
i-com 2023; 22(2): 143–159

Sebastian Hobert*

Fostering skills with chatbot-based digital
tutors – training programming skills in a field
study

https://doi.org/10.1515/icom-2022-0044

Received December 2, 2022; accepted May 10, 2023;

published online May 29, 2023

Abstract: Digital skills, particularly programming, have

become a vital prerequisite for succeeding in today’s work

life. Developing those skills is, however, a challenging

task, as it requires perseverance, effort, and practice. To

teach coding, individualized tutoring adapted to the novice

programmers’ state of knowledge has evolved as the most

promising learning strategy. However, offering sufficient

learning supportwhile practicing coding tasks is a challenge

due to resource constraints. Following a three-cycle design

science research approach, we developed a chatbot-based

digital tutor that can support novice programmers using

individualized, automated conversations based on adaptive

learning paths and in-depth code analyses. In this article,

we present the final version of the digital tutor software

and report the findings of introducing it in a field setting

over two entire lecture periods. We show that digital tutors

can effectively provide individualized guidance inmoments

of need and offer high learning satisfaction in a long-term

learning setting. This article expands the state of research

by presenting insights into how students interact with a

digital tutor over an entire lecture period. This also provides

insights on how to design digital tutors for developing skills.

Keywords: chatbot; conversational agent; digital tutor; edu-

cation; programming; STEM.

1 Introduction

1.1 Challenges of learning how to code

Due to digitalization, globalization, and internationaliza-

tion, digital skills like programming have become a vital

prerequisite for succeeding in today’s work life. This great

importance of coding is reflected in the fact that the

*Corresponding author: Sebastian Hobert, University of Goettingen,

Platz der Goettinger Sieben 5, Goettingen, 37073, Germany,

E-mail: shobert@uni-goettingen.de. https://orcid.org/0000-0003-3621-

0272

European Commission has identified it as “the 21st century

skill” [1]. In practice, learning how to code is, however, often

considered to be a challenging task [e.g., 2, 3]: It requires

perseverance and effort. Learning to code is often associated

with slow progress at the beginning of the learning process

but usually accelerates with more experience.

In-class teaching appears to be the standard for teach-

ing coding skills in universities and corporate training pro-

grams. In such courses, lecturers or trainers usually present

conceptual foundations of programming and the syntax

of the specific programming language to be learned [4].

This is, however, insufficient. To succeed in coding, solv-

ing actual problems is required [5]. Thus, in addition to

in-class teaching sessions, learners should practice exercise

tasks to train to code [3, 4]. In the beginning, practicing

coding by solving given exercises is, however, preciselywhat

is often described as most challenging [4]. In the begin-

ning stage, most learners need intense learning support

and constructive feedback to solve exercise tasks appropri-

ately. This is because determining whether an implemented

algorithm solves a given problem appropriately is not triv-

ial. To support practice, universities often offer tutorial

sessions in which experienced teaching assistants support

students. Due to resource constraints and increasing stu-

dent numbers [6], one-on-one tutoring is usually impossible.

Thus, practicing remains the most challenging part, which

requires that learners persevere. Alternative teachingmeth-

ods, including online-based courses such as massive open

online courses (MOOCs), have similar challenges. Online

training allows learners to learn the fundamentals of cod-

ing. Individual learning supportwhile solving exercise tasks

is, however, usually not available. Thus, the most challeng-

ing part of learning how to code is still unsolved.

1.2 Research objective and contribution

In this article, we address the challenge of learning how

to code by introducing a digital, chatbot-based tutor that

offers automated, one-on-one tutoring to novice program-

mers in a field setting. The digital tutor’s task is to provide

automated support individually to learners while practic-

ing coding exercises. To this end, we are building on the

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/icom-2022-0044
mailto:shobert@uni-goettingen.de
https://orcid.org/0000-0003-3621-0272

144 — S. Hobert: Fostering skills with chatbot-based digital tutors

emerging human-computer interaction research stream of

conversational agents (CAs; also known as chatbots or smart

personal assistants; see recent literature reviews [e.g., 7–9])

that have already successfully been transferred to learn-

ing settings (in this case also known as pedagogical con-

versational agents (PCAs); [10]). We ground this decision

on the well-established theoretical foundation of the ICAP

framework by [11]. The framework predicts that interac-

tive learning engagement is superior for achieving learning

success than other forms of engagement [11]. According to

[11], interactive learning engagement can be reached while

dialoguing or debating with others. Prior chatbot research

has already shown that the technology is capable of con-

ducting human-like conversations with users, e.g., by using

so-called “social cues” [12], debating with them, or teaching

them learning content to foster learning success [13]. Due to

these prior research results, we developed a chatbot-based

digital tutor following the design science research approach

[14, 15] to transfer and adapt the technology of CA to the

yet unsolved challenge of supporting learners learning how

to code. In a previous work [16], we showed the results of

our design and evaluation process in which we developed a

conceptual artifact aswell as a prototypical implementation

of our digital tutor. As part of two design science research

development cycles, we were already able to show that

students perceive the digital tutor as useful, easy to use and

assume that it might be helpful in terms of practicality. They

reported a high intention to use. A limitation of this first

design study was that the evaluations took place only under

laboratory conditions. Therefore, students could interact

with the tutor only briefly.

To address this limitation, which is typical for many

design studies in the technology-enhanced research

stream, our goal was to actually bring the digital tutor into

teaching practice. In this article, we report the findings

of finalizing the development of our digital tutor and

introducing it in a field setting. This article contributes

to the design knowledge base of chatbots in educational

settings showing how students interact with and how

they perceive the new learning experience with digital

tutors in a long-term learning scenario of a full lecture

period. Overall, we contribute by demonstrating that

conversational educational systems are able to narrow

the gap between e-learning and the gold standard of

teaching—one-on-one human tutoring—by utilizing the

concept of digital tutors. In addition, we contribute to

general CA research by showing that CAs are not only able

to converse in closely defined topic areas based on mostly

predefined inputs (often utilized by FAQ bots based on

static information [17] or quiz bots [e.g., 18]) but are also

able to handle complex discourses with tailored responses

based on dynamic, on-the-fly analyses of arbitrary

inputs.

The remainder of this paper is structured as follows:

First, we briefly present the theoretical background and

develop two research propositions for our field study. Then,

we outline the overall design science research methodol-

ogy of the whole project and highlight the methodic steps

of the third design and evaluation cycle targeted in this

article. Subsequently, we present the final version of the

digital tutor that is used productively in the field. Based

on this, we describe the field setting and the evaluation

results. Finally, we discuss the findings and summarize the

results.

1.3 Relation to prior research activities

This paper is part of a series of projects that we have

conducted since 2018 on using chatbot-based systems to

support teaching and learning processes. As part of our

prior research, we first conducted multiple literature-based

studies on the current state of the art of using chatbots

in educational settings [e.g., 10]. Afterward, we conducted

several design-oriented studies in different teaching and

learning settings. For instance, in [13], we conducted an

experimental study in which we compared different design

options of chatbots in a video-based learning setting. Two

conference contributions have been published within the

particular scope of the project presented in this article.

