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PRESENTATIONS OF MATRIX RINGS

MARTIN KASSABOV

Recently, there has been a significant interest in the combinatorial prop-
erties the ring of n×n matrices. The aim of this note is to describe a short
(may be the shortest possible) presentation of the matrix ring Matn(Z).
This presentation is significantly shorter than the previously known ones,
see [7].

Surprisingly, the number of relations in the presentation does not depend
on the size of the matrices and all relations have relatively simple form. In
contrast, the similar statement for the groups GLn(Z) is significantly more
difficult to prove and the presentations have more relations, see [5, 4].

Theorem 1. The ring1 of n× n matrices over Z, for n ≥ 2, has a presen-

tation with 2 generators and 3 relations

Matn(Z) = 〈x, y | xn = yn = 0, xy + yn−1xn−1 = 1〉.

Proof. Let R denote the ring defined by the above presentation. A homo-
morphism from the free associative ring to Matn(Z) given by

x → X =
∑

ei,i+1 y → Y =
∑

ei,i−1

factors through the ring R.2 The first two relations are satisfied because
both X and Y are nilpotent matrices and the third follows form a direct
computation. Moreover, this homomorphism is surjective because the ma-
trices X and Y generate Matn(Z) as a ring.

Thus, it remains to prove that the ring R is not too big. Our first step is
to find other relations, which are satisfied in the ring R.

Lemma 2. For any non-negative integers k, l,m ≥ 0, such that m ≥ l, we
have

xkylxm =

{

yl−kxk if l ≥ k
xk+m−l if l ≤ k

and

ymxlyk =

{

ymxl−k if l ≥ k
yk+m−l if l ≤ k

.

The author was supported in part by the NSF grants DMS 0600244 and DMS 0900932.
1All rings in this paper are associative and contain a unit element. Also all presentations

are in the category of unitial associative rings.
2As usual, ei,j denotes the elementary matrix with 1 at i, j-th place and zeroes every-

where else.
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Proof. The proof uses induction on l. The base case l = 0 is trivial. If
k = 0 again there is noting to prove. Thus, without loss of generality we
can assume that k, l ≥ 1.

xkylxm = xk−1(xy)yl−1xm = xk−1(1− yn−1xn−1)yl−1xm =

= xk−1yl−1xm − xk−1yn−1
(

xn−1yl−1xm
)

.

By the induction assumption the part of the second term in the brackets is
equal to xn+m−l = 0, since m ≥ l. Thus, the second term vanishes. Another
application of the induction assumption shows that

xk−1yl−1xm =

{

yl−kxm if l ≥ k
xk+m−l if l ≤ k

and completes the proof of the first part of the lemma.
The proof of the second part uses similar induction. Alternatively, one

can use that the transformation x → y and y → x extends to an anti-
automorphism σ of R and apply σ to the identities from the first part. �

Lemma 3. The ring R is generated, as an additive group, by the elements

yixj for 0 ≤ i, j < n.

Proof. Let T denote the additive subgroup of R generated by the elements
yixj. It suffices to show that T is closed under, both left and right, multi-
plication by x and y, because 1 = x0y0 ∈ T . The two relations xn = yn = 0
imply that T is closed under left multiplication by y and right multiplica-
tion by x. Thus, it remains to show that xT, Ty ⊆ T . The element x.yixj

is clearly in T if i = 0. If i ≥ 1 we have

xyixj = (xy)yi−1xj =
(

1− yn−1xn−1
)

yi−1xj =

= yi−1xj −
(

yn−1xn−1yi−1
)

xj = yi−1xj − yn−1xn−ixj ∈ T,

where the last equality uses Lemma 2.
Similarly, yixj.y is in T if j = 0 and if j ≥ 1 we have

yixjy = yixj−1(xy) = yixj−1
(

1− yn−1xn−1
)

=

= yixj−1 − yi
(

xj−1yn−1xn−1
)

= yi−1xj − yiyn−jxn−1 ∈ T.

�

Lemma 3 together with the surjection for R to Matn(Z) is sufficient to
show to R is isomorphic to the matrix ring, but one can build the isomor-
phism directly:

Definition 4. Let ai,j , for 0 ≤ i, j < n, denote the elements

ai,j = yixj − yi+1xj+1.

Lemma 5. We have that

ai,jx = ai,j+1 ai,jy = ai,j−1 xai,j = ai−1,j yai,j = ai+1,j.

Here, we assume that ai,j = 0 if either i or j is outside the interval [0, n−1].
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Proof. Two of the identities follow directly from the definition of the ele-
ments ai,j . The only non-trivial ones are ai,jy = ai,j−1 and xai,j = ai−1,j.
By the definition of the element ai,j we have

ai,jy = yixjy − yi+1xj+1y

If j = 0 the right side is equal to yi+1 − yi+1xy = yi+1yn−1xn−1 = 0.
Otherwise, we can use the proof of Lemma 3:

=
(

yixj−1 − yn+i−jxn−1
)

−
(

yi+1xj − yn+i−jxn−1
)

=

= yixj−1 − yi+1xj = ai,j−1.

The proof of the second relation xai,j = ai−1,j is similar. �

Lemma 6. The product ai,jap,q is equal to 0 if j 6= p and is equal to ai,q if

j = p. Moreover we have

1 =
∑

ai,i x =
∑

ai,i+1 y =
∑

ai+1,i.

Proof. These equalities follows directly from Lemma 5 and the definition of
the elements aij. �

Thus, the map ai,j → ei,j extends to an isomorphism between the ring R
and Matn(Z), which completes the proof of Theorem 1. �

Remark 7. From the isomorphism between R and Matn(Z) it follows that
the elements x and y also satisfy the relation

yx+ xn−1yn−1 = 1,

i.e., the map x → y and y → x can be extended to an automorphism of R.

