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Actions of the braid group, and new algebraic

proofs of results of Dehornoy and Larue.

Llúıs Bacardit and Warren Dicks
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Abstract

This article surveys many standard results about the braid group with
emphasis on simplifying the usual algebraic proofs.

We use van der Waerden’s trick to illuminate the Artin-Magnus proof
of the classic presentation of the algebraic mapping-class group of a punc-
tured disc.

We give a simple, new proof of the Dehornoy-Larue braid-group tri-
chotomy, and, hence, recover the Dehornoy right-ordering of the braid
group.

We then turn to the Birman-Hilden theorem concerning braid-group
actions on free products of cyclic groups, and the consequences derived
by Perron-Vannier, and the connections with the Wada representations.
We recall the very simple Crisp-Paris proof of the Birman-Hilden theo-
rem that uses the Larue-Shpilrain technique. Studying ends of free groups
permits a deeper understanding of the braid group; this gives us a gener-
alization of the Birman-Hilden theorem. Studying Jordan curves in the
punctured disc permits a still deeper understanding of the braid group;
this gave Larue, in his PhD thesis, correspondingly deeper results, and,
in an appendix, we recall the essence of Larue’s thesis, giving simpler
combinatorial proofs.

2000Mathematics Subject Classification. Primary: 20F36; Secondary: 20F34,
20E05, 20F60.

Key words. Braid group. Automorphisms of free groups. Presentation. Order-

ing. Ends of groups.

1 General Notation

Let N denote the set of finite cardinals, {0, 1, 2, . . .}.
Throughout, we fix an element n of N.

1

http://arxiv.org/abs/0705.0587v1


2 Actions of the braid group

Let i, j ∈ Z and let v be a symbol. We define

[i↑j] := {k ∈ Z | i ≤ k and k ≤ j},

[i↓j] := {k ∈ Z | i ≥ k and k ≥ j},

([i↑j]) :=

{
(i, i+ 1, . . . , j − 1, j) ∈ Zj−i+1 if i ≤ j,

() ∈ Z0 if i > j,

([i↓j]) :=

{
(i, i− 1, . . . , j + 1, j) ∈ Zi−j+1 if i ≥ j,

() ∈ Z0 if i < j.

Also, v[i↑j] := {vk | k ∈ [i↑j]}, and this will usually be a subset of some ambient
set, G. If i ≤ j, v([i↑j]) := (vi, vi+1, . . . , vj−1, vj) ∈ Gj−i+1, and, if G is a group,
Πv[i↑j] := vivi+1 · · · vj−1vj ∈ G. If i > j, v([i↑j]) := (), the 0-tuple, and Πv[i↑j] := 1,
the empty product. We define v[i↓j], v([i↓j]) and Πv[i↓j], analogously. Thus, if
i ≥ j, Πv[i↓j] := vivi−1 · · · vj+1vj. Finally, [i↑∞[ := {k ∈ Z | i ≤ k}.

For elements a, b of a group G, a := a−1, ab := bab, anb := banb, and [a] :=
{ag | g ∈ G}, the conjugacy class of a in G. The group of all automorphisms of
G will be denoted by Aut(G).

An ordering of a set will mean a total order for the set. An ordered set is
one endowed with a specific ordering. We will speak of n-tuples for a given set
and n-tuples of elements of a given set.

2 Outline

Let Σ0,1,n := 〈{z1} ∪ t[1↑n] | z1Πt[1↑n] = 1〉. Then Σ0,1,n is a one-relator group
which is freely generated by the set t[1↑n].

Let Out+0,1,n denote the subgroup of Aut(Σ0,1,n) consisting of all automor-
phisms of Σ0,1,n which map the set {z1}∪{[ti]}i∈[1↑n] to itself. Let Out0,1,0 denote
Aut(Z), and, for n ≥ 1, let Out0,1,n denote the group of all automorphisms of
Σ0,1,n which map the set {z1, z1} ∪ {[ti], [ti]}i∈[1↑n] to itself. Then Out+0,1,n is a
subgroup of index two in Out0,1,n. We call Out0,1,n the algebraic mapping-class
group of the surface of genus 0 with 1 boundary component and n punctures;
see [18] for background on algebraic mapping-class groups.

Frequently, Out+0,1,n will be denoted Bn and called the n-string braid group.
(The similar symbol Bn denotes a certain Coxeter diagram.)

In Section 3, we define σ[1↑n−1] ⊆ Out+0,1,n, we review Artin’s 1925 proof
that σ[1↑n−1] generates Out+0,1,n, and we present intermediate results that we
shall apply in subsequent sections. In Section 4, we recall the definition of
Artin groups, specifically Artin〈An〉, Artin〈Bn〉 and Artin〈Dn〉. In Section 5, we
verify Artin’s 1925 result that Out+0,1,n ≃ Artin〈An−1〉, by combining Magnus’
1934 proof, Manfredini’s observation that Out+0,1,(n−1)⊥1 ≃ Artin〈Bn−1〉, and the
van der Waerden trick, to condense the calculations involved.
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In Section 6, we use results of Section 4 to recover the Dehornoy-Larue
trichotomy for Bn and the Dehornoy right-ordering of Bn; this represents a
substantial simplification. Let us emphasize that we verify directly that Out+0,1,n
satisfies the trichotomy, in contrast with the approach by Larue [22] of using the
trichotomy for Artin〈An−1〉 to verify that Artin〈An−1〉 acts faithfully on Σ0,1,n.

In Section 7, we review the action of Bn on the set of ends of Σ0,1,n. The
argument of Thurston given in [27] yields the Dehornoy right-ordering of Bn,
but not the trichotomy. By analysing further, we obtain new results about the
Bn-orbit of t1 in Σ0,1,n.

In Section 8, for each m ≥ 2, we introduce Out0,1,n(m) , the algebraic
mapping-class group of the disc with n Cm-points. We recall the Crisp-Paris
proof of the Birman-Hilden result that the natural map from Out0,1,n to
Out0,1,n(m) is injective, and then modify an argument of Steve Humphries to
show that there is a natural identification Out0,1,n(m) = Out0,1,n. The new re-
sults obtained in Section 7 then provide additional information in this context.

In Section 9, we review some applications by Perron-Vannier [26] of the
above Birman-Hilden result, and discuss connections with the actions given by
Wada [29] and studied by Shpilrain [28] and Crisp-Paris [10], [11].

Following a kind suggestion of Patrick Dehornoy, we studied the analysis of
the Bn-orbit of t1 in Σ0,1,n given by David Larue [21]. Larue’s approach is combi-
natorial and uses polygonal curves in the punctured disc. By combining Larue’s
approach with Whitehead’s use of graphs, we were able to simplify Larue’s main
arguments, and we record our combinatorial approach in an appendix. We also
show how Larue’s results imply the results we had obtained, more easily, by
studying ends, in Section 7.

3 Artin’s generators of Bn

In this section we describe the famous generating set of Bn. Let us fix more
notation related to Σ0,1,n = 〈{z1} ∪ t[1↑n] | z1Πt[1↑n] = 1〉 and Bn ≤ Aut(Σ0,1,n).

3.1 Notation. Let m ∈ N. Consider an m-tuple a([1↑m]) for t[1↑n] ∪ t[1↑n], and
an element w of Σ0,1,n.

If Πa[1↑m] = w in Σ0,1,n, we say that a([1↑m]) is an expression for w. We
say that the expression a([1↑m]) is reduced if, for all j ∈ [1↑n − 1], aj+1 6= aj in
t[1↑n]∪ t[1↑n]. For each element of Σ0,1,n, there exists a unique reduced expression
called the normal form.

Suppose that a([1↑m]) is the normal form for w. We define the length of w to
be |w| := m. The set of elements of Σ0,1,n whose normal forms have a([1↑m]) as an
initial segment is denoted (w⋆); and, the set of elements of Σ0,1,n whose normal
forms have a([1↑m]) as a terminal segment is denoted (⋆w). The elements of (w⋆)
are said to begin with w, and the elements of (⋆w) are said to end with w.



4 Actions of the braid group

Let Symn denote the group of permutations of [1↑n] acting on the right (on
[1↑n]).

Let φ ∈ Bn. There exists a unique permutation π ∈ Symn, and a unique
(n+2)-tuple (w([0↑n+1])) for Σ0,1,n such that w0 = 1 and wn+1 = 1, and, for each

i ∈ [1↑n], wi 6∈ (tiπ⋆) ∪ (tiπ⋆) and t
φ
i = twi

iπ . For each i ∈ [0↑n], let ui = wiwi+1.
If j ∈ [i↑n], then Πu[i↑j] = wiwj+1. In particular, Πu[i↑n] = wi. We define
π(φ) := π, wi(φ) := wi, i ∈ [0↑n + 1], and ui(φ) := ui, i ∈ [0↑n]. We write
‖φ‖ :=

∑
i∈[1↑n]

|tφi | = n+ 2
∑

i∈[1↑n]

|wi(φ)|.

Let σ[1↑n−1] ⊆ Bn be the subset determined by, for all i ∈ [1↑n − 1] and all
k ∈ [1↑n],

tσik =





tk if k ∈ [1↑i− 1] ∪ [i+ 2↑n],

ti+1 if k = i,

t
ti+1

i if k = i+ 1.

In the literature, σi is sometimes represented in 2 × n-matrix notation, for ex-
ample, in the format

σi =

(
t1 . . . ti−1 ti ti+1 ti+2 . . . tn
t1 . . . ti−1 ti+1 t

ti+1

i ti+2 . . . tn

)
.

We shall often find it convenient to compress the dots and say that σi and σi
are determined by the expressions

k∈[1↑i−1] k∈[i+1↑n]

(tk ti ti+1 tk)
σi

= (tk ti+1 t
ti+1

i tk),

and

k∈[1↑i−1] k∈[i+1↑n]

(tk ti ti+1 tk)
σi

= (tk ttii+1 ti tk).

We shall apply the following result in different situations.

3.2 Lemma (Artin [3]). Let φ ∈ Bn. Let π = π(φ) and, for each i ∈ [0↑n], let
ui = ui(φ).

(i). Suppose that there exists some i ∈ [1↑n−1] such that ui ∈ (⋆t(i+1)π). Then

‖σiφ‖ ≤ ‖φ‖ − 2; moreover, for each j ∈ [1↑i], tσiφj and t
φ
j both begin with

the same element of t[1↑n] ∪ t[1↑n].

(ii). Suppose that there exists some i ∈ [1↑n − 1] such that ui ∈ (tiπ⋆). Then

‖σiφ‖ ≤ ‖φ‖ − 2; moreover, for each j ∈ [1↑i − 1], tσiφ
j and t

φ
j both begin

with the same element of t[1↑n] ∪ t[1↑n].

(iii). Suppose that, for each i ∈ [1↑n− 1], ui 6∈ (tiπ⋆) ∪ (⋆t(i+1)π ). Then φ = 1.

Proof. (i). There exists some v ∈ Σ0,1,n−(⋆t(i+1)π ) such that ui = vt(i+1)π . Since
wi(φ) = uiwi+1(φ), we have

(3.2.1) wi(φ) = vt(i+1)πwi+1(φ).
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Since v 6∈ (⋆t(i+1)π ) and wi+1(φ) 6∈ (t(i+1)π⋆), there is no cancellation in the

expression t
vt(i+1)πwi+1(φ)

iπ for tφi ; hence

(3.2.2) t
φ
i ∈ (wi+1(φ)t(i+1)π⋆) and |tφi | = 1 + 2|v|+ 2 + 2|wi+1(φ)|.

For all j ∈ [1↑i− 1]∪ [i+2↑n], tσiφj = t
φ
j ; hence, t

σiφ
j has the same first letter

as tφj , and, |t
σiφ
j | = |tφj |.

Since tσiφi = t
φ
i+1 ∈ (wi+1(φ)t(i+1)π⋆), we see, from (3.2.2), that tσiφi has the

same first letter as tφi . Also, |t
σiφ
i | = |tφi+1|.

By (3.2.1), wi(φ)wi+1(φ)t(i+1)π = v; hence

t
σiφ
i+1 = (t

ti+1

i )φ = (t
wi(φ)
iπ )(t

wi+1(φ)

(i+1)π
) = t

vwi+1(φ)
iπ .

Hence, |tσiφi+1| ≤ 1 + 2|v|+ 2|wi+1(φ)|
(3.2.2)
= |tφi | − 2.

It now follows that ‖σiφ‖ ≤ ‖φ‖ − 2, and (i) is proved.

(ii). There exists some v ∈ Σ0,1,n−(tiπ⋆) such that ui = tiπv. Since wi+1(φ) =
uiwi(φ), we have

(3.2.3) wi+1(φ) = vtiπwi(φ).

Since v 6∈ (⋆tiπ) and wi(φ) 6∈ (tiπ⋆), there is no cancellation in the expression

t
vtiπwi(φ)
(i+1)π for tφi+1; hence

(3.2.4) |tφi+1| = 1 + 2|v|+ 2 + 2|wi(φ)|.

For all j ∈ [1↑i− 1]∪ [i+2↑n], tσiφ
j = t

φ
j ; hence, t

σiφ
j has the same first letter

as tφj , and, |t
σiφ
j | = |tφj |.

Since tσiφ
i+1 = t

φ
i , we see that |tσiφ

i+1| = |tφi |.
By (3.2.3), wi+1(φ)wi(φ)tiπ = v; hence

t
σiφ
i = (ttii+1)

φ = (t
wi+1(φ)
(i+1)π )(t

wi(φ)

iπ
) = t

vwi(φ)
iπ .

Hence, |tσiφ
i | ≤ 1 + 2|v|+ 2|wi(φ)|

(3.2.4)
= |tφi+1| − 2.

It now follows that ‖σiφ‖ ≤ ‖φ‖ − 2, and (ii) is proved.

(iii). Since u0 = w1(φ) 6∈ (⋆t
π

1 ) and un = wn(φ) 6∈ (t
π

n⋆), we see that there is
no cancellation anywhere in the expression u0 Π

i∈[1↑n]
(tiπui). Hence,

|u0 Π
i∈[1↑n]

(tiπui)| =
∑

i∈[0↑n]

|ui|+ n, that is,
∑

i∈[0↑n]

|ui| = |u0 Π
i∈[1↑n]

(tiπui)| − n.

Recall that u0 Π
i∈[1↑n]

(tiπui) = Π
i∈[1↑n]

(t
wi(φ)
iπ ) = ( Π

i∈[1↑n]
ti)

φ = Π
i∈[1↑n]

ti. Hence

|u0 Π
i∈[1↑n]

(tiπui)| = n and
∑

i∈[0↑n]

|ui| = n− n = 0.
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Hence, all the elements of u[0↑n] are trivial.
For each i ∈ [0↑n + 1], wi = Πu[i↑n]; hence, all the elements of w[1↑n] are

trivial. Also, Π
i∈[1↑n]

tiπ = u0 Π
i∈[1↑n]

(tiπui) = Π
i∈[1↑n]

ti. Hence π is trivial. Thus

φ = 1.

The following is then immediate.

3.3 Proposition (Artin [3]). For each φ ∈ Bn, either φ = 1, or there exists

some σǫi ∈ σ[1↑n−1] ∪ σ[1↑n−1] such that ‖σǫiφ‖ ≤ ‖φ‖− 2. Hence, 〈σ[1↑n−1]〉 = Bn.

3.4 Remarks. If w ∈ Σ0,1,n has odd length, then wσi has odd length, and
|wσi| ≤ 2|w| + 1, with equality being achieved only if every odd letter of w
equals ti+1. Similar statements hold with σi in place of σi.

Let φ ∈ Bn and let |φ| denote the minimum length of φ as a word in σ[1↑n−1].

Thus, |tφi | ≤ 2|φ|+1 − 1. Hence, ‖φ‖ ≤ n2|φ|+1 − n. Proposition 3.3 gives an

algorithm for writing φ as a word in σ[1↑n−1] of length at most ‖φ‖−n
2

, and we

have now seen that ‖φ‖−n
2

≤ n2|φ|+1−2n
2

= n2|φ| − n.

4 Definition of Artin groups

4.1 Definition. A Coxeter diagram X consists of a set V together with a func-
tion V × V → N ∪ {∞}, (x, y) 7→ mx,y, such that, for all x, y ∈ V , mx,x = 0
and mx,y = my,x. The elements of V are called the vertices of X , and, for
(x, y) ∈ V × V , we say that mx,y is the number of edges joining x and y; we
can depict X in a natural way. We then define the Artin group of X , denoted
Artin〈X〉, to be the group presented with generating set V and relations saying
that, for all (x, y) ∈ V × V ,

xy = yx if mx,y = 0,
xyx = yxy if mx,y = 1,
xyxy = yxyx if mx,y = 2,

etc.

Notice that if mx,y = ∞, then no relation is imposed. Notice also that if V is
empty, then Artin〈X〉 is the trivial group.

4.2 Notation. (i). Let An denote the Coxeter diagram

a1 a2 · · · an−1 an.

Clearly, A0 is empty. We define A−1 to be empty also.
Thus, in An, the vertex set is a[1↑n], and, for each (i, j) ∈ [1↑n]2, the number

of edges joining ai to aj is

{
1 if |i− j| = 1,

0 if |i− j| 6= 1.
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Thus, Artin〈An〉 has a presentation with generating set a[1↑n] and relations
saying that, for each (i, j) ∈ [1↑n]2,

aiaj = ajai if |i− j| 6= 1,
aiajai = ajaiaj if |i− j| = 1.

(ii). Let Bn denote the Coxeter diagram

b1 b2 · · · bn−1 bn.