First, we presented the first two intermediate design iter-

ations of the digital tutor in [16]. Second, we discussed

some data-driven results as part of a pre-study of using

the digital tutor in the field at the CONVERSATIONS work-

shop on chatbot research in 2021 [19]. Within this article,

we build on our prior contributions and extend the results

substantially by presenting the final design cycle of the

software implementation together with results from an in-

depth field evaluation, which we conducted over the course

of two full lecture periods. In doing so, we finalize thewhole

design science research project that lasted for approx. four

years.

2 Theoretical background of the

study

2.1 Digital skill adoption using
conversational agent technology

Conversational agent (CA) technology is the basis for design-

ing our human-like digital tutor in this research study. CAs

S. Hobert: Fostering skills with chatbot-based digital tutors — 145

can be defined as information systems that interact with

users using natural language and try to mimic a human-like

conversation [20–23]. CAs are an emerging technology that

dates back to the 1960s when [22] developed the first chat-

bot but has received increasing research interest in recent

years. This is also reflected in multiple literature reviews

focusing on different aspects of CAs, such as design and

interaction aspects [7] or organizational settings [8, 24].With

a particular focus on educational settings [9, 10, 25], among

others, present literature reviews in which they analyze

how chatbots can be used in teaching and learning set-

tings. It can be concluded that prior research proposes that

CA technology is well suited for fostering learning support

because it can be used to enable interactive communication

between learners and a CA. It could also be shown that CAs

can improve learning processes and learning outcomes in

different settings.

Although we are not able to provide a complete lit-

erature review of all research on the use of educational

chatbots within the scope of this paper, we would like to

highlight a few relevant contributions that fit the topic as

examples in addition to our own research activities (see

Subsection 1.3). For a more complete overview of previous

research on educational chatbots, please refer to the exist-

ing literature reviews on the topic [e.g., 9, 10, 25].

Educational chatbots have been researched in sev-

eral teaching and learning settings. In this article, we

focus specifically on teaching and training programming

skills. With such a particular focus on supporting learning

how to code a few papers have already been published:

For instance [13], integrated chatbots in video-based pro-

gramming training. The results reveal, for instance, that

scaffolding-based conversations are superior compared to

static conversation flows in terms of learning success. In

another study, a chatbot supporting the teaching of python

was developed by [26]. Their chatbot aims to support stu-

dents while learning basic concepts (syntax and semantics)

of python. The results suggest that the developed chatbot

supports students in understanding python programs. In

a recently published paper [27], present the results of an

exploratory study with a small sample of students in which

they integrated a chatbot supporting students in a python

programming course. The study reports a comparably low

usage, with less than 50 % of students interacting with the

chatbot on average per week. The low usage rate might, for

instance, be explained by the occurrence of errors in the

chatbot at the beginning of the field setting. Nevertheless,

the chatbot helped at least some students to learn, according

to a questionnaire-based survey.

With a similar aim like the outlined prior research

studies, we focus in this article on supporting novice

programmers in introductory programming courses. We

aim to extend the existing research results by (1) outlining

how to design a chatbot-based digital tutor that is actu-

ally able to support students while working on program-

ming exercises, and (2) by analyzing the results of a field

study in which students actually interacted with the digital

tutor.

From a theoretical perspective, we ground our project

on the ICAP framework [11] and the scaffolding concept [e.g.,

28, 29]. The ICAP framework proposes that increasing learn-

ing engagement can foster learning success [11]. According

to [11], the highest form of learning engagement can be

achieved in interactive learning scenarios such as conversa-

tions or discussions. This is precisely where CA technology

shows its strengths as it aims to converse with users. We

combine this goal of creating an engaging learning setting

with the scaffolding concept [28, 29] that has previously

been used in educational chatbots [13, 25]. The scaffolding

concept guides our design process to provide individualized

learning support based on adaptive learning paths.

2.2 Deriving research propositions from
prior research

Based on prior research results summarized in the liter-

ature reviews mentioned above [e.g., 9, 10, 25], we the-

oretically derive research propositions. CA-based human-

computer interfaces enable interactions between users and

software programs in a human-like conversational way. As

chatbots can be designed to foster perceived anthropomor-

phism [12, 30], users might perceive them as equal, human-

like interlocutors. When using chatbots in educational set-

tings, they can be perceived as having different roles, such

as mentors or tutors [13, 25]. In our study, we focus on CAs

that act as digital tutors, i.e., the CA takes over guidance and

learning support tasks in the learning process. In this set-

ting, the CA has at least some expert knowledge but does not

teach new learning content or grade the learners. Thus, the

digital tutor can support learners, e.g., while solving exer-

cise tasks. Unlike human tutors in tutorial sessions, digital

tutors can support all learners simultaneously and individ-

ually due to automatization. Thus, individualized tutoring

can be enabled, which pledges effective learning support.

In such a one-on-one tutoring situation, tutors can focus

specifically on the learner’s needs and provide individual-

ized guidance. In individualized conversations, the digital

tutor and the learner can debate the learner’s solution, and

an interactive learning environment canbe created. Accord-

ing to the ICAP theory [11], positive effects on the learning

outcome are to be expected. Thus, we propose the following

proposition:

146 — S. Hobert: Fostering skills with chatbot-based digital tutors

P1: Using digital tutors to support novice programmers

in solving exercise tasks will be effective in

(a) providing guidance in moments of need, and

(b) supporting learning success.

In addition, prior research revealed that well-designed

chatbots can positively affect the perceived user experience

[21]. Due to the natural language communication of chatbots

in a human-like way, it is generally expected that chatbots

can lower usage barriers and simplify interaction. Users do

not need to make themselves familiar with specific usage

patterns of the user interface because they can just ask

the chatbot openly for assistance. Thus, an improved user

experience can be expected if the chatbot can respond auto-

matically and individually according to the users’ needs.

This seems particularly true for learning settings because

learners are used to asking instructors or tutors questions

about specific aspects or topics (again) in detail. Even though

all learning content is usually also available in other forms

(such as books), discourse with instructors and tutors seems

favorable, as an intense learner-to-instructor relationship

can be established. The learners’ specific questions and

needs can be addressed in interaction with either human

instructors or automated chatbots. Due to this consideration

of the users’ individual learning needs, an increase in per-

ceived learning satisfaction can be expected:

P2: Using digital tutors to support novice program-

mers in solving exercise tasks will result in high learning

satisfaction.

3 Research design

This research project follows the three-cycle design science

research framework [14, 15], consisting ofmultiple rigor, rel-

evance, and design cycles. During the whole search process

of finding an effective artifact for the given problem [15],

we conducted three design, implementation, and evaluation

iterations (see Figure 1).

In the rigor cycles, we grounded our research theo-

retically in the ICAP framework [11] as the kernel theory

and scientific literature on conversational agents and digital

learning technology. Additionally, we incorporate aspects of

the scaffolding concept [28, 29] in the second iteration to

revise the artifact based on the first evaluation study.

As part of the relevance cycles, we conducted a quali-

tative workshop with experienced lecturers, e-learning pro-

fessionals, and instructional designers and considered the

task characteristics of teaching assistants.

