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Abstract: The study of gaze tracking is a significant research

area in computer vision. It focuses on real-world applica-

tions and the interface between humans and computers.

Recently, new eye-tracking applications have boosted the

need for low-costmethods. The eye region is a crucial aspect

of tracking the direction of the gaze. In this paper, sev-

eral new methods have been proposed for eye-tracking by

using methods to determine the eye area as well as find

the direction of gaze. Unmodified webcams can be used for

eye-tracking without the need for specialized equipment

or software. Two methods for determining the eye region

were used: facial landmarks or the Haar cascade technique.

Moreover, the direct method, based on the convolutional

neural network model, and the engineering method, based

on distances determining the iris region, were used to deter-

mine the eye’s direction. The paper uses two engineering

techniques: drawing perpendicular lines on the iris region

to identify the gaze direction junction point and dividing the

eye region into five regions, with the blackest region rep-

resenting the gaze direction. The proposed network model

has proven effective in determining the eye’s gaze direc-

tion within limited mobility, while engineering methods

improve their effectiveness in wide mobility.

Keywords: computer vision; human computer interaction;

deep learning; eye gaze tracking; iris landmarks

1 Introduction

Eye detection and tracking are essential aspects of the inter-

action between humans and computers that have recently
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developed. The applications of virtual reality, augmented

reality, consumer behavior detection, computer control,

identification, medical treatment systems, and security pro-

grams have all benefited from research in this field (1).

Among all the characteristics of the face, the eyes are

the most noticeable and stable (2). Eye detection remains

challenging due to variations in eye appearance, occlusion,

and external noise. Factors like iris color, size, and shape

influence eye appearance. Occlusion, a white reflection in

images, is caused by camera illumination. External noise,

such as glasses and lighting, also affects eye features (3).

The eyes have the potential to be an effective nonverbal

communication tool. Eye gaze monitoring may give more

accurate information about user activities, such as the loca-

tion of a person’s gaze, the amount of time spent gazing, and

so on (4). The practice ofmonitoring eye activity is known as

eye gaze tracking (EGT). It is generally used to measure an

individual’s focus of attention. Eye gaze analysis may also

aid in the comprehension of human behavior, attention, and

other cognitive functions (5). EGT might also be used as an

interface for people with impairments. It might let people

control a computer gadget with their eyes. EGT technology

has emerged as a replacement for numerous input devices

such as the mouse and touch screen, among others (6).

Eye tracking research is a big challenge for academics

interested in the computer vision field since the technique

of eye detection requires a high-quality camera installed in

specific equipment, which might be expensive. Unmodified

cameras aremore difficult to operate than infrared cameras

since the pupil cannot be readily located all of the time. The

first issue is that unalteredwebcams only function in visible

light. The second issue is that they often feature a wide-

angle lens with few zoom options. As a result, the picture

of the eyes is of poor quality and extremely reliant on the

quality of lighting, therefore, varied lighting circumstances

and head posture might make estimating the person’s gaze

difficult (7).

Remote tracking employs a computer display or screen

to estimate gaze position, whereas eye gaze tracking uses

cameras and infrared sensors to capture eye movements.

Tobii EyeX is a commercially available EGT device; however,

it is expensive and needs specialist hardware. These gadgets

can cost up to 25,000 dollars, putting them out of reach

for most people (8). Existing gaze-tracking systems include
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significant setup complexity, costly components, rigid con-

figuration, and time-consuming data-gathering processes

(9). As a result, current research has concentrated on

building appearance-based gaze estimate methods that

anticipate eye gaze from pictures taken with standard cam-

eras. This method is more accessible as well as cost-effective

for recording eye movements (10).

In appearance-based eye tracking, characteristics such

as head posture, camera settings, and user distance to the

screen or camera are required for gaze estimation. Most

research, however, gathers data with a fixed head attitude

and in a controlled setting, neglecting distance information

between the user and the camera. As a result, the gaze

estimate findings are imprecise, limiting its usability for

precision location applications (11–15).

Scleral contact lenses, electro-oculography, and

image/video-oculography are some of the techniques used

for eye detection. The visible spectrum approach non-

invasively localizes the iris location employing infrared

illumination. These techniques, however, are less accurate

in uncontrolled lighting situations and call for additional

gear (16).

This paper presents an eye detection technique employ-

ing low-resolution face images taken with an inexpensive

camera.

