns out to be not uncommon. For many groups the structure of finitely generated
subgroups is generically simple. That is with asymptotic density one a randomly chosen
finitely generated subgroup has a particular well-known and easily analyzed structure.

In general we say that a group G has the generic free group property if a finitely
generated subgroup is generically a free group. In this language Epstein’s result is that the
group GL(n,R) satisfies the generic free group property. Further G has the strong generic
free group property if given randomly chosen elements g1, ..., gn in G then generically
they are a free basis for the free subgroup they generate. Even stronger we say that G
satisfies the dominant Nielsen property if given randomly chosen elements g1, ..., gn in
G then generically they are a minimal Nielsen basis for the free subgroup they generate.
Jitsukawa [J] showed that finitely generated free groups have the strong generic free group
property while Myasnikov and Ushakov [MSU] showed that pure braid groups also have the
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strong generic free group property. This last result has applications in the cryptanalysis
of both the Ko-Lee cryptosystem and the Anshel-Anshel-Goldfeld cryptosystem (see [SU]
and [MU]). Finally Gilman, Myasnikov and Osin [GMO] showed that torsion-free hyperbolic
groups have the generic free group property.

In this paper we prove that an arbitrary free product of finitely generated infinite groups
satisfies the strong generic free group property. Under some restrictions more general ar-
bitrary amalgams also satisfy the strong generic free group property. These results have
implications in nonabelian group cryptography (see [SU],[MU ]). In cryptographic methods
using nonabelian groups encryption is usually done within subgroups of given finitely pre-
sented groups. As one way functions for cryptography, ”hard” group theoretical problems
such as the conjugator search problem are used (see [AAG]). In these protocols random
choices of subgroups are made. In many cases, even though the overall group theoretical
problem is hard to solve, generically the subgroups have a nice structure in which the prob-
lem can be solved. This affects the security of the cryptosystem and must be dealt with
in both implementing the cryptosystem and in devising parameters for the implementation
(see [BMS]). Cryptosystems involving these methods employing groups that have either the
generic free group property or the strong generic free group property are subject to length
based attacks similar to attacts on pure free group cryptosystems (see [SU] and [MiU]).

The proofs of our main results depend upon the fact that in a free product a random
choice of finitely many elements of bounded syllable length has asymptotic density zero. This
is related to a result of Goldstein [G] that says that in a free group elements of bounded
length have asymptotic density zero.

The outline of this paper is as follows. In section 2 we explain the concept of asymp-
totic density and the meaning of choosing random elements and random finitely generated
subgroups of amalgams. In section 3 we prove our main result for free products. We also
present an alternative proof of the weaker result that an arbitrary free product of infinite
groups has the generic free group property. Although this weaker result is subsumed by the
main result this alternative proof gives insight into what is happening generically relative
to Kurosh bases. In section 4 we consider some extensions of the results to more general
amalgams. Along these lines we show that many cyclically pinched one-relator groups and
in particular all orientable surface groups of genus 2 or greater satisfy the strong generic
free group property.

2. Asymptotic Density and Random Elements

Our two main results concerning arbitrary free products are the following - the first of
which says that an arbitrary free product of inifnite groups satisfies the generic free group
property and the second which says that an arbitrary free product of infinite groups satisfies
the strong generic free group property.

Theorem 3.1. Let A and B be arbitrary finitely generated infinite groups and let G = A?B
be their free product. Then a finitely generated subgroup of G is generically free.

Theorem 3.2. Let A and B be arbitrary finitely generated infinite groups and let G = A?B
be their free product. Let x1, ..., xn be n randomly chosen elements from G. Then generically
these elements form a free basis for the subgroup they generate.