Here, the vertex set is b[1↑n], and, for each (i, j) ∈ [1↑n]2, the number of edges

joining bi to bj is





2 if {i, j} = {n− 1, n},

1 if |i− j| = 1 and {i, j} 6= {n− 1, n},

0 if |i− j| 6= 1.

(iii). For n ≥ 2, let Dn denote the Coxeter diagram

d1 d2 · · · dn−3

dn

dn−2 dn−1.

Here, the vertex set is d[1↑n], and, for each (i, j) ∈ [1↑n]2, the number of edges
joining di to dj is

{
1 if {i, j} ∈ {{1, 2}, {2, 3}, . . . , {n− 2, n− 1}, {n− 2, n}},

0 otherwise.

5 Artin’s presentation of Bn

In this section, we verify Artin’s result that there exists an isomorphism

γn : Artin〈An−1〉 → Bn determined by

i∈[1↑n−1]

(ai)
γn

= (σi)

. We express this by writ-

ing Bn = Artin〈σ1 σ2 · · · σn−1〉.

5.1 Proposition. There exists a homomorphism γn : Artin〈An−1〉 → Bn de-

termined by

i∈[1↑n−1]

(ai)
γn

= (σi)

, and γn is surjective.

Proof. (a). Suppose that 1 ≤ i ≤ i+ 2 ≤ j ≤ n− 1. We have the following.
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k∈[1↑i−1] k∈[i+2↑j−1] 0k∈[j+2↑n]

(tk ti ti+1 tk tj tj+1 tk)
σiσj

= (tk ti+1 t
ti+1

i tk tj tj+1 tk)
σj

= (tk ti+1 t
ti+1

i tk tj+1 t
tj+1

j tk)

= (tk ti ti+1 tk tj+1 t
tj+1

j tk)
σi

= (tk ti ti+1 tk tj tj+1 tk)
σjσi .

(b). Suppose that 1 ≤ i ≤ n− 2. We have the following.

k∈[1↑i−1] k∈[i+3↑n]

(tk ti ti+1 ti+2 tk)
σiσi+1σi

= (tk ti+1 t
ti+1

i ti+2 tk)
σi+1σi

= (tk ti+2 t
ti+2

i t
ti+2

i+1 tk)
σi

= (tk ti+2 t
ti+2

i+1 t
ti+1ti+2

i tk)

= (tk ti+1 ti+2 t
ti+1ti+2

i tk)
σi+1

= (tk ti ti+2 t
ti+2

i+1 tk)
σiσi+1

= (tk ti ti+1 ti+2 tk)
σi+1σiσi+1

Together, (a) and (b) show that there exists a homomorphism

γn : Artin〈An−1〉 → Bn determined by

i∈[1↑n−1]

(ai)
γn

= (σi)

. By Artin’s Proposition 3.3,

〈σ[1↑n−1]〉 = Bn, and, hence, γn is surjective.

In the remainder of this section, we shall use induction on n to show that the
surjective homomorphism γn : Artin〈An−1〉 → Bn of Proposition 5.1 is an iso-
morphism. Notice that γn endows Artin〈An−1〉 with a canonical action on Σ0,1,n.

The following is precisely [24, Proposition 1] and, also, [10, Proposition 2.1(2)].

5.2 Lemma (Manfredini [24]). If n ≥ 1, then

Artin〈An−1〉⋉Σ0,1,n = Artin〈 a1 a2 · · · an−1 tn 〉 ≃ Artin〈Bn〉.

Proof. For n = 1, the result is clear.
For n = 2, we have the following.

Artin〈A1〉⋉ Σ0,1,2 = 〈{a1} ∪ t[1↑2] | t
a1
1 = t2, t

a1
2 = t2t1t2〉

= 〈a1, t2 | t
a1
2 = t2t

a1
2 t2〉 = 〈a1, t2 | (a1t2)(a1) = (t2a1)(t2a1t2)〉

= 〈a1, t2 | (a1)(t2a1t2) = (t2a1)(t2a1)〉 = Artin〈 a1 t2 〉.

From the case n = 2, we see that there exists a homomorphism

µ : Artin〈Bn 〉 → Artin〈An−1 〉⋉ Σ0,1,n determined by

i∈[1↑n−1]

(bi bn)
µ

= (ai tn)

.
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For each k ∈ [1↑n], let tk denote the element b
Πb[n−1↓k]

n of Artin〈Bn〉. For

each i ∈ [1↑n − 1] and k ∈ [1↑n], let t
σi

k denote tk, resp. ti, resp. t
ti

i+1, if

k ∈ [1↑i− 1]∪ [i+ 2↑n], resp. k = i+ 1, resp. k = i. We shall see that tbik = t
σi

k ;
this immediately implies that there exists a homomorphism

µ : Artin〈An−1 〉 ⋉ Σ0,1,n → Artin〈Bn 〉 determined by

i∈[1↑n−1] k∈[1↑n]

(ai tk)
µ

= (bi tk)

, which

is then clearly inverse to µ, and the result will be proved.
For each m ∈ [n↓1], we shall show, by decreasing induction on m, that, for

each k ∈ [n↓m] and each i ∈ [n− 1↓m], tbik = t
σi

k . For m = n, this is trivial, and,
for m = n− 1, it follows from the case n = 2. Suppose that m ∈ [n− 2↓1].

(a). For each k ∈ [n↓m+1] and each i ∈ [n− 1↓m+1], tbik = t
σi
k , by hypothesis.

(b). For each k ∈ [n↓m+ 2], tk ∈ 〈b[n↓m+2]〉 and, hence, t
bm
k = tk = t

σm

k .

(c). t
bm
m+1 = b

Πb[n−1↓m+1]bm

n = tm = t
σm

m+1.

(d). For each i ∈ [n− 1↓m+ 2], tbim
(c)
= t

bm bi
m+1 = t

bi bm
m+1

(a)
= t

bm
m+1

(c)
= tm = t

σi
m .

(e). t
bm+1
m

(c)
= t

bmbm+1

m+1

(a)
= t

bm+1bmbm+1

m+2 = t
bmbm+1bm
m+2

(b)
= t

bm+1bm
m+2

(a)
= t

bm
m+1

(c)
= tm= t

σm+1
m .

(f). t
bm
m = t

bm+1bmbm+1bmbm+1
m

(e)
= t

bmbm+1bmbm+1
m

(c)
= t

bm+1bmbm+1

m+1
(a)
= (tm+1tm+2tm+1)

bmbm+1
(c),(b),(c)

= (tmtm+2tm)
bm+1

(e),(a),(e)
= tmtm+1tm= t

σm
m .

Now the result follows by induction.

We write Stab(Artin〈An〉; [tn+1]) to denote the Artin〈An〉-stabilizer of the
conjugacy class [tn+1] under the Artin〈An〉-action on Σ0,1,n+1. The Reidemeis-
ter-Schreier rewriting technique automatically gives a useful presentation of
Stab(Artin〈An〉; [tn+1]), but applying the technique can be rather tedious. Once
the presentation has been found, we can verify it directly using the van der
Waerden trick, as in the following proof.

5.3 Theorem (Magnus [23]). If n ≥ 1, then there exists a homomorphism

φn : Artin〈An−1〉⋉ Σ0,1,n → Artin〈An〉 determined by

i∈[1↑n−1]

(ai tn )
φn

= (ai a 2
n ).

Moreover, the following hold.

(i). φn is injective.

(ii). For each i ∈ [1↑n], tφni = a
2Πa[i+1↑n]

i in Artin〈An〉.

(iii). The image of φn is Stab(Artin〈An〉; [tn+1]).
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Proof. Let us write G = Artin〈An〉 and H = Artin〈An−1〉⋉ Σ0,1,n.
In G,

(an−1a
2
nan−1)

an=(anan−1an)(anan−1an)=(an−1anan−1)(an−1anan−1)=an−1a
2
nan−1,

and, hence, an−1a
2
nan−1a

2
n = a2nan−1a

2
nan−1. By Lemma 5.2, H ≃ Artin〈Bn〉,

and we see that there exist a homomorphism φn : H → G determined by
i∈[1↑n−1]

(ai tn )
φn

= (ai a 2
n )

.

Let v([1↑n+2]) = ([1↑n+1]), thought of as a generic (n+1)-tuple, and consider
the free left H-set H × v[1↑n+1], with left H-transversal v[1↑n+1].

We construct a right G-action on H×v[1↑n+1] such that H×v[1↑n+1] becomes
an (H,G)-bi-set. For each i ∈ [1↑n], we define the right action of the generator
ai ∈ G on the left H-set H × v[1↑n+1], by specifying the action on the given left
H-transversal as follows.

k∈[1↑i−1] k∈[i+2↑n+1]

( vk vi vi+1 vk)ai
= (ai−1vk vi+1 tivi aivk).

We now verify that the relations of G are respected.
(a). Suppose that 1 ≤ i < i+ 2 ≤ j ≤ n. We have the following.

k∈[1↑i−1] k∈[i+2↑j−1] k∈[j+2↑n+1]

( vk vi vi+1 vk vj vj+1 vk)aiaj
= ( ai−1vk vi+1 tivi aivk aivj aivj+1 aivk)aj
= (ai−1aj−1vk aj−1vi+1 tiaj−1vi aiaj−1vk aivj+1 aitjvj aiajvk)
= (aj−1ai−1vk aj−1vi+1 aj−1tivi aj−1aivk aivj+1 tjaivj ajaivk)
= ( aj−1vk aj−1vi aj−1vi+1 aj−1vk vj+1 tjvj ajvk)ai
= ( vk vi vi+1 vk vj vj+1 vk)ajai.

(b). Suppose that 1 ≤ i ≤ n− 1. We have the following.

k∈[1↑i−1] k∈[i+3↑n+1]

( vk vi vi+1 vi+2 vk)aiai+1ai
= ( ai−1vk vi+1 tivi aivi+2 aivk)ai+1ai
= ( ai−1aivk vi+2 tiaivi aiti+1vi+1 aiai+1vk)ai
= (ai−1aiai−1vk aivi+2 tiaivi+1 aiti+1tivi aiai+1aivk)
= ( aiai−1aivk aivi+2 aiti+1vi+1 ti+1tiaivi ai+1aiai+1vk)
= ( aiai−1vk aivi+1 aivi+2 ti+1tivi ai+1aivk)ai+1

= ( aivk aivi vi+2 ti+1vi+1 ai+1vk)aiai+1

= ( vk vi vi+1 vi+2 vk)ai+1aiai+1.

Now (a) and (b) prove that the relations of G are respected. Hence, we have
a right G-action on H × v[1↑n+1].
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Notice that vn+1t
φn
n = vn+1a

2
n = tnvnan = tnvn+1. Also, for each i ∈ [1↑n−1],

vn+1a
φn
i = vn+1ai = aivn+1. It follows that, for each h ∈ H , vn+1h

φn = hvn+1.
Hence, φn is injective. This proves (i).

Recall that G = Artin〈An〉.
Let i ∈ [1↑n].
We shall show by decreasing induction on i that

(5.3.1) a
Πa[n−1↓i]
n = a

Πa[i+1↑n]

i .

If i = n, then (5.3.1) holds. Now suppose that i ≥ 2, and that (5.3.1) holds.
Conjugating (5.3.1) by ai−1 yields

a
Πa[n−1↓i−1]
n = a

Πa[i+1↑n]ai−1

i = a
ai−1Πa[i+1↑n]

i = a
aiΠa[i+1↑n]

i−1 = a
Πa[i↑n]

i−1 .

By induction, (5.3.1) holds.

Now t
φn
i = (t

Πa[n−1↓i]

n )φn = a
2Πa[n−1↓i]
n

(5.3.1)
= a

2Πa[i+1↑n]

i . This proves (ii). Also,

t
φn
i Πa[n↓i] = Πa[n↓i+1]ai.

If k ∈ [1↑i− 1], then

a
Πa[k↑n]

i = a
Πa[k↑i−2]Πa[i−1↑i]Πa[i+1↑n]

i = a
Πa[i−1↑i]Πa[i+1↑n]

i = a
Πa[i+1↑n]

i−1 = ai−1.

Hence, ai−1Πa[n↓k] = Πa[n↓k]ai.
Let ψn denote the map of sets

ψn : H × v[1↑n+1] → G, hvk 7→ hφnΠa[n↓k] for all hvk = (h, vk) ∈ H × v[1↑n+1].

Hence, for each h ∈ H , we have the following, in G.

k∈[1↑i−1] k∈[i+2↑n+1]

(h ( vk vi vi+1 vk ))ψnai
= (hφn( Πa[n↓k] Πa[n↓i] Πa[n↓i+1] Πa[n↓k]))ai
= (hφn(ai−1Πa[n↓k] Πa[n↓i+1] t

φn
i Πa[n↓i] aiΠa[n↓k]))

= (h (ai−1vk vi+1 tivi aivk ))ψn

= (h ( vk vi vi+1 vk )ai)
ψn .

This proves that ψn is a map of right G-sets, and, hence, ψn must be surjective.
Thus, G =

⋃
k∈[1↑n+1]

Hφnv
ψn

k , and, hence, the index of Hφn in G is at most n+ 1.

Consider the action of G on the set of conjugacy classes {[tk]}k∈[1↑n+1] in
Σ0,1,n+1. For any i ∈ [1↑n], ai acts as the transposition ([ti], [ti+1]). In particular,
the index of Stab(G; [tn+1]) in G is n + 1. Also, the elements of a[1↑n−1] ∪ {a2n}
fix [tn+1], and, hence, H

φn ≤ Stab(G; [tn+1]). By comparing indices, we see that
Hφn = Stab(G; [tn+1]). This proves (iii).

5.4 Theorem (Artin). Bn = Artin〈σ1 σ2 · · · σn−1〉.
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Proof. This is trivial for n ≤ 1. Hence, we may assume that n ≥ 1 and that
the homomorphism γn : Artin〈An−1〉 → Bn, of Proposition 5.1, determined

by

i∈[1↑n−1]

(ai)
γn

= (σi)

is an isomorphism; and it remains to show that the surjective

homomorphism γn+1 : Artin〈An〉 → Bn+1 is injective.
Consider an element w of the kernel of γn+1. In particular, w fixes tn+1

in the Artin〈An〉-action on Σ0,1,n+1. By Theorem 5.3(iii), w lies in the image
of the homomorphism φn : Artin〈An−1〉 ⋉ Σ0,1,n → Artin〈An〉 determined by
i∈[1↑n−1]

(ai tn )
φn

= (ai a 2
n )

. Thus, we may express w as a product of two words

w = w1(a([1↑n−1]))w2(t
φn
([1↑n])).

Now,
(5.4.1)

in Artin〈An〉⋉ Σ0,1,n+1, tn+1 = twn+1 = t
w1(a([1↑n−1]))w2(t

φn
([1↑n])

)

n+1 = t
w2(t

φn
([1↑n])

)

n+1 .

Consider the homomorphism φn+1 : Artin〈An〉⋉Σ0,1,n+1 → Artin〈An+1〉 de-

termined by

i∈[1↑n]

(ai tn+1 )
φn+1

= (ai a 2
n+1)

. Let i ∈ [1↑n]. By Theorem 5.3(ii),

(tφni )φn+1an+1 = (a
2Πa[i+1↑n]

i )φn+1an+1 = (a
2Πa[i+1↑n]

i )an+1

= (a
2Πa[i+1↑n+1]

i ) = (ti)
φn+1 ,

(tn+1)
φn+1an+1 = (a2n+1)

an+1 = a2n+1 = (tn+1)
φn+1 .

Thus the two (n+1)-tuples (tφn([1↑n]), tn+1) and t([1↑n+1]) for Artin〈An〉⋉Σ0,1,n+1 be-

come conjugate in Artin〈An+1〉 under φn+1. By Theorem 5.3(i), φn+1 is injective.
Since t([1↑n+1]) freely generates a free subgroup of Artin〈An〉 ⋉ Σ0,1,n+1, we see

that (tφn([1↑n]), tn+1) also freely generates a free subgroup of Artin〈An〉⋉ Σ0,1,n+1.

From (5.4.1), we see that w2 must be the trivial word.
Hence, w = w1(a([1↑n−1])) in Artin〈An〉. By the induction hypothesis,

w1(a([1↑n−1])) = 1 in Artin〈An−1〉. Hence w = 1 in Artin〈An〉.
Now the result holds by induction.

Combining Lemma 5.2, Theorem 5.3 and Theorem 5.4, we have the following.

5.5 Corollary (Artin-Magnus-Manfredini). If n ≥ 1, then

Bn = Artin〈σ1 σ2 · · · σn−2 σn−1〉 ≃ Artin〈An−1〉,

Stab(Bn; [tn]) = Artin〈σ1 σ2 · · · σn−2 σ2
n−1〉 ≃ Artin〈Bn−1〉,

Bn−1 ⋉ Σ0,1,n−1 = Artin〈σ1 σ2 · · · σn−2 tn−1〉 ≃ Artin〈Bn−1〉.
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5.6 Historical Remarks. In 1925, Artin [3] found the above presentation of
Bn by an intuitive topological argument but, later, in [4], he indicated that there
were difficulties that could be corrected. In 1934, Magnus [23] gave an algebraic
proof that the relations suffice. In 1945, Markov [25] gave a similar algebraic
proof. In 1947, Bohnenblust [7] gave a similar algebraic proof; in 1948, Chow [8]
simplified the latter proof. All these algebraic proofs of the sufficiency of the
relations involve the Reidemeister-Schreier rewriting process for the subgroup of
index n.

