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Abstract

This article surveys many standard results about the braid group with
emphasis on simplifying the usual algebraic proofs.

We use van der Waerden’s trick to illuminate the Artin-Magnus proof
of the classic presentation of the algebraic mapping-class group of a punc-
tured disc.

We give a simple, new proof of the Dehornoy-Larue braid-group tri-
chotomy, and, hence, recover the Dehornoy right-ordering of the braid
group.

We then turn to the Birman-Hilden theorem concerning braid-group
actions on free products of cyclic groups, and the consequences derived
by Perron-Vannier, and the connections with the Wada representations.
We recall the very simple Crisp-Paris proof of the Birman-Hilden theo-
rem that uses the Larue-Shpilrain technique. Studying ends of free groups
permits a deeper understanding of the braid group; this gives us a gener-
alization of the Birman-Hilden theorem. Studying Jordan curves in the
punctured disc permits a still deeper understanding of the braid group;
this gave Larue, in his PhD thesis, correspondingly deeper results, and,
in an appendix, we recall the essence of Larue’s thesis, giving simpler
combinatorial proofs.
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1 General Notation

Let N denote the set of finite cardinals, {0,1,2,...}.
Throughout, we fix an element n of N.
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2 Actions of the braid group

Let i, j € Z and let v be a symbol. We define
[itj] :={k€Z|i<kandk <j},
lilj] ={k€Z]|i>kand k > j},

(1)) = (ii4+1,...,5—1,5) € ZI—1 if i < j,
10 ez® if i > j,

(liLg)) = {(z’ i1, 1) €T i >,

() € 79 if i < j.
Also, vppj) = {wve | k € [ZTJ]} and this will usually be a subset of some ambient
set, G. If © < 7, virj)) = (Vi Vig1s - -, 0j-1,05) € G~ and, if G is a group,

Hvgigg) = vViq1 - - 02105 € G IE0 > §, vy == (), the O-tuple, and [Tvpj) == 1,
the empty product. We define vy, vy ) and Ivy;), analogously. Thus, if
i > g, Hopyy) = vv;1 - - - vj41v;. Finally, [itoo] :={k € Z|i < k}.

For elements a, b of a group G, @ := a™!, a® := bab, a™ := ba"b, and [a] :=
{a? | g € G}, the conjugacy class of a in G. The group of all automorphisms of
G will be denoted by Aut(G).

An ordering of a set will mean a total order for the set. An ordered set is
one endowed with a specific ordering. We will speak of n-tuples for a given set
and n-tuples of elements of a given set.

2 Outline

Let X1, = ({z1} Ut | 211ltj4n) = 1). Then Yo, is a one-relator group
which is freely generated by the set f[14y).

Let Outmn denote the subgroup of Aut(Xy;,) consisting of all automor-
phisms of ¥ 1, which map the set {21} U{[t;] }icpitn) to itself. Let Outg 1,9 denote
Aut(Z), and, for n > 1, let Outg;, denote the group of all automorphisms of
¥0,1,» which map the set {z1,Z1} U {[t:], [t:] }icjirn) to itself. Then Outg,, is a
subgroup of index two in Outg;,. We call Outg,, the algebraic mapping-class
group of the surface of genus 0 with 1 boundary component and n punctures;
see [18] for background on algebraic mapping-class groups.

Frequently, Out?i 1.» Will be denoted B,, and called the n-string braid group.
(The similar symbol B,, denotes a certain Coxeter diagram.)

In Section [, we define o14,—1) C Outar’lvn, we review Artin’s 1925 proof
that op4,—1) generates Outaf 1ns and we present intermediate results that we
shall apply in subsequent sections. In Section M| we recall the definition of
Artin groups, specifically Artin(A4,), Artin(B,) and Artin(D,,). In Section[H], we
verify Artin’s 1925 result that Outg, , ~ Artin(A4,_1), by combining Magnus’
1934 proof, Manfredini’s observation that OUt(J)r,1,(n—1)¢1 ~ Artin(B,,_1), and the
van der Waerden trick, to condense the calculations involved.
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In Section [ we use results of Section M| to recover the Dehornoy-Larue
trichotomy for B,, and the Dehornoy right-ordering of B,,; this represents a
substantial simplification. Let us emphasize that we verify directly that Outaf 1n
satisfies the trichotomy, in contrast with the approach by Larue [22] of using the
trichotomy for Artin(A,,_1) to verify that Artin(A,_,) acts faithfully on ¥¢; ,.

In Section [, we review the action of B,, on the set of ends of ¥y;,. The
argument of Thurston given in [27] yields the Dehornoy right-ordering of B,
but not the trichotomy. By analysing further, we obtain new results about the
B,-orbit of ¢; in X 1 .

In Section B, for each m > 2, we introduce Outg; ,mm, the algebraic
mapping-class group of the disc with n C,,-points. We recall the Crisp-Paris
proof of the Birman-Hilden result that the natural map from Outy;, to
Outg ; ,m is injective, and then modify an argument of Steve Humphries to
show that there is a natural identification Outg; ,m) = Outo1,. The new re-
sults obtained in Section [ then provide additional information in this context.

In Section [ we review some applications by Perron-Vannier [26] of the
above Birman-Hilden result, and discuss connections with the actions given by
Wada [29] and studied by Shpilrain [28] and Crisp-Paris [10], [11].

Following a kind suggestion of Patrick Dehornoy, we studied the analysis of
the B,-orbit of ¢; in ¥ ,, given by David Larue [2I]. Larue’s approach is combi-
natorial and uses polygonal curves in the punctured disc. By combining Larue’s
approach with Whitehead’s use of graphs, we were able to simplify Larue’s main
arguments, and we record our combinatorial approach in an appendix. We also
show how Larue’s results imply the results we had obtained, more easily, by
studying ends, in Section [7l

3 Artin’s generators of B,

In this section we describe the famous generating set of B,,. Let us fix more
notation related to 3o 1, = ({21} Utjn | 21lltj4n) = 1) and B, < Aut(Xg1,,).

3.1 Notation. Let m € N. Consider an m-tuple a(itm)) for tpn U %mn], and
an element w of X1 .

If Hapy = w in o1, we say that agirm)) is an expression for w. We
say that the expression a(iypm)) is reduced if, for all j € [1Tn — 1], a;41 # @; in
tiitn) Uljin). For each element of 3 ; ,,, there exists a unique reduced expression
called the normal form.

Suppose that a((itm)) is the normal form for w. We define the length of w to
be |w| := m. The set of elements of X ; , whose normal forms have a[14,,)) as an
initial segment is denoted (wx); and, the set of elements of ¥y ; ,, whose normal
forms have a(f11,,)) as a terminal segment is denoted (xw). The elements of (wx)
are said to begin with w, and the elements of (xw) are said to end with w.



4 Actions of the braid group

Let Sym,, denote the group of permutations of [11n] acting on the right (on
[11n]).

Let ¢ € B,,. There exists a unique permutation m € Sym,,, and a unique
(n 4+ 2)-tuple (w(jotn+1))) for Xo1,n such that wy = 1 and w,11 = 1, and, for each
i€ [11n], w; & (tikx) U ({=%) and t© = 2. For each i € [01n], let u; = w;Wi4:.
If j € [itn], then Huy;) = waw,41. In particular, Hugy, = w;. We define
(@) == m, wi(P) := wy, ¢ € [0tn + 1], and w;(¢p) := w;, @ € [0Tn]. We write
lgll:= > [#1=n+2 3 |wi(9)l.

i€[11n] i€[11n]

Let oppn—1) € By, be the subset determined by, for all i € [11n — 1] and all

k € [11n],
tr, i ke[lti—1]U[i+2n],
7=ty if k=1,

tH i k=i 1.

(2

In the literature, o; is sometimes represented in 2 X n-matrix notation, for ex-
ample, in the format

ottt tise ... tn
Oi:(l 1 il lit2 )

tl tifl tl'+1 tiHl ti+2 tn

We shall often find it convenient to compress the dots and say that o; and @;
are determined by the expressions

ke[11i—1] keli+11n] ke[11i—1] ke[i+11n]
(th ti Liv1 tr)7 and (th li it )7
t; %
= (ty tin t), = (t te t; te). O

We shall apply the following result in different situations.

3.2 Lemma (Artin [3]). Let ¢ € B,,. Let m = w(¢) and, for each i € [0Tn], let
(i). Suppose that there exists some i € [1tn—1] such that u; € (xt(y1y~). Then
|lo:id|| < ||@]| — 2; moreover, for each j € [1711], t?id) and t? both begin with
the same element of tj14p) U tign).
(ii). Suppose that there exists some i € [1Tn — 1] such that u; € (ti%). Then
l:o|| < ||6]| — 2; moreover, for each j € [111 — 1], t?“b and t? both begin
with the same element of tptn U tin)-

(iii). Suppose that, for each i € [1Tn — 1], u; & (tmk) U (xt(i41)r). Then ¢ = 1.

Proof. (i). There exists some v € X1, — (*t(;+1y~) such that u; = v(41)=. Since
w;i(@) = ujwir1(P), we have

(3.2.1) wi(¢) = Vi) Wit ().
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Since v ¢ (*t(lﬂ)ﬁ) and Wit1(¢) & (ti41)~x), there is no cancellation in the

'L+1)7Twl+1

expression t for tf; hence

(322) 12 € @ (@ane) and | = 1+ 2] + 2+ 2uwia(6)].

For all j € [11i — 1]U[i +21n], t Uld) = td) hence, 7 7% has the same first letter
as t?, and, |t?i¢| = |tf|

Since t71¢ = =10, € (m2+1(¢)t(l+1)ﬂ*), we see, from ([BZ2), that t7*° has the
same first letter as t?. Also, [t7°?| = [t? -

By (m)a wz( )wz+1(¢)t(z+1)" = V; hence

. ) wiy1(P) vw
tfi(? — (t§z+l)¢ — (t;}f(q&))(t("ﬁ)" ) — tlﬂ' 1+1(¢).
Hence, [t719] < 1+ 2[v| + 2|wiy1(0)] 22 t?] — 2.

It now follows that ||o;¢[ < ||¢|| — 2, and (i) is proved.

(ii). There exists some v € 3 1, — (t;=x) such that u; = t;=v. Since w;;1(p) =
w;w;i(¢p), we have

Since U & (xt;=) and w;(¢) & (ti=x), there is no cancellation in the expression
t?fff)"ﬁ(@ for t7,,; hence
(3.2.4) 2011 = 1+ 2] + 2 + 2wi(¢)].

For all j € [11% — 1JU[i +21n], ¢ O“b = t¢ hence, ta'¢ has the same first letter
as td’ and, ‘”d’ = |t¢\

Smce tfﬁ =17, we see that [t7:%] = |t7].

By BZ3), wis1 (6)(9)fi = T; hence

i Wi ¢ wl(¢) Tw;
t 7 = (tz+1)¢ = (t(w:f)( ))( ) = 2 @,

Hence, [t7°¢] < 1+ 2[0] + 2|w,(9)| [t] — 2.

It now follows that [|7;¢| < ||¢>|| — 2, and (ii) is proved.
(iii). Since uy = w,(¢) & (xt;) and u, = w,(¢) & (f.x), we see that there is
no cancellation anywhere in the expression ug II (t;~u;). Hence,
i€[1tn]

lug 1 (tirws)| = . |wg| +n, thatis, > |u| =|ug T (ti=u;)| — n.
i€[11n] ic[0Tn] i0tn) i€[11n]

Recall that ug I (tiru;) = 11 (t;fri(¢)):( I t)?= TI t;. Hence
i€[11n] i€[11n] 1€[11n] 1€[11n]

lug I (tiru;)|=nand > |u]=n—n=0.
i€[11n] i€[0tn]



6 Actions of the braid group

Hence, all the elements of uyy) are trivial.
For each i € [0tn + 1], w; = ui,); hence, all the elements of wpyy) are

trivial. Also, I i = ug II (tiu;) = T t;. Hence 7 is trivial. Thus
1€[11n] 1€[11n] 1€[11n]
o =1 U

The following is then immediate.

3.3 Proposition (Artin [3]). For each ¢ € B, either ¢ = 1, or there exists
some 0§ € Ofitn—1] U0[tn—1] such that ||o5é]| < ||| —2. Hence, (optn-1)) = Ba.
U

3.4 Remarks. If w € Yy;, has odd length, then w? has odd length, and
lw?| < 2|w| + 1, with equality being achieved only if every odd letter of w
equals t;,1. Similar statements hold with @, in place of o;.

Let ¢ € B, and let |¢| denote the minimum length of ¢ as a word in ofy4p—1).
Thus, |t?] < 2191¥1 — 1. Hence, ||¢| < n2!?+' —n. Proposition B3 gives an
algorithm for writing ¢ as a word in op4,—y of length at most W, and we

have now seen that ”‘i)”;” < ”2‘¢‘;1*2n = n2l¢l — pn. N

4 Definition of Artin groups

4.1 Definition. A Cozeter diagram X consists of a set V' together with a func-
tion V x V — NU{oo}, (x,y)+— my,, such that, forall z, y € V, m,, =0
and my, = my,. The elements of V' are called the vertices of X, and, for
(z,y) € V x V, we say that m,, is the number of edges joining = and y; we
can depict X in a natural way. We then define the Artin group of X, denoted
Artin(X), to be the group presented with generating set V' and relations saying
that, for all (z,y) € V x V|

Yy = yx if mg, =0,

ryx yry if my, =1,

ryxy = yryr it my, =2,
ete.

Notice that if m,, = oo, then no relation is imposed. Notice also that if V' is
empty, then Artin(X) is the trivial group. O

4.2 Notation. (i). Let A,, denote the Coxeter diagram
A — Gy —— “++ —— Gp_1 — Ay

Clearly, Ag is empty. We define A_; to be empty also.
Thus, in A, the vertex set is apy,), and, for each (4,7) € [1n]?, the number
1 if [i—j] =1,

of edges joining a; to a; is
BE JOTHRS U0 -] #£ L
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Thus, Artin(A,) has a presentation with generating set afiq,) and relations
saying that, for each (i,7) € [11n]?,

a;a; = a;a; if |’l —j| 7£ 1,
aitit; = Q;0;05 if |’L —]| =1.