This study’s primary contributions are as follows:

(a) We build a new dataset of eye images.

(b) We suggest two methods for determining the eye

region: facial landmarks and the Haar cascade tech-

nique. In real-time, webcams can use direct methods

(convolution neural networks [CNN]) and engineering

methods based on distances to identify the eye’s iris

region. The proposed deep learning-based methodol-

ogy is effective in determining the eye’s gaze direction

within a limited mobility range, while engineering

methods improve their effectiveness in a wide mobil-

ity range.

The remaining sections of the paper’s content are struc-

tured as follows. The second section highlights current stud-

ies for eye detection and eye-trackingmethods, whereas the

third section gives a full explanation of our novel dataset of

eye regions and recommended methodology for eye detec-

tion and gaze tracking. The fourth section is devoted to the

findings and discussion, whereas the fifth section is focused

on concluding remarks.

2 Related work

This section describes the most current approaches,

methodologies, and results of previous works in eye

detection and gaze tracking. Manuscripts published from

2018 to 2023 were considered for reviewing related studies.

2.1 Eye landmark detection

The quality of the basic face area and facial landmark

detection influences how accurate facial recognition algo-

rithms are. The face recognition method was used by Cheng

et al. (17) to extract face areas, extract single-eye regions,

and carry out very accurate position estimates. Retina-Face

which predicts face bounding boxes using extra-supervised

as well as self-supervised multitask learning was suggested

by Dent et al. (18). Occlusion is a problem in face detection,

the Occlusion-aware Face Detector (AOFD) was developed

by Chen et al. (19), which uses an adversarial training tech-

nique to identify faces with few visible facial landmarks.

In other approaches. Putro et al. (20) employed a face area

scaled to 128 × 128 pixels preceding a bounding-box esti-

mate of eyesight, while some, such as Ahmed (21) and Leo

et al. (22) utilized statistically facial-landmark data to crop

off individual eyes preceding a real-time eye segmentation

technique.

Regarding face-landmark-detection algorithms, Wang

et al. (23) extracted essential points from face-bounding

boxes that reflect facial landmarks. Early landmark detec-

tion algorithms relied heavily on statistical approaches to

fit a deformable face mesh.

Eye appearance-based models rely on the photometric

appearance of the eyes. Using a Semi-Circular Edge shape

and Semi-Ellipse Edge Shape characteristics, a completely

automated eye localization approach based on the geomet-

ric form of the iris and eyelid was suggested in (24). Manir

and Rabul used also these characteristics to combine the

(histogramof oriented gradients, Hit-or-miss transform, and

Local binary pattern) features allowing for the detection of

eye candidates in face pictures, which improves the process

overall and improves performance during the verification

step by extracting slope edges (25). Xia et al. (26) presented

hybrid regression and isophote curvature methods for eye

center localization, but their model struggles with specular

reflection or closed eyes. Abbasi andKhosravi (27) proposed

a particle filter-based pupil detection technique, but their

model performs worse in real-world settings. Choi et al.

(28) introduced a convolutional neural network-based eye

pupil localization technique, while Liu et al. (29) suggested

a weight binarization cascade convolution neural network

for eye localization.

Naseem et al. (30) suggested Faster RCNN, and a

rectangular-intensity-gradient technique for face, eye detec-

tion, openness identification, and eye center localization,

with suggested AlexNet assisting in detecting eye state

(opened or closed). On the other side, Ahmad and Laskar
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(2) used support vectormachines (SVMs), and convolutional

neural networks (CNNs)for iris-shape feature extraction to

propose an accurate eye center identification and localiza-

tion model. It used iris shape characteristics from the upper

face area to extract rough eye candidates by the CNN to

extract high-level features, and SVM for classification.

In-the-nature facial-landmark identification has

improved significantlywith CNN-based landmark detectors.

The approaches (31–35) are commonly assessed about 68

points employing datasets of labeled visible-light pictures.

Many iris-landmark identification techniques (36–38)

leverage cropped single-eye areas from facial-landmark

recognition findings. Choi et al. (35) presented a

segmentation-based eye position estimate by cutting

off a rectangle area employing landmarks of the eye socket

and eye corner using 68 points while Ablabatski et al. (38)

discovered five iris features in a 64 × 64 single-eye area.

A quick eye-identification method that utilizes a Siamese

network was created for NIR partial face images (39).

Moreover, Bazarevsky et al. (40) recognized the left- and

right-eye centers using the facial landmark recognition

technique with reasonable accuracy.