Larue [22] gave a new algebraic proof of the sufficiency of the relations, by
using the Dehornoy-Larue trichotomy [14] for braid groups. We shall proceed
in the opposite direction. Proofs of the trichotomy for Artin〈An−1〉 tend to be
more difficult than proofs that Out+0,1,n = Artin〈An−1〉, and we shall now see
that Artin’s generation argument easily gives the trichotomy for Out+0,1,n.

6 The Dehornoy-Larue trichotomy

6.1 Definitions. Let φ ∈ Bn.
We say that φ is σ1-neutral if φ lies in the subgroup of Bn generated by

σ[2↑n−1].
We say that φ is σ1-positive if n ≥ 2 and φ can be expressed as the product

of a finite sequence of elements of σ[1↑n−1] ∪ σ[2↑n−1] such that at least one term
of the sequence is σ1. We say that φ is σ-positive if n ≥ 2 and, for some
i ∈ [1↑n− 1], φ can be expressed as the product of a finite sequence of elements
of σ[i↑n−1] ∪ σ[i+1↑n−1] such that at least one term of the sequence is σi.

We say that φ is σ1-negative if φ is σ1-positive, that is, n ≥ 2 and φ can be
expressed as the product of a finite sequence of elements of σ[2↑n−1] ∪ σ[1↑n−1]

such that at least one term of the sequence is σ1.
If φ satisfies exactly one of the properties of being σ1-neutral, σ1-positive

σ1-negative, we say that φ satisfies the σ1-trichotomy.

6.2 Historical Remarks. View Artin〈An〉 as a subgroup of Artin〈An+1〉 in a
natural way, and let Artin〈A∞〉 denote the union of the resulting chain; thus
Artin〈A∞〉 = 〈a[1↑∞[〉. Dehornoy [14, Theorem 6] gave a one-sided ordering of
Artin〈A∞〉; the positive semigroup for this ordering is the set of ‘a-positive’
elements of Artin〈A∞〉.

Let φ ∈ Bn. By replacing φ with φ if necessary, we can apply Dehornoy’s
result to deduce that there exists some n′ ≥ n such that φ is σ-negative in Bn′,
or φ = 1. Larue [21] showed that this implies that tφ1 ∈ (t1⋆), and that this
in turn implies that φ can be expressed as the product of a finite sequence, of
length at most |φ|+ 1

4
n23|φ|, of elements of σ[2↑n−1]∪σ[1↑n−1]. Thus, every element

of Bn satisfies the σ1-trichotomy. Larue’s work is surveyed in [16, Chapter 5].
Topological versions of these results can be found in [19] and [16, Chapter 6].
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We shall give elementary direct proofs of the foregoing results and replace
Larue’s bound |φ|+ 1

4
n23|φ| with the much smaller bound n2|φ|−n. Larue’s proof

contains interesting information that we shall rework in the Appendix.

Part (iii) of the following seems to be new.

6.3 Lemma. Let n ≥ 1 and let φ be an element of Bn such that t
φ
1 ∈ (t1⋆). Let

π = π(φ) and, for each i ∈ [1↑n], let ui = ui(φ).

(i). Suppose that there exists some i ∈ [1↑n−1] such that ui ∈ (⋆t(i+1)π). Then

‖σiφ‖ ≤ ‖φ‖ − 2 and t
σiφ
1 ∈ (t1⋆); moreover, if t

φ
1 = t1, then i ∈ [2↑n− 1].

(ii). Suppose that there exists some i ∈ [2↑n − 1] such that ui ∈ (tiπ⋆). Then

‖σiφ‖ ≤ ‖φ‖ − 2 and t
σiφ
1 ∈ (t1⋆).

(iii). Suppose that, for each i ∈ [1↑n − 1], ui 6∈ (⋆t(i+1)π) and, for each i ∈
[2↑n− 1], ui 6∈ (tiπ⋆). Then φ = 1.

Proof. For each i ∈ [0↑n+ 1], let wi = wi(φ).

(i). The first part follows from Artin’s Lemma 3.2(i). Notice that, if tφ1 = t1,
then w1 = 1 and u1 = w2 6∈ (⋆t2π).

(ii) follows from Lemma 3.2(ii).

(iii). Recall that u0
∏

i∈[1↑n]

(tiπui) =
∏

i∈[1↑n]

(twi

iπ ) = (
∏

i∈[1↑n]

ti)
φ =

∏
i∈[1↑n]

ti. Hence,

u0t1πu1
∏

i∈[2↑n]

(tiπui) = t1
∏

i∈[2↑n]

ti, and, hence, u1
∏

i∈[2↑n]

(tiπui) = t1πu0t1
∏

i∈[2↑n]

ti.

Since un = wn 6∈ (tnπ⋆), the hypotheses imply that there is no cancellation
anywhere in the expression u1

∏
i∈[2↑n]

(tiπui). Hence,

(6.3.1)
∑

i∈[1↑n]

|ui|+n−1 = |u1
∏

i∈[2↑n]

(tiπui)| = |t1πu0t1
∏

i∈[2↑n]

ti| ≤ |t1πu0t1|+n−1.

Since tu01π = tw1
1π = t

φ
1 ∈ (t1⋆), we see that u0t1π ∈ (t1⋆), and

(6.3.2) |t1u0t1π | = −1 + |u0t1π | ≤ −1 + |u0|+ 1 = |u0|.

Since
∏

i∈[0↑n]

ui = w0wn+1 = 1, we see that

(6.3.3)
∏

i∈[1↑n]

ui = u0 = w1 6∈ (t1π⋆).

Now,
∑

i∈[1↑n]

|ui|
(6.3.1)

≤ |t1πu0t1|
(6.3.2)

≤ |u0|
(6.3.3)
= |

∏
i∈[1↑n]

ui|. Therefore, there is no

cancellation in
∏

i∈[1↑n]

ui, and, by (6.3.3), u1 6∈ (t1π⋆). By Lemma 3.2(iii), φ = 1.
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As in Remarks 3.4, we deduce the following from Lemma 6.3 by induction
on ‖φ‖.

6.4 Corollary (Larue [21]). Let n ≥ 1 and let φ ∈ Bn.

(i). Suppose that t
φ
1 ∈ (t1⋆). Then φ is σ1-negative or σ1-neutral. In more

detail, φ can be expressed as the product of a sequence, of length at most

n2|φ| − n, of elements of σ[2↑n−1] ∪ σ[1↑n−1].

(ii). Moreover, φ is σ1-neutral if and only if t
φ
1 = t1.

6.5 Notation. For each i ∈ [1↑n − 1], let σ′
i and σ

′′
i be the automorphisms of

Σ0,1,n determined by

k∈[1↑i] k∈[i+2↑n]

(tk ti+1 tk)
σ′i

= (tk ttii+1 tk),

k∈[1↑i−1] k∈[i+1↑n]

(tk ti ti+1 tk)
σ′′i

= (tk ti+1 ti tk).

Then σi = σ′
iσ

′′
i . The normal form in t[1↑n] factorizes into an alternating product

with factors which are normal forms of non-trivial elements of 〈t[i↑i+1]〉 alternat-
ing with factors which are normal forms of non-trivial elements of 〈t[1↑i−1]∪[i+2↑n]〉.
On 〈t[i↑i+1]〉, σ

′
i acts as conjugation by ti, while σ

′′
i interchanges the two free gen-

erators. On 〈t[1↑i−1]∪[i+2↑n]〉, σ
′
i and σ

′′
i act as the identity map.

The next result gives three trichotomies, called (a), (b) and (c), which hold
for elements of Bn. Attribution is not sharply defined, but it is reasonable to
attribute (b) to Dehornoy [14], and (a) and (c) to Larue [21].

6.6 Theorem (Dehornoy-Larue [14], [21]). Let n ≥ 1, let φ ∈ Bn and consider

the following nine conditions.

(a1). tφ1 = t1. (a2). tφ1 ∈ (t1⋆)− {t1}. (a3). tφ1 6∈ (t1⋆).

(b1). φ is σ1-neutral. (b2). φ is σ1-negative. (b3). φ is σ1-positive.

(c1). (t1⋆)
φ = (t1⋆) (c2). (t1⋆)

φ ⊂ (t1⋆). (c3). (t1⋆)
φ ⊃ (t1⋆).

Then: (a1) ⇔ (b1) ⇔ (c1); (a2) ⇔ (b2) ⇔ (c2); (a3) ⇔ (b3) ⇔ (c3).
Exactly one of (b1), (b2), (b3), holds; that is, φ satisfies the σ1-trichotomy

in Bn.

Proof. (a1) ⇔ (b1) by Corollary 6.4(ii). We shall use (a1) and (b1) interchange-
ably in the remainder of the proof.

(b1) ⇒ (c1). If φ is σ1-neutral, then so is φ. It follows that (t1⋆)
φ ⊆ (t1⋆)

and (t1⋆)
φ ⊆ (t1⋆). Thus, (t1⋆)

φ = (t1⋆).
(a2) ⇒ (b2). If (a2) holds, then Corollary 6.4(i) shows that (b1) or (b2)

holds. Since (a1) fails, (b1) fails. Thus (b2) holds.
(b2) ⇒ (c2). Using Notation 6.5, we see that

(t1⋆)
σ1 = (t1⋆)

σ′′
1σ

′
1 = (t2⋆)

σ′
1 ⊆ (t1t2⋆) ⊂ (t1⋆).
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Since the composition of injective self-maps of (t1⋆) can be bijective only if all
the factors are bijective, we see that (b2) ⇒ (c2).

(a3) ⇒ (b3). We translate into algebra the crucial reflection argument of [16,
Corollary 5.2.4].

Suppose that (a3) holds.
With Notation 3.1, let w1 = w1(φ) and π = π(φ). Then w1t1πw1 = t

φ
1 6∈ (t1⋆).

It follows that w1t1π 6∈ (t1⋆). Hence, w1 t1π 6∈ (t1⋆). Hence,

t
φ

1 = w1 t1πw1 6∈ (t1⋆) ∪ {1}. On conjugating by t1, we see that t
φt1
1 ∈ (t1⋆).

Let ζ be the automorphism of Σ0,1,n determined by

k∈[1↑n]

( tk )ζ

= (t
Πt[k−1↓1]

k )

. For

each k ∈ [1↑n], (Πt[1↑k])
ζ = Πt[k↓1]. It follows that ζ

2 = 1. Notice that ζ belongs

to Out−0,1,n := Out0,1,n−Out+0,1,n. Also,

k∈[2↑n]

(t1 tk )t1ζ

= (t1 t
Πt[k−1↓2]

k )

. Hence,

t
φζ

1 = t
ζφζ
1 = t

φt1t1ζ

1 ∈(t1⋆)
t1ζ ⊆ (t1⋆).

By Corollary 6.4(i), φζ can be expressed as the product of a finite sequence of
elements of σ[2↑n−1]∪σ[1↑n−1]. It is not difficult to check that, for each i ∈ [1↑n−1],

σ
ζ
i = σi in Out0,1,n. Hence φ

ζ2(= φ) can be expressed as the product of a finite

sequence of elements of σζ[2↑n−1] ∪ σ
ζ

[1↑n−1](= σ[2↑n−1] ∪ σ[1↑n−1]). Hence, (b3) or

(b1) holds. Since (a3) holds, (a1) fails, and (b1) fails. Thus (b3) holds.
(b3) ⇒ (c3). If φ is σ1-positive, then φ is σ1-negative, and, by (b2) ⇒ (c2),

(t1⋆)
φ ⊂ (t1⋆) and, hence, (t1⋆) ⊂ (t1⋆)

φ.
(c1) ⇒ (a1). Suppose that (a1) fails. Then (a2) or (a3) holds. Hence (c2)

or (c3) holds. Hence (c1) fails.
(c2) ⇒ (a2) and (c3) ⇒ (a3) are proved similarly.
Thus the desired equivalences hold.
Since exactly one of (a1), (a2), (a3) holds, exactly one of (b1), (b2), (b3)

holds.

The following gives the Dehornoy right-ordering of Bn; recall the definition
of σ-positive from Definitions 6.1.

6.7 Theorem. For each φ ∈ Bn exactly one of the following holds: φ = 1; φ is

σ-positive; φ is σ-positive. The set of σ-positive elements of Bn is the positive

cone of a right-ordering of Bn.

Proof. Suppose that φ 6= 1.
Let i be the largest element of [1↑n−1] such that φ ∈ 〈σ[i,n−1]〉. The natural

subscript-shifting isomorphism from 〈t[i↑n]〉 to Σ0,1,n−i+1 induces an isomorphism
from 〈σ[i↑n−1]〉 to Bn−i+1. Notice that φ is mapped to an element of Bn−i+1 which
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is not σ1-neutral; by Theorem 6.6, this image is σ1-positive or σ1-negative but
not both. Hence exactly one of φ, φ is σ-positive.

It is easy to see that the product of two σ-positive elements of Bn is
σ-positive.

Hence the set of σ-positive elements of Bn is the positive cone for a
right-ordering of Bn, the Dehornoy right-ordering.

7 Ends, right-orderings and squarefreeness

7.1 Review. A (reduced) end of Σ0,1,n is a function

[1↑∞[ → t[1↑n] ∪ t[1↑n], i 7→ ai,

such that, for each i ∈ [1↑∞[, ai+1 6= ai. The function is then represented as a
right-infinite reduced product, a1a2 · · · or Πa[1↑∞[.

We denote the set of ends of Σ0,1,n by E(Σ0,1,n), or simply by E if there is no
risk of confusion.

An element of Σ0,1,n ∪ E(Σ0,1,n) is said to be squarefree if, in its reduced ex-
pression, no two consecutive terms are equal; for example: (t1t2)

∞ is a squarefree
end; t1t2t2t3 is a non-squarefree word.

For each w ∈ Σ0,1,n, we define the shadow of w in E to be

(w◭) := {Πa[1↑∞[ ∈ E | Πa[1↑|w|] = w}.

Thus, for example, (1◭) = E.
We shall now give E an ordering, <. The first step is, for each w ∈ Σ0,1,n, to

assign an ordering, <, to a partition of (w◭) into 2n or 2n−1 subsets, depending
as w = 1 or w 6= 1, as follows. We set

(t1◭) < (t1◭) < (t2◭) < (t2◭) < · · · < (tn◭) < (tn◭).

If i ∈ [1↑n] and w ∈ (⋆ti), then we set

(wti◭) < (wti+1◭) < (wti+1◭) < (wti+2◭) < (wti+2◭) < · · ·

· · · < (wtn◭) < (wtn◭) < (wt1◭) < (wt1◭) < (wt2◭) < · · ·

· · · < (wti−1◭) < (wti−1◭).

If i ∈ [1↑n] and w ∈ (⋆ti), then we set

(wti+1◭) < (wti+1◭) < (wti+2◭) < (wti+2◭) < · · ·

· · · < (wtn◭) < (wtn◭) < (wt1◭) < (wt1◭) < (wt2◭) < · · ·

· · · < (wti−1◭) < (wti−1◭) < (wti◭).
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Hence, for each w ∈ Σ0,1,n, we have an ordering < of a partition of (w◭) into
2n or 2n− 1 subsets.

If Πa[1↑∞[ and Πb[1↑∞[ are two different (reduced) ends, then there exists
i ∈ N such that Πa[1↑i] = Πb[1↑i] in Σ0,1,n, and ai+1 6= bi+1 in t[1↑n] ∪ t[1↑n]. Let
w = Πa[1↑i] = Πb[1↑i]. Then Πa[1↑∞[ and Πb[1↑∞[ lie in (w◭), but lie in different
elements of the partition of (w◭) into 2n or 2n − 1 subsets. We then order
Πa[1↑∞[ and Πb[1↑∞[ according to the order of the elements of the partition of
(w◭) that they belong to. This completes the definition of the ordering < of E.

We remark that the smallest element of E is z∞1 = (Πt[1↑n])
∞ and the largest

element of E is z∞1 = (Πt[n↓1])
∞.

7.2 Review. Following Nielsen-Thurston [9], [27], we now define the action of
Bn on E(Σ0,1,n) and show that it respects the ordering; our treatment will be
quite elementary compared to the usual approaches.

We assume that n ≥ 2, and we first define the action of σ1 on E.
Consider any reduced end e ∈ E. There is then a unique factorization e =

Πw[1↑i] or e = Πw[1↑∞[, where, in the former case, w([1↑i−1]) is a finite sequence
of non-trivial words, and wi is a reduced end, and, in the latter case, w([1↑∞[)

is an infinite sequence of non-trivial words, and in both cases, the wj alternate
between elements of 〈t[1↑2]〉 ∪E(〈t[1↑2]〉), and elements of 〈t[3↑n]〉 ∪E(〈t[3↑n]〉). We
shall express this factorization as e = [w1][w2] · · · .

Recall, from Notation 6.5, that we have the factorization σ1 = σ′
1σ

′′
1 . On

〈t[1↑2]〉 ∪ E(〈t[1↑2]〉), σ
′
1 acts as conjugation by t1, while σ

′′
1 interchanges the two

free generators. On 〈t[3↑n]〉, σ
′
1 and σ′′

1 act as the identity map. This completes
the description of the action of σ′

1, σ
′′
1 and σ1 on E.

It is not difficult to show that, for any reduced ends Πa[1↑∞[ and Πb[1↑∞[, if
(Πa[1↑∞[)

σ1 = Πb[1↑∞[, then for all i, j ∈ N, if j ≥ 2i, then (Πa[1↑j])
σ1 ∈ (Πb[1↑i]⋆).