(ii). Let B,, denote the Coxeter diagram
by — by — o — by = b,

Here, the vertex set is by, and, for each (i,7) € [11n]?, the number of edges
2 if{i,j} ={n—1,n},
joining b; to b; is < 1 if [i — j| =1 and {i,5} # {n — 1,n},
0 if |i—j| #1.
(iii). For n > 2, let D,, denote the Coxeter diagram

dy,

dy — dp— -+ —— dy3 — dpng — dp1.

Here, the vertex set is dji1), and, for each (4,7) € [1Tn]?, the number of edges
joining d; to d; is

{1 if {i,5} € {{1,2},{2,3},....{n—2,n— 1}, {n — 2,n}},

0 otherwise. 0

5 Artin’s presentation of B,

In this section, we verify Artin’s result that there exists an isomorphism
i€[1tn—1]

Yn: Artin(A4,_1) — B, determined by ;) - We express this by writ-

(
(‘7@)
)

ing B,, = Artin{(oy — o9 — -+ — 0,1

5.1 Proposition. There exists a homomorphism ~,: Artin(A, 1) — B, de-
1€[1tn—1]
termined by (q;)™ , and "y, is surjective.

= (0i)

Proof. (a). Suppose that 1 <i <i+2 < j <n— 1. We have the following.



ke[1ti—1]

(te ti
- (tk ti+1
= (tk Liv1
= (tk ti
= (tk ti

iv1
tit1
ti
tit1
ti

tit1
tit1

keli+215—1]
t t
t t
tk tit1
tk tit1
t t

Actions of the braid group

Oke[j+21n]
tit1 ty)7i%
b1 ty )
£ t)
G )

)

tit tk

(b). Suppose that 1 <i <n — 2. We have the following,.

ke[11i—1]

tiv1
t§i+1
tzi+2
i
lit2
it

tit1

Lito

lito
Lt
t§¢+1t¢+2
t§¢+1t¢+2
e
tito

keli+31n]

tk)<77;<77;+10'i
tk 0i+10;
7%

)
)
k)
)
)

g4

~

tk Oit1
tk 0i0i+1

tk)<77;+10i<77,’+1

Together, (a) and (b) show that there exists a homomorphism

Yn: Artin(A,_1) — B, determined by

i€[1tn—1]

(a;)™ - By Artin’s Proposition 3.3

(o)

(0r1n-1)) = Bn, and, hence, v, is surjective.

O

In the remainder of this section, we shall use induction on n to show that the
surjective homomorphism ~,: Artin(A4,,_1) — B, of Proposition 5.1 is an iso-
morphism. Notice that +,, endows Artin(A,,_;) with a canonical action on ¥ .

The following is precisely [24, Proposition 1] and, also, [10, Proposition 2.1(2)].

5.2 Lemma (Manfredini [24]). If n > 1, then

Artin(A, 1) xXo 1, = Artin(ay — ag — - --

Proof. For n = 1, the result is clear.
For n = 2, we have the following.

— a4, 1 = t,) ~ Artin(B,,).

Artin<A1> X 207172 = <{(l1} U t[ng} | t(fl = tg, tgl = %2751152)
= (a1, b2 | 15" = Tot§'ta) = (a1, ta | (@ita)(ar) = (foar)(taa@rt2))
= <(l1,t2 | (al)(fgalfz) = (%2(11)(%2(1,1» = Artm( ay — %2 >

From the case n = 2, we see that there exists a homomorphism

p: Artin{ B, ) = Artin(A,_1) x g1, determined by  (b;  b,)" .
tn

i€[1tn—1]

)

= (ai
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For each k € [11n], let t; denote the element Egb[”_m] of Artin(B,). For
each i € [11n — 1] and k € [11n], let t]° denote t;, resp. t;, resp. t,,, if
k€ [11i—1]U[i+21n], resp. k =i+ 1, resp. k = 4. We shall see that £ = (7';

this immediately implies that there exists a homomorphism
i€[1tn—1] k€[11n]

m: Artin(A,—1) X Xg 1, — Artin(B,, ) determined by (a; tr)" , which
= (bs t)
is then clearly inverse to u, and the result will be proved.
For each m € [nl1], we shall show, by decreasing induction on m, that, for

each k € [n}m] and each i € [n— 1]/m], tzi = t7'. For m = n, this is trivial, and,
for m = n — 1, it follows from the case n = 2. Suppose that m € [n — 2]1].

(a). For each k € [nym+ 1] and each i € [n — 1{m +1], t% = t7', by hypothesis.

. For each k € [nlm + 2|, t; € (bpym+2)) and, hence, t%” =t ="

_Hg[n—lim-{—l]gm
1= bn = t

. tm+ tWL+1

)

(c)

(d). For each i € [n— 1{m + 2], % © tbn*b”ﬂ tl,’ni”f @ tl,’g”ﬂ © t, = 7.
). tb 1 © )tbm m41 @ tm+1bmbm+1 _tbmberlbm (_)tbm+1bm (a) fb b (i) t, = tngJrl.
)

- "m+41 m-+42 m-+42 m+2

B — bt 1bmbmp1bpbimi1 © OBt 1Bmbm 41 (©) bt 1bmbm1
m m—+1

a

— 77 b e),(a),(e)
= (tm+1tm+2tm+1)bmbm“( HQHC )(t tnotn )bm“( =" ot by = 0

-~

m
m

—
N

Now the result follows by induction. O

We write Stab(Artin{A,); [t,+1]) to denote the Artin(A,)-stabilizer of the
conjugacy class [t,41] under the Artin(A,)-action on g1 ,+1. The Reidemeis-
ter-Schreier rewriting technique automatically gives a useful presentation of
Stab(Artin(A,); [t,+1]), but applying the technique can be rather tedious. Once
the presentation has been found, we can verify it directly using the van der
Waerden trick, as in the following proof.

5.3 Theorem (Magnus [23]). If n > 1, then there exists a homomorphism

i€[1tn—1]
¢n: Artin(A,_1) X Xo1, — Artin(A,) determined by (a; t, )on
= (a; a.;).

Moreover, the following hold.

(i). ¢y is injective.

(ii). For each i € [17n], t" = ma['“M in Artin(A,,).
(iii). The image of ¢, is Stab(Art1n<An>; [tni1])-
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Proof. Let us write G = Artin(A,,) and H = Artin(A4,_;) X Xg 1.
In G,

(102 an—1)""=(Cnan-10n) (ann—10n)=(0n-10nTn—1) (An-10n0n_1)=0n_10; n_1,

and, hence, a, 1a2a,_1a> = a’a, 1a%a,_1. By Lemma 5.2, H ~ Artin(B,),
and we see that there exist a homomorphism ¢,: H — G determined by
i€[1tn—1]

(ai Zn )¢" .
= (a; a,)
Let v(j1tn+2)) = ([1Tn+1]), thought of as a generic (n+1)-tuple, and consider
the free left H-set H X v[p41], with left H-transversal vji,41).
We construct a right G-action on H X vj14p41) such that H X v{i45,41) becomes
an (H,G)-bi-set. For each i € [11n], we define the right action of the generator
a; € G on the left H-set H X vj1yp41], by specifying the action on the given left

H-transversal as follows.

ke[11i—1] ke[i+2tn+1]
( Uk (& Vi+1 Uk)az‘
= (a;_1vk Vit1 tiv; a; ).

We now verify that the relations of G are respected.
(a). Suppose that 1 <i <i+2 < j <n. We have the following.

ke[11i—1] keli+215—1] kelj+2tn+1]
Uk v; Vi1 Uk on () Vg )@
A; -1V Vi+1 1iv; ;U a; V5 A;Vj41 az‘vk)aj
A;j—14;—1V  Aj_1Vi41 tiaj_1v; a;a; 1V QU410 aiajvk)
=(a;-1a;—1Vg  Qj—1Vjy1 a;_1t;v; a; 10V Q;Vj41 tj(_lﬂfj ajaivk)

a1V ;1Y Gj—1Vi4+1 a1V Vj+1 tj’Uj a;VE)Q;
Vg Vi Vi+1 Vg Vj Vj+1 Vg )a;Q;.

P

(b). Suppose that 1 <i <n — 1. We have the following.

ke[11i—1] keli+3tn+1]

( Vg Vi Vit1 Viy2 Uk) A Q41 Q4
= ( i1V Vit1 v, a;Vit2 V%) (i1 0
=( a0 Vg2 _ tiaw; a; itiy10it1 ;i1 V) A
= (@i—10;04;1V%  Q;Viqo tiaiviyr  aitipativ ;0410
=( @10V  QVio  QitiUi ialiav; Qip1aai010)
= ( a;A;—1Vg  QAjVjy1 V42 _ﬂ‘ﬂfﬂ% ai+1aivk)az+1
= ( @iV a;v; Vjiy2 Lit1Vit1 Qi1 V%) Qi1
= ( Uk Vi Vit1 Vi42 Uk)az+1a Aj+1-

Now (a) and (b) prove that the relations of G are respected. Hence, we have
a right G-action on H X vjj,41).
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Notice that vnﬂff" = Vpy102 = 000, = E,0,41. Also, for each i € [1tn—1],
vnﬂafn = Up410; = A;Up41. 1t follows that, for each h € H, v, 1h®" = hv, ;.
Hence, ¢, is injective. This proves (i).

Recall that G = Artin(A4,,).

Let ¢ € [11n].

We shall show by decreasing induction on 7 that

Hanf 1 Hai n
(5.3.1) an "M =g,

If i = n, then (53] holds. Now suppose that ¢ > 2, and that (5.3.1]) holds.
Conjugating (5.3.1)) by @;_; yields

aga[n—ui—u o ana[i+1Tn]ai—l .

@i1lapp19n)  aillajiirn)  Magiy
; =q =i I

By induction, (5.3.1]) holds.

Now 70" = (L n=1l)én — e a?na“HT"]. This proves (ii). Also,
ff)n HE[W-] = Hﬁ[nugrl] a;.
If k € [117 — 1], then

a?a[an] _ a?a[k'rifﬂHa[iflTi]Ha[iJﬁlTn] _ a?a[i—lTi]Ha[i+lTn] _ a?_al[wmn] = a;_1.

Hence, a;_11lap, 5 = Iap, ya;.
Let ,, denote the map of sets

U H X vpipng) = G, hop — hd’"HE[nm for all hvy = (h,vx) € H X vppni1).

Hence, for each h € H, we have the following, in G.

ke[11i—1] keli+2tn+1]
(h (g v; Vit1 U, ))Vra;

= (" ( Hapw gy . IIa 41y Ia))a;

= (h¢" (ai_lﬂa[nw] Ha[n“_ﬂ] ti_nHE[n“] aiHE[nuﬂ))

= (h (ai—1vg Vit1 tiv; a;vy, ))er

=(h ( Vg, v; Vit1 Uk )ai)wn
This proves that v, is a map of right G-sets, and, hence, v,, must be surjective.
Thus, G= | H‘i’"v}f", and, hence, the index of H%» in G is at most n + 1.

ke[1tn+1]

Consider the action of G' on the set of conjugacy classes {[tx]}recpini1) in
¥0.1n41- For any @ € [11n], a; acts as the transposition ([t;], [t;+1]). In particular,
the index of Stab(G; [t,11]) in G is n+ 1. Also, the elements of apn,—1 U {a2}
fix [t,11], and, hence, H®» < Stab(G; [t,.1]). By comparing indices, we see that
H® = Stab(G; [tn41]). This proves (iii). O

5.4 Theorem (Artin). B, = Artin(oy — 09 — -+ — 0,_1).
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Proof. This is trivial for n < 1. Hence, we may assume that n > 1 and that

the homomorphism =, : Artin(A4,,_;) — B,, of Proposition (.1l determined
ie[1tn—1]

by  (@;)™ is an isomorphism; and it remains to show that the surjective

= (03)
homomorphism ,,41: Artin(A4,) — B, is injective.

Consider an element w of the kernel of v,,;. In particular, w fixes ¢,
in the Artin(A,)-action on g1 ,+1. By Theorem B.3[iii), w lies in the image
of the homomorphism ¢,,: Artin(A,_1) x Xo1, — Artin(A4,) determined by

i€[1tn—1]

(a;

= (ai

)?n. Thus, we may express w as a product of two words

)

t
a

SIS

w = Wy (a([lTn_l]))wQ (t?ﬁTn]))

Now,
(5.4.1)

Pn Pn
. . _ qw o wl(a([lTn—l]))w2(t([1Tn])) o w2(t([1Tn]))
in Artin(A,) X Xo1,n4+1, tht1 = typ1 = tpia =1, :

Consider the homomorphism ¢, 41: Artin(A,) X 3g 1,41 — Artin(A4,.4) de-
i€1tn]
termined by  (a; tn41 )9 . Let i € [11n]. By Theorem B3[(ii),
= (a; an2+1>

(10 )nrransr — (a?na[i+ml)¢n+1an+1 _ (a?ﬂamm])anﬂ
1 1 (2

_ (aiZHa[H—lTn-H]) — (ti)¢n+1’
()10t = (@ )" =y = (bagn)? 4

Thus the two (n+1)-tuples (t((i)[rllTn])’ tns1) and £(pipn1)) for Artin(A,) x Xo 1 41 be-
come conjugate in Artin(A, 1) under ¢, 1. By Theorem [5.3(i), ¢,,41 is injective.
Since t(f11n41)) freely generates a free subgroup of Artin(A,) x g1 ,41, we see
that (t?ﬁTn])’ tnt1) also freely generates a free subgroup of Artin(A,,) X X1 ,41-
From (5.4.1]), we see that wy must be the trivial word.
Hence, w = wi(a(itn-1))) in Artin(A,). By the induction hypothesis,
wi(atn—1))) = 1 in Artin(A,_,). Hence w = 1 in Artin(A,,).
Now the result holds by induction. O
Combining Lemmal[5.2] Theorem [5.3]and Theorem [5.4], we have the following.
5.5 Corollary (Artin-Magnus-Manfredini). If n > 1, then
B, = Artin{oy — 09 — -+ — 09 — 0,_1) ~ Artin(4, 1),
Stab(B.,; [t,]) = Artin(oy — o0y — -+ — 0,9 = 0>_;) ~ Artin(B,_,),
Br1 X Y11= Artin{oy — 09 — -+ — 09 == l,_1) >~ Artin(B,_1).
0]
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5.6 Historical Remarks. In 1925, Artin [3] found the above presentation of
B,, by an intuitive topological argument but, later, in [4], he indicated that there
were difficulties that could be corrected. In 1934, Magnus [23] gave an algebraic
proof that the relations suffice. In 1945, Markov [25] gave a similar algebraic
proof. In 1947, Bohnenblust [7] gave a similar algebraic proof; in 1948, Chow [§]
simplified the latter proof. All these algebraic proofs of the sufficiency of the
relations involve the Reidemeister-Schreier rewriting process for the subgroup of
index n.