During the design process, we built three artifacts: (1) a

conceptual artifact visualizing the main characteristics and

design features of the digital tutor, (2) a functional prototyp-

ical software artifact that implements essential features for

conducting evaluation studies, and (3) a fully operational

digital tutor software artifact that allows productive use

in the field. To evaluate the different artifacts during the

search process for a design solution, we conducted evalu-

ation studies at the end of each artifact development phase:

(1) After constructing the conceptual artifact in the first

iteration, we demonstrated it to novice programmers in an

introductory programming course and requested their feed-

back. Additionally, we asked experienced teaching assis-

tants of multiple programming classes for suggestions for

improvement. (2) After implementing the first functional

prototypical software artifact in the second iteration, we

introduced it to the students of an introductory program-

ming course in a laboratory-like setting and asked them

to interact with it while solving a prespecified program-

ming task. (3) After implementing the fully operational digi-

tal tutor software artifact in the third iteration, we imple-

mented it in an introductory programming course. These

multiple evaluation studies guided our iterative search pro-

cess for an effective artifact [15]. During the whole process,

we followed a problem-oriented design approach [31] and

took the seven guidelines for design science research [15]

into account. The results of the first two iterations were

communicated at the ICIS conference in late 2019 [16]. Addi-

tionally, a data-driven pre-study among a small sample from

thefieldwas discussed at the CONVERSATIONSworkshop on

chatbot research in 2021 [19].

In this paper, we report the final outcome and the com-

pletion of the whole project. In particular, we present the

final version of the digital tutor software and report on the

results of its use in a real learning setting in which N = 155

students actually interacted with the digital tutor.

4 The chatbot-based digital tutor

In the following, we present the final version of the chatbot-

based digital tutor after the third design iteration. The pre-

sented revised concept and the final software version rep-

resent the end of the development process.

4.1 Summary of the revised concept

As outlined in the introduction section, the overall aimof the

digital tutor to be developed is to offer novice programmers

fully automated individualized learning supportwhile prac-

ticing coding exercises. To achieve this automated learning

support, we originally developed five design principles in

the first two implementation cycles [16]. After incorporating

S. Hobert: Fostering skills with chatbot-based digital tutors — 147

se lc y
C

hcr aese
R

ec nei cS
ngi se

D

Environment Knowledge BaseDesign Science Research

Design
Cycle

Rigor CycleRelevance Cycle

1
noitaretI

#1
#2
#3
#4
#5

2
noitaretI

#6
#7
#8
#9
#10

3
noitaretI

#11
#12
#13
#14

Focus of this paper

Figure 1: Overall research design based on [14–16].

the feedback of the laboratory studies, we also revised and

streamlined the design principles according to the “anatomy

of a design principle” by [32].

As shown in Table 1, we resulted in four design prin-

ciples that summarize how developers can design a digital

tutor software for fostering skills. The first design princi-

ple DP1 focuses on fostering human-computer interaction

engagement by utilizing natural language conversations.

This design principle is the core principle that makes the

e-learning software to be developed a digital tutor as it

aims to provide a human-like interaction that imitates the

interaction of students with a teaching assistant. By doing

this, it is to be expected that an interactive and engaging

learning environment can be created, which is expected to

be beneficial for learning outcomes according to the ICAP

framework [11].

The second design principle DP2 addresses the integra-

tion of the digital tutor into the learning environment. This

integration is a crucial aspect as it allows the digital tutor

software to behave in an intelligent way. When supporting

students while practicing coding exercises, the digital tutor

needs access to the students’ source code to adapt to it and

provide individualized learning support. Thus, appropriate

interfaces need to be integrated.

The last two design principles, DP3 and DP4, focus

on the actual individualization of the learning support. In

particular, DP3 targets the provision of scaffolding-based

learning paths and the on-demand answering of questions,

while DP4 focuses on evaluating the students’ input (i.e., the

written source code) and deriving task-oriented feedback.

Even though we needed to adapt the design principles

slightly, the corresponding system architecture remained

stable after the second design cycle [16]. Thus, we did not

need to make notable adjustments on a conceptual level in

the third iteration. As visualized in the final version of the

system architecture in Figure 2, most core components of

the system architecture (like the natural language process-

ing, dialogmanager, and knowledge source) complywith the

148 — S. Hobert: Fostering skills with chatbot-based digital tutors

Table 1: Revised design principles.

Design principle

DP For developers to foster novice learners’ engagement in practicing skills with a chatbot-based digital tutor, ensure there is a conversational,

anthropomorphic human-computer communication because this can result in human-like dialoguing [e.g., 21–23] and an interactive

learning engagement, which is expected to improve learning according to the ICAP framework [11].

DP For developers to enable a chatbot-based digital tutor to support novice learners individually in practicing skills, ensure that all learning

technologies required for practicing are integrated and interfaceable by the digital tutor because chatbot architectures require access to all

necessary information to conduct individualized conversations.

DP For developers to provide novice learners guidance in practicing skills with a chatbot-based digital tutor, ensure that: (a) individualized

adaptive learning paths can be provided, and (b) topical questions can be answered based on a sufficient knowledge base because (a) is

expected to improve learning according to the scaffolding concept [e.g., 28, 29] and (b) is a main task characteristic of tutors in tutorial

sessions, and learners expect such expert knowledge from tutors.

DP For developers to enable digital tutors to provide individualized feedback to novice learners based on their practice progress, ensure that

in-depth automatic analyses of intermediate solutions can be conducted and translated into simple to understand feedback because

task-oriented feedback can foster the successful completion of learning tasks [33–35].

common architecture of chatbots. Major differences exist

in the user interface as it does not only consist of a natu-

ral language interface but also incorporates a source code

editor, which enables students to practice coding. Addition-

ally, the evaluation component consisting of a static and a

dynamic code analyzer is added. This evaluation component

makes a crucial difference as it allows the digital tutor to

act in an intelligent way. Therefore, the digital tutor is not

only dependent on the static knowledge source (e.g., the

learning path object database) but can react dynamically to

the students’ individual learning process represented by the

written source code.

4.2 The final version of the digital tutor
software

To implement the final version of the conceptual design

in our digital tutor software, we rewrote the whole soft-

ware by interpreting the previous prototypes as throwaway

prototypes.

The user interface shown in Figure 3 was designed as

a web-based HTML5 app. To provide a clean and usable

webpage experience, we used the well-established open-

source AdminLTE theme [36] on top of the Bootstrap frame-

work [37]. To integrate a source code editor, we used the

Evaluation component

User interface

Natural language processing

Natural language understanding

Intent recognition Entity recognition

Natural Language Generation

Knowledge sources

Independent learning
object database

Small talk responses
database

Learning path
object database

Dialog manager

Natural-language
interface

Source code editor

Learning path
guidance based on
finite state machine

Sandbox

Unit-test executer

Source code
compiler

Static code analyzer

Code execution handler Generalized components

Subcomponents for coding setting

Legend:

Quick response handler for learning paths

Figure 2: System architecture of the digital tutor slightly adapted from [16].

S. Hobert: Fostering skills with chatbot-based digital tutors — 149

Figure 3: Screenshot of the fully operational digital tutor software artifact.

web-based ACE editor [38]. The resulting user interface con-

sists of three major elements: (1) the exercise task descrip-

tion on top, (2) the source code editor as the main element,

and (3) the digital tutor’s chat window implemented as a

dynamic popup that can be opened and closed on demand.