2.2 Eye-tracking methods

Eye movements are critical in eye tracking and also influ-

ence human-computer interaction. The widespread tech-

nology to track eyes has broadened its use. Eye-tracking

technologies, for example, are increasingly utilized to detect

abnormalities linked to a variety of psychological conditions

(41). Maurage et al. (42) described in detail how they used

a gaze-tracking device to identify alcoholism. Data on gaze-

tracking technologies in neurological disorders and their

potential therapeutic effect onbrain functionwere provided

by Bueno et al. (43). Eye tracking has also been used by

Robertson et al. (44) to suggest a method for mild speech

comprehension difficulties in dyslexic children.

Eye tracking is frequently used to improve learn-

ing. In order to show how well a C programming course

is taught, Sun et al. (45) used eye-tracking equipment to

identify learners’ difficulties, offer them recommendations,

and help them improve their self-efficacy for learning the

C language. While Molina et al. (46) presented an empiri-

cal analysis combining eye-tracking and student-subjective

evaluation.

Using real-time eye tracking, Kerr et al. (47) presented

a corrective method that uses closest neighbor calibration

locations to calculate anticipated drift at the user’s atten-

tion after analyzing calibration information that has been

gathered from the user. Pavlas et al. (48) provided helpful

guidance on how to establish low-cost tracking. They used

ITU Gaze Tracker and Eye Writer software in their sys-

tem. Lee et al. (49) developed a method for assessing 3D

gaze position using light reflections (Purkinje images) on

the surface of the cornea and lens while accounting for

the 3D optical framework of a human eye system. Borsato

et al. (50) created a stroboscopic catadioptric eye tracking

(SCET) software using roller shutter cameras and strobo-

scopic structured infrared light. Krafka et al. (51) introduced

the Gaze Capture software, which used a similar technique

to track eyeballs in restricted spaces, using an infrared LED

for labeling and the eye’s inner space for training. In (52),

the authors suggested a computationally efficient approach

for extracting iris regions from pictures, with an empha-

sis on segmentation for iris localization. To determine the

iris error-free location, the authors (53) employed rough

entropy, a soft-computing technique, and Circle Sector Anal-

ysis (CSA). The approach fared well when contrasted with

themost advanced technologies, but it is extremely costly in

real-time applications. Park et al. (54) presented a network-

based stacked-hourglass approach of learning for localiz-

ing eye area features localization, which they tested on

the Columbia Gaze, EYEDIAP, MPIIGaze, and UT Multiview

datasets. These models can help human-computer interac-

tions in real-time gaze detection applications. Deep learning

is a sophisticated technology that has rapidly evolved and

is frequently employed in various gaze estimation applica-

tions (55).

Several methods for estimating gaze based on appear-

ance have been presented. For example, the authors of

(56) presented a multimodal convolutional neural network;

however, they first utilized the SURF cascade technique (57)

and the limited local mode architecture (58) to distinguish

faces and landmarks of the face before feeding this network

data. The researchers (51, 59) utilized the Gaze Capture

dataset to train an iTracker based on a CNN network; the

network gathers eye pictures and face images with their

positions associated in a face grid-like structure. In (60) face-

based two-dimensional and three-dimensional gaze detec-

tion was proposed. The researchers used a weight mecha-

nism that takes information from multiple parts of the face

and trains the pattern utilizing a standard CNN network.

The researchers (61) employed a recurrent convolution net-

work with distant cameras to consider the person and head

posture as a specific issue for 3D gaze prediction. They used

a many-to-one recurring model to predict gaze coordinates

and fed the eyes region, face, aswell as face landmark points

into the CNN network as distinct inputs. Manir and Rabul

(15) developed the gaze estimation method, which makes

use of the Iris Center and Eye Corner to estimate gaze in low-

resolution face pictures. A circular gradient-intensity-based
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operator is used for a rough estimate, a CNN model is used

for the correct Iris Center, and an Explicit Shape Regression

approach (ESR) is used for Eye Corner localization. The

experimental findings indicate that the suggested technique

may be utilized to estimate gaze withmore accuracy in both

still pictures and movies. In (62), the authors introduced

a Gazemap for gazing calculation, which is a graphical

illustration of the eyeball, iris, and pupil at its exact cen-

ter. The study’s authors generated an intermediary graphic

representation rather than returning both eyeball angles,

which improves the gaze estimate procedure. A capsule net-

work for analyzing gaze information froman image’s ocular

region was provided by (63). The authors created a pose-

aware Gazing-Net architecture for gaze estimation utilizing

the concept of capsules, which transforms the intensity of

pixels to feature initialization characteristics that aggregate

into a greater number of features as the network grows in

depth.