Before proving these we explain the concept of asymptotic density and generic subgroups
and then describe how we choose random elements and random finitely generated subgroups
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in free products. These methods carry through to more general amalgams.
Asymptotic density is a general method to compute densities and/or probabilities on

infinite discrete sets where each individual outcome is tacitly assumed to be equally likely.
The origin of aymptotic density lie in the attempt to compute probabilities on the whole set
of integers where each integer is considered equally likely. The method can also be used where
some probability distribution is assumed on the elements. It has been effectively applied
to determining densities within infinite discrete finitely generated groups where random
elements are considered as being generated from random walks on the Cayley graph of the
group. The paper by Borovik, Myasnikov and Shpilrain [BMS] provides a good general
description of this method in group theory. Let P be a group property and let G be a
finitely generated group. We want to determine the measure of the set of elements which
satisfy P. For each positive integer n let Bn denote the n-ball in G. Let |Bn| denote the
actual size of Bn (which is an integer since G is finitely generated) or the measure of |Bn|
if a distribution has been placed on the elements of G. Let S be the set of elements in G
satisfying P. The asymptotic density of S is then

lim
n→∞

|S ∩Bn|
|Bn|

provided this limit exists. We say that the property P is generic if the asymptotic density
of the set S of elements satisfying P is one.

This concept can be easily extended to properties of finitely generated subgroups, We
consider the asymptotic density of finite sets of elements that generate subgroups that have
a considered property. For example to say that a group has the generic free group property
we mean that

lim
m,n→∞

|Sm ∩Bn|
|Bn| = 1

where Sm is the collection of finite sets of elements of size m that generate a free subgroup.
Clearly these definitions depend on how we choose random elements in G. We now

describe how to choose random elements and random finitely generated subgroups in a free
product. Let G = A ? B where A and B are infinite groups. Since we will be dealing with
finitely generated subgroups without loss of generality we may assume that the factors A
and B are finitely generated.

Now assume that A =< a1, ..., aN > and B =< b1, .., bM > but we make no assumption
on the distributions within A and B. Essentially choosing a random element in A ? B is a
random walk on the Bass-Serre tree with a random choice from each vertex. To randomly
choose an element we do the following. Choose a 0 or a 1 to see whether an element starts
with an A element or a B element. We then randomly choose a integer n to be the syllable
length. To pick an element first choose 0 or 1. Suppose the choice is 0. Then A is picked
first. We then randomly pick an A element followed by a random B element and so on. The
probability of choosing A elements and B elements depends on the distribution of elements
within the factors. Syllable length is random on the natural numbers even if we don’t know
the distribution in the factors.

To permit counting we are going to randomly choose within the total random choice in
finite balls in A and B. (These choices will depend on the distribution in the factors but
will not affect our final densities.)

To choose a random element we make 4 random choices:
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(1) n = syllable length
(2) m = total length in the alphabet on the generators
(3) A n-partition k1, ..., kn of m with no ki = 0
(4) Choose 0 or 1

To then pick a random element we do the following:
The 0 or 1 pick says that you’re starting with either A or B. Suppose its 0 so we pick

first from A. We choose a random k1 length element in A. Notice that this depends on the
distribution in A but that doesn’t affect our final result. We then pick a random k2 length
element in B and so on.

Notice the probabilities of picking elements in A and B of shorter lengths may not be
the same as longer lengths or vice versa but all we are interested in is the relative picking
of fixed syllable length versus arbitrary syllable length.

Randomly choosing a finitely generated subgroup is equivalent to randomly choosing an
integer p and then randomly choosing p elements.

3. Generic Subgroups of Free Products

In this section we prove the two main results for free proucts; Theorem 2.1 and the
stronger Theorem 2.2. Before looking at these results we look at Epstein’s result in
GL(n,R) to gain some insight into what is occurring there. GL(n,R) lives in Rn2

that
is n2-dimensional space. Consider standard measure on this space and let En(R) be the set
of all real n× n matrices. Since

det : En(R) → R

is a continuous function it follows that the set of singular matrices has measure zero and
therefore GL(n,R) is generically n2-dimensional. Suppose M1, ..., Mk are k randomly chosen
matrices in GL(n,R). If they did not generate a free group then there is a nontrivial relation
on M1, ...,Mk and hence a nontrivial word W with W (M1, ..., Mk) = I. This imposes an
algebraic relation on the elements in M1, ..., Mk and thus implies that as elements of Rn2

they live in a nontrivial algebraic variety and hence a lower dimensional space. It follows
that in this case, that is M1, .., MK do not generate a free group, the group generated by
M1, ...,Mk must have measure zero. Although not exactly the same, our proof will use that
elements of bounded syllable length in a free product have asymptotic density 0.