The source code editor is the central user interface com-

ponent and provides learners with typical coding environ-

ments such as syntax highlighting, autoindenting, and line

numbers. The learners can insert any programming code to

work on the exercise task. When the learner starts coding,

the digital tutor automatically appears and starts a conver-

sation (DP1). The digital tutor introduces itself and offers

guidance (e.g., explaining the task, giving information on

the theoretical background, or providing guidance through

working on the solution gradually; DP3). The learner has the

free choice to interact with the digital tutor or start coding

without assistance. In this case, the digital tutor’s popup can

be closed to focus on the coding editor. Learners are free to

open the digital tutor’s chat popup at any time to ask for help

(i.e., guidance (DP3a) or topical questions (DP3b)).

As the digital tutor can access the source code written

by the learner independently of being in an active con-

versation (DP2), the digital tutor automatically evaluates

the source code using static code analyses in its evalua-

tion component (see system architecture; DP4). If an error

repeatedly occurs during a longer timeframe (e.g., several

minutes), the digital tutor will appear automatically and

proactively offer the learner information on the error and

further guidance. Tomake the proactive assistance pleasant

– and not annoying or intrusive – the digital tutor points

out a possible syntax error only once via a chat message.

If desired, the learner can accept the offer for further help

(e.g., through dynamic tests or guidance) or pause the con-

versation by minimizing the chat window. This proactive

interaction started by the digital tutor is oriented to the

behavior of human teaching assistants in programming

tutorial sessions, where teaching assistants offer help to

students on a voluntary base.

If the learner wants guidance, the digital tutor follows

a predefined learning path, allowing adaption based on the

scaffolding principle [e.g., 28, 29]. A generalized example of a

learning path is visualized in Figure 4, which was the result

of the first two design cycles [16]. Learning paths for the

digital tutor consist of three phases that are stored in the

knowledge source component of the system architecture:

150 — S. Hobert: Fostering skills with chatbot-based digital tutors

Figure 4: Visualization of learning paths using a finite state machine based on [16].

(1) The initialization phase, in which the digital tutor wel-

comes the learner and offers detailed explanations of the

exercise task and the theoretical background. If requested,

the digital tutor may exemplify the underlying algorithm

using examples. Depending on the learner’s choice, this

information is provided in a natural language dialog, or the

learner may directly start with coding without interacting

in the dialog. (2) The second phase is the learner’s work

on the exercise. During this phase, the digital tutor may

support the learner individually by answering topical ques-

tions or giving step-by-step guidance. (3) In the final phase,

the learner may request testing of the worked-out solution.

The digital tutor will evaluate the source code based on

dynamic testing using unit tests (see system architecture;

Figure 2). This allows the digital tutor to check for errors

and dynamically provide individualized feedback and guid-

ance. In the case of errors, the learner may adjust the code

immediately or jump back to phase 2, in which detailed

guidance is available.

The learning paths are implemented using an inter-

nal finite state machine and are hidden from the user. All

information on the learning path is provided via the natural

language conversation between the learner and the digital

tutor.

To implement natural language communication (DP1),

the messages sent by the learners are redirected to the

natural language processing component, which we imple-

mented using NLP.js [39]. The results of intent and entity

recognition are handled by the dialogmanager that uses dif-

ferent knowledge bases (i.e., learning paths (DP3a), learning

objects (DP3b), and small talks (DP1)) to generate appropri-

ate answers.

The evaluation component (DP4) encompasses two dif-

ferent methods for analyzing the learner’s source code.

First, static analyses are implemented using JavaScript to

S. Hobert: Fostering skills with chatbot-based digital tutors — 151

allow instant analyses of the source code. If errors are

repeatedly detected by the static analyses, the dialog man-

ager is informed to send appropriate feedback to the learn-

ers. If learners request detailed testing, the learner’s source

code is sent to the dynamic testing subcomponent of the

evaluation component. In this dynamic testing step, a secure

sandbox is set up before the source code is compiled, exe-

cuted, and tested using unit tests. Similar to the results of the

static tests, the results of the analyses are sent to the dialog

manager.

The resulting final version of the digital tutor was

deployed on multiple virtual machines/containers to sepa-

rate the user interface and the knowledge databases from

the dynamic source code analyzer. This adds an additional

layer of security over the used sandboxing environment

and allows to dynamically adapt to load peaks which might

occur when an unusually large number of students want to

run and test their source code at the same time. Due to this

deployment setup, we could solve the only identified per-

formance issue that occurred during the second laboratory

test in cycle 2 [16].With this new deployment infrastructure,

we did not run into any performance issues during the field

study.

5 Evaluation in the field

Following the typical design-build-evaluate procedure in

design science research [40], we conducted one demonstra-

tion and evaluation study after each design phase. In the

first design iteration,we focused on getting feedback onhow

to improve the conceptual design of the digital tutor [16].

Subsequently, students interacted with a functional proto-

type in a laboratory setting on average for approximately

20 min at the end of the second design cycle [16]. Even

though the interaction time was too short in the first two

evaluations to get actual insights into how students interact

with a digital tutor in the long term, we were able to get

first positive insights into the students’ perceived user expe-

rience and retrieved qualitative suggestions for improving

the software. Nevertheless, getting deep insights into how

students interact with and perceive the learning experience

with such a digital tutor in the long term of a full lecture

period was not possible in the laboratory setting. Thus, we

outline the results of using the improved productive version

of the digital tutor in the following.

5.1 Evaluation setting

After finalizing the digital tutor software in the third

evaluation cycle (see Section 4.2), we introduced it in a

programming course targeting novice programmers in two

identical lecture periods. At the beginning of the course

in each lecture period, we asked the novice programmers

to participate in our final evaluation study on a voluntary

basis following the institutional guidelines. We provided an

access code to all students enrolled in the course and asked

for informed consent to participate in the study. Participa-

tion in the research activities was completely voluntary and

no incentives were offered. Students were free to choose

whether to participate in research activities regardless of

whether they used the digital tutor. A total of N = 155 stu-

dents agreed to participate and interacted with the digital

tutor. In the first week of each lecture period, we asked

those students whether they had any prior programming

experience. On a Likert scale ranging from−3 (no program-
ming experience) to +3 (expert knowledge), the resulting
average of −1.024 confirms that the course targets novice
programmers. During the subsequent months, the students

interacted with the digital tutor to work on programming

tasks.

During the semesters, we provided two to three weekly

exercises. The students had the opportunity to work on the

exercises, discourse with the digital tutor, and obtain auto-

matic feedback using the digital tutor’s static and dynamic

code analyses. For those students who voluntarily agreed to

participate in the study, we collected usage statistics of the

interaction with the digital tutor and asked each student to

rate the difficulty of each exercise task. At the end of each

week, a (human) tutor manually evaluated the students’

assignments and graded them on a scale from 0 to 10.

At the end of the lecture term, we asked the partici-

pating students to provide us feedback on their perceived

learning satisfaction with the digital tutor, user experience

based on the UEQ+ scale [41, 42], and the evaluation of

our specific design principles as outlined in the following.

Figure 5 summarizes the study design.

5.2 Evaluation results of interactions based
on usage data

During the field study, the students interacted with the dig-

ital tutor in approximately 94,000 chat messages, and the

digital tutor conducted approximately 29,000 dynamic tests

to provide individualized feedback on the students’ source

code (code executions and unit tests).