Larue [22] gave a new algebraic proof of the sufficiency of the relations, by
using the Dehornoy-Larue trichotomy [14] for braid groups. We shall proceed
in the opposite direction. Proofs of the trichotomy for Artin(A4,_;) tend to be
more difficult than proofs that Outaflm = Artin(A4,,_1), and we shall now see
that Artin’s generation argument easily gives the trichotomy for Out& L O

6 The Dehornoy-Larue trichotomy

6.1 Definitions. Let ¢ € B,,.

We say that ¢ is oy-neutral if ¢ lies in the subgroup of B, generated by
O12tn—1]-

We say that ¢ is oq-positive if n > 2 and ¢ can be expressed as the product
of a finite sequence of elements of oyy4,—1) U 0[24p—1] such that at least one term
of the sequence is o;. We say that ¢ is o-positive if n > 2 and, for some
i € [1Tn — 1], ¢ can be expressed as the product of a finite sequence of elements
of Ojitn—1) U 0i+1n—1) such that at least one term of the sequence is o;.

We say that ¢ is o1-negative if ¢ is oy-positive, that is, n > 2 and ¢ can be
expressed as the product of a finite sequence of elements of oj21—1] U T[11n—1]
such that at least one term of the sequence is 7;.

If ¢ satisfies exactly one of the properties of being o;-neutral, oi-positive
o1-negative, we say that ¢ satisfies the oq-trichotomy. O

6.2 Historical Remarks. View Artin(A,) as a subgroup of Artin(A4,,,1) in a
natural way, and let Artin{(A.) denote the union of the resulting chain; thus
Artin{As) = (ajec[). Dehornoy [14, Theorem 6] gave a one-sided ordering of
Artin{A..); the positive semigroup for this ordering is the set of ‘a-positive’
elements of Artin{A..).

Let ¢ € B,. By replacing ¢ with ¢ if necessary, we can apply Dehornoy’s
result to deduce that there exists some n’ > n such that ¢ is o-negative in B,,
or ¢ = 1. Larue [2I] showed that this implies that 7 € (¢;%), and that this
in turn implies that ¢ can be expressed as the product of a finite sequence, of
length at most |¢| +in23‘¢‘, of elements of o(21,—1)UG[11n—1). Thus, every element
of B, satisfies the o;-trichotomy. Larue’s work is surveyed in [16, Chapter 5].
Topological versions of these results can be found in [19] and [16, Chapter 6].
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We shall give elementary direct proofs of the foregoing results and replace
Larue’s bound |¢|+ in23|¢| with the much smaller bound n2/¢! —n. Larue’s proof
contains interesting information that we shall rework in the Appendix. U

Part (iii) of the following seems to be new.

6.3 Lemma. Let n > 1 and let ¢ be an element of B, such that t0 € (t1%). Let

m =7(¢) and, for each i € [1Tn], let u; = u;(¢).
(i). Suppose that there exists some i € [11tn—1] such that u; € (xt1)=). Then
lo:0|| < [|@]| — 2 and t7° € (t1%); moreover, if t7 = t,, then i € [2tn —1].

(ii). Suppose that there exists some i € [2tn — 1] such that u; € (ti=x). Then
[7igll < gl —2 and 17 € (t1%).

(iii). Suppose that, for each i € [1Tn — 1], u; & (¥u41)~) and, for each i €
2tn— 1], w; & (o). Then 6= 1.
Proof. For each i € [0Tn + 1], let w; = w;(o).

(i). The first part follows from Artin’s Lemma [32(i). Notice that, if t0 = ¢,
then wy; =1 and u; = Wy & (*tor).

(ii) follows from Lemma [3.2)(ii).

(iii). Recall that ug [] (tw;)) = ] (&)= ( [] t)?= ]I t: Hence,

1€[11n] 1€[11n] 1€[11n] 1€[11n]
uoti=ur [ (trw;) = t1 J] ti, and, hence, uy [] (tirw;) = ti=wots [] -
1€[21n] 1€[21n] i€[27n] i€[27n]

Since u, = w, & (t,=x), the hypotheses imply that there is no cancellation

anywhere in the expression u; [] (t;=u;). Hence,
i€[27n]

i€[11n] 1€[21n] 1€[21n]

Since t70 = 1% =% € (t;x), we see that ugti~ € (t%), and

(632) \fluotlw\ =—-1+ ‘U0t17r| < -1+ ‘U,O| +1= ‘U,O|
Since [] w; = wow,s1 = 1, we see that
i€[0tn)]
(633) H U; = Uy = W1 ¢ (%17'*)-

ic[11n)

63D _ ©32) ©33)
Now, > |u)| < |ta=twots| < |wo| = | J] w|. Therefore, there is no
ieltn] _i€[1n]
cancellation in  [[ w;, and, by (633), uy & (t1-x). By LemmaB.2(iii), ¢ = 1.
i€[11n)
]
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As in Remarks 3.4 we deduce the following from Lemma by induction
on |[¢]|.

6.4 Corollary (Larue [2I]). Let n > 1 and let ¢ € B,,.

(i). Suppose that tf € (t1%). Then ¢ is o1-negative or oi-neutral. In more
detail, ¢ can be expressed as the product of a sequence, of length at most
n2ll —n, of elements of Of2tn—1 U O[1tn—1]-

(ii). Moreover, ¢ is oy-neutral if and only if 7 = t,. O

6.5 Notation. For each i € [1Tn — 1], let o} and ¢ be the automorphisms of
>0,1,» determined by

ke[114) keli+21n] ke[11i—1] keli+11n]
(tr  ti )% (tk t; tign )77
=(ty th, ), = (ty tiv1 ti ty).

Then o; = ojo;. The normal form in t[;4,) factorizes into an alternating product
with factors which are normal forms of non-trivial elements of (t};1;11)) alternat-
ing with factors which are normal forms of non-trivial elements of (¢[11;—1jufi+21n]) -
On (f[1i41)), 0 acts as conjugation by ¢;, while o] interchanges the two free gen-
erators. On (t{11i—1]ufi+21n)), 0; and o] act as the identity map. O

The next result gives three trichotomies, called (a), (b) and (c), which hold
for elements of B,,. Attribution is not sharply defined, but it is reasonable to
attribute (b) to Dehornoy [14], and (a) and (c) to Larue [21].

6.6 Theorem (Dehornoy-Larue [14], [21]). Let n > 1, let ¢ € B,, and consider
the following nine conditions.

(al). t9 =t;. (a2). t € (t1%) — {t1}. (a3). 17 & (t1%).
(bl). ¢ is oy-neutral. (b2). ¢ is oy-negative. (b3). ¢ is oq-positive.

(cl). (t%)? = (t1%)  (c2). (t1%)? C (t1%). (e3). (t1%)? D (t1%).
Then: (al) < (bl) < (cl); (a2) & (b2) < (c2); (a3) < (b3) < (c3).
Ezactly one of (bl), (b2), (b3), holds; that is, ¢ satisfies the o1-trichotomy

m B,.

Proof. (al) < (bl) by Corollary [6.4[ii). We shall use (al) and (b1l) interchange-
ably in the remainder of the proof.

(bl) = (cl). If ¢ is oy-neutral, then so is ¢. It follows that (t;%)? C (t1%)
and (t;x)? C (t1%). Thus, (t;%)? = (t1%).

(a2) = (b2). If (a2) holds, then Corollary 6.4(i) shows that (bl) or (b2)
holds. Since (al) fails, (b1) fails. Thus (b2) holds.

(b2) = (c2). Using Notation [6.5 we see that

(t1%)70 = (11%)7171 = (tok)71 C (titox) C (ty%).
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Since the composition of injective self-maps of (¢1%) can be bijective only if all
the factors are bijective, we see that (b2) = (c2).

(a3) = (b3). We translate into algebra the crucial reflection argument of [16],
Corollary 5.2.4].

Suppose that (a3) holds.

With Notation B} let wy = w;(¢) and 7 = 7(¢). Then Witi=w;, = t7 & (t1%).
It follows that wit1= & (t1%). Hence, Wy t1= & (t1%). Hence,
T =W, L-w; € (%) U {1}. On conjugating by t;, we see that 7)"" € (&1%).

ke[itn]
Let ¢ be the automorphism of Y;, determined by ( t, )¢ . For
= ")

each k € [11n], (It[1y)¢ = ey It follows that ¢ = 1. Notice that ¢ belongs

ke2tn]
to Outg , ,, := Outo,1,, — OutaL,Ln. Also, (t1  tg )flc . Hence,
= (f fkm““w] )

1= % =T €)1 C ().

By Corollary B.4(i), ¢¢ can be expressed as the product of a finite sequence of

elements of 021y, 1)U [145,—1]- It is not difficult to check that, for each i € [11Tn—1],
¢ _

sequence of elements of aémfl} U E[thl}(: T2tn—1] U 071tn—1]). Hence, (b3) or
(b1) holds. Since (a3) holds, (al) fails, and (b1) fails. Thus (b3) holds.

(b3) = (c3). If ¢ is oy-positive, then ¢ is oi-negative, and, by (b2) = (c2),
(t1x)? C (t1%) and, hence, (t;x) C (t;%)?.

(c1) = (al). Suppose that (al) fails. Then (a2) or (a3) holds. Hence (c2)
or (c3) holds. Hence (cl) fails.

(c2) = (a2) and (c3) = (a3) are proved similarly.

Thus the desired equivalences hold.

Since exactly one of (al), (a2), (a3) holds, exactly one of (bl), (b2), (b3)
holds. O

o; =0, in Outg,,. Hence <;5<2 (= ¢) can be expressed as the product of a finite

The following gives the Dehornoy right-ordering of B,; recall the definition
of o-positive from Definitions 6.1l

6.7 Theorem. For each ¢ € B, exactly one of the following holds: ¢ =1; ¢ is
o-positive; ¢ is o-positive. The set of o-positive elements of B, is the positive
cone of a right-ordering of B,,.

Proof. Suppose that ¢ # 1.

Let i be the largest element of [11n — 1] such that ¢ € (o};,—1]). The natural
subscript-shifting isomorphism from (Zfiy)) to ¥o,1,n—i+1 induces an isomorphism
from (o7(itn—1]) to Bn_i+1. Notice that ¢ is mapped to an element of B,,_;;; which
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is not op-neutral; by Theorem [6.6], this image is o1-positive or oj-negative but

not both. Hence exactly one of ¢, ¢ is o-positive.

It is easy to see that the product of two o-positive elements of B, is
o-positive.

Hence the set of o-positive elements of B, is the positive cone for a
right-ordering of B,,, the Dehornoy right-ordering. O

7 Ends, right-orderings and squarefreeness
7.1 Review. A (reduced) end of ¥, is a function
[1too] = tugm) Ulpr, 1+ ag,

such that, for each i € [11oo|, a;+1 # @;. The function is then represented as a
right-infinite reduced product, ajas - - - or Hap o[-

We denote the set of ends of ¥, by €(Xg1,,), or simply by € if there is no
risk of confusion.

An element of 3y, U €(Xg 1) is said to be squarefree if, in its reduced ex-
pression, no two consecutive terms are equal; for example: (t1¢5)> is a squarefree
end; titotats is a non-squarefree word.

For each w € ¥ ; ,, we define the shadow of w in & to be

(wd) = {Ha[lToo[ e¢ | Ha[mwu = w}.

Thus, for example, (14) = €.

We shall now give & an ordering, <. The first step is, for each w € ¢ 1 ,, to
assign an ordering, <, to a partition of (w<t) into 2n or 2n—1 subsets, depending
asw =1 or w # 1, as follows. We set

(th14) < (t14) < (lo€) < (tod) < -+ < (t,4) < ({, Q).
If i € [11n] and w € (x¢;), then we set

(wt;4) < (W1 4) < (W1 €) < (WEi2€) < (Wij2€) < -+ -
< (wt, ) < (wi,4) < (wt;4) < (wi;4) < (wiy4) < -
- < (wti_1<) < (wfi_1<).

If i € [11n] and w € (%t;), then we set

(wti+1<) < (wfi+1<) < (’th_Q{) < (UJEZ‘_’_Q‘) < ---
< (wt, ) < (wt,4) < (wh4) < (wi;4) < (wi,4) < ---
- < (wti_1<) < (wfi_1<) < (wti<).
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Hence, for each w € ¥y, we have an ordering < of a partition of (w) into
2n or 2n — 1 subsets.

If Hapteo; and Ilbpgeep are two different (reduced) ends, then there exists
i € N such that Iapy) = by in X0, and @41 # b1 in tapn U Ean). Let
w = Ilap;) = Hbpipyy. Then Iappoep and Ilbpqogp lie in (w<t), but lie in different
elements of the partition of (w<) into 2n or 2n — 1 subsets. We then order
Hap1oo; and IIbjipoo) according to the order of the elements of the partition of
(w<a) that they belong to. This completes the definition of the ordering < of €.

We remark that the smallest element of € is Z7° = (ITt[14,))> and the largest
element of € is 23° = (IT#},1))>. O

7.2 Review. Following Nielsen-Thurston [9], [27], we now define the action of
B, on €(3y1,) and show that it respects the ordering; our treatment will be
quite elementary compared to the usual approaches.

We assume that n > 2, and we first define the action of o; on €.

Consider any reduced end ¢ € €. There is then a unique factorization ¢ =
w4y or e = Iwyipoo[, where, in the former case, w(i1—1}) is a finite sequence
of non-trivial words, and wj; is a reduced end, and, in the latter case, w1100
is an infinite sequence of non-trivial words, and in both cases, the w; alternate
between elements of (¢[142]) U €({tn112))), and elements of (t(z1n)) U E((ti31n))). We
shall express this factorization as ¢ = [wy][ws] - - -.

Recall, from Notation [6.5, that we have the factorization o1 = ojo]. On
(trre) U €((tpye)), o} acts as conjugation by ¢, while o7 interchanges the two
free generators. On (f[31,)), 07 and o7 act as the identity map. This completes
the description of the action of o1, o and o; on €.