Some researchers have used intrusive devices for gaze

tracking such as sophisticated electrodes, contact lenses,

and head-mounted devices (64–68). The main downside of

such methods is that they necessitate physical contact with

the users and cannot be utilized without their permission.

Furthermore, such gadgets are difficult and costly to use.

Although there is a wealth of research on gaze estima-

tion, only a few have examined gaze prediction via unal-

tered cameras. The study by Xia et al. (69), for example,

proposed a two-phase gaze prediction strategy based on

neural network algorithms and logistic regression analysis.

Their proposed technique may be employed on a range

of mobile devices without the requirement for additional

hardware or extensive prior expertise. On the other hand,

the suggested gaze tracking system in (70) used a single on-

camera allows for unrestricted head movement, and oper-

ates in real-timewith high accuracy. It was used to recognize

faces, extract the eye area, and calculate the user-screen

distance.

3 Methodology

This section describes the suggestedmodel in detail. First, the overview

of the different approaches utilized in this study is given and describes

the proposed datasets, followed by the suggested model.

3.1 Overview of the different techniques

In this paper, two different techniques are used as explained in the

following:

3.1.1 Haar cascade classifier: Several researchers (71–73) suggest

employing the Haar cascade to determine feature coordinates and

detect faces. Viola and Jones (74) proposed the Haar cascade as a

machine-learning method for detecting objects in pictures. Through a

drawn rectangle, a trained Haar cascade checks a picture to determine

if it contains the required item. The Haar method is speedier because it

performs high-speed calculations that depend on the number of pixels

within the rectangle feature instead of the value of each pixel in the

picture. The item is detected in four stages: Haar-like feature, integral

picture, AdaBoost learning, and Cascade Classifier (75, 76).

The Haar Cascade Classifier for face detection is built around

Haar-like characteristics. Haar features are employed to detectwhether

or not a feature exists in a given picture. Every characteristic produces

just one value, which is computed by summing the pixels beneath the

black rectangle.

The Haar-like component is a rectangular property that adds a

distinctive hint to a picture to help it swiftly distinguish faces (77).

Figure 1 depicts instances of common Haar-like characteristics (75).

The Haar Cascade Classifier has the disadvantage of discovering

an additional feature in the picture that is falsely comparable to the eye

characteristic (6).

3.1.2 Facial landmark extraction: There are various techniques for

the extraction of facial landmarks; the essential techniques in this study

are as follows:

Figure 1: Type of feature (a) edge, (b) line, and (c) four-triangle.

Figure 2: The map for dlib facial landmarks.
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3.1.2.1 Using the dlib facial landmark detector: Dlib library indicated

landmark detection technique is an implementation of Kazemi and

Sullivan’s Regression Tree Ensemble (ERT) (78). According to MultiPIE

(79), this approach extracts 68 face landmarks using a simple and rapid

algorithm as shown in Figure 2 (77).

These predicted locations are then revised through a continuous

procedure including a cascade of regression coefficients. Regressors

make another estimate based on the one before it at each iteration,

seeking to decrease the variance of misalignment of the predicted

points (1). To determine the shape of the eye, we chose to use the

dlib package in our work. In the initial phase, the facial contour is

calculated via the dlib.get frontal face detector () method. Next, we use

the dlib program to input facial features for estimating eye form (shape

predictor 68 face landmarks.dat) (78).

3.1.2.2 UsingMediaPipe facemesh: Themedia pipe (80) is a powerful

library for recognizing faces and facial landmarks. Pictures of the

eyes are obtained from the library. To extract 478 face landmarks as

shown in Figure 3 (81), MediaPipe Face Mesh employs a residual neural

network architecture (82).

The landmarks used in this paper to detect the face and eyes are

as follows in Table 1;

The MediaPipe face nets (83) are utilized to produce a three-

dimensional representation of the face and retrieve three-dimensional

nose values to serve as a reference for calculating head position. The

X and Y output coordinates of the face mesh solution are normalized

according to the frame length. The z vector represents the depth of the

face wire mesh, which reflects the head’s distance from the camera.