We first look at the stronger result Theorem 2.2.

Theorem 3.2. Let A and B be arbitrary finitely generated infinite groups and let G =
A ? B be their free product. Let {x1, ..., xn} be n randomly chosen elements from G. Then
generically these elements are a free basis for the subgroup they generate.

We will denote the asymptotic density of types of subsets S of the group G by ρ(S) when
this asymptotic density exists. The proof of Theorem 2.2 will follow from a series of lemmas.

Lemma 3.1. In G = A?B the asymptotic density of elements of syllable length one is zero

Proof. Fix generating systems for A and B. For any distribution on A and B the number
of elements of minimal length m in the given generating system is less than the number
of strings of length m. Further for each syllable we are randomly choosing from A or B.
Therefore for this probability and asymptotic density question we may assume that A and
B are free on their generating systems and count strings.
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It is straighforward that in randomly choosing positive integers the asymptotic density
of any bounded set is zero. Consider, for example, randomly choosing the integer 1. In the
first n the probability is clearly 1

n . Letting n →∞ gives the asymptotic density of 0.
Now let Gmn denote the number of strings in A ? B of syllable length n and total length

m. Let G1 be the elements of syllable length 1 that is elements of either A or B. Since in
randomly picking elements in G we must make a choice of syllable length the asymptotic
density of chooisng an element of syllable length one is less than or equal to randomly
choosing the integer 1 among the natural numbers N. Hence it follows that

lim
n→∞

|G1 ∩Gnm|
|Gmn| = 0

independent of m. Therefore the asymptotic density is zero.

Notice that if S is a finite subset of G then the asymptotic density that S contains
an element of syllable length one is less than or equal to the overall aymptotic density
of radnomly choosing an element of syllable length one. Therefore we have the following
corollary.

Corollary 3.1. If S is a finite set in A ? B then the asymptotic density of S is zero if S
has any elements of syllable length one.

Further if k is a fixed positive integer then the same argument shows that choosing a
random element of syllable length bounded by k is also zero.

Corollary 3.2. If k is a fixed positive integer then asymptotic density of randomly choosing
an element of A ? B of syllable length bounded by k is zero.

Lemma 3.2. Let S = {x1, ..., xn} be a finite set of elements. Then

ρ({x1, .., xn} is a free basis ) = ρ({x1, .., xn} is a free basis

given that x1, ..., xn all have syllable length > 1)

Here by a free basis we mean a free basis for the subgroup they generate.

In essence this lemma says that we may assume that in choosing a finitely generated
subgroup each generator has syllable length > 1.

Proof. Let
U be the set of those {x1, ..., xn} such that {x1, ..., xn} is a free basis. Let
V be the subset of U such that all x1, .., xn have syllable length ¿ 1and
W = V ′ the subset of U such that at least one of x1, ..., xn has syllable length 1.
We then have

ρ(U) = ρ(U/V )ρ(V ) + ρ(U/V ′)ρ(V ′)

but
ρ(V ′) = ρ( at least one of x1, ..., xn has syllable length 1) = 0

and
ρ(V ) = 1
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Lemma 3.3. Let A be an infinite finitely generated group. Then the aymptotic density of
picking two random elements a, b and having a = b−1 is zero.

Proof. Let A = F/N . Then a result of Olshanski [O] shows that the asymptotic density of
randomly choosing an element of F which is in N is zero. The lemma is then equivalent to
choosing two elements of F , say u, v, with uv−1 ∈ N .