Thus, (Πa[1↑∞[)
σ
1 is the limit of (Πa[1↑j])

σ1 as j tends to ∞.
It is clear that σ′

1, σ
′′
1 and, hence, σ1 act bijectively on E. Hence we have the

action of σ1 on E. It is then not difficult to verify that we have an action of Bn

on E.
We next show that σ1 respects the ordering of E. We do this by considering

all the ways that two reduced ends can be compared, and the resulting effect
of σ′

1 and σ1. We represent the information in tables. In all of the following,
we understand that t1a, t1b, t2c, and t2d are reduced expressions for elements
of 〈t[1↑2]〉 ∪ E(〈t[1↑2]〉), and b 6= 1. Since a does not begin with t1, a

σ′′1 t2 begins
with t1 or t1 or t2. We make the convention that Σ0,1,n acts trivially on the right
on E.

(· · · ][wt1◭) (· · · ][wt1◭)σ
′
1 (· · · ][wt1◭)σ1

· · · ][wt1 t2c][· · · · · · ][(t1w)t1 t2(ct1)][· · · · · · ][(t2w
σ′′1 )t2 t1(c

σ′′1 t2)][· · ·
· · · ][wt1 t2d][· · · · · · ][(t1w)t1 t2(dt1)][· · · · · · ][(t2w

σ′′1 )t2 t1(d
σ′′1 t2)][· · ·

· · · ][wt1][t3↑tn · · · · · · ][(t1w)t1 t1][t3↑tn · · · · · · ][(t2w
σ′′1 )t2 t2][t3↑tn · · ·

· · · ][wt1 t1a][· · · · · · ][(t1w)t1 t1(at1)][· · · · · · ][(t2w
σ′′1 )t2 t2(a

σ′′1 t2)][· · ·
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Here, the case w = 1 does not present any problems.

(· · · ][wt1◭) (· · · ][wt1◭)σ
′
1 (· · · ][wt1◭)σ1

· · · ][wt1 t1b][· · · · · · ][(t1w) t1t1(bt1)][· · · · · · ][(t2w
σ′′1 ) t2t2(b

σ′′1 t2)][· · ·
· · · ][wt1 t1][t3↑tn · · · · · · ][(t1w) t1][t3↑tn · · · · · · ][(t2w

σ′′1 ) t2][t3↑tn · · ·
· · · ][wt1 t2c][· · · · · · ][(t1w) t1t2(ct1)][· · · · · · ][(t2w

σ′′1 ) t2t1(c
σ′′1 t2)][· · ·

· · · ][wt1 t2d][· · · · · · ][(t1w) t1t2(dt1)][· · · · · · ][(t2w
σ′′1 ) t2t1(d

σ′′1 t2)][· · ·
· · · ][wt1][t3↑tn · · · · · · ][(t1w)][t3↑tn · · · · · · ][(t2w

σ′′1 )][t3↑tn · · ·

Here, w does not end with t1, and, hence, (t2w
σ′′1 ) ends with t1, t1 or t2.

(· · · ][wt2◭) (· · · ][wt2◭)σ
′
1 (· · · ][wt2◭)σ1

· · · ][wt2][t3↑tn · · · · · · ][(t1w)t2 t1][t3↑tn · · · · · · ][(t2w
σ′′1 )t1 t2][t3↑tn · · ·

· · · ][wt2 t1a][· · · · · · ][(t1w)t2 t1(at1)][· · · · · · ][(t2w
σ′′1 )t1 t2(a

σ′′1 t2)][· · ·
· · · ][wt2 t1b][· · · · · · ][(t1w)t2 t1(bt1)][· · · · · · ][(t2w

σ′′1 )t1 t2(b
σ′′1 t2)][· · ·

· · · ][wt2 t1][t3↑tn · · · · · · ][(t1w)t2][t3↑tn · · · · · · ][(t2w
σ′′1 )t1][t3↑tn · · ·

· · · ][wt2 t2c][· · · · · · ][(t1w)t2 t2(ct1)][· · · · · · ][(t2w
σ′′1 )t1 t1(c

σ′′1 t2)][· · ·

(· · · ][wt2◭) (· · · ][wt2◭)σ
′
1 (· · · ][wt2◭)σ1

· · · ][wt2 t2d][· · · · · · ][(t1w)t2 t2(dt1)][· · · · · · ][(t2w
σ′′1 )t1 t1(d

σ′′1 t2)][· · ·
· · · ][wt2][t3↑tn · · · · · · ][(t1w)t2 t1][t3↑tn · · · · · · ][(t2w

σ′′1 )t1 t2][t3↑tn · · ·
· · · ][wt2 t1a][· · · · · · ][(t1w)t2 t1(at1)][· · · · · · ][(t2w

σ′′1 )t1 t2(a
σ′′1 t2)][· · ·

· · · ][wt2 t1b][· · · · · · ][(t1w)t2 t1(bt1)][· · · · · · ][(t2w
σ′′1 )t1 t2(b

σ′′1 t2)][· · ·
· · · ][wt2 t1][t3↑tn · · · · · · ][(t1w)t2][t3↑tn · · · · · · ][(t2w

σ′′1 )t1][t3↑tn · · ·

(· · · t3◭) (· · · t3◭)σ
′
1 (· · · t3◭)σ1

· · · t3 t4↑tn · · · · · · t3 t4↑tn · · · · · · t3 t4↑tn · · ·
· · · t3][t1a][· · · · · · t3][(at1)][· · · · · · t3][(a

σ′′1 t2)][· · ·
· · · t3][t1b][· · · · · · t3][t1t1(bt1)][· · · · · · t3][t2t2(b

σ′′1 t2)][· · ·
· · · t3][t1][t3↑tn · · · · · · t3][t1][t3↑tn · · · · · · t3][t2][t3↑tn · · ·
· · · t3][t2c][· · · · · · t3][t1t2(ct1)][· · · · · · t3][t2t1(c

σ′′1 t2)][· · ·
· · · t3][t2d][· · · · · · t3][t1t2(dt1)][· · · · · · t3][t2t1(d

σ′′1 t2)][· · ·
· · · t3 t3 · · · · · · t3 t3 · · · · · · t3 t3 · · ·

The remaining tables are clearly of the same form as the last one. Thus we
have proved that the action of σ1 respects the ordering of E. It follows that the
action of σ1 respects the ordering of E. Similarly, the actions of σ[2↑n−1]∪σ[2↑n−1]

respect the ordering of E. Hence Bn acts on (E,≤).

7.3 Remarks (Thurston [27]). The (right) action of Bn on (E,≤) gives rise to
many right orderings of Bn.

Let us use the left-to-right lexicographic ordering on (En,≤), and consider the
Bn-orbit of t

∞
([1↑n]) := (t∞i )i∈[1↑n]. It is not difficult to show that the Bn-stabilizer
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of t∞([1↑n]) is trivial. Thus we have an injective map

Bn → E
n, φ 7→ t

∞φ

([1↑n]) := ((t∞i )φ)i∈[1↑n].

Let ≤ denote the ordering of Bn induced by pullback from E
n. Clearly ≤ is a

right-ordering of Bn.
If n ≥ 2 and φ ∈ Bn is σ1-negative, then, as in the proof of Theo-

rem 6.6(b2)⇒(c2), we have (t1◭)φ ⊂ (t1◭). Since max(t1◭) = t∞1 , we see
that (t∞1 )φ < t∞1 . Hence φ < 1 and 1 < φ. Similar arguments with (ti◭),
i ∈ [2↑n], show that, if φ ∈ Bn is σ-positive (resp. σ-negative), then 1 < φ

(resp. 1 > φ). Hence the right-ordering we have obtained from (En,≤) coin-
cides with the Dehornoy right-ordering. However, the study of ends does not
seem to readily yield the σ1-trichotomy.

The following will be useful in the study of squarefreeness.

7.4 Lemma. Let n ≥ 1, let i ∈ [1↑n], and let w ∈ Σ0,1,n − (⋆ti)− (⋆ti). Then,

in E(Σ0,1,n), the following hold:

(i). wtiw((Πt[1↑n])
∞) ≤ wti((Πt[i↑n]Πt[1↑i−1])

∞) = min(wtiti◭);

(ii). min(wtiti◭) < max(wtiti◭);

(iii). max(wtiti◭) = wti((Πt[i↓1]Πt[n↓i+1])
∞) ≤ wtiw((Πt[n↓1])

∞);

(iv). (wtiti◭) ∪ (wtiti◭) ⊆ [wtiw((Πt[1↑n])
∞), wtiw((Πt[n↓1])

∞)].

(v). If n ≥ 3, then one of the following holds:

(a). t1((Πt[n↓1])
∞) < wtiw((Πt[1↑n])

∞);
(b). t1((Πt[n↓1])

∞) > wtiw((Πt[n↓1])
∞);

and, hence, t1((Πt[n↓1])
∞) 6∈ [wtiw((Πt[1↑n])

∞), wtiw((Πt[n↓1])
∞)], that is,

t1(z
∞
1 ) 6∈ [wtiw(z

∞
1 ), wtiw(z

∞
1 )]

Proof. Recall that:
(t1◭) < (t1◭) < (t2◭) < · · · < (tn◭) < (tn◭),

(titi+1◭) < (titi+1◭) < · · · < (titn◭) < (tit1◭) < · · · < (titi−1◭) < (titi◭),
(titi◭) < (titi+1◭) < · · · < (titn◭) < (tit1◭) < · · · < (titi−1◭) < (titi−1◭).

(i). It is straightforward to see that wti((Πt[i↑n]Πt[1↑i−1])
∞) = min(wtiti◭).

Let x denote the element of t[1↑n] ∪ t[1↑n] such that w((Πt[1↑n])
∞) ∈ (x◭);

notice that x 6= ti.
If x 6= ti, then (wtix◭) < (wtiti◭), and we have

wtiw((Πt[1↑n])
∞) ∈ (wtix◭) < (wtiti◭) ∋ min(wtiti◭).

If x = ti, then w is completely cancelled in w((Πt[1↑n])
∞), and, moreover,

wtiw((Πt[1↑n])
∞) = wti((Πt[i↑n]Πt[1↑i−1])

∞) = min(wtiti◭).
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Thus, (i) holds.
(ii) is clear.
(iii). It is straightforward to see that wti((Πt[i↓1]Πt[n↓i+1])

∞) = max(wtiti◭).
Let x denote the element of t[1↑n] ∪ t[1↑n] such that w((Πt[n↓1])

∞) ∈ (x◭);
notice that x 6= ti.
If x 6= ti, then (wtiti◭) < (wtix◭), and we have

max(wtiti◭) ∈ (wtiti◭) < (wtix◭) ∋ wtiw((Πt[n↓1])
∞).

If x = ti, then w is completely cancelled in w(Πt[n↓1])
∞, and, moreover,

wtiw((Πt[n↓1])
∞) = wti((Πt[i↓1]Πt[n↓i+1])

∞) = max(wtiti◭).

Thus, (iii) holds.
(iv) follows from (i)-(iii).
(v). It is not difficult to see that

wtiw((Πt[1↑n])
∞) ∈ (wti◭) and wtiw((Πt[n↓1])

∞) ∈ (wti◭).
Case 1. w 6∈ (t1⋆).

If w = 1, then

t1((Πt[n↓1])
∞) ∈ (t1tn◭) < (tit1◭) ∋ ti((Πt[1↑n])

∞) = wtiw((Πt[1↑n])
∞).

If w 6= 1, then t1((Πt[n↓1])
∞) ∈ (t1◭) < (w◭) ∋ wtiw((Πt[1↑n])

∞).
In both subcases, (a) holds.

Case 2. w ∈ (t1⋆).
Here, wtiw((Πt[n↓1])

∞) ∈ (w◭) ⊆ (t1◭). Hence,

wtiw((Πt[n↓1])
∞) ≤ max(t1◭) = t1((Πt[n↓1])

∞).

To prove that (b) holds, it remains to show that

wtiw((Πt[n↓1])
∞) 6= t1((Πt[n↓1])

∞),

that is, t1wtiw((Πt[n↓1])
∞) 6= (Πt[n↓1])

∞, that is, t1wtiw 6∈ 〈Πt[n↓1]〉. We can
write w = t1u where u 6∈ (t1⋆). Then t1wtiw = utiut1, in normal form. Thus it
suffices to show that utiut1 6∈ 〈Πt[n↓1]〉.

If u = 1, then utiut1 = tit1 6∈ 〈Πt[n↓1]〉, since n ≥ 3.
If u 6= 1, then utiut1 6∈ 〈Πt[n↓1]〉, since utiut1 does not lie in the submonoid

of Σ0,1,n generated by t[1↑n], nor in the submonoid generated by t[1↑n].
In both subcases, (b) holds.

In both cases, (v) holds.

The following appeared as [5, Lema 2.2.17].

7.5 Theorem. If n ≥ 1 then, for each φ ∈ Bn, t
φ
1((Πt[n↓1])

∞) is a squarefree

end.
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Proof. This is clear if n = 1.
For n = 2, B2 = 〈σ1〉, and

tB2
1 = {t

σ2m1
1 , t

σ1+2m
1

1 | m ∈ Z} = {t
(t1t2)m

1 , t
(t1t2)m

2 | m ∈ Z}.

Thus, every word in tB2
1 is squarefree and does not end in t2. Hence, every end

in tB2
1 ((Πt[n↓1])

∞) is squarefree.
Thus, we may assume that n ≥ 3.
Recall that z1 = Πt[n↑1], and, hence, z1 = Πt[1↑n]. Let ∪[t][1↑n] denote⋃

i∈[1↑n]

[ti]. By Lemma 7.4(v), t1(z
∞
1 ) does not lie in

⋃
x∈∪[t][1↑n]

[x(z∞1 ), x(z∞1 )] (=
n⋃
i=1

⋃
w∈Σ0,1,n−(⋆ti)−(⋆ti)

[wtiw(z
∞
1 ), wtiw(z

∞
1 )]).

Notice that φ permutes the elements of each of the following sets: ∪[t][1↑n];
{z∞1 }; {z∞1 }; and,

⋃
x∈∪[t][1↑n]

[x(z∞1 ), x(z∞1 )]. Hence (t1(z
∞
1 ))φ does not lie in

⋃
x∈∪[t][1↑n]

[x(z∞1 ), x(z∞1 )]. By Lemma 7.4(iv),

⋃
x∈∪[t][1↑n]

[x(z∞1 ), x(z∞1 )] ⊇
n⋃
i=1

⋃
w∈Σ0,1,n−(⋆ti)−(⋆ti)

((wtiti◭) ∪ (wtiti◭)).

Hence, (t1(z
∞
1 ))φ does not lie in the latter set either, and, hence, (t1(z

∞
1 ))φ is a

squarefree end. Since (t1(z
∞
1 ))φ = t

φ
1(z

∞
1 ), the desired result holds.

We now obtain new information about the Bn-orbit of t1 in Σ0,1,n.

7.6 Corollary. Let n ≥ 1, let φ ∈ Bn, and let k ∈ [1↑n].

(i). tφ1 is a squarefree word in Σ0,1,n.

(ii). tφ1 6∈ (Πt[n↓k+1]tk⋆)− {t
Πt[k+1↑n]

k }.

(iii). tφ1 6∈ (Πt[1↑k−1]tk⋆).

Proof. Recall from Notation 3.1 that we write tφ1 = t
w1(φ)

1π(φ) . Let π = π(φ) and
w1 = w1(φ).

It is not difficult to see that

t
φ
1(z

∞
1 ) = w1t1πw1((Πt[n↓1])

∞) ∈ (w1◭).

By Theorem 7.5, tφ1(z
∞
1 ) is a squarefree end. Hence, w1 is a squarefree word,

and w1 6∈ (⋆tkΠt[k+1↓n]).

Since w1 is a squarefree word, tφ1 is also a squarefree word. Hence (i) holds.
Also, w1 6∈ (⋆tkΠt[k+1↑n]) implies that w1 6∈ (Πt[n↓k+1]tk⋆) and, hence, tφ1 6∈

(Πt[n↓k+1]tk⋆)−{t
Πt[k+1↑n]

k } and, also, t
φ

1 6∈ (Πt[n↓k+1]tk⋆). In particular, (ii) holds.
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Let ξ be the automorphism of Σ0,1,n determined by

j∈[1↑n]

(tj)
ξ

= (tn+1−j)

. Then

ξ2 = 1 and ξ ∈ Out−0,1,n := Out0,1,n−Out+0,1,n. Also,

tφ
ξ

n = tξφξn = t
φξ

1 6∈ (Πt[n↓k+1]tk⋆)
ξ = (Πt[1↑n−k]tn+1−k⋆).

It follows that tB
ξ
n

n ∩ (Πt[1↑n−k]tn+1−k⋆) = ∅. Since B
ξ
n = Bn and tBn

n = tBn

1 , we

see that tφ1 6∈ (Πt[1↑n−k]tn+1−k⋆). Now replacing k with n+ 1− k gives (iii).

In Remark IV.3, we shall give a second proof of Corollary 7.6 using
Larue-Whitehead diagrams.

8 Actions on free products of cyclic groups

8.1 Notation. Throughout this section, we assume that n ≥ 1 and we fix a
positive integer N .

Let p([1↑N ]) be a partition of n. Thus, p([1↑N ]) is an N -tuple for [1↑∞[ such
that p1 + · · ·+ pN = n.

Let m([1↑N ]) be an N -tuple for N− {1}.
We let Σ

0,1,p
(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mn)
N

denote the group with presentation

〈z, τ[1↑n] | zΠτ[1↑n], {τ
mi

j+
P

p[1↑i−1]
}i∈[1↑N ],j∈[1↑pi]〉.