An analysis of the usage times in which the students

interacted with the digital tutor in the chat clearly shows

that students distributed their learning activities over the

entire week (see Figure 6). The students interacted with the

digital tutor on every day of the week and on every hour

of the day. A peak value of approx. 32 % can be determined

152 — S. Hobert: Fostering skills with chatbot-based digital tutors

N=155 students agreed
to participate with
informed consent

Project presentation
Students interacted with
the digital tutor over the
entire lecture period to
work on exercise tasks

Field study
Analysis of usage data to get

insights in to the students’
interaction

Usage data

Quantitative questionnaire
(UEQ+, DPs, perceived learning

satisfaction)

Survey
Derivation of
implications

Implications

Figure 5: Overview of field study.

Figure 6: Visualization of chat interactions over time (per weekday resp. per hour of the day).

on Tuesdays. This is not surprising as a tutorial session

was offered each week on Tuesdays in which a teaching

assistant was available for help. Nevertheless, the remain-

ing learning activity distributes among the other days with

values between approx. 7 %–16 %. A similar pattern can be

observed when analyzing the interaction times per hour of

the day. We can see a peak between 4 pm and 5 pm. This

matches the time of the tutorial session on Tuesdays. Dur-

ing the remaining hours of the day, remarkable interaction

activities can be seen between 9 am and 11 pm. Only during

the night, very few interactions took place.

This analysis of the interaction times by weekdays

and hours of the day clearly shows that the students’

learning activities are not limited to typical office hours

in which human tutors would be available (e.g., in our

case: Tuesdays from 4 pm to 6 pm). Instead, the analysis

reveals that students distribute their learning activities over

the entire week. This analysis provides first evidence that

the digital tutor was able to support students in moments

of need, i.e., when they actually train their programming

skills.

To further analyze whether the digital tutor provides

guidance in moments of need (i.e., in situations when stu-

dents perceive an exercise task as challenging), we analyzed

the difficulty of each exercise task based on the students’

responses and related it to the number of associated chat

interactions and dynamic tests. As outlined in Figure 7 (top),

a strong correlation [43] exists between both and the aver-

age perceived difficulty of the exercises (rs_chat = 0.798 resp.

rs_test = 0.700). This provides evidence that the interaction

with the digital tutor is increased when students are work-

ing on complex and difficult tasks. This further supports

our proposition that digital tutors are particularly helpful in

moments of need. Furthermore, this indicates that students

are not always interactingwith the digital tutor to the largest

possible extent (which would mean that they always ask for

guidance while solving the tasks). Instead, they work more

independently to solve the problem when the exercises are

perceived as less difficult.

One additional interesting observation is that there are

noticeable differences in the number of chat interactions

and tests performed for exercises with similar perceived

difficulty. This can be seen, for instance, in the exercises

S. Hobert: Fostering skills with chatbot-based digital tutors — 153

Figure 7: Visualization of chat interactions and executed tests in relation to the difficulty of exercises.

that were ratedwith a difficulty of approximately 4. In these

cases, the number of chat interactions ranges from less than

2800 to more than 4600 interactions. At the same time, the

interval for the tests performed ranges from less than 1000

to more than 1600. A closer look shows that out of these five

exercises with a difficulty of approximately 4, the exercise

with the highest number of chat interactions also has the

highest number of tests. This exercise task was given at

the beginning of the lecture period. For exercises with a

comparable difficulty given later in the semester, the num-

ber of interactions seems to be lower. Possible explanations

could be, for instance, that (a) the students wanted to try

out the guidance functionalities of the digital tutor more

often at the beginning of the semester or (b) that they felt

more confident in programming as the semester progressed.

Further investigations are needed here in future research.

When analyzing the students’ individual learning out-

comes (see Figure 7 at the bottom), (almost) moderate cor-

relations were found between chats and tests (rs_chat_suc =
0.391 resp. rs_test_suc = 0.294). Regarding learning success,

the manual grading of the teaching assistant shows that

students performed as desired in the exercise tasks. The

manual grading resulted in an average learning outcome

rate of 84 % (i.e., the participating students achieved, on

average, 84 % of all points in all exercises). Even though

we could not set up a control group in our field study due

to ethical considerations (see discussion of limitations in

Subsection 6.3), we can report that the resulting learning

outcome was better than expected and exceeded the results

from previous lecture terms.

Overall, the analyses of the usage data indicate that the

digital tutor is capable of (a) providing appropriate guidance

for students when they need assistance, and (b) we assume

that it supports learning success. To support this conclusion

further, we analyze the survey results below.

5.3 Evaluation results of the field study
based on survey data

To obtain further evidence of whether the digital tutor

actually supports novice programmers in solving exercise

tasks (research proposition P1), we analyze the students’

self-reflection based on the survey data on a Likert scale

ranging from −3 (not useful) to +3 (very useful).
The students reported that, overall, they were satisfied

with the user experience of the digital tutor. According to

the survey results using the UEQ+ scale [41, 42], which

extends the well-established user experience questionnaire

[44, 45] modularly by additional scales, the digital tutor arti-

fact received positive evaluation resultswith average values

larger than+1.00. As shown in Figure 8, the usefulness of the
digital tutor received the most positive feedback, whereas

the response quality of the digital tutor’s chat interaction

received lower but still positive ratings. Even the lowest

154 — S. Hobert: Fostering skills with chatbot-based digital tutors

Figure 8: Visualization of the results of the UEQ+ based evaluation based on the official Data Analysis Tool [41].

Figure 9: Visualization of the evaluation of the functionalities grounded

in the design principles.

value of +1.37 represents a positive result in terms of user
experience. From this user experience evaluation, the posi-

tive results of our previous studies can be confirmed.

We also focused on the students’ evaluation of the spe-

cific functionalities of the digital tutor in this third eval-

uation study (see Figure 9). To this end, we focus on the

four design principles outlined in Section 4. In particular,

the students value the digital tutor’s capability to engage

in dialogues (DP1, avg. + 1.298) and the integrated platform

(DP2, avg.+ 2.268) that combines all e-learning components

required for working on the coding tasks (editor, chat inter-

face, automatic testing, guidance, feedback). The specific

functionalities to support the students’ learning processes

also received promising feedback: individualized guidance

based on learning paths (DP3a, avg. + 1.854) and the dig-

ital tutor’s capability of answering individual questions

(DP3b, avg.+ 1.268) were both rated positively. Additionally,

the students evaluated the individualized feedback (avg.

+ 0.843) based on automatic tests (avg. + 1.415) as helpful.

Figure 10: Visualization of the overall evaluation.

Finally, we asked the students to also reflect on their

overall learning satisfaction (see Figure 10). The students

reported learning satisfaction with an average value of

+2.313 as high. Consequently, the students also intend to use
the platform in the future (if available in further courses;

avg.+2.301) and recommend it to their fellow students (avg.

+2.268).

6 Discussion

In our design science research study, we developed a new

chatbot-based digital tutor software for the educational con-

text. The digital tutor’s aim is to support students while

training programming skills offering automatic and indi-

vidual help using chat-based guidance, automatic feedback,

and on-demand dialoguing capabilities. With our itera-

tive design-build-evaluate procedure [40] of the three-cycle

design science information systems research framework

[14, 15], we strove to find an effective software artifact

[15] for the given problem of supporting the challenging

learning process of novice programmerswhile training how

to code using exercise tasks. We developed one concep-

tual artifact and two software artifacts during the scientific

S. Hobert: Fostering skills with chatbot-based digital tutors — 155

search process of finding a suitable solution. We demon-

strated the three artifacts in two laboratory evaluation stud-

ies [16] and onefield study tomore than 200 students in total.