It is not difficult to show that, for any reduced ends Ilap1o; and IIbjjpegf, if
(Hapteo))? = Hbpitee], then for all 4, j € N, if j > 2i, then (Hapipj)?* € (Hbpigig*).
Thus, (Ilaptecp)] is the limit of (ITapq;)7" as j tends to oo.

It is clear that o7, o] and, hence, o, act bijectively on €. Hence we have the
action of o1 on €. It is then not difficult to verify that we have an action of B,
on €.

We next show that oy respects the ordering of €. We do this by considering
all the ways that two reduced ends can be compared, and the resulting effect
of of and o;. We represent the information in tables. In all of the following,
we understand that ¢,a, £, tac, and tod are reduced expressions for elements
of (tur) U €((tuyg)), and b # 1. Since a does not begin with #;, a®Tt, begins
with ¢; or ¢; or t;. We make the convention that ¥ ; ,, acts trivially on the right
on €.

(- Jwh <) (- Jwt <) (w4

oty t [Ew)t ta(et)][ -
e [wty th]_[... "'H(flw)tl tz(dt1)_][-~-
][ H(f )t1 tl][t?,Ttn"'

Il J[(tw)ty ti(aty)]]- -

w1 )tQ tl(CU/l/tg)] [ .
Q’walll)tg fl (dJi/t2>][, c
gw"l )tQ tQ] [thEn s

2w )ty to(alty)][ - -

A S
— — — —
N N N N

Sl e Bl B
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Here, the case w = 1 does not present any problems.
(- J[wti«) (- Jwt <) (- w4
o Jwty B[ J[(trw) Tt (bty)][- - "'][(?210”?:) Lot (0718s) ]|
by Bt || ) Bt ||l Bt
- Jwty toc][ - e Jl(tw) ita(et)][- |l J(Ewh) Tt (e )]
J[wty tad][- - J[(tw) tita(dty)]] - J[(Gw ) toti (d7r )]
J[wi][tstty, - -- J[(Erw)] [ttt - - - [(Ew )] [t - -

Here, w does not end with ¢;, and, hence, (f,w’") ends with ¢,, Z; or .

(- J[wty4) (- J[wt,«)% (- Jwt,4)™
- J[wt][ts e, - - ~[w)ts 4][ts1, [t )ty o] [t517
- Jwte tall- - J[(tw)te ty(aty)]] -] [(Ew l)tl t2(a’ 1t2)]["'
- Jfwty 40][-- - [(Gw)te (b)) [(Ew )t (07 1t2)]["'
o fwty ][t;ﬁt - J[(Bw)to][ts T, J[(t2w?” j)tl][tsTt ;
- J[wty o[- - J[(tw)ts ta(cty)]] - J[(t2w ™)ty ’51(0‘71’52)][
(- Jwt«) (- Jwt, ) (- Jwt )
e Jlwty Bd][ ~[(Gw)te Ta(dt)]] ---][(Ezw”:{)@ 0 (d7L)]|
- J[wis][ts T —l(hw)ty t[tsTin - JlEw )l ][t T,
- [wty tiall J[(tw)ts ti(aty)]] (Gt e (a1 )]
- Jfwty 410][- J[(Gw)ty 1 (bt)]] - J[(Bwh )t 1(b718)]|
- J[wty 4][ts T - J[(tw)to][ts T, - - - J[(Gw™ )] [t5 1 - - -
( t3<) ( t3<)01 ( t3<)01
ts tatE, s LT, g 11T, -
ts][tra][ 3] [(at1)][ A _‘71’752),][
3] [£10]] -] [tata (bty)] 5] [tala (b7 )]
- t3][t][ts 1T - tg] [0 ][t e -t [t] [tsTtn
- tg[tac][- - - tg][tita(ct)][ oty [fata (7T L) [
3] [td][- - - tg] [t (dty)][ ][ty (AT )] - -
ty tg-- oty g ty ta--

The remaining tables are clearly of the same form as the last one. Thus we
have proved that the action of o; respects the ordering of €. It follows that the
action of o respects the ordering of €. Similarly, the actions of o214, UG [21n—1]

respect the ordering of €. Hence B,, acts on (€, <).

O

7.3 Remarks (Thurston [27]). The (right) action of B,, on (€, <) gives rise to

many right orderings of B,,.
Let us use the left-to-right lexicographic ordering on (€,
= (t2°)icqtn)- It is not difficult to show that the B,,-stabilizer

B,,-orbit of t

([11n])

<), and consider the
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of i) 18 trivial. Thus we have an injective map

B, — € bt = () )iepn)-

Let < denote the ordering of B,, induced by pullback from €&”. Clearly < is a
right-ordering of B,,.

If n > 2 and ¢ € B, is oi-negative, then, as in the proof of Theo-
rem [G.6(b2)=(c2), we have (t;4)? C (t;«). Since max(t;4) = 15°, we see
that (5°)? < ¢°. Hence ¢ < 1 and 1 < ¢. Similar arguments with (¢;«0),
i € [2Tn], show that, if ¢ € B, is o-positive (resp. o-negative), then 1 < ¢
(resp. 1 > ¢). Hence the right-ordering we have obtained from (&", <) coin-
cides with the Dehornoy right-ordering. However, the study of ends does not
seem to readily yield the oi-trichotomy. O

The following will be useful in the study of squarefreeness.
7.4 Lemma. Letn > 1, leti € [11n], and let w € Yo, — (%t;) — (xt;). Then,
in €(Xo1,), the following hold:
(i). wt@((ﬂt[lm)(’o) < wti((Ht[iTn]Ht[lTi—l])oo) = min(wtiti<);
(ii).
il). max(wt;t;4) = wt; (Mgt i0))>°) < wz@'@((m[nm)w)‘
). If n > 3, then one of the following holds:

(a). t2((Mepyn)™) < whw (M) ™);
(b). 1 ((Wtpnyn)>) > wtaw((Mppy)>);

and, hence, tl((Hg[nm)_oo) & [wtw((Mtppn)>), Wt (MEp)>)], that is,
t(21%) & [wtiw(zy), wtiw(z°)]

Proof. Recall that:

min(wt;t; 4) < max(wt;t;<);

(t,4) < (t1<) (t2<) e < (tnq) < (t, ),
(titi+1<) (t z2+1<) - < ( ) (t f}1<) - << (tiﬂ;l‘ < (titiﬂ),
(ﬂﬂ‘) (t tl+1<> ( Z% ) (t t1<) - < (fltz,ld) < flfz,ld)

@d). It is straightforward to see that wt;((Itj iy IIt4—1)>) = min(wt;t; <€).
Let z denote the element of tf14,) U tj14, such that w((Itpe,))>°) € (z<);
notice that x # t;.
If © # t;, then (wt;x4) < (wt;t;«), and we have

wt;w((Htpgn)™) € (wtz4) < (wtit; <) > min(wtt; <.
If © = t;, then W is completely cancelled in @W((Il¢[4,))>°), and, moreover,

wtw (Mt p4n)) ™) = wti(Wt e pgi-1)™) = min(wt;t; <0).
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Thus, (@) holds.
([ is clear.

(). It is straightforward to see that wt; (It} )¢y, i41))™°) = max(wt;t; <.
Let = denote the element of t4,,) U €[, such that w((II fnu]) ) € (z<);
notice that = # t;.
If © #t;, then (wt;t;4) < (wt;r<), and we have

max(wfitid) € (wiit; 4) < (wﬂ-x<) > wgiw«ﬂf[nil])m)'

If x =1;, then w is completely cancelled in wW(IT¢},1))>, and, moreover,
wflﬁ((ﬂf[nm)"o) = w%z((HE[Zu}HE[nu_i_u)oo) = max(wfifid).
Thus, (@) holds.
(i) follows from (il)- (i).

(@). It is not difficult to see that
wtw((Htpen)) ) € (wt;4)  and  wt;w((ITE,))>®) € (wi; <.
Case 1. w & (t1%).
If w=1, then

1 (Mpy)®) € (titn4) < (tit1 <€) > 6((MEpn)™) = wt;w((TEpg,)™).

If w# 1, then ¢ ((Ilfpy1))®) € (h4) < (w4) > wtw((Htpen)>).
In both subcases, (a) holds.

Case 2. w € (t1%).
Here, wt;w((Iltp,1)*) € (w4) C (t1«€). Hence,

To prove that (b) holds, it remains to show that

WET((TEp0)>) # (T ya))™),

that is, #1wtW((MEy)™) # ()™, that is, Hwtaw & (). We can
write w = t;u where u & (t;x). Then tlwt w = ut;ut;, in normal form. Thus it
suffices to show that ut;ut; & (I¢p,17).

If u =1, then ut;uty = t;t, & (Itp,1)), since n > 3.

If u # 1, then ut;ut; ¢ (Iltp,,q)), since ut;ut; does not lie in the submonoid
of ¥o1,, generated by t[14,), nor in the submonoid generated by Zfi4y).

In both subcases, (b) holds.

In both cases, (@) holds. O
The following appeared as [, Lema 2.2.17].

7.5 Theorem. If n > 1 then, for each ¢ € B, t‘f((Hf[nm)oo) is a squarefree
end.
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Proof. This is clear if n = 1.
For n =2, By = (0y), and

m 01+2m m m
132 = o 40 e z) = [0 {0 g e 7).

Thus, every word in tl32 is squarefree and does not end in t,. Hence, every end
in 172 ((Ifny0))%) is squarefree.

Thus, we may assume that n > 3.

Recall that z; = Ilf;,4y), and, hence, Z; = IIt;4,. Let Ult]j4, denote

U [t:]. By Lemma [C4(w), ¢,(27°) does not lie in
1€[11n]

n —

U [E0) 7)) = U U [wtiw(z7°), wtw(z)]).

z€U[t][11n) =1 weSg1,n—(xt:)—(+t;)

Notice that ¢ permutes the elements of each of the following sets: U[t]j4n);
{z2°); {2°}; and, |J [2(Z%°), T(2%°)]. Hence (¢,(25°))? does not lie in
$EU[th1Tn]

U [x(z7), 7(2°)]. By Lemma L),

TEU[] [11n]

U (wt;t;4) U (wi;t;«)).

wezoyl’n—(*ti)—(*ﬂ')

U [2GE0), 7)) 2

TE€U[t[11n] i

iCs

Hence, (t1(22°))? does not lie in the latter set either, and, hence, (¢;(25°))? is a
squarefree end. Since (t1(25°))? = t(29°), the desired result holds. O

We now obtain new information about the B,-orbit of ¢; in ¥ 1 ,,.
7.6 Corollary. Letn > 1, let ¢ € B, and let k € [1Tn].
(i). t7 is a squarefree word in Sg1 .
(). ¢ & (Mg ntin) — {tg ")
(iii). 7 & (Mtpgpyiik)-

Proof. Recall from Notation Bl that we write ) = t;u,rl(%). Let m = w(¢) and

w1, = Wy (gb)
It is not difficult to see that

t(f(zfo):Eltlwwl((ﬂf[nu])w) € (@14).

By Theorem [7.5] t(f(zl‘x’) is a squarefree end. Hence, w; is a squarefree word,
and wy & (%pIltpr1yn))-
Since W is a squarefree word, ¢ is also a squarefree word. Hence (i) holds.
Also, wy & (%It 140)) implies that Wy & (I¢y, k11)tk*) and, hence, t‘f 4
(I 1y tex) — {tgt[k“m} and, also, I} ¢ (I k41ytex). In particular, (i) holds.
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j€[tn]
Let £ be the automorphism of ¥;, determined by (t;)¢ - Then
= (gnJrl*j)
¢? =1 and £ € Outy, ,, := Outg 1, — Outf, ,. Also,

5 — —_ —_
195 = 1898 — B9 & (MWhpyps 1ytan)s = (Mtrmkifng1kt)-

It follows that t}fi N (It pgp—sytns1—k*) = 0. Since BE = B, and t2r = t?", we
see that t‘f & (Mtptn—klnt1-xx). Now replacing k with n+ 1 — k gives (iii). O

In Remark V.3l we shall give a second proof of Corollary using
Larue-Whitehead diagrams.

8 Actions on free products of cyclic groups

8.1 Notation. Throughout this section, we assume that n > 1 and we fix a
positive integer N.

Let pqitn)) be a partition of n. Thus, pqqiny) is an N-tuple for [11oo such
that py + -+ py = n.

Let mu4n)) be an N-tuple for N — {1}.

We let megml)lpémQ)l___Lp%nn) denote the group with presentation

(2 ) | 204y, 750 Fiennlgentpa)-

Thus, X ") | ) is isomorphic to a free product of cyclic groups,

0.1py"™) 1p}
.. 0) . .
Cipix C)P2 5 - - - CrPN - where C is interpreted as Co, and pg ) is also written i
with no exponent.
We let Out(],l’pgml)lpémQ)l__lp%nN) denote the group of all automorphisms of

) ") | ) which map {z,Z} and

0,1,p{™) 1 p§
{H{lnl.F e+ +pjor + Mo+ +p5l} |7 € 1TN]}

to themselves.

We let Out™
X«

0,150 1p{m2) L. g ) which map {z} and

denote the group of all automorphisms of

Hlnlli€lpr+ .. +pja +1p+ ... +pjl} | 7 € [ITN]}

to themselves.

In the case where all the m; are 0, we get groups denoted Outo 1 p, 1pyi . Llpy
and Outg, , \oo 1, - Notice that Outo p, 1p,1..1py 15 the subgroup of Outg
consisting of those elements such that the permutation in Sym,,, arising from
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the permutation of {{[t1],[t1]},..., {[ts], [tx]}}, lies in the natural image of
Sym,, x Sym,,, X ---x Sym, in Sym,,.
There are natural maps

(811) Outo,Lplel...le — OUtO,l,pgml)ipémQ)L~~~Lp$\7,n")’
8.1.2 Out — Out™ .
( ) 0,17p1Lp2l---le O,l,pgml)lp(()mQ)J_---J_p%nn)

Since ([BI2) is of index two in (RII]), we see that (R8I is injective, resp.
surjective, resp. bijective, if and only if (RI2) is. O

For topological reasons, we suspect that (811 and (81.2) are isomorphisms.
In this section, we shall prove that this holds in the case where all the m; are
equal or N = 1. We begin by proving that (8L and ([8I.2) are injective,
which seems to be new.