Thus, Σ
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

is isomorphic to a free product of cyclic groups,

C∗p1
m1

∗ C∗p2
m2

∗ · · ·C∗pN
mN

, where C0 is interpreted as C∞, and p
(0)
i is also written pi

with no exponent.
We let Out

0,1,p
(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

denote the group of all automorphisms of

Σ
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mn)
N

which map {z, z} and

{{{[τi], [τ i]} | i ∈ [p1 + ... + pj−1 + 1↑p1 + ...+ pj ]} | j ∈ [1↑N ]}

to themselves.
We let Out+

0,1,p
(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mn)
N

denote the group of all automorphisms of

Σ
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mn)
N

which map {z} and

{{[τi] | i ∈ [p1 + ...+ pj−1 + 1↑p1 + ... + pj]} | j ∈ [1↑N ]}

to themselves.
In the case where all the mi are 0, we get groups denoted Out0,1,p1⊥p2⊥···⊥pN

and Out+0,1,p1⊥p2⊥···⊥pN
. Notice that Out0,1,p1⊥p2⊥···⊥pN is the subgroup of Out0,1,n

consisting of those elements such that the permutation in Symn, arising from
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the permutation of {{[t1], [t1]}, . . . , {[tn], [tn]}}, lies in the natural image of
Symp1

× Symp2
× · · · × SympN

in Symn.
There are natural maps

Out0,1,p1⊥p2⊥···⊥pN → Out
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mn)
N

,(8.1.1)

Out+0,1,p1⊥p2⊥···⊥pN
→ Out+

0,1,p
(m1)
1 ⊥p

(m2)
0 ⊥···⊥p

(mn)
N

.(8.1.2)

Since (8.1.2) is of index two in (8.1.1), we see that (8.1.1) is injective, resp.
surjective, resp. bijective, if and only if (8.1.2) is.

For topological reasons, we suspect that (8.1.1) and (8.1.2) are isomorphisms.
In this section, we shall prove that this holds in the case where all the mi are
equal or N = 1. We begin by proving that (8.1.1) and (8.1.2) are injective,
which seems to be new.

8.2 Theorem. With Notation 8.1, the maps

Out0,1,p1⊥p2⊥···⊥pN → Out
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mn)
N

,(8.1.1)

Out+0,1,p1⊥p2⊥···⊥pN
→ Out+

0,1,p
(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mn)
N

(8.1.2)

are injective.

Proof. Suppose that φ is an element of the kernel of (8.1.1) or (8.1.2). Clearly,
φ ∈ Out+0,1,n, and t

φ

([1↑n]), t([1↑n]) have the same image in Σ
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

.

By Theorem 7.5, (t([1↑n]))
φ is an n-tuple of squarefree words in Σ0,1,n, and,

hence, has the same normal form in Σ0,1,n and in Σ
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

. Hence

t
φ

([1↑n]) = t([1↑n]) as n-tuples for Σ0,1,n. Thus φ = 1, and the result is proved.

8.3 Historical Remarks. Let us now restrict to the classic case where N = 1.
Here, for an integer m ≥ 2, we are considering the action of Out0,1,n on C∗n

m ,
and it induces maps

Out0,1,n → Out0,1,n(m) ,(8.3.1)

Out+0,1,n → Out+
0,1,n(m) .(8.3.2)

Theorem 8.2 shows that these maps are injective. Birman-Hilden [6, Theorem
7] gave a topological proof that (8.3.2) is injective, thus answering a question
of Magnus. Crisp-Paris [11] gave an elegant algebraic proof of the injectivity
of (8.3.2) using the trichotomy argument of Larue [22] and Shpilrain [28]. The
Crisp-Paris argument can be summarized as follows.

For each i ∈ [1↑n], let (〈τi〉⋆) denote the set of elements of Σ0,1,n(m) whose
free-product normal form begins with an element of 〈τi〉 − {1}.

Suppose that φ is a non-trivial element of Bn = Out+0,1,n. We will show that
φ acts non-trivially on Σ0,1,n(m) .
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We may assume that n ≥ 3. By Theorem 6.7, by replacing φ with φ

if necessary, we may assume that φ is σ-negative. Thus there exists some
i ∈ [1↑n − 1] such that φ is the product of a finite sequence of elements of
σ[i+1↑n−1] ∪ σ[i↑n−1], and σi appears at least once in the sequence.

With Notation 6.5,

(〈τi〉⋆)
σi = (〈τi〉⋆)

σ′′i σ
′
i = (〈τi+1〉⋆)

σ′
i ⊆ (τi(〈τi+1〉⋆)) ⊂ (〈τi〉⋆),

since n ≥ 3. Because the elements of σ[i+1↑n−1]∪σ[i↑n−1] act as injective self-maps
on (〈τi〉⋆), it follows that (〈τi〉⋆)

φ ⊂ (〈τi〉⋆), and, hence, φ acts non-trivially on
Σ0,1,n(m) , as desired.

Let us now verify the surjectivity of the maps (8.3.1) and (8.3.2). The case
where m = 2 was verified by Stephen Humphries [2, Lemma 2.1.7].

8.4 Notation. Let m, n ∈ N with n ≥ 1 and m ≥ 2. Let ⌊m
2
⌋ denote the

greatest integer not exceeding m
2
. Then [0↑⌊m

2
⌋] ∪ [−1↓(−⌊m−1

2
⌋)] is a set of

representatives for the integers modulo m. For τk ∈ 〈τ | τm = 1〉, we define |τk|

by

k∈[0↑⌊m
2
⌋] k∈[−1↓−⌊m−1

2
⌋]

( |τk| |τk| )
= ( 2k −2k − 1)

; we extend | − | to all of Σ0,1,n(m) by using normal

forms for the free product C∗
m.

Let φ ∈ Out+
0,1,n(m). There exists a unique permutation π ∈ Symn, and a

unique (n + 2)-tuple (w([0↑n+1])) for Σ0,1,n(m) such that w0 = 1 and wn+1 = 1,

and, for each i ∈ [1↑n], wi 6∈ (tiπ⋆) ∪ (tiπ⋆) and t
φ
i = twi

iπ . For each i ∈ [0↑n], let
ui = wiwi+1. We define π(φ) := π, wi(φ) := wi, i ∈ [0↑n + 1], and ui(φ) := ui,
i ∈ [0↑n]. We write ‖φ‖ := n + 2

∑
i∈[1↑n]

|wi(φ)|.

The following is similar to Artin’s Lemma 3.2.

8.5 Lemma. Let n ≥ 1, m ≥ 2 and let φ ∈ Out0,1,n(m). Let π = π(φ). For each
i ∈ [0↑n], let ui = ui(φ). For each i ∈ [1↑n], let ai, bi denote the elements of

[0, m− 1] determined by the following: there exists some u′i ∈ Σ0,1,n(m) − (⋆〈τiπ〉)
such that ui−1 = u′iτ

ai
iπ ; there exists some u′′i ∈ Σ0,1,n(m) − (〈τiπ〉⋆) such that

ui = τ biiπu
′′
i . In particular, a1 = bn = 0.

(i). Suppose that there exists some i ∈ [2↑n] such that ai ∈ [⌊m
2
⌋↑m−1]. Then

‖σi−1φ‖ < ‖φ‖.

(ii). Suppose that there exists some i ∈ [1↑n− 1] such that bi ∈ [⌊m+1
2

⌋↑m− 1].
Then ‖σiφ‖ < ‖φ‖.

(iii). If φ 6= 1, there exists some σǫi ∈ σ[1↑n−1] ∪ σ[1↑n−1] such that ‖σǫiφ‖ < ‖φ‖.

Proof. (i). Let a = ai. There exists some v ∈ Σ0,1,n(m) − (⋆〈τiπ〉) such that
ui−1 = vτaiπ . Since wi−1(φ) = ui−1wi(φ), we have

(8.5.1) wi−1(φ) = vτaiπwi(φ);
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since wi(φ) 6∈ (〈τiπ〉⋆) and v 6∈ (⋆〈τiπ〉), vτ
a
iπwi(φ) is a free-product normal form

for wi−1(φ).

Claim. |τa+1
iπ | < |τaiπ |.

Proof. If a ∈ [⌊m
2
⌋+ 1↑m− 1], then a−m ∈ [−⌊m−1

2
⌋↑ − 1], and, hence,

|τaiπ | = |τa−miπ | = −2(a−m)− 1 = 2m− 2a− 1.

Therefore, if a ∈ [⌊m
2
⌋↑m− 2], |τa+1

iπ | = 2m− 2(a+ 1)− 1 = 2m− 2a− 3.
Thus, |τa+1

iπ | < |τaiπ | if a ∈ [⌊m
2
⌋ + 1↑m− 2].

For a = ⌊m
2
⌋, a ≥ m−1

2
, and |τaiπ | = 2a > 2m− 2a− 3 = |τa+1

iπ |.
For a = m− 1, |τaiπ | = 1 and |τa+1

iπ | = 0.

Thus,

|wi−1(φ)| = |v|+ |τaiπ |+ |wi(φ)| > |v|+ |τa+1
iπ |+ |wi(φ)|.

By (8.5.1), wi−1(φ)wi(φ)τiπ = vτa+1
iπ ; hence

τ
σi−1φ
i = (τ τii−1)

φ = (τ
wi−1(φ)
(i−1)π )(τ

wi(φ)

iπ
) = τ

vτa+1
iπ

wi(φ)

(i−1)π .

Hence, |wi(σi−1φ)| = |vτa+1
iπ wi(φ)| ≤ |v|+ |τa+1

iπ |+ |wi(φ)| < |wi−1(φ)|.

For each j ∈ [1↑i − 2] ∪ [i + 1↑n], τ
σi−1φ
j = τ

φ
j , and, hence, |wj(σi−1φ)| =

|wj(φ)|.

Also, τ
σi−1φ
i−1 = τ

φ
i ; in particular, |wi−1(σi−1φ)| = |wi(φ)|.

It now follows that ‖σi−1φ‖ < ‖φ‖.

(ii). Let b = bi. There exists some v ∈ Σ0,1,n(m) −(〈τiπ〉⋆) such that ui = τ biπv.
Since wi+1(φ) = uiwi(φ), we have

(8.5.2) wi+1(φ) = v τ biπwi(φ).

Since wi(φ) 6∈ (〈τiπ〉⋆) and v 6∈ (⋆〈τiπ〉), v τ
b
iπwi(φ) is a free-product normal form

for wi+1(φ). Hence, |wi+1(φ)| = |v|+ |τ biπ |+ |wi(φ)|.

Claim. |τ b+1
iπ | < |τ biπ |.

Proof. For any b ∈ [⌊m+1
2

⌋↑m], then m− b ∈ [⌊m
2
⌋↓0], and, hence,

|τ biπ | = |τm−b
iπ | = 2(m− b) = 2m− 2b.

Therefore, since b ∈ [⌊m+1
2

⌋↑m− 1],

|τ b+1
iπ | = 2m− 2(b+ 1) = 2m− 2b− 2 < |τ biπ |,

as claimed.
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Hence |wi+1(φ)| > |v|+ |τ b+1
iπ |+ |wi(φ)|.

For all j ∈ [1↑i− 1] ∪ [i+ 2↑n], τσiφ
j = τ

φ
j ; hence, |wj(σiφ)| = |wj(φ)|.

Since τσiφ
i+1 = τ

φ
i , we see that |wi+1(σiφ)| = |wi(φ)|.

By (8.5.2), wi+1(φ)wi(φ)τ iπ = v τ b+1
iπ ; hence

τ
σiφ
i = (τ τ ii+1)

φ = (τ
wi+1(φ)
(i+1)π )(τ

wi(φ)

iπ
) = τ

v τb+1
iπ

wi(φ)

iπ .

Hence, |wi(σiφ)| = |v τ b+1
iπ wi(φ)| ≤ |v|+ |τ b+1

iπ |+ |wi(φ)| < |wi+1(φ)|.
It now follows that ‖σiφ‖ < ‖φ‖, and (ii) is proved.

(iii). If φ 6= 1, we choose a distinguished element of [1↑n] as follows.
If, for some i ∈ [1↑n], τai+1+bi

iπ = 1, we take any such i to be our distinguished
element of [1↑n].

Consider then the case where, for all i ∈ [1↑n], τai+1+bi
iπ 6= 1. Thus, there is

no further cancellation in Πτφ[1↑n]. Since φ fixes Πτ[1↑n], it is not difficult to see

that, for all i ∈ [1↑n], τai+1+bi
iπ = τi. Since φ 6= 1, it is then not difficult to show

that there exists some i ∈ [1↑n] such that (ai, bi) 6= (0, 0). We take any such i
to be our distinguished element of [1↑n].

Let i denote our distinguished element of [1↑n].
Notice that (ai, bi) 6= (0, 0) and that τai+1+bi

iπ ∈ {1, τiπ}. Hence, ai + 1 + bi ∈
{m,m+ 1}, and, hence, bi ∈ {m− ai − 1, m− ai}.

Case 1. ai ∈ [⌊m
2
⌋↑m− 1].

Here, i ∈ [2↑n] and, by (i), ‖σi−1φ‖ < ‖φ‖.

Case 2. ai ∈ [0↑⌊m−2
2

⌋]
Here, m − ai − 1 ∈ [m − 1↓⌊m+1

2
⌋], and, hence, bi ∈ [⌊m+1

2
⌋↑m − 1]. Here,

i ∈ [1↑n− 1] and, by (ii), ‖σiφ‖ < ‖φ‖.

8.6 Theorem. Let n ≥ 1, m ≥ 2. The natural map Out+0,1,n → Out+
0,1,n(m)

is an isomorphism, and, hence, the natural map Out0,1,n → Out0,1,n(m) is an

isomorphism.

With Notation 8.1, the maps Out0,1,p1⊥p2⊥···⊥pN → Out
0,1,p

(m)
1 ⊥p

(m)
2 ⊥···⊥p

(m)
N

,

and Out+0,1,p1⊥p2⊥···⊥pN
→ Out+

0,1,p
(m)
1 ⊥p

(m)
2 ⊥···⊥p

(m)
N

are isomorphisms.

The following is essentially an algebraic translation of a part of a topological
argument in [26, Section 3].

8.7 Proposition. With Notation 8.1, let H be a subgroup of

Σ
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mn)
N

of finite index, and let A be the subgroup of

Out
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mn)
N

consisting of elements which map H to itself. Then, either the induced map

A→ Aut(H) is injective or (n,N,m1) = (2, 1, 2).
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Proof. Suppose that φ ∈ Out
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mn)
N

, and that φ acts as the iden-

tity on H . We shall show that φ = 1 or (n,N,m1) = (2, 1, 2).
Let G = Σ

0,1,p
(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mn)
N

.

For any g ∈ G, right multiplication by g permutes the elements of the finite
set H\G, so there exists some positive integer k such that gk acts trivially on
H\G. In particular, Hgk = H and, hence, gk ∈ H .

Hence, there exists some positive integer k such that (Πτ[1↑n])
k ∈ H . Now

(Πτ[1↑n])
φ = (Πτ[1↑n])

ǫ for some ǫ ∈ {1,−1}, and, hence,

(Πτ[1↑n])
k = (Πτ[1↑n])

kφ = (Πτ[1↑n])
φk = (Πτ[1↑n])

ǫk = (Πτ[1↑n])
kǫ.

Since Πτ[1↑n] has infinite order in G, we see that ǫ = 1. Thus φ fixes Πτ[1↑n].
Consider any i ∈ [1↑n]. Since (Πτ[1↑n])

τi ∈ G, there exists some positive
integer k such that (Πτ[1↑n])

τik ∈ H . Hence,

(Πτ[1↑n])
kτi = (Πτ[1↑n])

τik = (Πτ[1↑n])
τikφ = (Πτ[1↑n])

kφτ
φ
i = (Πτ[1↑n])

kτ
φ
i .

Hence τφi τ i commutes with (Πτ[1↑n])
k. A straightforward normal-form argument

shows that τφi τ i ∈ 〈Πτ[1↑n]〉.

Hence there exists an integer j such that τφi = (Πτ[1↑n])
jτi. Since τφi is a

conjugate of τiπ(φ), the cyclically-reduced form of (τ[1,n])
jτi is τiπ(φ) . Either j = 0,

or there must be cyclic cancellation, and a straightforward analysis then shows
that (n,N,m1) = (2, 1, 2). Since i was arbitrary, this completes the proof.

9 The Bn+1-group Φn

9.1 Notation. Recall that Σ0,1,(n+1)(2) = C
∗(n+1)
2 = 〈τ[1↑n+1] | τ

2
[1↑n+1] = 1〉. We

define Φn to be the Bn+1-group consisting of the set of elements of Σ0,1,(n+1)(2)

which have even exponent sum in the τi. It is not difficult to see that Φn is a free
group of rank n, and that there is induced a map from Out0,1,n+1 = Out0,1,(n+1)(2)

to AutΦn. Since Bn+1 = Out+0,1,n+1 = Out+
0,1,(n+1)(2)

, Φn has a Bn+1-action; we

say that Φn is a Bn+1-group, and that Φn is a Bn+1-subgroup of Σ0,1,(n+1)(2) .
Proposition 8.7 shows that, if n 6= 1, then the map from Out0,1,n+1 =

Out0,1,(n+1)(2) to AutΦn is injective, and we say that the Bn+1-action is faithful,
and that Φn is a faithful Bn+1-group.

Over the course of this section, we shall choose various free generating sets
of Φn to obtain interesting actions. In the next two examples, we identify Σg,1,0
with Φ2g and Σg,2,0 with Φ2g+1.