In all three evaluation studies, we revealed that stu-

dents welcome the digital tutor concept and consider the

automatic and individualized learning support provided

by an intelligent digital tutor as helpful and desirable. We

recorded this positive perception already in the first evalu-

ation study. In the two design-build-evaluate iterations [40]

that followed,we refined the concept gradually based on the

evaluation results. At the end of the third iteration and as a

result of this article, we result in a productive digital tutor

software (see Section 4.2).

Our field study with 155 participating students in a pro-

gramming course targeting novice programmers revealed

that the students were satisfied with the digital tutor soft-

ware, andwe could not identify any serious issues related to

the artifact design. Additionally, our analysis of the students’

interactions with the digital tutor demonstrates first evi-

dence that the digital tutor reached its overarching goal of

supporting the learning processes of novice programmers.

According to the evaluation results from the field, we expect

that the research propositions hold. Thus, we have rea-

sonable grounds to believe that we successfully found and

designed a useful software for the given research problem.

For this reason, we believe we can complete this extensive

design project after four years with confidence. With these

results, we intend to provide prescriptive knowledge with

our design principles that describe how to implement digital

tutors for skill training [46].

Overall, with the contribution of this article in terms

of providing a productive digital tutor software and get-

ting insights into how students interact with a digital tutor

in the field, we extend our prior research activities (see

Subsection 1.3) substantially. As we didn’t encounter severe

issues of the digital tutor software during the field test and

the field evaluations indicate that the digital tutor provides

added value students, we end our design science research

project at this point. Nevertheless, besides this design sci-

ence research project which mainly focuses on generating

design knowledge, future research is needed to fully inves-

tigate how digital tutors can support students and which

effects the use of digital tutors have in learning settings (see

Subsection 6.3).

6.1 Implications for developing
programming skills

The results of the analysis of the field study have shown

that students interact with the digital tutor over the entire

week, on every day of the week, and on every hour of the

day. This clearly shows that the digital tutor is superior in

terms of availability compared to the typical working hours

of human tutors.

Interestingly is the finding that the students increase

their interaction with the digital tutor when the exercises

become more complex. This is in line with our argument

that coding is a challenging task, as described in the intro-

duction section [e.g., 2, 3], and with our data-driven pre-

study among a small sample [19]. The perceived difficulty

of a coding exercise can havemultiple reasons. According to

our teaching experience, reasons for the perceived difficulty

of learning how to code might be (1) the need to under-

stand and break down the problem to be solved, (2) the

construction of an algorithm suited for the given exercise

task, (3) the transformation of the identified algorithm into

actual source code, and (4) the evaluation of the suitability of

the written code. In those four aspects, our designed digital

tutor can support novice programmers: (1 + 2) The digital

tutor can explain the theoretical background of coding tasks

based on individual learning paths (DP3a), (3) the digital

tutor is capable of answering questions related to coding

(DP3b) and providing guidance for solving the tasks (DP3a),

and (4) the digital tutor can provide the novice program-

mers feedback based on automatic assessments using unit

tests and static code analysis (DP4). The results of our eval-

uation studies indicate the success of this multidimensional

learning support strategy. The survey results show that the

digital tutor’s capabilities (grounded in the design princi-

ples) are reported to be helpful for the participating novice

programmers.We could further show that there exists a cor-

relation between the number of interactions and learning

success. In addition to our subjective impression of better

learning outcomes compared to previous lecture terms, this

is a further indicator that the digital tutor’s capabilities

support learning success. However, to actually measure the

effect, future researchwith a control group design is needed

(see the discussion of limitations in Subsection 6.3). Nev-

ertheless, based on our insights, we expect that research

proposition P1 holds:

P1: Using digital tutors to support novice programmers

in solving exercise tasks will be effective in (a) providing

guidance in moments of need and (b) supporting learning

success.

The high number of interactions of the novice pro-

grammers with the digital tutor already suggested that the

students value the digital tutor’s learning support, which

is supported by the positive evaluation in the survey. The

students reported extraordinarily high learning satisfaction

after interacting with the digital tutor for several months in

156 — S. Hobert: Fostering skills with chatbot-based digital tutors

the field. Thus, we expect that research proposition P2 can

be confirmed in our field setting:

P2: Using digital tutors to support novice program-

mers in solving exercise tasks will result in high learning

satisfaction.

Based on the results of our study, we can conclude

that training programming skills can successfully be sup-

ported using chatbot-based educational technologies. Even

when human resources are limited (e.g., due to resource

constraints of institutions), digital tutors can help to close

the gap. Digital tutors can be designed based on the four

design principles to assist tasks typically executed by teach-

ing assistants.

6.2 Implications and possibilities for
transfer

Even though we focus on programming skills—one of the

most important 21st century skills [1, 5, 47]—we argue that

our results are also transferable to other learning settings.

Our research project showed that digital tutors could be

conceptualized and built so that complex learning settings

can be supported. To this end, we showed that digital

tutors—based on chatbot technology—can support learn-

ing processes. This is in line with prior research in which

it has been shown that scaffolding-based CAs are capable

of supporting learning success [e.g., 13]. In a substantial

improvement over the prior state of the art, we showed

that a digital tutor could combine multiple technologies to

support learning processes. In our case, we combined (1) CA

technology with a finite state machine to provide learners

scaffolding-based guidance and on-demand help, (2) static

and dynamic code analysis technology known from soft-

ware testing, and (3) a web-based programming environ-

ment. This combination of different technologies enables a

digital tutor to obtain deep insights into learning processes

and enables starting points for automatic, individualized

support.

This overarching architecture that combines CAs with

guidance and an evaluation component enables a transfer

to other skill adoption settings. For instance, the concept

could be transferred to other skill adoption settings that

encompass problem-solving. Exemplary settings that are, in

our opinion, easy to realize based on our design principles

and system architecture can be found in the disciplines of

data science (e.g., learning statistical analyses or machine

learning topics), computer science (e.g., learning modeling

as part of software engineering), ormathematics (e.g., learn-

ing to calculate). In those learning scenarios, the learning

content, the learning paths, and the evaluation component

need to be adapted as well as the user interface. However,

the overall system architecture of the digital tutor (see Sub-

section 4.1) could remain the same. These related learning

scenarios offer starting points for future research.

Amore specific transfer example of a potential learning

setting to which the digital tutor concept could be trans-

ferred to is supporting modeling exercises in software engi-

neering use cases (e.g., event-driven process chains). Here,

learners could be supported step-by-stepwhileworking on a

modeling task as part of a case study. Using automatic anal-

ysis, a digital tutor could check for possible formal errors

in the created model (e.g., correct formal use of events and

functions). In addition, the modeling solution could also be

automatically checked for the correctness of the content.

However, designing a fully automated test procedure (sim-

ilar to dynamic tests known from programming) could be

challenging if the names of events and functions are not

chosen uniformly.

Apart from the learning settings, we were able to show

that chatbot technology does not have to be limited to

more simple use cases in which a chatbot merely answers

basic questions based on a predefined knowledge base. We

showed that chatbots could integrate complex evaluation

procedures to make them more intelligent. In our case, the

evaluation components make a substantial difference com-

pared to simple question-and-answer chatbots. Here, auto-

matic evaluation can enable individualized feedback, guid-

ance, and helpful learning support. This is a suggestion for

chatbot projects in future research so that smarter chatbots

can emerge in other application domains aswell, combining

automated analytics with process support.