8.2 Theorem. With Notation 81l the maps

(8.1.1) Outo,Lle_pQJ_...J_pN — Outo,Lpgml)J_pémg)l__J_p%nn),

- -
(8.1.2) Outy ) 1ot dpy — OUtO,l,pgml)ipémQ)i---Lpg\’,”")

are injective.

Proof. Suppose that ¢ is an element of the kernel of (811 or (8I.2]). Clearly,

+ ¢ ; ;
¢ € Outg, ,, and Eagnp)s EQ1tR)) have the same image in 20,1,p§’”1)Lpé’””l---ip%"m'

By Theorem [7.5] (t(mn]))d’ is an n-tuple of squarefree words in Xy;,, and,

hence, has the same normal form in ¥ ;, and in X 0 Hence

A" Lpy" ) L L pN

t((b[nn]) = t(1tn)) as n-tuples for ¥g1,. Thus ¢ = 1, and the result is proved. [

8.3 Historical Remarks. Let us now restrict to the classic case where N = 1.
Here, for an integer m > 2, we are considering the action of Outg;, on C}7,
and it induces maps

(8.3.1) Outo,1,, — Outg g ,0m),
(8.3.2) Outg,,, — OUtal,n(m) :

Theorem [B2lshows that these maps are injective. Birman-Hilden [6, Theorem
7] gave a topological proof that (83.2)) is injective, thus answering a question
of Magnus. Crisp-Paris [11] gave an elegant algebraic proof of the injectivity
of (83.2)) using the trichotomy argument of Larue [22] and Shpilrain [28]. The
Crisp-Paris argument can be summarized as follows.

For each i € [1Tn], let ({7;)x) denote the set of elements of ¥, ,m whose
free-product normal form begins with an element of (r;) — {1}.

Suppose that ¢ is a non-trivial element of B,, = Outafl,n. We will show that
¢ acts non-trivially on ¥ ;,m).
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We may assume that n > 3. By Theorem [6.7, by replacing ¢ with ¢
if necessary, we may assume that ¢ is o-negative. Thus there exists some
i € [1Tn — 1] such that ¢ is the product of a finite sequence of elements of
Olit1tn—1] U TJitn—1], and 0; appears at least once in the sequence.

With Notation [6.5]

((T)0)7 = ({ra)%) 77 = ((Tir)0) 7 € (R({isa)%) C (7)),
since n > 3. Because the elements of o7;1.11,—1]U0i1n—1) act as injective self-maps
on ({7;)x), it follows that ({7;)x)? C ({;)%), and, hence, ¢ acts non-trivially on
¥.1,n0m, as desired. O

Let us now verify the surjectivity of the maps (831]) and (83.2]). The case
where m = 2 was verified by Stephen Humphries [2] Lemma 2.1.7].

8.4 Notation. Let m, n € N with n > 1 and m > 2. Let || denote the

greatest integer not exceeding 2. Then [01[2]] U [-14(—[22])] is a set of

representatives for the integers modulo m. For 7% € (7 | 7 = 1), we define |7¥|
keOTLF]] kel "7 ]]

by (7% 78] ) ; we extend | — | to all of X, ,m) by using normal
= ( 2k —2k—1)

forms for the free product C7,.
Let ¢ € Outg1 Lmy- Lhere exists a unique permutation = € Sym,,, and a

unique (n + 2)-tuple (w(ornt1))) for X, such that wy = 1 and wypyy = 1,
and, for each i € [11n], w; & (ti=*) U (f=%) and t? = . For each i € [01n], let
u; = w;W;y 1. We define 7w(¢) := m, wi(¢) := w;, i € [0Tn + 1], and u;(¢) := w;,
i € [0tn]. We write [|¢] :=n+2 > |wi(o)|. O
1€[11n]
The following is similar to Artin’s Lemma

8.5 Lemma. Letn > 1, m > 2 and let ¢ € Outy, ,om). Let m = w(¢). For each
i € [0tn], let u; = u;i(¢p). For each i € [11n], let a;, b; denote the elements of
[0, m — 1] determined by the following: there exists some uj € X 1 ,m — (*(Tix))
such that u;_y = wiTy; there exists some uj € Y ,m) — ((Tix)*) such that
w; = rfi,u;’ In particular, ay = b,, = 0.
(i). Suppose that there exists some i € [2Tn] such that a; € [|F]Tm—1]. Then
loiaoll < i¢ll-
(ii). Suppose that there exists some i € [11n — 1] such that b; € [ ] tm —1].
Then |[o;¢] <[]

(iii). If ¢ # 1, there exists some 0§ € O[1tn—1] U Tlitn—1] such that ||oo| < ||¢||.

Proof. (i). Let a = a;. There exists some v € ¥g;,m — (*(7)) such that
uj—1 = vThk. Since w;_1(¢) = u;—1w;(¢), we have

(8.5.1) wi—1(¢) = v wi(¢);
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since w;(¢) € ((Ti=)*) and v & (%(7i=)), vTHw;(¢) is a free-product normal form

for w;_1(¢).

Claim. |74 < |72].

Proof. If a € [| 2] 4+ 11m — 1], then a — m € [—[251]1 — 1], and, hence,

|75 = |7 ™| = —2(a —m) — 1 =2m — 2a — 1.

Therefore, if a € [|2]tm —2], |75 =2m —2(a+1) — 1 =2m — 2a — 3.
Thus, | “+1| < |l ifae[[F] +1tm —2].

Fora-[;J,angl Ti“7‘7|:2a>2m—2a—3:|7'ﬂr+1.

Fora=m —1, |7%| =1 and |7%™| = 0. O

Thus,
wi—1(0)] = o] + 7] + [wi(@)| > [v] + |75 + [wi()].

By (B5.0), wi—1(¢)w;(¢)7i= = v7is™"; hence

Oi— T w; wl(¢) UT(lTr+lwz(¢)
19 = (173,)¢ = G 11)(¢>)( ) — T,

Hence, [wi(0;-10)] = [vriz wi(@)] < [v| + |75 + [wi(9)] < [wi-1(0)].

For each j € [11i — 2] U [i + 11n], T;Ti’ld) = 7';?, and, hence, |w;(0;_10)| =
|w;(¢)]

Also, Tﬁf(b = 77: in particular, |w;_1(0i_10)| = |w;(¢)|.

It now follows that ||o;_10|| < ||¢].

(ii). Let b = b;. There exists some v € X, ,tm) — ((Ti=)%) such that u; = T5v.
Since w;y1(¢) = ww;($), we have

(8.5.2) wis1 () =T Torwi(9).

Since w;(¢) & ((i=)x) and T & (x{73)), U Tonw;(¢) is a free-product normal form
for w41(¢). Hence, Jwi1(9)] = [0] + [Tir| + [wi(@)].

Claim. |72 < |75
Proof. For any b € [ |tm], then m — b € [|2]10], and, hence,
70| = |72 = 2(m — b) = 2m — 2b.
Therefore, since b € [| 5 [tm — 1],
7ot =2m —2(b+1) =2m — 20 — 2 < |70 |,

as claimed. O
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Hence |wis1(9)] > [0] + [T + [wi(9)].
For all j € [11i — 1] U [i 4+ 2Tn], T;i¢ = 7'](75; hence, |w;(7;¢)| = |w;(¢)|.
Since Tfﬁ‘f = 77 we see that |w;41(7:0)| = |wi()].
By B5.2), w1 (9)Wi(¢)Ti =T T4 hence
_b+1

= = . —w;(¢) 5 70 )
Gip (7_;11)¢ _ ( ’w7,+1(¢))(7'iﬂ- ) VT ’U}z(¢).

T = (i+1)7 in

Hence, [w;(@9)] = [0 77 wi(9)] < [0] + [T + [wi(9)] < |wir1(9)]-

It now follows that ||7;¢|| < ||¢||, and (ii) is proved.

(iii). If ¢ # 1, we choose a distinguished element of [11n] as follows.

If, for some i € [11n], 7% = 1, we take any such 7 to be our distinguished
element of [11n].

Consider then the case where, for all i € [17n], Tﬁf“”%i # 1. Thus, there is
no further cancellation in HTﬁTn]. Since ¢ fixes II7j14y), it is not difficult to see

that, for all ¢ € [11n], Tﬁf+1+bi = 7;. Since ¢ # 1, it is then not difficult to show
that there exists some ¢ € [11n] such that (a;, b;) # (0,0). We take any such ¢
to be our distinguished element of [11n).

Let i denote our distinguished element of [11n].

Notice that (a;,b;) # (0,0) and that 7%"'*% € {1, 7). Hence, a; + 1+ b; €
{m,m + 1}, and, hence, b; € {m —a; — 1,m — a;}.

Case 1. a; € [[ 5 |tTm — 1].
Here, i € [21n] and, by (i), |loi_10|| < ||¢||-

Case 2. a; € [01]22]]

Here, m —a; — 1 € [m — 1[[™ |], and, hence, b; € [| 2 |tm — 1]. Here,
i € [1tn — 1] and, by (ii), [[o:0|| < |¢]. O
8.6 Theorem. Let n > 1, m > 2. The natural map Outafl’n — Outatlm(m)
is an isomorphism, and, hence, the natural map Outo1, — Outy; e is an
1somorphism.

With Notation BT], the maps Outo 1 p,ipytipy — Out0717p5mupém)l_¢p%n),

+ + : -
and Outgy o010 = Out071,p§m)Lpgm)L--ip%”) are isomorphisms. O

The following is essentially an algebraic translation of a part of a topological
argument in [26], Section 3].

8.7 Proposition. With Notation 1], let H be a subgroup of
b)) (m1)

0,1,py"™V Lpy™? L Lp{™)

of finite index, and let A be the subgroup of
Out

consisting of elements which map H to itself. Then, either the induced map
A — Aut(H) is injective or (n, N,my) = (2,1, 2).
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Proof. Suppose that ¢ € Out | )| ma) | | mn), and that ¢ acts as the iden-
1Py P2 PN
tity on H. We shall show that ¢ =1 or (n, N,my) = (2,1, 2).
Let G = ZO,I,pgml)lp;mQ)i---ip%””)'
For any ¢ € G, right multiplication by g permutes the elements of the finite
set H\G, so there exists some positive integer k& such that ¢g* acts trivially on
H\G. In particular, Hg* = H and, hence, ¢* € H.
Hence, there exists some positive integer k such that (Ilrpi4,))* € H. Now
(I7p11n))? = (II7}14))€ for some € € {1, —1}, and, hence,

(Mrppn)* = (Mr1en) ™ = 7)) = (M) = (i)™

Since II7p11y,) has infinite order in G, we see that e = 1. Thus ¢ fixes II714y,).
Consider any i € [11n]. Since (ITrj4,))™ € G, there exists some positive
integer k such that (IIrj1,))* € H. Hence,

T ik __ Tikd __ ¢ ¢
(rppn) ™ = (Wripn) ™ = M) = (W)™ = (Wrpagn) ™™

Hence Tfﬂ commutes with (II734,))". A straightforward normal-form argument

shows that 777, € (1)) -

Hence there exists an integer j such that 77 = (IT7[14n) ) 7i- Since ¥ s a
conjugate of T, , the cyclically-reduced form of (T[Ln})j T; 18 Tyn(e). Either j = 0,
or there must be cyclic cancellation, and a straightforward analysis then shows
that (n, N,my) = (2,1,2). Since ¢ was arbitrary, this completes the proof. [

9 The B, -group 9,

9.1 Notation. Recall that X, (1)@ = oyt = (Titns) | Tigngy = 1) We
define ®,, to be the B, ;-group consisting of the set of elements of 2071,(n+1)(2)
which have even exponent sum in the 7;. It is not difficult to see that ®,, is a free
group of rank n, and that there is induced a map from Outg 1,11 = Outm,(nﬂ)(z)
to Aut ®,. Since B, 11 = Outg,, . = Out:{l’(nﬂ)(z),
say that ®, is a B, 1-group, and that ®,, is a B,,,1-subgroup of 2071,(%1)(2).
Proposition R.7 shows that, if n # 1, then the map from Outg;,+1 =
Outg 1 (p41)@ to Aut @, is injective, and we say that the B, 1-action is faithful,
and that ®,, is a faithful B, ,-group. O

®,, has a B, i-action; we

Over the course of this section, we shall choose various free generating sets
of ®,, to obtain interesting actions. In the next two examples, we identify ¥, o
with (1329 and 2972’0 with (13294_1.

9.2 Example. Now that algebraic proofs of the requisite theorems are known
to us, let us review [18, Example 15.6] which was an algebraic approximation of
results in [20], Section 3.
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Let g € N. Let

Eg,l,o = <x17y17 ey Tgy Yg,y 21 | [371, yl] s [xgu yg]zl = 1>7

where the commutator [z, y] of group elements z, y is T yxy. Let Out;w denote
the group of all automorphisms of ¥, ;o which fix z;. Then ¥, is free of rank
2g with ordered free generating set (1, y1,...,24,9,), and Ou’c;fL0 is the group
of all automorphisms of ¥, o which fix [z1,11] - - - [24, y,]-

We now recall some Dehn-twist elements of Out/, , from Definitions 3.10
and Remarks 5.1 of [I8§].

For each i € [11g], we define oy, f5; € Out;w by

ke[11i—1] keli+11g] ke[11i—1] keli+11g]
(. we oy o yp)®  and (xr ye © oy xp yp)”
=(Tr Yk Ui Yi Tk Yk) =(zr Y T T Tp  Yk).