9.2 Example. Now that algebraic proofs of the requisite theorems are known
to us, let us review [18, Example 15.6] which was an algebraic approximation of
results in [26, Section 3].
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Let g ∈ N. Let

Σg,1,0 := 〈x1, y1, . . . , xg, yg, z1 | [x1, y1] · · · [xg, yg]z1 = 1〉,

where the commutator [x, y] of group elements x, y is x yxy. Let Out+g,1,0 denote
the group of all automorphisms of Σg,1,0 which fix z1. Then Σg,1,0 is free of rank
2g with ordered free generating set (x1, y1, . . . , xg, yg), and Out+g,1,0 is the group
of all automorphisms of Σg,1,0 which fix [x1, y1] · · · [xg, yg].

We now recall some Dehn-twist elements of Out+g,1,0 from Definitions 3.10
and Remarks 5.1 of [18].

For each i ∈ [1↑g], we define αi, βi ∈ Out+g,1,0 by

k∈[1↑i−1] k∈[i+1↑g]

(xk yk xi yi xk yk)
αi

= (xk yk yixi yi xk yk),

and

k∈[1↑i−1] k∈[i+1↑g]

(xk yk xi yi xk yk)
βi

= (xk yk xi xiyi xk yk).

For each i ∈ [1↑g − 1], we define γi ∈ Out+g,1,0 by

k∈[1↑i−1] k∈[i+2↑g]

(xk yk xi yi xi+1 yi+1 xk yk)
γi

= (xk yk y
xi+1

i+1 yixi y
y
xi+1
i+1

i xi+1yiy
xi+1

i+1 yi+1 xk yk).

Let us identify Σg,1,0 with Φ2g via

k∈[1↑g]

(xk yk z1)
Σg,1,0

∼
→Φ2g

= (Πτ[2k+1↓2k] τ2k+1Πτ[1↑2k+1] z21).

Notice that [xk, yk] = xkykxkyk is then identified with

Πτ[2k↑2k+1]Πτ[2k+1↓1]τ2k+1Πτ[2k+1↓2k]τ2k+1Πτ[1↑2k+1]

which equals Πτ[2k−1↓1]Πτ[2k↑2k+1]Πτ[1↑2k+1]. Hence Π
k∈[1↑g]

[xk, yk] is identified with

(Πτ[1↑2g+1])
2.

This corresponds to the surface of genus g with one boundary component
arising as a two-sheeted branched cover of a sphere with one boundary com-
ponent and 2g + 1 double points. Then B2g+1 = Out+0,1,2g+1 = Out+

0,1,(2g+1)(2)

becomes embedded in Out+g,1,0 via the homomorphism represented as
(
σ1 σ2 σ3 σ4 σ5 · · · σ2g−2 σ2g−1 σ2g
α1 β1 γ1 β2 γ2 · · · βg−1 γg−1 βg

)
.

Clearly, in the preceding example, the subgroup B2g of B2g+1 is also em-
bedded in Outg,1,0, but it is more natural to remove from the surface a handle
containing the boundary component (a sphere with three boundary components
or a ‘pair of pants’), and embed B2g in Outg−1,2,0, as follows.
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9.3 Example. Now that algebraic proofs of the requisite theorems are known
to us, let us review [18, Example 15.7] which was an algebraic approximation of
results in [26, Section 3].

Let g ∈ N. Let

Σg,2,0 := 〈x[1↑g], y[1↑g], z[1↑2] | ( Π
i∈[1↑g]

[xi, yi]) Π z[1↑2] = 1〉.

Recall that [x, y] := x yxy. Then Σg,2,0 is free of rank 2g+1 with free generating
set (x[1↑g], y[1↑g], z1) and distinguished element z2 such that z2 = ( Π

i∈[1↑g]
[xi, yi])z1.

Let Out+g,1⊥1,0 denote the group of all automorphisms of Σg,2,0 ∗ 〈e1 | 〉 which

map Σg,2,0 to itself, and fix ze11 and z2. It can be shown that Out+g,1⊥1,0 acts
faithfully on the subset Σg,2,0 ∪ Σg,2,0e1 of Σg,2,0 ∗ 〈e1 | 〉.

Here, e1 represents an arc from the base-point of one boundary component,
to the base-point of the other boundary component. Karen Vogtmann calls such
an arc a ‘tether joining the basepoint to the second boundary component’. For
any surface-with-boundaries, A’Campo [1, Section 4, Remarque 6], [26, p.232]
identifies basepoints of all the boundary components, which makes tethers into
loops, to obtain a topological quotient space whose fundamental group is acted
on, faithfully, by the mapping-class group of the surface-with-boundaries.

We now recall some Dehn-twist elements of Out+g,1⊥1,0 from Definitions 3.10
and Remarks 5.1 of [18].

For each i ∈ [1↑g], we define αi, βi ∈ Out+g,1⊥1,0 by

k∈[1↑i−1] k∈[i+1↑g]

(xk yk xi yi xk yk z1 e1)
αi

= (xk yk yixi yi xk yk z1 e1),

k∈[1↑i−1] k∈[i+1↑g]

(xk yk xi yi xk yk z1 e1)
βi

= (xk yk xi xiyi xk yk z1 e1).

For each i ∈ [1↑g − 1], we define γi ∈ Out+g,1⊥1,0 by

k∈[1↑i−1] k∈[i+2↑g]

(xk yk xi yi xi+1 yi+1 xk yk z1 e1)
γi

= (xk yk y
xi+1

i+1 yixi y
y
xi+1
i+1

i xi+1yiy
xi+1

i+1 yi+1 xk yk z1 e1),

and we define γg ∈ Out+g,1⊥1,0

k∈[1↑i−1]

(xk yk xg yg z1 e1)
γg

= (xk yk z1ygxg yz1g z
ygz1
1 z1yge1).
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Let us identify Σg,2,0 with Φ2g+1 and Σg,2,0∪Σg,2,0e1 with Σ0,1,(2g+2)(2) via the
map Σg,2,0 ∗ 〈e1〉 → Σ0,1,(2g+2)(2) determined by

k∈[1↑g]

( xk yk z1 e1 z2)
Σg,2,0∗〈e1〉→Σ

0,1,(2g+2)(2)

= (Πτ[2k+1↓2k] τ2k+1Πτ[1↑2k+1] z
τ2g+2

1 τ2g+2 z1).

This corresponds to the surface of genus g with two boundary components arising
as a two-sheeted branched cover of a sphere with one boundary component and
2g + 2 double points. Now B2g+2 = Out+0,1,2g+2 = Out+

0,1,(2g+2)(2)
is embedded in

Out+g,1⊥1,0 via a homomorphism represented as

(
σ1 σ2 σ3 σ4 σ5 · · · σ2g−2 σ2g−1 σ2g σ2g+1

α1 β1 γ1 β2 γ2 · · · βg−1 γg−1 βg γg

)
.

For g ≥ 1, Proposition 8.7 shows that this is an embedding. In the case where
g = 0, the interpretation of the notation is as follows: σ1 is mapped to γ0; γ0
fixes z1 and sends e1 to z1e1.

Clearly, in the preceding example, the subgroup B2g+1 of B2g+2 is also em-
bedded in Out+g,1⊥1,0, but it is more natural to remove from the surface a disc
containg the two boundary components (a sphere with three boundary compo-
nents or a ‘pair of pants’), and embed B2g+1 in Out+g,1,0, as in Example 9.2.

We next discuss the Perron-Vannier isomorphism Bn+1 ⋉Φn ≃ Artin〈Dn+1〉
for n ≥ 1. The following was shown to us by Mladen Bestvina.

9.4 Lemma. Let n ≥ 2. Then, Artin〈Dn〉 has a unique automorphism υ of

order two which fixes d1, . . . , dn−2 and interchanges dn−1 and dn. The semidirect

product Artin〈Dn〉⋊ 〈υ〉 has presentation

Artin〈 d1 d2 · · · dn−3 dn−2 dn−1 υ | υ2 = 1 〉.

Proof. Notice that 〈dn−1, dn, υ | υ2 = 1, dυn−1 = dn, dn−1dn = dndn−1〉 is
isomorphic to 〈dn−1, υ | υ2 = 1, dn−1d

υ
n−1 = dυn−1dn−1〉, and the latter is

Artin〈 dn−1 υ | υ2 = 1 〉. The result now follows easily.

Part of the following appears in [26] and [10].

9.5 Theorem (Perron-Vannier [26]). Let n ≥ 2. The semidirect product Bn ⋉

Φn−1 has presentation

Artin〈σ1 σ2 · · · σn−3

σn−1τnτn−1

σn−2 σn−1〉 ≃ Artin〈Dn〉.
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Hence, Bn ⋉ Φn−1 has a unique automorphism υ of order two which fixes

σ1, . . . , σn−2 and interchanges σn−1 and σn−1τnτn−1. The double semidirect prod-

uct (Bn ⋉ Φn−1)⋊ 〈υ〉 has presentation

Artin〈σ1 σ2 · · · σn−3 σn−2 σn−1 υ | υ2 = 1〉.

Proof. By Corollary 5.5, we have a presentation

Bn ⋉ Σ0,1,n = Artin〈σ1 · · · σn−1 tn〉.

If we impose the relation t2n = 1, we transform Bn ⋉ Σ0,1,n into Bn ⋉ Σ0,1,n(2) ,
and we have

Bn ⋉ Σ0,1,n(2) = Artin〈σ1 · · · σn−1 τn | τ 2n = 1〉.

Here, there exists a retraction to 〈τn〉 with kernel the normal subgroup generated
by σ[1↑n−1]. This normal subgroup contains σ

τi+1

i = σiτi+1τi for all i ∈ [1↑n− 1].
By Lemma 9.4, the normal subgroup has presentation

Bn ⋉ Φn−1 = Artin〈 σ1 · · · σn−3

στnn−1

σn−2 σn−1 〉,

and this agrees with the desired presentation.

9.6 Remarks. Corollary 5.5 says that, for n ≥ 1, we can go down by index
n+1 from Artin〈An〉 by squaring the last generator, and arrive at Artin〈Bn〉 ≃
Artin〈An−1〉⋉ Σ0,1,n.

Theorem 9.5 says that, for n ≥ 2, we can kill the square of the new last
generator, go down by index 2, and arrive at Artin〈Dn〉 ≃ Artin〈An−1〉⋉ Φn−1.

We now record some other free generating sets of Φn which appear in the
literature.

9.7 Examples. Recall Notation 9.1. In particular, the Bn+1-action on Φn is
faithful if n 6= 1.

(1). For each k ∈ [1↑n], set xk = τkτk+1 in Φn. Then x[1↑n] is a free generating
set for Φn, and, for each i ∈ [1↑n], the action of σi on Φn is determined by

k∈[1↑i−2] k∈[i+2↑n]

(xk xi−1 xi xi+1 xk)
σi

= (xk xi−1xi xi xixi+1 xk),

interpretated appropriately for i = 1 and i = n.
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(2). For each k ∈ [1↑n], set xk = τn+1τk in Φn, Then x[1↑n] is a free generating
set for Φn, and, for each i ∈ [1↑n− 1], σi acts on x[1↑n] as follows.

k∈[1↑i−1] k∈[i+2↑n]

(xk xi xi+1 xk)
σi

= (xk xi+1 xi+1xixi+1 xk).

k∈[1↑n−1]

( xk xn)
σn

= (xn−1xk xn).

(3). We next consider the free generating set used in the proof of [11, Propo-
sition A.1(2)].

For each k ∈ [1↑n], set xk = τ
Πτ[1↑k]
n+1 τk+1 in Φn. Then x[1↑n] is a free generating

set for Φn, and, for each i ∈ [1↑n− 1], σi acts on x[1↑n] as follows,

k∈[1↑i−1] k∈[i+2↑n]

(xk xi xi+1 xk)
σi

= (xk xiΠx[i↑i+1] Πx[i+1↓i]xi+1 xk).

Let w = (Πx2[1↑n−1]xn)
−1; then σn acts as follows.

k∈[1↑n−1]

( xk xn )σn

= (w(−1)kΠx[1↑k−1]xk w(−1)nΠx[1↑n−1]xnw).

(4). By reflecting the previous example, we can invert the elements of σ[1↑n].

For each k ∈ [1↑n], set xk = (τ
Πτ[n↓1]

n+1 τk)
Πτ[k↑n+1] in Φn. Then x[1↑n] is a free

generating set for Φn, and, for each i ∈ [1↑n− 1], σi acts on x[1↑n] as follows.

k∈[1↑i−1] k∈[i+2↑n]

(xk xi xi+1 xk)
σi

= (xk xiΠx[i+1↓i] Πx[i↑i+1]xi+1 xk).

Let w = Πx2[1↑n−1]xn; then σn acts as follows.

k∈[1↑n−1]

( xk xn )σn

= (w(−1)kΠx[1↑k−1]xk w(−1)nΠx[1↑n−1]xnw).

9.8 Historical Remarks. Let us view Bn as a subgroup of Bn+1 by suppress-
ing σn. Then the Bn+1-group Φn becomes a faithful Bn-group, even if n = 1.

Wada [29] defined various left actions of Bn on a free group of rank n. All but
four of them are obviously non-faithful, and two of the remaining four actions are
obviously equivalent up to changing the free generating set, leaving three actions
to be studied for faithfulness. Shpilrain [28] ingeniously used the σ1-trichotomy
to prove that these three are all faithful. Crisp-Paris [11, Proposition A.1(2)]
showed that the second and third of these three Wada actions are equivalent up
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to changing the free generating set. They correspond to Examples 9.7(2), (4),
above, with σn suppressed. Notice that our actions on the right are the inverses
of their actions on the left. In summary, the second and third Wada actions
are obtained by choosing suitable free generating sets of the Perron-Vannier
Bn+1-group Φn.

The first Wada action is constructed by choosing a non-zero integer m, and,
for each 1 ∈ [1↑n− 1], letting σi act on 〈x[1↑n] | 〉 via

k∈[1↑i−1] k∈[i+2↑n]

(xk xi xi+1 xk)
σi

= (xk xi+1 x
xmi+1

i xk).

Edward Formanek has pointed out that xm[1,n] is then a free generating set of

a faithful Bn-subgroup of 〈x[1,n] | 〉, where faithfulness can be seen from the
fact that the Bn-action is the standard Artin action with respect to this free
generating set. This gives a transparent proof that the first Wada action is
faithful.

Appendix. Larue-Whitehead diagrams

In this appendix, we rework ideas from Larue’s thesis [21, Chapter 2 and Ap-
pendix A], using combinatorial arguments to obtain a description of the Bn-orbit
of t1 when n ≥ 1. A topological treatment of similar ideas was given in [19], and
it was arrived at independently of [21]. See [16, Chapters 5, 6].

I Self-homeomorphisms

This section is purely motivational. We shall briefly indicate the mapping-class
viewpoint of the braid group, and the Jordan-curve nature of the Whitehead
graphs of the elements in the Bn-orbit of t1 if n ≥ 1.

Let C denote the complex plane, and Ĉ the Riemann sphere, or projective
complex line, C ∪ {∞}. For each z ∈ C and each non-negative real number r,
let D(z, r), resp. D◦(z, r), denote the closed, resp. open, disc in C with centre
z and radius r.

Let S0,1,n denote the surface formed by deleting from a sphere an open
disc and n points. We shall think of the discs and points as being distin-
guished rather than deleted; for example, it is then meaningful to speak of the
self-homeomorphisms of S0,1,n as permuting the points. We take as our model of

S0,1,n the sphere Ĉ having [1↑n] as its set of n distinguished points, and D◦(0, 1
2
)

as its distinguished open disc. We are particularly interested in the set [0↑n],
and, in our diagrams, we shall mark these points out by drawing discs of small
radii around them.
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w−1 w0 w1 w2 w3

v−1 v0 v1 v2 v3

e0 e1 e2 e3

d0 d1 d2 d3

f−1 f0 f1 f2 f3

Figure I.1.2: S0,1,3.

For each distinguished point k ∈ [0↑n], we have a distinguished oriented
tether, or arc, {k − ri | −∞ ≤ r ≤ 0}, joining ∞ to k. We label the right flank

of this oriented arc tk, and label the left flank tk; we then cut Ĉ open along these
arcs and obtain a (2n + 2)-gon, with clockwise boundary label Π

k∈[0↑n]
(tktk); see

Fig. I.1.4. We shall use t0 and z1 interchangeably in this section. Performing
the boundary identifications then gives back Ĉ.

The self-homeomorphism λ of D(0, 1) given by λ(reiθ) := rei(θ−2πr) fixes
the boundary of D(0, 1) and interchanges 1

2
and −1

2
; see Fig. I.1.1. For each

Figure I.1.1: The map λ : D(0, 1) → D(0, 1), reiθ 7→ rei(θ−2πr).

i ∈ [1↑n−1], let φi denote the self-homeomorphism of Ĉ which, on Ĉ−D(i+ 1
2
, 1),

acts as the identity map, and, on D(i+ 1
2
, 1), acts by z 7→ λ(z − i− 1

2
) + i+ 1

2
.

Then φ[1↑n−1] generates a group 〈φ[1↑n−1]〉 of self-homeomorphisms of Ĉ, which
will shed light on the Bn-orbit of t1. To describe the induced action of 〈φ[1↑n−1]〉

on the fundamental group of S0,1,n, we first give Ĉ a CW-structure by specifying

a graph S
(1)
0,1,n embedded in C ⊂ Ĉ.

For each k ∈ [−1↑n], we have vertices wk := k + 1
2
− i and vk := k + 1

2
+ i,

and an oriented straight edge fk joining wk to vk. For each k ∈ [0↑n], we have
an oriented straight edge ek joining wk−1 to wk, and an oriented straight edge

dk joining vk−1 to vk. This completes the description of the graph S
(1)
0,1,n. For

n = 3, S
(1)
0,1,3 can be seen in Fig. I.1.2. Each distinguished point k ∈ [0↑n] is the

midpoint of the rectangle in C cut out by the path fk−1dkfkek.