6.3 Limitations and future research

In this design science research project, we followed an

iterative development process based on the typical design-

build-evaluate procedure [40]. We followed the three-cycle

design science research framework [14, 15] by grounding

our research on scientific theories (such as the ICAP frame-

work [11] and the scaffolding principle [e.g., 28, 29]) and on

insights from practice (e.g., by conducting an expert work-

shop and analyzing typical learning settings). Despite this

structured and rigorous research process, the individual

studies we conducted during our whole research activities

might have limitations. For instance, the selection of the

field setting at our university and the sample of novice

programmers who agreed to participate in our field study

might have influenced the results. Therefore, conducting

further evaluation studies based on our design principles

might help to validate the results.

Additionally, a critical point inmany evaluation studies

in educational contexts is the analysis of learning success. To

S. Hobert: Fostering skills with chatbot-based digital tutors — 157

obtain initial insights into the impact of the digital tutor on

learning success, we combined the analyses of the students’

interactions with the digital tutor and a survey in which

students reported their self-perception of the learning pro-

cess. This enables us to obtain insights into the effects on

learning success. Nevertheless, we were not able to apply

an experimental study design due to ethical considerations.

If we had withheld the digital tutor from a subsample (e.g.,

control group) of the participants, we expect that those

students would have been disadvantaged. Such a control

group design can obviously not be implemented in a real

learning setting in the field if it can be assumed that the

software under investigation offers a strong positive added

value to the students’ learning process. Choosing a labo-

ratory study design (as we did in the first two evaluation

studies in [16]) would not be helpful either, as we would

not be able to cover a long-term learning scenario. Thus,

we believe that our single-group field study design is an

appropriate methodic approach to evaluate the success of

the productive version of the digital tutor. Nevertheless, in

the future, further (laboratory) studies with a control group

design would be valuable to actually measure the effect size

of digital tutors on the learning outcome. Here, an experi-

mental setting with (at least) two groups of students would

be particularly interesting. It should be ensured that both

groups receive the same learning content and participate

in identical formative assessments in a long-term learning

setting. However, only one group of students should have

access to the digital tutor. By comparing the learning out-

come, it would be possible to analyze the actual impact on

the learning process. This could provide further evidence

of the effectiveness of digital tutors for the development of

skills.

7 Conclusions

Our extensive design science research project and the field

study, in particular, show that digital tutors can support skill

adoption processes. In particular, we offer a solution that

supports the students’ programming skill adoption by com-

bining individualized guidance based on extensive learn-

ing paths and knowledge bases with automatic feedback

provision based on dynamic and static code analyses. With

the four provided design principles, we present prescrip-

tive design knowledge. Our empirical results from the field

provide evidence that digital tutors can support novice

programmers successfully when learning how to code. We

hope our results (1) inform the design of future digital

tutors to improve learning support and increase learning

satisfaction in current and future educational settings and

(2) support general CA design research with our presented

system architecture and software implementation.

Acknowledgment: We would like to thank the students

who supported this project by participating in the research

activities.

Author contribution: The author has accepted responsibil-

ity for the entire content of this submitted manuscript and

approved submission.

Research funding: The transfer of our research findings to

teaching practice has been supported by the Niedersäch-

sisches Ministerium für Wissenschaft und Kultur.

Conflict of interest statement: The author declares no con-

flicts of interest regarding this article.

References

1. European Commission. Coding - the 21st Century Skill - Shaping

Europe’s Digital Future - European Commission, 2021. https://ec

.europa.eu/digital-single-market/en/coding-21st-century-skill

(accessed Aug 6, 2021).

2. Daradoumis T., Marquès Puig J. M., Arguedas M., Calvet Liñan L.

Analyzing students’ perceptions to improve the design of an

automated assessment tool in online distributed programming.

Comput. Educ. 2019, 128, 159−170..
3. Vial G., Negoita B. Teaching programming to non-programmers:

the case of Python and jupyter notebooks. In ICIS 2018 Proceedings,

2018; pp. 1−17.
4. Passier H. The role of procedural guidance in software

engineering education. In Proceedings of the International

Conference on the Art, Science, and Engineering of Programming -

Programming ’17, 2017; pp. 1−2.
5. Nouri J., Zhang L., Mannila L., Norén E. Development of

computational thinking, digital competence and 21 st century

skills when learning programming in K-9. Educ. Inq. 2020, 11,

1−17..
6. Maedche A., Legner C., Benlian A., Berger B., Gimpel H., Hess T.,

Hinz O., Morana S., Söllner M. AI-based digital assistants. Bus. Inf.

Syst. Eng. 2019, 61, 535−544..
7. Diederich S., Brendel A., Morana S., Kolbe L. On the design of and

interaction with conversational agents: an organizing and

assessing review of human-computer interaction research.

J. Assoc. Inf. Syst. 2022, 23, 96−138..
8. Meyer von Wolff R., Hobert S., Schumann M. How may I help you?

− State of the art and open research questions for chatbots at the

digital workplace. In Proceedings of the 52th Hawaii International

Conference on System Sciences, 2019; pp. 95−104.
9. Winkler R., Söllner M. Unleashing the potential of chatbots in

education: a state-of-the-art analysis. In Academy of Management

Annual Meeting (AOM), 2018.

10. Hobert S., Meyer von Wolff R. Say hello to your new automated

tutor − a structured literature review on pedagogical

conversational agents. In Proceedings of the 14th International

Conference on Wirtschaftsinformatik, 2019; pp. 301−314.

https://ec.europa.eu/digital-single-market/en/coding-21st-century-skill
https://ec.europa.eu/digital-single-market/en/coding-21st-century-skill

158 — S. Hobert: Fostering skills with chatbot-based digital tutors

11. Chi M. T. H., Wylie R. The ICAP framework: linking cognitive

engagement to active learning outcomes. Educ. Psychol. 2014, 49,

219−243..
12. Feine J., Gnewuch U., Morana S., Maedche A. A taxonomy of social

cues for conversational agents. Int. J. Hum. Comput. Stud. 2019, 132,

138−161..
13. Winkler R., Hobert S., Salovaara A., Söllner M., Leimeister J. M.

Sara, the lecturer: improving learning in online education with a

scaffolding-based conversational agent. In Proceedings of the 2020

CHI Conference on Human Factors in Computing Systems, 2020;

pp. 1−14.
14. Hevner A. A three cycle view of design science research. Scand. J.