For each i € [11g — 1], we define v; € Out/, ; by
ke[11i—1] ke[i+21g]
(Tr Yk L Yi Zi+1 Yirr T yp)"

T
Tip1 - T+l
N Tip1Yi¥is1  Yir1 Tk Yr)-

Yi
= (v Uk Yiv1 Yili  Y; o
Let us identify ¥, with ®,, via

ke[l1g]

(x Uk 21) Va0

= (HT[2k+1¢2k} Tzk+1HT[1T2k+1} Z%)

Notice that [, yx] = TxyTrys is then identified with

Hrorpor 1)U T2k 1101 okt 1 L2k 1020 Torr1 T 71120 41)
which equals II7jo, 11172k 2841 11T 142k41]- Hence TT [z, yi] is identified with
ke[l1g]
(HT[1T2g+1} )2-

This corresponds to the surface of genus g with one boundary component
arising as a two-sheeted branched cover of a sphere with one boundary com-
ponent and 2g + 1 double points. Then By, = OutaL’L2ng1 = OUtg,l,(ngm
becomes embedded in Out;L0 via the homomorphism represented as

(Ul O 03 04 05 -+ 0292 Og¢-1 Uzg)

ap B P2 e 59—1 Yg—1 59 O

Clearly, in the preceding example, the subgroup By, of Bysy; is also em-
bedded in Out, 1, but it is more natural to remove from the surface a handle
containing the boundary component (a sphere with three boundary components
or a ‘pair of pants’), and embed By, in Outy_q 20, as follows.
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9.3 Example. Now that algebraic proofs of the requisite theorems are known
to us, let us review [18, Example 15.7] which was an algebraic approximation of
results in [26], Section 3.

Let g € N. Let

Y920 = (T[rg), g 2in2) | (I [2, %)) Tz = 1).
i€[11g]

Recall that [z,y] := T gry. Then ¥, 5 is free of rank 29+ 1 with free generating

set (114, Yptg), 21) and distinguished element z; such that Zo = ( 11 [4, yi]) 2.
i€[11g]

Let Ou’c;ﬁul’0 denote the group of all automorphisms of ¥, * (e; | ) which
map ;00 to itself, and fix 2{* and z,. It can be shown that Out;uL0 acts
faithfully on the subset 300U Xg20e1 of Xgo0* (e1 | ).

Here, e, represents an arc from the base-point of one boundary component,
to the base-point of the other boundary component. Karen Vogtmann calls such
an arc a ‘tether joining the basepoint to the second boundary component’. For
any surface-with-boundaries, A’Campo [1, Section 4, Remarque 6], [26, p.232]
identifies basepoints of all the boundary components, which makes tethers into
loops, to obtain a topological quotient space whose fundamental group is acted
on, faithfully, by the mapping-class group of the surface-with-boundaries.

We now recall some Dehn-twist elements of Out;;l 11,0 from Definitions 3.10
and Remarks 5.1 of [18§].

For each i € [11g], we define oy, 5; € Out;uL0 by

kelLti1] heli+11]

(T ye T Y T Y 21 €)™
=T Y W Vi T Y 2 e1),

ke[11i—1] keli+119]

(. we = v w oy a1 e’
=@y ye i Ty Tp Y A €1).

For each i € [11g — 1], we define v; € Out;um by

ke[11i—1] ke[i+21g]
Tk yk i ?g{?ﬂ Li+1 Yisl Tk Ye 2 e)”
= (@ e YT iyt Vi Tk Uk A e1),
and we define v, € Out;ul,0
ke[11i—1]
(T Yk x4 Yg 21 )
= (T Yk ZTW,Tg Y AT TYger)
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Let us identify ¥, 9 ¢ with ®9y41 and X, 20UX, 2061 with 20,17(2%2)(2) via the
map X,00 * (€1) — Yo,1,(2g+2) determined by

ke[11g]

Yg,2,0%(e1) =2 9
( Tr yk 21 el 22) 0,1,(2g+2)( )

_ T2g+2
= (IIrargrgon) ooy 207 Togr2  Z1)-

This corresponds to the surface of genus g with two boundary components arising
as a two-sheeted branched cover of a sphere with one boundary component and

2g + 2 double points. Now Byyio = OutaL,ngr2 = OutaL1 (20+2)® is embedded in
Out;1 11,0 via a homomorphism represented as

01 0Oz 03 04 05 -+ 0292 O2g-1 029 O2g41

o B P2 o Bger Y1 Bg

For g > 1, Proposition 8.7 shows that this is an embedding. In the case where
g = 0, the interpretation of the notation is as follows: o7 is mapped to vo; Yo
fixes z; and sends e; to Zje;. O

Clearly, in the preceding example, the subgroup Bogy1 of Bagio is also em-
bedded in Out;r’1 11,0, but it is more natural to remove from the surface a disc
containg the two boundary components (a sphere with three boundary compo-
nents or a ‘pair of pants’), and embed By, in Out;w, as in Example

We next discuss the Perron-Vannier isomorphism B,,1 X ®,, ~ Artin(D,, 1)
for n > 1. The following was shown to us by Mladen Bestvina.

9.4 Lemma. Let n > 2. Then, Artin(D,) has a unique automorphism v of
order two which fixes dy, ..., d,_o and interchanges d,_, and d,,. The semidirect
product Artin(D,,) x (v) has presentation

Artin{d, — dy— -+ — dy3— dy o — dpy =— v |0V =1).
Proof. Notice that (d,_1,dn,v | v = 1,d% | = dp,dy1d, = dnd,_ 1) is
isomorphic to (d,_i,v | v = 1,d, 1d%_; = dY%_,d,_1), and the latter is
Artin( d,,_; = v |v?> =1 ). The result now follows easily. O

Part of the following appears in [26] and [10].

9.5 Theorem (Perron-Vannier [20]). Let n > 2. The semidirect product B,, X
®,,_1 has presentation

On—1TnTn—1

Artin{oy — 09 — -+ — Op3 — Op_2 — 0y_1) =~ Artin(D,,).
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Hence, B, x ®,_1 has a unique automorphism v of order two which fixes
01, ..., 0n_9 and interchanges o,_1 and o, 1T, Tn_1. The double semidirect prod-
uct (B, X ®,,_1) x (v) has presentation

Artin(oy — 0y — - — Op_3 — Op_g — Op_1 — v | V* =1).

Proof. By Corollary 5.5, we have a presentation

B, X Xo1, = Artin(oy — -+ — 0,01 T ).

If we impose the relation 2 = 1, we transform B,, x Yo,1,n into B, X Y g @),
and we have

B ZoLa® = Artin(oy — -+ — Op1 = Ty | 7’5 =1).

Here, there exists a retraction to (7,) with kernel the normal subgroup generated
by of11n—1). This normal subgroup contains o;"*" = 0,717 for all i € [11n — 1].
By Lemma [0.4] the normal subgroup has presentation

Tn
n—1

B, x D, 1 = Artin{oy — -+ — 043 — Opog— Op_1 ),
and this agrees with the desired presentation. O

9.6 Remarks. Corollary says that, for n > 1, we can go down by index
n+ 1 from Artin(A,) by squaring the last generator, and arrive at Artin(B,,) ~

Artin(A,—1) X 3o 1.n-
Theorem says that, for n > 2, we can kill the square of the new last
generator, go down by index 2, and arrive at Artin(D,,) >~ Artin(A, 1) x ®,,_;.
]

We now record some other free generating sets of ®, which appear in the
literature.

9.7 Examples. Recall Notation In particular, the B, -action on ®,, is
faithful if n # 1.

(1). For each k € [11n], set x, = 74741 in D,,. Then T[14n] 18 a free generating
set for ®,,, and, for each i € [11n], the action of o; on ®,, is determined by

ke[11i—2) kefi+21n]
(ﬂfk Ti—1 z; Tit1 l’k)oi
= (w Ti1Ti Xy TTip T),

interpretated appropriately for ¢ = 1 and ¢ = n.
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(2). For each k € [11n], set 2 = 7,417 in D,,, Then T[1tn] 1s a free generating
set for ®,, and, for each i € [ITn — 1], 0; acts on x4, as follows.

ke[11i—1] keli4+21n] ke[1tn—1]
(w4, T Ti+1 )% (7 )"
= (xy Tit1 Tit1TiTiq1 T). = (Tp_1Tk  Tp).

(3). We next consider the free generating set used in the proof of [11, Propo-
sition A.1(2)].

For each k € [11n], set zp = T,{Tf““] Tit1 in @,,. Then 14, is a free generating
set for ®,,, and, for each i € [ITn — 1], 0; acts on x4, as follows,

ke[11i—1] keli4+21n]
(7 x; Tig1 )%
= (i rillz g HZ g 10T Ty).

Let w = (H:c[QlTn_l]xn)_l; then o,, acts as follows.

ke[1tn—1]

), Tn )
— (w(_l)kn$[1Tk—l] zr  wD Tpw).

(4). By reflecting the previous example, we can invert the elements of o4y

I . :
For each k € [11n], set xy = (7, "' 7)tn+1 in @,,. Then x4, is a free

generating set for ®,,, and, for each i € [1Tn — 1], 0; acts on {14, as follows.

ke[11i—1] ke[i+21n]
(zk T Tiy1 T )
= (x AL Mz i1 i T).

Let w = H:p[lenfl]xn; then o, acts as follows.

ke[ltn—1]
T Tp )on
— (w(fl)knm[l'rkfl]xk w(fl)nnm[l'rnfl]xnw)' |:|

9.8 Historical Remarks. Let us view B,, as a subgroup of B,, .1 by suppress-
ing 0,,. Then the B, -group ®,, becomes a faithful B,-group, even if n = 1.
Wada [29] defined various left actions of B,, on a free group of rank n. All but
four of them are obviously non-faithful, and two of the remaining four actions are
obviously equivalent up to changing the free generating set, leaving three actions
to be studied for faithfulness. Shpilrain [28] ingeniously used the o-trichotomy
to prove that these three are all faithful. Crisp-Paris [11, Proposition A.1(2)]
showed that the second and third of these three Wada actions are equivalent up
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to changing the free generating set. They correspond to Examples 0.7(2), (4),
above, with o, suppressed. Notice that our actions on the right are the inverses
of their actions on the left. In summary, the second and third Wada actions
are obtained by choosing suitable free generating sets of the Perron-Vannier
Bi1-group P,,.

The first Wada action is constructed by choosing a non-zero integer m, and,
for each 1 € [1Tn — 1], letting o; act on (x4, | ) via

ke[11i—1] keli+21n]

(z, T Tit1 T)

= (7 Tis1 xf"“ Tp).
Edward Formanek has pointed out that Ty 18 then a free generating set of
a faithful B,-subgroup of (xp, | ), where faithfulness can be seen from the

fact that the B,-action is the standard Artin action with respect to this free
generating set. This gives a transparent proof that the first Wada action is
faithful. O

Appendix. Larue-Whitehead diagrams

In this appendix, we rework ideas from Larue’s thesis [21, Chapter 2 and Ap-
pendix A], using combinatorial arguments to obtain a description of the B,-orbit
of t; when n > 1. A topological treatment of similar ideas was given in [19], and
it was arrived at independently of [21]. See [16l Chapters 5, 6].

I Self-homeomorphisms

This section is purely motivational. We shall briefly indicate the mapping-class
viewpoint of the braid group, and the Jordan-curve nature of the Whitehead
graphs of the elements in the B,,-orbit of ¢, if n > 1.

Let C denote the complex plane, and C the Riemann sphere, or projective
complex line, C U {oo}. For each z € C and each non-negative real number r,
let D(z,7), resp. D°(z,r), denote the closed, resp. open, disc in C with centre
z and radius 7.

Let Sp1, denote the surface formed by deleting from a sphere an open
disc and n points. We shall think of the discs and points as being distin-
guished rather than deleted; for example, it is then meaningful to speak of the
self-homeomorphisms of Sy ; ,, as permuting the points. We take as our model of
So.1.n the sphere C having [11n] as its set of n distinguished points, and D°(0, 3)
as its distinguished open disc. We are particularly interested in the set [01n],
and, in our diagrams, we shall mark these points out by drawing discs of small
radii around them.
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V-1 dpy o dy U1 ds V2 ds U3
[ [ A

f-1 o Jo| o i o fo| o f3

w—-1 €y Wo €1 W1 €2 Wy €3 W3

Figure 1.1.2: S 1 3.

For each distinguished point k& € [0Tn]|, we have a distinguished oriented
tether, or arc, {k —ri| —oo < r < 0}, joining oo to k. We label the right flank
of this oriented arc ¢, and label the left flank #;; we then cut C open along these

arcs and obtain a (2n + 2)-gon, with clockwise boundary label IT (txty); see
ke[0Tn]

Fig. L1.4l We shall use ty and z; interchangeably in this section. Performing
the boundary identifications then gives back C.
The self-homeomorphism A of D(0,1) given by A(rel?) := re ) fixes

the boundary of D(0,1) and interchanges 1 and —3; see Fig. [Tl For each

i(0—2nr

Figure I.1.1: The map A: D(0,1) — D(0, 1), rel? s rel@=2mm),

i € [1Tn—1], let ¢; denote the self-homeomorphism of C which, on @—D(i+%, 1),
acts as the identity map, and, on D(i + 3,1), acts by z — A(z — i — 3) + i + 3.
Then ¢p14,—1) generates a group <¢[1Tn—1]> of self-homeomorphisms of @, which
will shed light on the B,-orbit of ¢;. To describe the induced action of (@p4,—17)
on the fundamental group of Sy 1 ,,, we first give C a CW-structure by specifying
a graph S((],ll)m embedded in C c C.

For each k € [—11n], we have vertices wy, := k + % —iand vy =k + % +1,
and an oriented straight edge f joining wy to vg. For each k € [01n], we have
an oriented straight edge e; joining wy_; to wy, and an oriented straight edge
dj, joining vj_; to vg. This completes the description of the graph S((]ll)n For
n =3, 56}1)73 can be seen in Fig. [[1.2l Each distinguished point k € [01n] is the
midpoint of the rectangle in C cut out by the path fy_1dyf,ex.

Let (Séll)n ) denote the (free) fundamental groupoid of S((],ll)m, and let

(Sé’ll)m | Y(w_1,w_1) denote the (free) fundamental group of Sé}l)m at w_y. The
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subgraph of SO1 spanned by ejo1n) U fl—11p) 18 a maximal subtree of SOln7
and doy,) then determmes a free generating set f[, of <SOIn | Y(w_1,w_1);
explicitly, for each k € [01n], tp = Heporp—1) fr— 1dkfk1_[e [£40] -

The path J-11ld[opn) £ 1I€f, 0 cuts out a rectangle in C; the Complementary
region in C together with the graph SO in 15 then a retract of C - [01n]. Let
~ denote homotopy for closed paths at w 1 in C - [01Tn]. We can identify the

fundamental groupoid of Sy, with < ln | foilldorn folTEmi0) ~ w_1). We
then identify ¥ ; , with the fundamental group of Sy, at w_y,

Yo, = (S&),n | foaTldjorn) o TTepy0) ~ woy) (w1, w 1)
= (tjorn] | Ttjorn) = 1).