Lemma 4. Let x1, ..., xn ∈ G = A ? B be all of syllable length > 1. Then

ρ({x1, ..., xn} is a free basis ) = 1

Here by a free basis we mean a free basis for the subgroup they generate.

Proof. Suppose that we choose x1, .., xn each of syllable length > 1. Then x1, ..., xn cannot
satisfy a nontrivial relation unless the final syllable of one of them cancels the initial syllable
of another. Therefore the probability of being a free basis reduces to the probability of
randomly choosing two elements g1, g2 from either A or B and having g−1

1 = g2. It follows
from Lemma 3.3 that the asymptotic density in doing this is zero. Hence the random
elements, with asymptotic density one, must generate a free group.

Proof. (Theorem 2.2) We can string these lemmas together to prove Theorem 2.2. Suppose
that {x1, ..., xn} is a randomly chosen finite subset from G = A ? B. From Lemma 2
the asympotitic density that they form a free basis is the same as the asymptotic density
that they form a free basis given that all the elements have syllable length ¿ 1. Therefore
generically we may assume that each xi has syllable length greater than 1. Then from
lemma 4 the asymptotic density that they form a free basis is 1 completing the proof.

We now give an alternative proof of the weaker result that an arbitrary free product of
infinite groups has the generic free group property.

Theorem 2.1. Let A and B be arbitrary finitely generated infinite groups and let G = A?B
be their free product. Then G satisfies the generic free group property.

Proof. Let H =< g1, ..., gn > be a randomly chosen finitely generated subgroup of A ? B.
From the Kurosh theorem H must have the following structure

H = F ? A1 ? ... ? Al ? B1 ? ... ? Bk

where F is a free group and Ai is a conjugate of a subgroup of A and Bj is a conjugate of a
subgroup of B. An easy modification of Lemma 3.1 above shows that randomly choosing a
conjugate of a subgroup of A or B must have asymptotic density zero. Therefore generically
H is F , the free group part.

We could also further formalize this by randomly choosing Kurosh bases, that is modifying
the randomization procedure by only choosing Kurosh bases and counting strings within
these. The crux of this counting also comes down to the fact that choosing syllable length
is generically zero.

4. Generic Subgroups of More General Amalgams

In this section we consider extensions of the string generic free group property to more
general group amalgams. In extending these results we must be careful about very general
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statements. A great deal of nonstandard behavior can be exhibited by amalgams. For
example the two-generator Fuchsian group

< a, b; a2b2 = 1 >=< a; > ?
{a2=b−2}

< b; >

is solvable and hence cannot satisfy the strong generic free group property.
Similarly the infinite dihedral group Z2 ?Z2 is also solvable and hence cannot satisfy the

strong generic free group property.
To handle more general amalgams the following straightforward result is extremely useful.

Theorem 4.1. Let G be a group and N a normal subgroup. If the quotient G/N satisfies
the strong generic free group property then G also satisfies the strong generic free group
property.

Proof. If any quotient G/N satisfies the strong generic free group property it is clear that
G must be infinite. Let g1, ..., gn be finitely many randomly chosen elements of G. Since G
is infinite then an easy modification of Olshanskii’s result used in the proof of Lemma 3.3
shows that generically g1, ..., gn are not in N .

It follows that their images g1, ..., gn in G/N are nontrivial. Since G/N satisfies the
strong generic free group property then generically in G/N the elements g1, ..., gn are a free
basis for the subgroup they generate. Since the rank is the same their preimages g1, .., gn

are also a free basis for the subgroup of G they generate. Since g1, ..., gn are arbitrary and
generically do not fall in N it follows that G satisfies the strong generic free group property.

Using this we can now prove.

Theorem 4.2. Let A and B be arbitrary finitely generated infinite groups and let G = A?
H

B

be their amalgamated free product. Let H1 and H2 be the copy of H in A and B respectively.
Suppose that A/N(H1) is infinite and B/N(H2) is infinite where N(Hi) is the normal closure
of Hi in the respective factors. Then G satisfies the strong generic subgroup property.