Let 〈S
(1)
0,1,n | 〉 denote the (free) fundamental groupoid of S

(1)
0,1,n, and let

〈S
(1)
0,1,n | 〉(w−1, w−1) denote the (free) fundamental group of S

(1)
0,1,n at w−1. The
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subgraph of S
(1)
0,1,n spanned by e[0↑n] ∪ f[−1↑n] is a maximal subtree of S

(1)
0,1,n,

and d[0↑n] then determines a free generating set t[0↑n] of 〈S
(1)
0,1,n | 〉(w−1, w−1);

explicitly, for each k ∈ [0↑n], tk = Πe[0↑k−1]fk−1dkfkΠe[k↓0].

The path f−1Πd[0↑n]fnΠe[n↓0] cuts out a rectangle in C; the complementary

region in Ĉ together with the graph S
(1)
0,1,n is then a retract of Ĉ − [0↑n]. Let

∼ denote homotopy for closed paths at w−1 in Ĉ − [0↑n]. We can identify the

fundamental groupoid of S0,1,n with 〈S
(1)
0,1,n | f−1Πd[0↑n]fnΠe[n↓0] ∼ w−1〉. We

then identify Σ0,1,n with the fundamental group of S0,1,n at w−1,

Σ0,1,n = 〈S
(1)
0,1,n | f−1Πd[0↑n]fnΠe[n↓0] ∼ w−1〉(w−1, w−1)

= 〈t[0↑n] | Πt[0↑n] = 1〉.

Consider the action of φ1 on the graph S
(1)
0,1,n. For n = 3, the result can be

e0 e1 e2 e3

d0 d1 d2 d3

f−1

f
φ1
1

f0

f1

f2 f3

Figure I.1.3: S
(1)
0,1,3 and its image under φ1.

seen in Fig. I.1.3. The crucial point is that fφ11 ∼ e2f2d2f1e1f0d1, and all

the other elements of S
(1)
0,1,3 are fixed by φ1; this makes the action quite simple

algebraically. Then, f
φ1

1 ∼ d1f 0e1f1d2f2e2, and, for the free generator t1 =
e0f0d1f1e[1,0], we have

t
φ1
1 ∼ e0f0d1(d1f 0e1f1d2f2e2)e[1,0] ∼ e[0,1]f1d2f 2e[2,0] = t2.

Similarly, for this element, t2, we have

t
φ1
2 ∼ e[0,1](e2f2d2f 1e1f0d1)d2f 2e[2,0] ∼ e[0,2]f2d2f1e1f0d[1,2]f 2e[2,0] ∼ t2t1t2,

where the latter homotopy can be seen directly by collapsing the elements of
e[0,2] ∪ f[0,2], which lie in the maximal subtree. Thus, we see that φ1 acts on
Σ0,1,n as the automorphism σ1.

It follows that the action of any given element of Bn on Σ0,1,n is induced by
some self-homeomorphism φ ∈ 〈φ[1↑n−1]〉. The interesting feature now is that φ

carries the oriented Jordan curve f−1d[0↑1]f 1e[1↓0] (∼ t0t1) to an oriented Jordan

curve f−1d[0↑1]f
φ

1 e[1↓0] (∼ (t0t1)
φ ∼ t0t

φ
1 ). Recall that Ĉ is obtained by edge
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z1 z1 t1 t1 t2 t2 t3 t3

z1 z1

t1

t1

t2t2

t3

t3

z1 z1

t1

t1

t2 t2

t3

t3

Figure I.1.4: Jordan curves for z1t
φ1
1 and a Whitehead graph for tσ11 = t1t2t1.

identification from the (2n + 2)-gon with clockwise, boundary label Π
i∈[0↑n]

(titi).

The Jordan curve f−1d[0↑1]f
φ

1 e[1↓0] has as its preimage, in the (2n + 2)-gon,
the union of a family of (disjoint) oriented arcs. These arcs can be used to
reconstruct tφ1 , since the Jordan curve cyclically reads off t0t

φ
1 from its meetings

with the labelled oriented tethers; notice that the set of tethers is now dual
to the set of generators t[0↑n]. The purpose of this appendix is to define and
study a combinatorial representation of the family of arcs, and recover Larue’s
characterization of the elements of tBn

1 .
Although it will not be used in our arguments, let us mention the fact that,

on collapsing the interior of each labelled edge of the (2n+ 2)-gon to a labelled
vertex, each oriented arc in the family becomes an oriented edge, and we recover
the (directed, multi-edge, non-cyclic) Whitehead graph of tφ1 ; see Fig. I.1.4.

II Nested sets

We now introduce some formal definitions that will allow us to associate a com-
binatorial Jordan curve to each element of tBn

1 .

II.1 Definitions. Let (A,≤) be a finite ordered set, and let m ∈ N.
Let N denote the number of elements of A. Then A is order-isomorphic to

[1↑N ] in a unique way, and we assign to A the induced metric, denoted dA. Thus
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dA(a1, a2) = 1 if and only if a1 6= a2 and no element of A lies strictly between a1
and a2.

Recall that the elements of Am are called m-tuples for A.
Let a1, a2, b1, b2 be elements of A. We say that {a1, b1} is nested with {a2, b2}

(for (A,≤)) if a1, a2, b1, b2 are distinct elements of A, and either both of, or
neither of, a2 and b2 lie between a1 and b1 in (A,≤). It is not difficult to see
that, in this event, {a2, b2} is nested with {a1, b1}.

Let a([1↑m]) and b([1↑m]) be m-tuples of A.
We say that a([1↑m]) is an m-tuple without repetitions if ai 6= aj for all i 6= j

in [1↑m].
We say that (a[1↑m]) is an ascending m-tuple (for (A,≤)) if a1 ≤ a2 ≤ · · · ≤

am in (A,≤).
We say that {{ai, bi}}i∈[1↑m] is nested (for (A,≤)) if, for all i 6= j in [1↑m],

{ai, bi} is nested with {aj , bj} for (A,≤).
We let Symm act on Am, on the left, by π(a([1↑m])) := a([1↑m])π . For example,

(1,2,3)(a1, a2, a3) = (a3, a1, a2), and, hence,
(1,2,3)(a, b, c) = (c, a, b). The ascending

rearrangement of a([1↑m]) is the unique ascending m-tuple for (A,≤) that lies in
the Symm-orbit of a([1↑m]).

Let a([1↑2m]) be a 2m-tuple for A.
A permutation π ∈ Sym2m is said to embed a([1↑2m]) in a plane if πa([1↑2m)])

is ascending for (A,≤), and both {[2i− 1↑2i]π}i∈[1↑m] and {[2i↑2i+1]π}i∈[1↑m−1]

are nested in (N,≤).
We say that a([1↑2m]) is a planar 2m-tuple (for (A,≤)) if there exists some

π ∈ Sym2m which embeds a([1↑2m]) in a plane. (If no two consecutive terms of
a([1↑2m]) are equal, π is then unique, but we shall not need this fact.) There
is then an associated diagram formed as follows. We assign, to each point
i ∈ [1↑2m] ⊂ R ⊂ C, the label aiπ ; notice that this means that the label of iπ

is ai. For each i ∈ [1↑m], we join (2i− 1)π (labelled a2i−1) to (2i)π (labelled a2i)
by an oriented semi-circle in the upper half-plane, and for each i ∈ [1↑m − 1],
we join (2i)π (labelled a2i) to (2i+1)π (labelled a2i+1) by an oriented semi-circle
in the lower half-plane. These oriented semi-circles form an oriented arc with
no crossings which traces out the 2m-tuple a([1↑2m]).

II.2 Example. Suppose that a([1↑8]) = (z1, t1, t1, t2, t2, t1, t1, z1) is an 8-tuple
for some ordered set (A,≤), and that the ascending rearrangement of a([1↑8]) is
(z1, t1, t1, t1, t1, t2, t2, z1).

The permutation

(
1 2 3 4 5 6 7 8
1 2 5 6 7 4 3 8

)
= (3, 5, 7)(4, 6) embeds a([1↑8])

in a plane since both {{1, 2}, {5, 6}, {7, 4}, {3, 8}} and {{2, 5}, {6, 7}, {4, 3}} are
nested in (N,≤), and (3,5,7)(4,6)(z1, t1, t1, t2, t2, t1, t1, z1)=(z1, t1, t1, t1, t1, t2, t2, z1).
The associated diagram can be seen in Fig. II.2.1.
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z1
1

t1
2

t1
3

t1
4

t1
5

t2
6

t2
7

z1
8

Figure II.2.1: (z1, t1, t1, t2, t2, t1, t1, z1).

Let us record two results which will be useful later.

II.3 Lemma. Let (A,≤) be an ordered set, and let m be a positive inte-

ger. Let c[1↑m] and c[1↑m] be m-tuples without repetitions for (A,≤) such that

{{ci, ci}}i∈[1↑m] is nested, and max(c[1↑m]) < min(c[1↑m]). If c([1↑m]) is ascending,

then c([m↓1]) is also ascending.

Proof. We argue by induction on m. If m = 1, the conclusion is trivial. Now,
assume that m ≥ 2 and that the implication holds with m − 1 in place of m.
We see that c1 < c2 ≤ max(c[1↑m]) < min(c[1↑m]) ≤ c1. Since {c1, c1} is nested
with {c2, c2}, we also see that c1 < c2 < c1. By the induction hypothesis, c([m↓2])

is ascending, and hence c([m↓1]) is ascending. Hence, the result is proved.

II.4 Lemma. Let (A,≤) be an ordered set, let m ∈ N, and let a([1↑2m]) be a

2m-tuple for A.

Then a([1↑2m]) is planar for (A,≤) if and only if there exists an ordered set

(B,≤), and a 2m-tuple b([1↑2m]) for B, without repetitions, and an ordered-set

map B → A, b 7→ label(b), such that b[1↑2m] = B, label(b([1↑2m])) = a([1↑2m]), and

{b[2i↑2i+1]}i∈[1↑m−1] and {b[2i−1↑2i]}i∈[1↑m] are nested for (B,≤).

Proof. Suppose first that a([1↑2m]) is planar for (A,≤), and let π be an element
of Sym2m that embeds a([1↑2m]) in a plane. We take B to be [1↑2m] with the
usual ordering. For each i ∈ [1↑2m], let label(i) = aiπ and let bi = iπ; thus,
label(bi) = label(iπ) = ai. All the conditions are satisfied.

Conversely, if B exists, we can identify B with [1↑2m] with the usual ordering,
in a unique way. Then the map i 7→ bi is an element π of Sym2m that embeds
a([1↑2m]) in a plane.

III Planar words in Σ0,1,n

III.1 Definitions. Let A be the monoid generating set {z1, z1} ∪ t[1↑n] ∪ t[1↑n]
of Σ0,1,n. We form the ordered set (A,≤) with

z1 < t1 < t1 < · · · < tn < tn < z1.
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We remark that, for n 6= 1, the ordering on A is reminiscent of the ordering of
the ends of Σ0,1,n in Section 7. We emphasize that, even if n = 1, z1 6= t1 in A.

Let m ∈ N. Consider an m-tuple a([1↑m]) for t[1↑n] ∪ t[1↑n], and let w =
Πa[1↑m] ∈ Σ0,1,n; thus a([1↑m]) is an expression for w. We define the Whitehead

expansion of a([1↑m]) to be the (2m+ 2)-tuple

(z1, a1, a1, a2, a2, . . . , am, am, z1)

for A, and we shall express it in the format (z1, ((ai, ai))i∈[1↑m], z1). We say that
a([1↑m]) is a planar expression for w if the Whitehead expansion of a([1↑m]) is
planar for (A,≤). If the unique reduced expression for w is a planar expression
for w, then we say that w is a planar word in Σ0,1,n.

III.2 Examples. (i). The word t1t2t1 is planar, since the Whitehead ex-
pansion of the reduced expression is (z1, t1, t1, t2, t2, t1, t1, z1), and, by Exam-
ple II.2, (z1, t1, t1, t2, t2, t1, t1, z1) is planar for (A,≤); in a sense, Fig. II.2.1 re-
flects Fig. I.1.4. We call Fig. II.2.1 the Larue-Whitehead diagram of t1t2t1.

(ii). The word t1t2 is not planar; there is only one permutation to consider.
(iii). The word t21 is not planar; there are four permutations to consider.

(iv). The word tt1t2t13 is planar, while the word tt1t2t13 is not planar, and these
two words have the same Whitehead graph.

III.3 Proposition. Let w ∈ Σ0,1,n. If there exists some planar expression for w,

then (the reduced expression for) w is planar.

Proof. Suppose that a([1↑m]) is a planar expression for w, as in Definitions III.1.
By Lemma II.4, there exists an ordered set (B,≤), and a planar (2m +

2)-tuple b([1↑2m+2]) for (B,≤), without repetitions, and a labelling B → A, b 7→
label(b), such that the labelling respects the orderings and label(b([1↑2m+2])) is
the Whitehead expansion of a([1↑m]). Moreover, B = b[1↑2m+2].

Suppose that the given planar expression a([1↑m]) is not reduced. We shall
find a shorter planar expression for w.

There exists some j ∈ [1↑m− 1] such that aj+1 = aj in t[1↑n] ∪ t[1↑n], and we
may suppose that we have chosen this j in such a way that dB(b2j+1, b2j+2) has
the minimum possible value. Notice that label(b([2j↑2j+3])) = (aj, aj , aj, aj).

Clearly, w = Πa[1↑j−1]Πa[j+1↑m], and label(b([1↑2j−1]), b([2j+4↑2m+2])) is

(z1, ((ai, ai))i∈[1↑j−1], ((ai, ai))i∈[j+2↑m], z1)

(z1, a1, a1, . . . , aj−1, aj−1, aj+2, aj+2, . . . , am, am, z1).

It suffices to show that (b([1↑2j−1]), b([2j+4↑2m+2])) is planar for (B,≤).

Claim. dB(b2j , b2j+3) = 1.
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Proof. Consider any k ∈ [1↑2m− 1] such that bk lies between b2j and b2j+3.
Let η denote (−1)k.
Since label(b2j) = label(b2j+3) = aj , we see that label(bk) = aj . Hence

label(bk+η) = aj = label(b2j+1) = label(b2j+2).
Either aj < aj or aj > aj in (A,≤). Hence,

either max{b2j , bk, b2j+3} < min{b2j+1, bk+η, b2j+2} in (B,≤),

or min{b2j , bk, b2j+3} > max{b2j+1, bk+η, b2j+2} in (B,≤),

respectively.
Since {{b2j , b2j+1}, {b2j+2, b2j+3}, {bk, bk+η}} is nested, and bk lies between b2j

and b2j+3, we see, from Lemma II.3, that bk+η lies between b2j+1 and b2j+2.
Since {b2j+1, b2j+2} is nested with {bk+η, bk+2η} and bk+η lies between b2j+1

and b2j+2, we see that bk+2η lies between b2j+1 and b2j+2. Hence,

dB(bk+2η, bk+η) ≤ dB(b2j+1, b2j+2),

with equality holding only if {bk+2η, bk+η} = {b2j+1, b2j+2}. Also, label(bk+2η) =
aj , and, hence, label(bk+3η) = aj. Thus

label(bk, bk+η, bk+2η, bk+3η) = (aj, aj , aj, aj).

By the minimality of dB(b2j+1, b2j+2), we see that k = 2j or k = 2j + 3. This
proves the claim.

Now consider the passage from b([1↑2m+2]) to b([1↑2j−1]), b([2j+4↑2m+2]).
On the odd-to-even steps, we pass from {b[2i−1↑2i]}i∈[1↑m+1] to

{b[2i−1↑2i]}i∈[1↑j−1]∪[j+3↑m+1] ∪ {{b2j−1, b2j+4}}.

Thus, we remove {b2j−1, b2j}, {b2j+1, b2j+2}, {b2j+3, b2j+4}, and we add only
{b2j−1, b2j+4}. To see that, for all k ∈ [1↑j − 1] ∪ [j + 3↑m + 1], {b2k−1, b2k}
is nested with {b2j−1, b2j+4}, we note the following:

(b2j−1 lies between b2k−1 and b2k)

⇔ (b2j lies between b2k−1 and b2k)

since {b2j−1, b2j} is nested with {b2k−1, b2k}

⇔ (b2j+3 lies between b2k−1 and b2k)

since dB(b2j , b2j+3) = 1

⇔ (b2j+4 lies between b2k−1 and b2k)

since {b2j+3, b2j+4} is nested with {b2k−1, b2k}.

On the even-to-odd steps, we pass from {b[2i↑2i+1]}i∈[1↑m] to

{b[2i↑2i+1]}i∈[1↑j−1]∪[j+2↑m].

Thus, we remove {b2j , b2j+1} and {b2j+2, b2j+3}, and we add nothing. Hence this
remains nested. This completes the proof.
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III.4 Proposition. Let w be a planar word in Σ0,1,n, and let k ∈ [1↑n].

(i). w is a squarefree word in Σ0,1,n.

(ii). w 6∈ (Πt[n↓k+1]tk⋆)− {t
Πt[k+1↑n]

k }.

(iii). w 6∈ (Πt[1↑k−1]tk⋆).

Proof. For some m ∈ N, there exists a reduced expression a([1↑m]) for w.
(i). Suppose that w is not squarefree, say ti, ti occurs in a([1↑m]), then

ti, ti, ti, ti occurs in
(z1, ((ai, ai))i∈[1↑m], z1).