Consider the action of ¢; on the graph Séll)n For n = 3, the result can be

do dy do ds
®1
1
f*l ° fO ° CD ° f2 ° f3
fi
€0 €1 €9 €3

Figure I.1.3: So i3 and its image under ¢;.

seen in Fig. [L1.3l The crucial point is that f1¢ L~ ey fods fiE fody, and all
the other elements of 56}1),3 are fixed by ¢;; this makes the action quite simple

algebraically. Then, 71¢1 ~ difoe1fidafof2, and, for the free generator ¢, =
eo fod1 f1€p1,0, We have

tfl ~ eg fody (31?061f1d2?252)5[1,0] ~ 6[0,1]f1d2?25[2,0] = to.

Similarly, for this element, t5, we have

tfl ~ 6[0,1}(62f232?151f0d1)@?25[2,0] ~ €[0,2] f232?151f0d[1,2}?25[2,0} ~ tolyts,

where the latter homotopy can be seen directly by collapsing the elements of
ep,21 U flo,2, which lie in the maximal subtree. Thus, we see that ¢; acts on
20,1,» as the automorphism o;.

It follows that the action of any given element of B,, on ¥ , is induced by
some self-homeomorphism ¢ € (¢p4n—1)). The interesting feature now is that ¢
carries the oriented Jordan curve f,ld[oﬂ]?lé[l 10] (~ tot1) to an oriented Jordan

curve f,ld[oﬂ]?f en (~ (tot1)? ~ tot}). Recall that C is obtained by edge
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i
|
|
;
/21 ,,x\\Zl\ Z1 Z1
tgl/l \\ t Tye \tl
tg\ 4%\1 i3, (31
z2 \v”t; to to

Figure I.1.4: Jordan curves for zlt?l and a Whitehead graph for t? = titoty.

identification from the (2n + 2)-gon with clockwise, boundary label [EIT ](tifl-).

1€|0Tn
The Jordan curve f_ld[oﬂ]ffé[lw} has as its preimage, in the (2n + 2)-gon,
the union of a family of (disjoint) oriented arcs. These arcs can be used to
reconstruct t(f, since the Jordan curve cyclically reads off tot‘f from its meetings
with the labelled oriented tethers; notice that the set of tethers is now dual
to the set of generators tjpy,). The purpose of this appendix is to define and
study a combinatorial representation of the family of arcs, and recover Larue’s
characterization of the elements of 2"

Although it will not be used in our arguments, let us mention the fact that,
on collapsing the interior of each labelled edge of the (2n + 2)-gon to a labelled
vertex, each oriented arc in the family becomes an oriented edge, and we recover
the (directed, multi-edge, non-cyclic) Whitehead graph of t‘f; see Fig. [L1.4l

II Nested sets

We now introduce some formal definitions that will allow us to associate a com-
binatorial Jordan curve to each element of ¢

IT.1 Definitions. Let (A, <) be a finite ordered set, and let m € N.
Let N denote the number of elements of A. Then A is order-isomorphic to
[11N] in a unique way, and we assign to A the induced metric, denoted d4. Thus
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da(ay,as) = 11if and only if a; # as and no element of A lies strictly between a;
and as.

Recall that the elements of A™ are called m-tuples for A.

Let ay, as, by, by be elements of A. We say that {ay, b} is nested with {as, by}
(for (A, <)) if ay, a9, by, by are distinct elements of A, and either both of, or
neither of, ay and by lie between a; and by in (A, <). It is not difficult to see
that, in this event, {as, b} is nested with {aq, by }.

Let a(itm]) and b(jitm)) be m-tuples of A.

We say that a(i1m)) is an m-tuple without repetitions if a; # a; for all i # j
in [17Tm).

We say that (ajitm)) is an ascending m-tuple (for (A, <)) if a1 <ap <--- <
an, in (A, <).

We say that {{a;, b;}}icptm) is nested (for (A4, <)) if, for all 7 # j in [11m],
{ai, b;} is nested with {a;,b;} for (A, <).

We let Sym,, act on A™, on the left, by ™(a(11m])) := a(itm)=- For example,
(1:23) (a1, ay, as) = (as, a1, az), and, hence, >3 (a, b, ¢) = (c,a,b). The ascending
rearrangement of a(itm)) is the unique ascending m-tuple for (A, <) that lies in
the Symm—OI'bit of a([leD.

Let a(ji12m)) be a 2m-tuple for A.

A permutation m € Sym,,, is said to embed a(112m)) in a plane if "arom))
is ascending for (A4, <), and both {[2i — 112i]" }icpipm) and {20127 4+ 1] }icpitm—1)
are nested in (N, <).

We say that a(tom)) is a planar 2m-tuple (for (A, <)) if there exists some
7 € Sym,,, which embeds a(ji12:,)) in a plane. (If no two consecutive terms of
a(ny2m)) are equal, 7w is then unique, but we shall not need this fact.) There
is then an associated diagram formed as follows. We assign, to each point
i € [112m] C R C C, the label a;=; notice that this means that the label of ™
is a;. For each i € [1Tm], we join (2i — 1)™ (labelled ag;_1) to (2:)™ (labelled ay;)
by an oriented semi-circle in the upper half-plane, and for each i € [1tm — 1],
we join (27)" (labelled ay;) to (2i+1)" (labelled as;11) by an oriented semi-circle
in the lower half-plane. These oriented semi-circles form an oriented arc with
no crossings which traces out the 2m-tuple a(112m)). O

I1.2 Example. Suppose that aqs)) = (Z1,t1,t1, 82,82, 11,1, 21) is an 8-tuple
for some ordered set (A4, <), and that the ascending rearrangement of aji1g)) is
(gla tl) tl) tl) tla t27 t27 Zl)-

. 2 7
The permutation 9 3

1 g ? 2 g) = (3,5,7)(4,6) embeds a(i1s))
in a plane since both {{1,2},{5,6},{7,4},{3,8}} and {{2,5},{6,7},{4,3}} are
nested in (N, S), and (3:5,7)(4,6) (21, tl,fl, tg, EQ, El, tl, 21) = (21, tl, tl, %1, %1, tQ, EQ, Zl).
The associated diagram can be seen in Fig. [1.2.1]
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Figure 11.2.1: (gl,tl,fl,tg,gg,gl,tl,21). O

Let us record two results which will be useful later.

I1.3 Lemma. Let (A,<) be an ordered set, and let m be a positive inte-
ger. Let cptm) and Cpyp) be m-tuples without repetitions for (A, <) such that
{{ci, G} ricpam) is nested, and max(cpm)) < mMin(Crm)). If cim)) s ascending,
then C(my1)) s also ascending.

Proof. We argue by induction on m. If m = 1, the conclusion is trivial. Now,
assume that m > 2 and that the implication holds with m — 1 in place of m.
We see that ¢; < ¢ < max(cipm)) < min(Cpym) < €. Since {c;, ¢} is nested
with {cz, %2}, we also see that ¢; < ¢ < €. By the induction hypothesis, €, 9))
is ascending, and hence ¢}, 1)) is ascending. Hence, the result is proved. O

I1.4 Lemma. Let (A, <) be an ordered set, let m € N, and let a(irom)) be a
2m-tuple for A.

Then aqyam)) s planar for (A, <) if and only if there exists an ordered set
(B, <), and a 2m-tuple buyom)) for B, without repetitions, and an ordered-set
map B — A, b label(b), such that buyom = B, label(bit2m))) = a(it2m)), and
{b[2iT2i+l]}i€[1Tmfl] and {b[2i71T2i}}i€[1Tm] are nested for (B, <).

Proof. Suppose first that a(i12,,)) is planar for (A, <), and let 7 be an element
of Symy,,, that embeds a(fi12,)) in a plane. We take B to be [112m] with the
usual ordering. For each i € [112m], let label(i) = a; and let b; = i"; thus,
label(b;) = label(i™) = a;. All the conditions are satisfied.

Conversely, if B exists, we can identify B with [112m] with the usual ordering,
in a unique way. Then the map ¢ — b; is an element 7 of Sym,,, that embeds
a(112m)) in a plane. OJ

IIT Planar words in >y,

ITI.1 Definitions. Let A be the monoid generating set {21, %1} U tpn U i)
of ¥y 1,,. We form the ordered set (A, <) with

i<t <ty <--<t,<t,<z.
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We remark that, for n # 1, the ordering on A is reminiscent of the ordering of
the ends of X1, in Section [l We emphasize that, even if n =1, z; # ¢; in A.

Let m € N. Consider an m-tuple a(iynm)) for tpp, U %mn], and let w =
Haptm) € Yo,1,n; thus a(itm)) is an expression for w. We define the Whitehead
expansion of a(i4m)) to be the (2m + 2)-tuple

(217a17617a27627 ... ,am,am721)

for A, and we shall express it in the format (Z1, ((a;, @;))icpitm], 21). We say that
a(1tm]) is a planar expression for w if the Whitehead expansion of a(im)) is
planar for (A, <). If the unique reduced expression for w is a planar expression
for w, then we say that w is a planar word in ¥ 1 ,,. O

IT1.2 Examples. (i). The word t;t5t; is planar, since the Whitehead ex-
pansion of the reduced expression is (Z1,t1, t1, ta, €2, t1, t1,21), and, by Exam-
ple IL2 (Z1,t1,t1,to, o, b1, t1, 21) is planar for (A4, <); in a sense, Fig. [L27] re-
flects Fig. [[T.4l We call Fig. [L2.1] the Larue-Whitehead diagram of ¢;%,t;.
(ii). The word t1t5 is not planar; there is only one permutation to consider.
(iii). The word #? is not planar; there are four permutations to consider.
(iv). The word t5**" is planar, while the word #5*"" is not planar, and these
two words have the same Whitehead graph. O

II1.3 Proposition. Let w € X1 ,. If there exists some planar expression for w,
then (the reduced expression for) w is planar.

Proof. Suppose that a(ji+m)) is a planar expression for w, as in Definitions [IL1l

By Lemma [T.4] there exists an ordered set (B, <), and a planar (2m +
2)-tuple b(j112m+2)) for (B, <), without repetitions, and a labelling B — A, b —
label(b), such that the labelling respects the orderings and label(b(it2m+2))) is
the Whitehead expansion of a([ity,)). Moreover, B = bji12m49)-

Suppose that the given planar expression a([iq,)) is not reduced. We shall
find a shorter planar expression for w.

There exists some j € [11m — 1] such that a;41 = @; in g, U L), and we
may suppose that we have chosen this j in such a way that dp(baji1,b2j+2) has
the minimum possible value. Notice that label(b(2j12543))) = (a5, a5, @y, a;).

Clearly, w = Hapqj—yIlagy19m), and label(biiy25-11), b(2j+at2m+2))) 18

(Z1, (@i, @) )iepitj—1), ((@i, @) )icfj+2tm)> 21)

(51, (1,1,51, ey aj_l,aj_l, aj+2,5j+2, ey amﬁm, 21).
It suffices to show that (b(1j-1]), b(2j+at2m+2))) is planar for (B, <).
Claim. dB(ij,b2j+3) =1.
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Proof. Consider any k € [112m — 1] such that by lies between by; and bgj 3.
Let n denote (—1)*.
Since label(by;) = label(byji3) = a;, we see that label(by) = a;. Hence
label(bgyy) = @; = label(by;11) = label(byj ).
Either a; < @; or a; > @; in (A4, <). Hence,

either max{sz, bk, b2j+3} < min{b2j+1, bk-l—na b2j+2} in (B, S),

or min{ij, bk, b2j+3} > max{ijH, kar??’ b2j+2} in (B, S),

respectively.
Since {{ba;, b2j11}, {b2j+2, baj+3}, {bk, brsn }} is nested, and by, lies between by;
and by 3, we see, from Lemma I3 that bi4ry lies between byj 1 and bojyo.
Since {bgjt+1,bajro} is nested with {byy, byyon} and byi, lies between bgjiq
and byji2, we see that b9, lies between by and ;2. Hence,

dp(bgt2n, bktn) < dp(baji1, bojia),
with equality holding only if {bx1oy, bktn} = {b2j11,b2j42}. Also, label(bya,) =
a;, and, hence, label(by43,) = a;. Thus
label(bk, brsn, biran, betsy) = (a5, @5, a5, a;).
By the minimality of dg(baji1,b2;42), we see that k = 2j or k = 25 + 3. This

proves the claim. O

Now consider the passage from b(i12m+2)) t0 bir2—1)), O(2j+412m+2)-
On the odd-to-even steps, we pass from {bjo;_112i }ic[1tm+1] tO

{bp2i1120 Fielirj—1upj+atmer] U {{b2j—1, baj4a}}-
Thus, we remove {bg;_1,ba;}, {b2j11,b2j42}, {b2jt3,b25414}, and we add only
{b2j_1,b2j44}. To see that, for all k € [115 — 1] U [j + 3tm + 1], {ba_1, bor}
is nested with {baj_1,b2j+4}, we note the following:
(bj_1 lies between byy_1 and boy)
& (by; lies between boy_1 and byy)
since {baj_1,bo;} is nested with {box_1, box }
& (bgj+3 lies between bog_q and boy)
since dp(baj, bajis) =1
& (bgjsa lies between by,_1 and byy)

since {b2j+3, b2j+4} is nested with {b2k71, ka}
On the even-to-odd steps, we pass from {bj2i19i41 bicfitm] tO

{b2it2i+1) bie1ti—1)0lj+21m] -

Thus, we remove {by;, by;+1} and {baj12, baj43}, and we add nothing. Hence this
remains nested. This completes the proof. O
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III.4 Proposition. Let w be a planar word in Xg 1 ,, and let k € [11n].
(). w is a squarefree word in Lo .
(i1). w & (Mppegatior) — {8, .

(iii). w & (Ttppp—1)tex).