We use the media pipe command map_face_mesh = mp.

solutions.face_mesh to specify face attributes for calculating eye shape

(78).

The procedure begins by reading through each frame of the video

and passing every frame to the library to earn facial landmark recog-

nition. Images of both the left and right eyes are saved separately (1).

In terms of test reliability, we find that results extracted using

MediaPipe metrics are better than using dlib metrics; therefore, this

paper used MediaPipe metrics for eye detection.

3.1.2.3 EAR feature: The EAR function works by measuring the dis-

tance from the eyes’ landmarks. In general, the EARmeasure calculates

a ratio based on the vertical as well as horizontal distances of six ocular

landmark locations, as demonstrated in Figure 4 (79).

Beginning with p1 and concluding with p6, the coordinates in

question are identified by numbers clockwise starting at the left-eye

corner. Rosebrock (84) claims that each of the six coordinates from

p1 to p6 is two-dimensional. When the eyes are open, the EAR value

remains essentially constant, according to (85). When the eyes remain

closed, however, the gap between coordinates p3 and p5 and p2 and

p6 disappears, and the EAR ratio falls to 0 (84). In this paper, the EAR

function is used to predict whether the eye is closed or not.

Figure 3: Media pipe face mesh solution map.

To determine the EAR value, the numerator computes the dis-

tance that exists across horizontal landmarks, while the denominator

computes the distance that exists between both vertical landmarks and

multiplies it by two to equalize, as shown in Equation (1) (86).

EAR =
||||p2 − p6

||+ ||p3 − p5
||||

2||p1 − p4
|| (1)

3.2 Datasets

The dataset of the suggested system has eye images of people from

different races and geographic areas. The global eye dataset included

images of people’s eyes fromEuropean countries, whereas the local eye

dataset included images of people’s eyes from Asian countries.

Table 1: Indices of the landmark.

Parts of facial Indices of landmarks

Face border [10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288, 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136, 172, 58, 132, 93, 234,

127, 162, 21, 54, 103,67, 109]

Left eye [362, 382, 381, 380, 374, 373, 390, 249, 263, 466, 388, 387, 386, 385,384, 398]

Right eye [33, 7, 163, 144, 145, 153, 154, 155, 133, 173, 157, 158, 159, 160, 161, 246]
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Figure 4: EAR features.

Four different types of datasets were employed in this work,

including two for training models and another two for results

testing.

There are two different datasets used for training as follows:

3.2.1 First type: global eyedataset: The SBVPI (ScleraBloodVessels,

Periocular, and Iris) comprises 1800 images of 55 participants, catego-

rized by gender, eye class, and view/gaze-direction labels. The dataset

includes 450 images in each gaze direction, with amaximum resolution

of 1700–3000 px. During a single recording session, a camera (DSLR @

Canon 60D) was used to capture RGB-colored images, as shown in the

samples in Figure 5 (87–90).

3.2.2 Second type: local eye dataset: In datasets created by the

proposed method, the sole equipment needed was a camera, ideally

integrated into the top portion of the screen of the laptop, as demon-

strated in Figure 6 (6).

The assumptions are that a person is seated directly facing the

screen and the embedded camera at the highest point of the horizontal

Figure 5: Global dataset.

Figure 6: The experimental setup.

axis of their gaze with excellent lighting. This assumption allows for

picture capture in real-world settings rather than traditional laboratory

settings.

The proposed system can correctly predict the direction of eye

gaze by steps of the algorithm following:

1. The computer screen should be placed at the level of the nose of

the person sitting in front of it.

2. The head should be straight while sitting and facing toward the

webcam and it not move or with slight head movements.

3. The computer should be close to the person at a distance of

roughly 35 cm–50 cm away, the proxy distance between the user

and the screen can be calculate by Equation (2)

D =
√
(P

Ux
− P

Sx
)2 + (P

U y
− P

Sy
)2 (2)

where D is denoted by proxy distance, (P
Ux
, P

Uy
) is denoted by the

position of the user, and (P
Sx
,P

Sy
) is denoted by the position of the screen

computer.

There are used two different techniques to create a Local eye

dataset as follows:

3.2.2.1 Haar cascade technique: The study utilized a local collection

of human eye images to analyze eye movement in four directions. The

images were collected from 15 individuals, with each having a different

skin color. The Haar cascade technique was employed to determine the

eye region in the images. Themethod focused on theupwardmovement

of the eye in normal cases, as the iris does not rise significantly, and

the downward movement is similar to the closing movement. The

study involved 5000 images, captured under a different illumination

(Figure 7).