Inf. Syst. 2007, 19, 87−92.
15. Hevner A., March S., Park J., Ram S. Design science in information

systems research. Manag. Inf. Syst. Q. 2004, 28, 75−105..
16. Hobert S. Say hello to ‘coding tutor’! Design and evaluation of a

chatbot-based learning system supporting students to learn to

program. In ICIS 2019 Proceedings, 2019; pp. 1−17.
17. Meyer von Wolff R., Hobert S., Masuch K., Schumann M. Chatbots

at digital workplaces - a grounded-theory approach for surveying

application areas and objectives. Pac. Asia J. Assoc. Inf. Syst. 2020,

12, 64−102.
18. Ruan S., Jiang L., Xu J., Tham B. J.-K., Qiu Z., Zhu Y., Murnane E. L.,

Brunskill E., Landay J. A. QuizBot: a dialogue-based adaptive

learning system for factual knowledge. In Proceedings of the 2019

CHI Conference on Human Factors in Computing Systems, 2019;

pp. 1−13.
19. Hobert S. Individualized learning patterns require individualized

conversations − data-driven insights from the field on how

chatbots instruct students in solving exercises. In Chatbot Research

and Design; Følstad A., Araujo T., Papadopoulos S., Law E. L.-C.,

Luger E., Goodwin M., Brandtzaeg P. B., Eds. Springer

International Publishing, 2022; pp. 55−69.
20. Brandtzaeg P. B., Følstad A. Chatbots: changing user needs and

motivations. Interactions 2018, 25, 38−43..
21. Følstad A., Brandtzaeg P. B. Users’ experiences with chatbots:

findings from a questionnaire study. Qual. User. Exp. 2020, 5,

1−14..
22. Weizenbaum J. ELIZA - a computer program for the study of

natural language communication between man and machine.

Commun. ACM 1966, 9, 36−45..
23. Diederich S., Brendel A. B., Kolbe L. M. Designing

anthropomorphic enterprise conversational agents. Bus. Inf. Syst.

Eng. 2020, 62, 193−209..
24. Lewandowski T., Delling J., Grotherr C., Böhmann T.

State-of-the-Art analysis of adopting AI-based conversational

agents in organizations: a systematic literature review. In PACIS

2021 Proceedings, 2021; pp. 1−14.
25. Wollny S., Schneider J., Di Mitri D., Weidlich J., Rittberger M.,

Drachsler H. Are we there yet? - a systematic literature

review on chatbots in education. Front. Artif. Intell. 2021, 4,

654924..

26. Chinedu O., Ade-Ibijola A. Python-bot: a chatbot for teaching

Python programming. Eng. Lett. 2021, 29, 25−34.
27. Carreira G., Silva L., Mendes A. J., Oliveira H. G. Pyo, a chatbot

assistant for introductory programming students. In 2022

International Symposium on Computers in Education (SIIE), 2022;

pp. 1−6.
28. Kim M. C., Hannafin M. J. Scaffolding problem solving in

technology-enhanced learning environments (TELEs): bridging

research and theory with practice. Comput. Educ. 2011, 56,

403−417..
29. van de Pol J., Volman M., Beishuizen J. Scaffolding in

teacher−student interaction: a decade of research. Educ. Psychol.
Rev. 2010, 22, 271−296..

30. Seeger A.-M., Pfeiffer J., Heinzl A. Texting with human-like

conversational agents: designing for anthropomorphism. J. Assoc.

Inf. Syst. 2021, 22, 931−967..
31. Peffers K. E., Tuunanen T., Rothenberger M. A., Chatterjee S. A

design science research methodology for information systems

research. J. Manag. Inf. Syst. 2008, 24, 45−77..
32. Gregor S., Kruse L., Seidel S. Research perspectives: the anatomy

of a design principle. JAIS 2020, 21, 1622−1652..
33. Hattie J., Timperley H. The power of feedback. Rev. Educ. Res. 2007,

77, 81−112..
34. Piccoli G., Rodriguez J., Palese B., Bartosiak M. L. Feedback at scale:

designing for accurate and timely practical digital skills evaluation.

Eur. J. Inf. Syst. 2020, 29, 114−133..
35. Kluger A. N., DeNisi A. The effects of feedback interventions on

performance: a historical review, a meta-analysis, and a

preliminary feedback intervention theory. Psychol. Bull. 1996, 119,

254−284..
36. AdminLTE.io. ColorlibHQ/AdminLTE, 2020. https://github.com/

ColorlibHQ/AdminLTE (accessed Feb 16, 2020).

37. Otto M., Thornton J., Bootstrap contributors. Bootstrap-The Most

Popular HTML, CSS, and JS Library in the World, 2021.

https://getbootstrap.com/ (accessed Jun 25, 2021).

38. ACE. Ace - The High Performance Code Editor for the Web, 2021.

https://ace.c9.io/ (accessed June 25, 2021).

39. AXA Group Operations Spain S.A. axa-group/nlp.js, 2023. https://

github.com/axa-group/nlp.js (accessed May 22, 2023).

40. March S. T., Smith G. F. Design and natural science research on

information technology. Decis. Support Syst. 1995, 15, 251−266..
41. UEQ+ Team. UEQ+. A Modular Extension of the User Experience

Questionnaire, 2021. https://ueqplus.ueq-research.org/ (accessed

on July 20, 2021).

42. Schrepp M., Thomaschewski J. Design and validation of a

framework for the creation of user experience questionnaires.

IJIMAI 2019, 5, 88−95..
43. Cohen J. Statistical Power Analysis for the Behavioral Sciences;

Lawrence Erlbaum Associates: Hillsdale, NJ, 1988.

44. Laugwitz B., Held T., Schrepp M. Construction and evaluation of a

user experience questionnaire. In HCI and Usability for Education

and Work; Holzinger A., Ed., Springer: Berlin, Heidelberg, 2008,

pp. 63−76.
45. Team U. E. Q. User Experience Questionnaire (UEQ), 2020. https://

www.ueq-online.org/ (accessed Dec 14, 2020).

46. Gregor S., Hevner A. R. Positioning and presenting design

science research for maximum impact. MIS Quarterly 2013, 37,

337−356..
47. Popat S., Starkey L. Learning to code or coding to learn? A

systematic review. Comput. Educ. 2019, 128, 365−376..

https://github.com/ColorlibHQ/AdminLTE
https://github.com/ColorlibHQ/AdminLTE
https://getbootstrap.com/
https://ace.c9.io/
https://github.com/axa-group/nlp.js
https://github.com/axa-group/nlp.js
https://ueqplus.ueq-research.org/
https://www.ueq-online.org/
https://www.ueq-online.org/

S. Hobert: Fostering skills with chatbot-based digital tutors — 159

Bionotes

Sebastian Hobert

University of Goettingen, Platz der Goettinger Sieben 5, Goettingen,

37073, Germany

shobert@uni-goettingen.de

https://orcid.org/0000-0003-3621-0272

Sebastian Hobert is a postdoctoral researcher at the University of

Goettingen. He works in the interdisciplinary field of information

systems, computer science, and human-computer interaction. His

research mainly focuses on technology-enhanced learning, including

chatbot-based digital tutors, learning analytics, and AI-based methods to

support teaching and learning.

mailto:shobert@uni-goettingen.de
https://orcid.org/0000-0003-3621-0272

	1 Introduction
	1.1 Challenges of learning how to code
	1.2 Research objective and contribution
	1.3 Relation to prior research activities

	2 Theoretical background of the study
	2.1 Digital skill adoption using conversational agent technology
	2.2 Deriving research propositions from prior research

	3 Research design
	4 The chatbot-based digital tutor
	4.1 Summary of the revised concept
	4.2 The final version of the digital tutor software

	5 Evaluation in the field
	5.1 Evaluation setting
	5.2 Evaluation results of interactions based on usage data
	5.3 Evaluation results of the field study based on survey data

	6 Discussion
	6.1 Implications for developing programming skills
	6.2 Implications and possibilities for transfer
	6.3 Limitations and future research

	7 Conclusions
	Bionotes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