Proof. For some m € N, there exists a reduced expression a11p)) for w.
(i). Suppose that w is not squarefree, say t¢;,t; occurs in a(itm)), then
ti, ti, t;, t; occurs in
(Z1, (@i, @i))icpitm) 21)-

Let m; be the number of occurrences of tfﬂ n agitmy)-

Suppose c((itm,]) are labelled ¢; and €y, 1) are such that the even-to-odd
pairing contains {{cx, €} }reitm,. The odd-to-even pairing contains {c,¢;} for
some k, j € [11m;]. Let us choose (k, j) so that k+j is as large as possible. Then
cx < cpy1 < ¢;. Whatever ¢y is paired with in the odd-to-even pairing must
lie in the interval [cx,¢;] and cannot have label ¢; since the signs alternate, so
c;j+1 1s paired with ¢; for some k£ > j. This contradicts the maximality of k + j.
Hence k = m;. Similarly, 7 = m;. Thus {¢,,,Cn,} lies in both the even-to-odd
pairings and the odd-to-even pairings. This gives a sinlge component, which is
a contradiction.

(ii). Suppose that w € (IEf, pp1)ti*).

Thus (1, ((ai, @) )ief1tn—k+2]) i

(Ela tna tna tn—la tn—la ey tk-‘,—la tk+17 tka tka An—k+2, an—k—|—2)

Notice that {tx, @, 142} must be nested with {t; 1, ¢}, and, hence a,,_j > must
lie in {tg, ty, tes1}. By (1), Gn_gy2 # k. Since a(ipm)) is a reduced expression,
An—k+2 7 . Hence a,_py2 = tgi1. Let us denote this term ¢, 41 to distinguish
it from the preceding occurrence of ty1. {1}, ,} is nested with {tj41, ¢}
Hence, Then t),, < ty41. By LemmalL3] 7, , > t4.1.

Thus (Z1, ((ai, @) )ieptn—kt3]) s

— 7 n n n / g —
(Zlu tnu tn7 tn717 tn717 ety tk+17 tk+17 tka tk, tk;+17 tk;+17 an7k+37 an7k+3)

Notice that {_E;CH, Un_p+3} must be nested with {tx 9,141}, and, hence, Un—k+3
must lie in {Zp41, tito}. Since aiqm)) is a reduced rexpression, an—p43 7 pt1-
Hence a,,_x13 = tr12, and we denote this by t§9+2. Then t§9+2 < try9, and, by
Lemma [L3, 7 > fxro.
By repeating the argument in the last paragraph, we eventually find that
LI LI ER TN
w=t, .
(iii). Suppose that w € (ITtjpp_1yte*).
Then (51, ((ai,@-))ie[m;ﬂ) = (51, tl, tl, tg, tg, Ce 7tk717 tk:fl’ tk, tk), and by an
argument similar to that in (ii), we find that this is impossible. O
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IV B, permutes the planar words in X,

IV.1 Proposition. Let w € X1, and let i € [1Tn — 1]. If w is a planar word
in Yo 1, then w is a planar word in X 1 .

Proof. Suppose that 714y, is any planar expression for w, as in Definitions [IL1l

In applying o; to (Z1, ((ri,7%))icptm], 21), We

replace each t;,t; with t;q,t;41,
replace each t;,t; with t; 1,1,
replace each t;y1, tiy1 With €41, 61, i, Gy tigrs bt
replace each t; 1, t; 11 with €11, tii1, 6, ti, tig1, tig1-
We will not perform any cancellations in the resulting sequence.

Let m € Symy,,, , be a permutation which embeds (Z1, ((73,7;) )ic[1tm], 21) in a
plane. By Lemma [[T.4] there exists an ordered set (B, <), and a (2m + 2)-tuple
P(j112m+2)) Without repetitions, for (B, <), such that m embeds p(ji12m+2)) in a
plane. Moreover, there exists a labelling B — A, b — label(b), such that the
labelling respects the orderings and

1abel(£0([1¢2m+2})) = (51, ((Tijz‘))iemm}, 21)-

Moreover, B = ppi12m+2)-

Let m; denote the number of elements of B with label ¢;, and let m;,; denote
the number of elements of B with label ¢;;1. To begin, we have to add 4m;,,
elements to B, and we have to specify the ordering on the expanded set.

Let c[i1m; denote the set, in ascending order, of those elements of B which
have the label ¢;. Let ¢},,,1] denote the set, in ascending order, of those elements
of B which have the label ¢;. Let d[j4y,,,,) denote the set, in ascending order, of
those elements of B which have the label ¢;;. Let E[mi .41] denote the set, in
ascending order, of those elements of B which have the label ;,;. Thus we have

<< Oy KTy <. <G <dy <o <y <y, < ... <dy

and no other element of B lies in the interval [c;1d;]. We write

[ertdi] = (cqutma) Emata)s A(rimiia])s A(imig i)

to express this.
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C1 C1 dy ds dy dq

t; t; tit1 tit1 tit1 tit1
N \\"//
Figure IV.1.1: (cur)), €quia)), dira)) E([zu]))-

With the preceding notation, we create an interval of 4m;,; new elements

denoted
[a1101] = (a(itmisa))s A(lmisa 1) Otmiga]) s O 1))

We expand B by inserting this interval just before c;, that is, just before the
interval [c;1d;]. We now have a new ordered set B’ with 2m+2+4m;,, elements.

We have to specify the new labelling B" — A. On ¢[14y,,], we change the labels
from ¢; to t;11. On €y y1), we change the labels from #; to t;41. On djipm,, ], We
change the labels from ¢;,; to ;1 ;. On E[miﬂm, we keep the same labels, #; ;.
On the rest of B — [c;1d,], we keep the same labels. We give all the elements of
A[11m,,,] the label ¢;; we give all the elements of @, 1) the label t;; we give all
the elements of bji1p,,,,) and E[mi .41 the label ;1. The labelling clearly respects
the orderings of B" and A.

For the even-to-odd steps, it follows from Lemma [1.3] that

{p[2kT2k+1]}k€[1Tm} 2 {{Ciaéi}}ie[lw U {{djvaj}}je[lTs}-

Let q(112m+4m.,.]) be the 2m + 4s-tuple obtained from p((112m+2)) as follows.
For each j € [11m;41], there exists a unique i € [11m] such that pr;_1497) =
{d;,d;}. If P([2i-112i]) = (d;,d;), then it is to be expanded to (d;, bj, a;, @;, b;, d;).
If pai—1r2i)) = (d;,d;), then it is to be expanded to (d;, b;,@;, a;,b;,d;). This
completes the definition of q(12m44m,..))-
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/\ y
K ~

1 by by By 3 c1 c d1 d2 da di
; titl  tipl tip1 tipr Sl Tipn o i Gipn Gy G

T N

e

Figure IV.1.2: (aira)), @(2,1)), O(ra))s bass €y Euans dqnz)s dgai)-

In passing from {pprtor+1)refitm—1 t0 {drtor+1)tre[itms2mi—1], We add

{{bj,a;}}jenrs U {{a;, b5} }jenss. In B, for each j € [17s],

[@;1b;] = (@gzus b))
and the underlying set is U {a, by }rep1)

[a;1b5] = (aire)s Tsinys Oage), Blsusy)
and the underlying set is U {@x, by bre(its) U U{br, ar Frepits)-

Both of these intervals are closed under the pairing-off of
{ai2kr20411 Y eettm+2m —1)-

Thus, {qprtor-+1) tre[ttm+2m,. 1] 1S also nested.
In passing from {pjar—112k] }ee[itm] t0 {q2r—1128 Fec1tm+mis,], We delete

{{d;, d;}}jenrs), and add {{d;, b;}}jenrs U {{aj, @} }jenrs U {{b), dj}}jenrs-

B’, for each j € [119],

la: @] = @gza, aq)
and the underlying set is U ‘{ak,ak},

1B 5] = (b unlys Epriays d([lm )
and the underlying set is {dk, by} U {cz, Cit,

B> 3] = (b, sy, €arlys Elri) d( 115))» Ais13) )
and the underlying set is U {dk, by} U U {bk, dy} U {cl, i}

n
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Each of these intervals is closed under the pairing-off of {qar—112k tre[1tm+2miii]-
Thus, {qpar—112k fre[itm+2m,. ] 15 nested. O

A similar argument shows that &; carries planar words to planar words.

IV.2 Theorem. The group B, acts on the set of planar words in ¥g;,, and,
hence, if n > 1, then every element of t?” s a planar word.

IV.3 Remark. By combining Theorem [[V.2] and Proposition [IL4] we get an-
other proof of Corollary O

V  The B,-orbits of the planar words in >,

In this section we rework [2I, Lemma 2.3.12] and in this case our argument
seems to be longer than Larue’s. The object is to show that the number of
B,-orbits in the set of all planar words in X1, is n+ 1, and that {II¢{44) }eejorn)
is a complete set of representatives.

V.1 Lemma. Let i, j be elements of [11n] such that j <i—1, let ¢ = Hopjpi—qy,
and let w be a planar word in X 1 .

(1) If w € (Wtppgtjx), then [w?| < |wl.

(i) If w € (MWtppgt*), then |w?| < |w|.

Proof. 1t is straightforward to show that ¢ acts as

kell,5-1] ke[j+1,i keli+1,n]
(th t; th te)?
= (t t; e, tr).

(i). Suppose that w € (Itpqt;%).

Figure V.1.1: w € (tpqygt;x), j <i— 1.

Since {;t; is a subword of w, every letter occurring in w that belongs to
tij+i U Tpjeg belongs to a (reduced) subword of w of the form avb, where a,b €
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{t;,t;} and v € (tj4;)). Since, moreover, w begins with It[14;, it can be shown
that it is not possible to have a = t; or b = t;. Thus a = b = t;. Here,
[(avb)?| = |avb| — 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in #}14;_1 U £[;4115), and all of which
are mapped to single letters by ¢.

Since ¢; occurs in w, we see that |w?| < |w.

(ii). Suppose that w € (gt *).

Figure V.1.2: w € (Iltpyyt%), j <i— L.

Since t;t; is a subword of w, every letter occurring in w that belongs to
tj+110 U Ejj1199 belongs to a (reduced) subword of w of the form avb, where
a,b € {t;,t;} and v € (¢[j414). Since, moreover, w begins with ITty4;, it can be
shown that it is not possible to have a = ¢; or b = ¢;. Thus a = b = ¢t;. Here,
|(avb)?| = |avd| — 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in #}14; U t};114n), and all of which
are mapped to single letters by ¢.

Since t; occurs in w, it is then clear that |w?| < |w| — 2. O

V.2 Lemma. Leti, j be elements of [1Tn] such that j > i+2, let ¢ = 1T [;_11i41],
and let w be a planar word in X 1 .

(1) If w € (Itpyytjx), then |w?| < |w|, and, moreover, if |w?| = |w| then
w¢ € (Ht[lTiJ’,l}*).
(ii) If w € (Itpegt*), then Jw?| < |w|.

Proof. 1t is straightforward to show that ¢ acts as

ke[li] kelitl,j—1] ke[j+1,n]
(e tk t t)?

ti
= (tp tier ty).

(i). Suppose that w € (Itpt;%).
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ilvti ti tj 1
— —

Figure V.2.1: w € (tpqgqtjx), j > i+ 2.

Since t;t; is a subword of w, every letter occurring in w that belongs to
Lit11j—1 U %[Hlijl] belongs to a (reduced) subword of w of the form avb, where
a,b € {t;,t;} and v € (t;;114j_1]). Since, moreover, w begins with IItp4,, it can
be shown that it is not possible to have a = t; or b = ¢;. Thus a = b = ;. Here,
|(avh)?| = |avb| — 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in #[14; U ¢[j4,,], and all of which are
mapped to single letters by ¢.

It is then clear that |w?| < |w].

Moreover, if |w?| = |w]|, then w € (i U tjjrn)), and w? € (Mtppipnx).

(ii). Suppose that w € (g4t %).

Elvti g ty 1
— ~

Figure V.2.2: w € (Iltpq %), j > i+ 2.

Since t;t; is a subword of w, every letter occurring in w that belongs to
Llit11y] U f[iﬂm belongs to a (reduced) subword of w of the form avb, where
a,b € {t;,t;} and v € (t};114;7). Since, moreover, w begins with ITt4y, it can be
shown that it is not possible to have a = t; or b = t;. Thus a =b = Zj. Here,
|(avb)?| = |avd| — 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in Z[14; U [j4115), and all of which
are mapped to single letters by ¢.

Since ¢; occurs in w, it is then clear that |w?| < |w| — 2. O

V.3 Theorem (Larue). The set {Iltji1x) frejorn) @5 @ complete set of representa-
tiwes of the B,,-orbits in the set of all planar words in Xo 1 .

Proof. Let w be a planar word in ¥ 1 ,. We wish to show that there exists some
k € [0tn] such that 144 € w®r.
Let i be the largest integer such that w € (ITtj4;%).
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We may assume that, for all v € w®" |v| > |w]|, and if |v] = |w|, then
v Q’ (Ht[l’l\i+1}*). ~

By Lemma V], for all j € (117 — 1], w & (Itpqgt %) U (Htpgqtx).

By Proposition [IL4(i), w & (ITt{4qt:%).

By the maximality of 7, w & (It[ptiz1%).

By Proposition IIL4(iii), w & (It{i4itiy1%).

By Lemma [V.2] for all j € [i + 21n], w & (et x) U (Ttppqt*).

Hence, w = IIt}144), as desired. O

V.4 Remarks. (i). Let w be a planar word in g 1 ,.

Lemmas [V.1] and V.2 give an effective procedure for finding ¢ € B, first to
minimize |w?|, and then to obtain the form w? = Tty for some k € [01n].

(ii). Let n > 1 and let w be a word in g 1 ,.

Theorem shows that w lies in the B,-orbit of ¢; if and only if the
cyclically-reduced form of w lies in f14,) and w is planar. Moreover, in this
event, Lemmas [V.1] and [.2 effectively produce a ¢ € B,, such that w?® = ¢;.

(iii). There is then an algorithm which, for any k& € [11n], and any k-tuple
w(itk]) for Lo 1., decides if there exists some ¢ € B,, such that w?[lTk]) = (1K),
and effectively finds such a ¢. We proceed as follows. We first convert w; to ¢;
if possible, and then we restrict to (ojatn—1)-

It is interesting to compare this algorithm for B, with the Whitehead al-
gorithm for the much larger group Aut(¥¢;,). The information provided by
planarity is more detailed then the information carried by the Whitehead graph
used in the Whitehead algorithm. O

We record the following.

V.5 Theorem (Larue). Let n > 1 and let w € Xo1,. Then w lies in the
B-orbit of ty if and only if the cyclically-reduced form of w lies in tpy, and w
1s planar. O
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