Let mi be the number of occurrences of t±1
i in a([1↑m]).

Suppose c([1↑mi]) are labelled ti and c([mi↓1] are such that the even-to-odd
pairing contains {{ck, ck}}k∈[1↑mi]. The odd-to-even pairing contains {ck, cj} for
some k, j ∈ [1↑mi]. Let us choose (k, j) so that k+j is as large as possible. Then
ck < ck+1 < cj . Whatever ck+1 is paired with in the odd-to-even pairing must
lie in the interval [ck, cj ] and cannot have label ti since the signs alternate, so
cj+1 is paired with ck for some k > j. This contradicts the maximality of k + j.
Hence k = mi. Similarly, j = mi. Thus {cmi

, cmi
} lies in both the even-to-odd

pairings and the odd-to-even pairings. This gives a sinlge component, which is
a contradiction.

(ii). Suppose that w ∈ (Πt[n↓k+1]tk⋆).
Thus (z1, ((ai, ai))i∈[1↑n−k+2]) is

(z1, tn, tn, tn−1, tn−1, . . . , tk+1, tk+1, tk, tk, an−k+2, an−k+2)

Notice that {tk, an−k+2} must be nested with {tk+1, tk}, and, hence an−k+2 must
lie in {tk, tk, tk+1}. By (i), an−k+2 6= tk. Since a([1↑m]) is a reduced expression,
an−k+2 6= tk. Hence an−k+2 = tk+1. Let us denote this term t′k+1 to distinguish
it from the preceding occurrence of tk+1. {tk, t

′
k+1} is nested with {tk+1, tk}.

Hence, Then t′k+1 < tk+1. By Lemma II.3, t
′
k+1 > tk+1.

Thus (z1, ((ai, ai))i∈[1↑n−k+3]) is

(z1, tn, tn, tn−1, tn−1, . . . , tk+1, tk+1, tk, tk, t
′
k+1, t

′
k+1, an−k+3, an−k+3)

Notice that {t
′
k+1, an−k+3} must be nested with {tk+2, tk+1}, and, hence, an−k+3

must lie in {tk+1, tk+2}. Since a([1↑m]) is a reduced rexpression, an−k+3 6= tk+1.
Hence an−k+3 = tk+2, and we denote this by t′k+2. Then t′k+2 < tk+2, and, by

Lemma II.3, t
′
k+2 > tk+2.

By repeating the argument in the last paragraph, we eventually find that

w = t
Πt[k+1↑n]

k .
(iii). Suppose that w ∈ (Πt[1↑k−1]tk⋆).
Then (z1, ((ai, ai))i∈[1↑2k]) = (z1, t1, t1, t2, t2, . . . , tk−1, tk−1, tk, tk), and by an

argument similar to that in (ii), we find that this is impossible.
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IV Bn permutes the planar words in Σ0,1,n

IV.1 Proposition. Let w ∈ Σ0,1,n and let i ∈ [1↑n− 1]. If w is a planar word

in Σ0,1,n, then w
σi is a planar word in Σ0,1,n.

Proof. Suppose that r([1↑m]) is any planar expression for w, as in Definitions III.1.
In applying σi to (z1, ((ri, ri))i∈[1↑m], z1), we

replace each ti, ti with ti+1, ti+1,

replace each ti, ti with ti+1, ti+1,

replace each ti+1, ti+1 with ti+1, ti+1, ti, ti, ti+1, ti+1,

replace each ti+1, ti+1 with ti+1, ti+1, ti, ti, ti+1, ti+1.

We will not perform any cancellations in the resulting sequence.
Let π ∈ Sym2m+2 be a permutation which embeds (z1, ((ri, ri))i∈[1↑m], z1) in a

plane. By Lemma II.4, there exists an ordered set (B,≤), and a (2m+ 2)-tuple
p([1↑2m+2]) without repetitions, for (B,≤), such that π embeds p([1↑2m+2]) in a
plane. Moreover, there exists a labelling B → A, b 7→ label(b), such that the
labelling respects the orderings and

label(p([1↑2m+2])) = (z1, ((ri, ri))i∈[1↑m], z1).

Moreover, B = p[1↑2m+2].
Let mi denote the number of elements of B with label ti, and let mi+1 denote

the number of elements of B with label ti+1. To begin, we have to add 4mi+1

elements to B, and we have to specify the ordering on the expanded set.
Let c[1↑mi] denote the set, in ascending order, of those elements of B which

have the label ti. Let c[mi↓1] denote the set, in ascending order, of those elements
of B which have the label ti. Let d[1↑mi+1] denote the set, in ascending order, of

those elements of B which have the label ti+1. Let d[mi+1↓1] denote the set, in
ascending order, of those elements of B which have the label ti+1. Thus we have

c1 < . . . < cmi
< cmi

< . . . < c1 < d1 < . . . < dmi+1
< dmi+1

< . . . < d1

and no other element of B lies in the interval [c1↑d1]. We write

[c1↑d1] = (c([1↑mi]), c([mi↓1]), d([1↑mi+1]), d([mi+1↓1]))

to express this.
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c1
ti

c1
ti

d1
ti+1

d2
ti+1

d2
ti+1

d1
ti+1

Figure IV.1.1: (c([1↑1]), c([1↓1]), d([1↑2]), d([2↓1])).

With the preceding notation, we create an interval of 4mi+1 new elements
denoted

[a1↑b1] = (a([1↑mi+1]), a([mi+1↓1]), b([1↑mi+1]), b([mi+1↓1])).

We expand B by inserting this interval just before c1, that is, just before the
interval [c1↑d1]. We now have a new ordered set B′ with 2m+2+4mi+1 elements.

We have to specify the new labelling B′ → A. On c[1↑mi], we change the labels
from ti to ti+1. On c[mi↓1], we change the labels from ti to ti+1. On d[1↑mi+1], we

change the labels from ti+1 to ti+1. On d[mi+1↓1], we keep the same labels, ti+1.

On the rest of B − [c1↑d1], we keep the same labels. We give all the elements of
a[1↑mi+1] the label ti; we give all the elements of a[mi+1↓1] the label ti; we give all

the elements of b[1↑mi+1] and b[mi+1↓1] the label ti+1. The labelling clearly respects
the orderings of B′ and A.

For the even-to-odd steps, it follows from Lemma II.3 that

{p[2k↑2k+1]}k∈[1↑m] ⊇ {{ci, ci}}i∈[1↑r] ∪ {{dj, dj}}j∈[1↑s].

Let q([1↑2m+4mi+1]) be the 2m + 4s-tuple obtained from p([1↑2m+2]) as follows.
For each j ∈ [1↑mi+1], there exists a unique i ∈ [1↑m] such that p[2i−1↑2i] =

{dj, dj}. If p([2i−1↑2i]) = (dj , dj), then it is to be expanded to (dj, bj, aj , aj, bj , dj).

If p([2i−1↑2i]) = (dj, dj), then it is to be expanded to (dj, bj , aj, aj , bj, dj). This
completes the definition of q([1↑2m+4mi+1]).
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a1
ti

a2
ti

a2
ti

a1
ti

b1
ti+1

b2
ti+1

b2
ti+1

b1
ti+1

c1
ti+1

c1
ti+1

d1
ti+1

d2
ti+1

d2
ti+1

d1
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Figure IV.1.2: (a([1↑2]), a([2↓1]), b([1↑2]), b([2↓1]), c([1↑1]), c([1↓1]), d([1↑2]), d([2↓1])).

In passing from {p[2k↑2k+1]}k∈[1↑m−1] to {q[2k↑2k+1]}k∈[1↑m+2mi+1−1], we add

{{bj , aj}}j∈[1↑s] ∪ {{aj , bj}}j∈[1↑s]. In B
′, for each j ∈ [1↑s],

[aj↑bj ] = (a([j↓1]), b([1↑j]))

and the underlying set is ∪ {ak, bk}k∈[1↑j],

[aj↑bj] = (a[j↑s], a[s↓1], b[1↑s], b[s↓j])

and the underlying set is ∪ {ak, bk}k∈[1↑s] ∪ ∪{bk, ak}k∈[j↑s].

Both of these intervals are closed under the pairing-off of

{q[2k↑2k+1]}k∈[1↑m+2mi+1−1].

Thus, {q[2k↑2k+1]}k∈[1↑m+2mi+1−1] is also nested.
In passing from {p[2k−1↑2k]}k∈[1↑m] to {q[2k−1↑2k]}k∈[1↑m+mi+1], we delete

{{dj, dj}}j∈[1↑s], and add {{dj, bj}}j∈[1↑s] ∪ {{aj, aj}}j∈[1↑s] ∪ {{bj , dj}}j∈[1↑s]. In
B′, for each j ∈ [1↑s],

[aj , aj ] = (a([j↓1]), a([1↑j]))

and the underlying set is ∪
k∈[1↑j]

{ak, ak},

[bj , dj] = (b([j↓1]), c([1↑r]), c([r↓1]), d([1↑j]))

and the underlying set is ∪
k∈[1↑j]

{dk, bk} ∪ ∪
i∈[1↑r]

{ci, ci},

[bj , dj ] = (b([j,s]), b([s↓1]), c([1↑r]), c([r↓1]), d([1↑s]), d([s↓j]))

and the underlying set is ∪
k∈[1↑s]

{dk, bk} ∪ ∪
k∈[j↑s]

{bk, dk} ∪ ∪
i∈[1↑r]

{ci, ci}.
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Each of these intervals is closed under the pairing-off of {q[2k−1↑2k]}k∈[1↑m+2mi+1].
Thus, {q[2k−1↑2k]}k∈[1↑m+2mi+1] is nested.

A similar argument shows that σi carries planar words to planar words.

IV.2 Theorem. The group Bn acts on the set of planar words in Σ0,1,n, and,

hence, if n ≥ 1, then every element of tBn

1 is a planar word.

IV.3 Remark. By combining Theorem IV.2 and Proposition III.4, we get an-
other proof of Corollary 7.6.

V The Bn-orbits of the planar words in Σ0,1,n

In this section we rework [21, Lemma 2.3.12] and in this case our argument
seems to be longer than Larue’s. The object is to show that the number of
Bn-orbits in the set of all planar words in Σ0,1,n is n+1, and that {Πt[1↑k]}k∈[0↑n]
is a complete set of representatives.

V.1 Lemma. Let i, j be elements of [1↑n] such that j ≤ i−1, let φ = Πσ[j↑i−1],

and let w be a planar word in Σ0,1,n.

(i) If w ∈ (Πt[1↑i]tj⋆), then |wφ| < |w|.

(ii) If w ∈ (Πt[1↑i]tj⋆), then |wφ| < |w|.

Proof. It is straightforward to show that φ acts as
k∈[1,j−1] k∈[j+1,i] k∈[i+1,n]

(tk tj tk tk)
φ

= (tk ti ttik−1 tk).

(i). Suppose that w ∈ (Πt[1↑i]tj⋆).

z1 tj tj ti ti

Figure V.1.1: w ∈ (Πt[1↑i]tj⋆), j ≤ i− 1.

Since titj is a subword of w, every letter occurring in w that belongs to
t[j↑i] ∪ t[j↑i] belongs to a (reduced) subword of w of the form avb, where a, b ∈
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{ti, tj} and v ∈ 〈t[j↑i]〉. Since, moreover, w begins with Πt[1↑i], it can be shown
that it is not possible to have a = ti or b = ti. Thus a = b = tj. Here,
|(avb)φ| = |avb| − 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in t[1↑j−1] ∪ t[i+1↑n], and all of which
are mapped to single letters by φ.

Since tj occurs in w, we see that |wφ| < |w|.
(ii). Suppose that w ∈ (Πt[1↑i]tj⋆).

z1 tj tj ti ti

Figure V.1.2: w ∈ (Πt[1↑i]tj⋆), j ≤ i− 1.

Since titj is a subword of w, every letter occurring in w that belongs to
t[j+1↑i] ∪ t[j+1↑i] belongs to a (reduced) subword of w of the form avb, where
a, b ∈ {tj , ti} and v ∈ 〈t[j+1↑i]〉. Since, moreover, w begins with Πt[1↑i], it can be
shown that it is not possible to have a = ti or b = ti. Thus a = b = tj . Here,
|(avb)φ| = |avb| − 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in t[1↑j] ∪ t[i+1↑n], and all of which
are mapped to single letters by φ.

Since ti occurs in w, it is then clear that |wφ| ≤ |w| − 2.

V.2 Lemma. Let i, j be elements of [1↑n] such that j ≥ i+2, let φ = Πσ[j−1↓i+1],

and let w be a planar word in Σ0,1,n.

(i) If w ∈ (Πt[1↑i]tj⋆), then |wφ| ≤ |w|, and, moreover, if |wφ| = |w| then
wφ ∈ (Πt[1↑i+1]⋆).

(ii) If w ∈ (Πt[1↑i]tj⋆), then |wφ| < |w|.

Proof. It is straightforward to show that φ acts as
k∈[1,i] k∈[i+1,j−1] k∈[j+1,n]

(tk tk tj tk)
φ

= (tk t
ti+1

k+1 ti+1 tk).

(i). Suppose that w ∈ (Πt[1↑i]tj⋆).
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z1 ti ti tj tj

Figure V.2.1: w ∈ (Πt[1↑i]tj⋆), j ≥ i+ 2.

Since titj is a subword of w, every letter occurring in w that belongs to
t[i+1↑j−1] ∪ t[i+1↑j−1] belongs to a (reduced) subword of w of the form avb, where
a, b ∈ {ti, tj} and v ∈ 〈t[i+1↑j−1]〉. Since, moreover, w begins with Πt[1↑i], it can
be shown that it is not possible to have a = ti or b = ti. Thus a = b = tj . Here,
|(avb)φ| = |avb| − 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in t[1↑i] ∪ t[j↑n], and all of which are
mapped to single letters by φ.

It is then clear that |wφ| ≤ |w|.
Moreover, if |wφ| = |w|, then w ∈ 〈t[1↑i] ∪ t[j↑n]〉, and w

φ ∈ (Πt[1↑i+1]⋆).
(ii). Suppose that w ∈ (Πt[1↑i]tj⋆).

z1 ti ti tj tj

Figure V.2.2: w ∈ (Πt[1↑i]tj⋆), j ≥ i+ 2.

Since titj is a subword of w, every letter occurring in w that belongs to
t[i+1↑j] ∪ t[i+1↑j] belongs to a (reduced) subword of w of the form avb, where
a, b ∈ {ti, tj} and v ∈ 〈t[i+1↑j]〉. Since, moreover, w begins with Πt[1↑i], it can be
shown that it is not possible to have a = ti or b = ti. Thus a = b = tj . Here,
|(avb)φ| = |avb| − 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in t[1↑i] ∪ t[j+1↑n], and all of which
are mapped to single letters by φ.

Since tj occurs in w, it is then clear that |wφ| ≤ |w| − 2.

V.3 Theorem (Larue). The set {Πt[1↑k]}k∈[0↑n] is a complete set of representa-

tives of the Bn-orbits in the set of all planar words in Σ0,1,n.

Proof. Let w be a planar word in Σ0,1,n. We wish to show that there exists some
k ∈ [0↑n] such that t[1↑k] ∈ wBn.

Let i be the largest integer such that w ∈ (Πt[1↑i]⋆).
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We may assume that, for all v ∈ wBn, |v| ≥ |w|, and if |v| = |w|, then
v 6∈ (Πt[1↑i+1]⋆).

By Lemma V.1, for all j ∈ [1↑i− 1], w 6∈ (Πt[1↑i]tj⋆) ∪ (Πt[1↑i]tj⋆).
By Proposition III.4(i), w 6∈ (Πt[1↑i]ti⋆).
By the maximality of i, w 6∈ (Πt[1↑i]ti+1⋆).
By Proposition III.4(iii), w 6∈ (Πt[1↑i]ti+1⋆).
By Lemma V.2, for all j ∈ [i+ 2↑n], w 6∈ (Πt[1↑i]tj⋆) ∪ (Πt[1↑i]tj⋆).
Hence, w = Πt[1↑i], as desired.

V.4 Remarks. (i). Let w be a planar word in Σ0,1,n.
Lemmas V.1 and V.2 give an effective procedure for finding φ ∈ Bn first to

minimize |wφ|, and then to obtain the form wφ = Πt[1↑k] for some k ∈ [0↑n].
(ii). Let n ≥ 1 and let w be a word in Σ0,1,n.
Theorem V.3 shows that w lies in the Bn-orbit of t1 if and only if the

cyclically-reduced form of w lies in t[1↑n] and w is planar. Moreover, in this
event, Lemmas V.1 and V.2 effectively produce a φ ∈ Bn such that wφ = t1.

(iii). There is then an algorithm which, for any k ∈ [1↑n], and any k-tuple
w([1↑k]) for Σ0,1,n, decides if there exists some φ ∈ Bn such that wφ([1↑k]) = t([1↑k]),
and effectively finds such a φ. We proceed as follows. We first convert w1 to t1
if possible, and then we restrict to 〈σ[2↑n−1]〉.

It is interesting to compare this algorithm for Bn with the Whitehead al-
gorithm for the much larger group Aut(Σ0,1,n). The information provided by
planarity is more detailed then the information carried by the Whitehead graph
used in the Whitehead algorithm.

We record the following.

V.5 Theorem (Larue). Let n ≥ 1 and let w ∈ Σ0,1,n. Then w lies in the

Bn-orbit of t1 if and only if the cyclically-reduced form of w lies in t[1↑n] and w

is planar.
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