Proof. Let H1 be the copy of H in A and H2 the copy of H in B so that the group G has
the presentation

G =< A,B; rel(A), rel(B),H1 = H2 > .

Consider in G the normal closure N(H) of the subgroup H. Then the quotient has the
presentation

G/N(H) =< A, B; rel(A), rel(B),H1 = H2 = {1} > .

This is easily seen to be the free product of A/N(H1) and B/N(H2) and therefore

G/N(H) ∼= A/N(H1) ? B/N(H2).

Since each factor is infinite it follows from Theorem 3.2 that G/N(H) satisfies the strong
generic subgroup property. From Theorem 4.1 then so does G.

Recall that a cyclically pinched one-relator group is a group with a finite presenta-
tion of the form

G = F1 ?
{U=V }

F2



8 FINE–MYASNIKOV–ROSENBERGER

where F1, F2 are finitely generated free groups and U, V are nontrivial words in the respective
free groups. If U is not a power of a primitive element in F1 and V is not a power of a
primitive element in F2 then the quotient of F1 and F2 by the normal closure of U and V
respectively is a nontrivial, infinite one-relator group. It follows that Theorem 4.2 can be
applied.

Corollary 4.1. Let G be a cyclically pinched one-relator group as above. Assume that U
and V are not a power of a primitive element in F1 and F2 respectively. Then G satisfies
the strong generic subgroup property.

In particular any orientable surface group of genus g ≥ 2 falls into the class of cyclically
pinched one-relator groups.

Corollary 4.2. Any orientable surface group of genus g ≥ 2 and any nonorientable surface
group of genus g ≥ 4 satisfies the strong generic subgroup property.

The case with HNN groups becomes even more complicated but some things can be
proved as consequences of the amalgam result above. Notice first however that any HNN
group with free part of rank ≥ 2 must have a free quotient of rank ≥ 2 and hence satisfy
the strong generic subgroup property.

Lemma 4.1. Any HNN group with free part of rank > 1 satisfies the strong generic subgroup
property.

Therefore only the case where the free part has rank 1 must be considered.

Theorem 4.3. Let G be an HNN extension of the group B with a presentation

G =< t, B; rel(B), t−1Ut = V >

with U, V nontrivial isomorphic subgroups of B. Let NB(< U, V >) be the normal closure
of the subgroup < U, V > in B. Then if B/NB(< U, V >) is infinite G satisfies the strong
generic subgroup property.

Proof. Let N = NG(U) be the normal closure of the subgroup U in G. Then

G/N =< t,B; rel(B), U = {1}, V = {1} >∼=< t > ?B/NB(< U, V >).

Since each factor is infinite again from Theorem 4.1 it follows that G satisfies the strong
generic subgroup property.

Extensions of centralizers play a large role in the study of the elementary theory of free
groups. Recall that if B is a group and U ∈ B then a rank one extension of centralizers
of B is a group with a presentation

G =< t,B; rel(B), t−1UT = U > .

Theorem 4.4. Let G be a rank one extension of centralizers of the group B. Suppose G
has a presentation

G =< t,B; rel(B), t−1Ut = U >

wihere U is a nontrivial element of B. If B/NB(U) is infinite, where NB(U) is the normal
closure of U in B, then G satisfies the strong generic subgroup property .
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Proof. Let N = NG(U) the normal closure of U in G. Then

G/N =< t, B; rel(B), U = 1 >∼=< t > ?B/NB(U).

As in the previous proof since each factor is infinite it follows that G satisfies the strong
generic subgroup property.

We close by briefly mentioning the situation where the factors are finite. We must be
careful in this case even for free products. As we mentioned the infinite dihedral group
Z2 ? Z2 is solvable so cannot satisfy the strong generic subgroup property. However if at
least one factor has order greater than 2, the Kurosh basis analysis yields the weaker generic
free group property.

Theorem 4.5. Let G = A ? B be a nontrivial free product. If at least one factor has order
greater than 2 then G satisfies the generic free group property.
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