The following variation of Theorem 1 gives presentation of the ring of
matrices over Z/NZ:

Theorem 8. For any integer N the matrix ring Matn(Z/NZ) has presen-

tation

〈x, y | xn = yn = 0, xy + (N + 1)yn−1xn−1 = 1〉.

Proof. The argument is a slight modification of the proof of Theorem 1. The
map x → X and y → Y is a homomorphism onto Matn(Z/NZ). The proof
of injectivity follows the same outline — Lemmas 2, 3, 5 and 6 still hold.
Finally one observes that an−1,n−1 = yn−1xn−1 and xy =

∑n−2

i=0 ai,i. Thus
the last relation in the presentation is equivalent to

n−1
∑

i=0

ai,i = 1 = xy + (N + 1)yn−1xn−1 =

=
n−2
∑

i=0

ai,i + (N + 1)an−1,n−1

therefore Nan−1,n−1 = 0, which implies that Nai,j = 0 for all i, j, i.e., the
additive group of R has exponent N . �
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Remark 9. In the case N = p is a prime number, one can use that the
matrix algebra Matn(Fp) is a cyclic algebra, thus it is possible to obtain a
presentation (as an algebra over Fp) with 2 generators and 3 relations. This
leads to a presentation of the ring Matn(Fp) with 2 generators and 4 rela-
tions. The presentation obtained using this approach uses a presentation
of the finite field Fpn, which involves an irreducible polynomial of degree n
over Fp. Thus, the relations in this presentation will be more “complicated”
than the ones Theorem 8. In some cases, one can modify the presentation
of the cyclic algebra and save one relation:3

Matp(Fp) = 〈x, y | yp = 1, xp = x, xy = y(x+ 1)〉.

Remark 10. In some sense the presentation in Theorem 1 is a variant of the
presentation of cyclic algebra, where one uses the nilpotent ring Z[x]/(xn)
instead of the maximal subfield, however it is not completely clear what is
the analog of the “field” automorphism in this picture.

One would like to say that the presentations in Theorems 1 and 8 are the
simplest possible. Unfortunately, we were not able to prove that presenta-
tions of the matrix rings with 2 generators and only 2 relations do not exist.
The following result shows that there isn’t any presentation of the matrix
ring Matn(Z) with a single relation:

Theorem 11. The number of relations in any presentation of the matrix

ring Matn(Z) is at least equal to the number of generators.

Proof. The main idea of the proof is to “translate” the notion of the “relation
module” from groups rings and use it to obtain a lower bound for the number
of relations in a presentation of ring, see [6].

Let 0 → I → Z〈S〉 → R → 0 be a presentation of the ring R. The
quotient I/I2 is called relation module associated to this presentation and
is naturally a R bi-module. It is clear that the projection of any generating
set of the ideal I to I/I2 is a generating set of this bi-module. Thus, the
minimal number of generators of relation module gives a lower bound for
the number of generators of the ideal I and the number of relations in a
presentation of the ring R.

One way to construct a big quotient of the relation module is the following:
Let d be the size of the generating set S̄ and let M be the free R bi-module
on d generators mi, i.e., M ≃ (R⊗R)⊕d. We can define a ring structure on
the abelian group R ⊕M , where the multiplication between elements of R
and M is defined using left and right actions of R on M and the product of
any two elements in M is equal to zero.

For any generating set S̄ of R with d elements one can define a subring R̃
of R⊕M generated by “extensions” of the generators in S̄ by generators of
the module M , i.e., s̃i = s̄i +mi. It is easy to see that the relation module

3This presentation was found by Robert Guralnick [3].
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corresponding to this presentation maps surjectively onto the intersection of
R̃ with M .

In the special case of the matrix ring Matn(Z), we have the module iso-
morphism M ≃ Matn(L), where L is free abelian group on n2d generators
(this follows form the isomorphism of the bi-modules Matn(Z)⊗Matn(Z) ≃

Matn(Z
⊕n2

)). A long computation shows that the intersection of R̃ with

M is isomorphic to Matn(L̃), where L̃ ⊂ L is a subgroup of rank at least
n2(d − 1) + n > n2(d − 1) — this bound does not depend on the images
of the generators S in Matn(Z). This completes the proof of the Theorem,
since the relation module can not be generated by than d− 1 elements. �

Remark 12. A more carefully computation shows that the relation mod-
ule, corresponding to the map Z〈x, y〉 → Matn(Z) given by x → X and
y → Y , can be generated by only two elements as an bi-module (for ex-
ample the elements xy + yn−1xn−1 − 1 and xyn + yxn generate the relation
module). This suggests that it might be possible to “combine” the two re-
lations xn = yn = 0 into a single one and obtain a presentation of Matn(Z)
with 2 generators and only 2 relations. Unfortunately, the usual trick of
combining such relations — replacing them with xn = yn does not work,
because the presentation

〈x, y | xn = yn, xy + yn−1xn−1 = 1〉

defines a ring which surjects onto Matn
(

Z[t]/(t2)
)

.

Remark 13. One can view the proof of Theprem 11 as an analog of Gaschütz’
result [1, 2], which says that the tensor product of the relation module for a
finite group G with Q is isomorphic as G-module to Q[G]⊕d−1⊕Q, therefore
the relation module can not be generated by less than d elements.

Acknowledgment: The presentations in this paper arise as a side-result
of a project about presentations of finite groups. The author wish to thank
his collaborators in that project Robert Guralnick, William Kantor and Alex
Lubotzky for useful discussions.
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