3.2.2.2 Landmarks technique utilizing the MediaPipe library: The

study utilized a local collection of human eye images captured from

a webcam to analyze eye movement in four directions captured under

indoor illumination and different skin colors. TheMediaPipe FaceMesh

techniquewas employed to determine the eye region in the images. The

whole dataset is from 15 individuals: 1000 images for each of the five

directions of eyes – 1000 images for the left, 1000 images for the right,

1000 images for the center, 1000 images for the top, and 1000 images for

the down (Figure 8).

The global dataset has been used in the first experiments of the

research. However, in the final research experiments, it was discarded

and the focus was only on local datasets, as they are more diverse and

realistic.

For the test in real-time, two approaches were used to get test

data.

– The first approach uses the webcam to capture real-time images

– The second approach uses YouTube to download a video of eye

movements. As it is necessary to extract the image of the eye, the

videos used are face-focused, and Table 2 shows examples of the

specifics of the videos.

3.3 Proposed method

The detection of the eye and gaze tracking are critical in the age of

interactive technologies. The proposed system model consists of two

parts: a built system and real-time run, the proposed system algorithm

is shown in Figure 9.

The proposed model consists of two stages built as follows:
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Figure 7: Haar – local dataset.

3.3.1 Pre-processing: There are seven steps of the pre-processing as

follows:

Step (1) uses a webcam to capture an image.

Step (2) improves image illumination and makes use of the HSV

Color Space, which consists of a trio of channels color (H), saturation

(S), and value (V). The first two are descriptions of colors, while the final

one is a description of brightness (91).

HSV is preferred for geometric coordinate systems, which is usu-

ally more natural than HSL, which allows better color hue manipula-

tion (92).

The images inputted by the webcam of the proposed system are

in the format (RGB), but it converted to the format (BGR) because the

programming language used is Python.

In order to improve the illumination of the input images to obtain

high-accuracy prediction, the color format is converted to format (HSV)

to control the saturation and color value degree, and then it returns the

color formula to (BGR) color space.

To authentically recover the colors buried in the darkness and to

simplify the brightness enhancement model, we developed a way to

enhance the lighting while maintaining all the colors.

The suggested algorithm to enhance the lighting (Split-HSV) is as

follows:

– Change from BGR to HSV color space.

– Isolate the s (saturation) and v (value) channels and then enhance

their values such that the saturation equals (1.5× S) and the value

equals (60 + V), as long as their values do not exceed 255.

– Re-merge the channels

– Return to BGR space

Step (3) image value normalization, which is the process of nor-

malizing an image’s pixel values. By dividing the data by 255, the pro-

cess is normalized. It is strongly recommended that every input pixel

in the data for the image contains an assigned value between zero and

255.

Table 2: Details of the video dataset.

Source YouTube

Type Mp4

Gender Female

Size 8.87 MBs

Resolution 1920 × 1072

Frames per second 30

Duration (s) 20

Total images 500

Included images 453

Image captured using webcam

Pre-processing of images

Face detec on

Eye detec on

Eye's gaze direc on detec on

Figure 9: Proposed system algorithm.

Step (4) Change the image to gray to decrease complexity and

noise.

Step (5) Clip off the eye region precisely using either theMediaPipe

facial landmarks model to foresee 478 facial markers or the Haar cas-

cade face bounding boxes.

Step (6) Rescale the images to 64× 64 input shape; this is necessary

to aid themodels during training and requires that the images be scaled

suitably to equal size.

Step (7) Divide the dataset into segments for training and testing.

In this study, we split the data into 90/10 training and testing sets.

3.3.2 Processing: The most frequent method for tracking the direc-

tion of the eye’s gaze is to track the eye’s iris. To find the position of the

eye’s iris, first, determine the region of the eye.

Figure 8: MediaPipe – local dataset.
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There are two methods for detecting the eye region:

(1) Utilizing landmarks, either by using a library (dlib) or a

more developed library (MediaPipe) to more correctly describe

the landmarks of the face, this paper used the MediaPipe

library.

(2) Determining the eye region using the Haar Cascade Classifier

technique.

There are two basic approaches to identifying the direction of eye

gaze using simply the webcam, as follows:

3.3.2.1 The direct method is the convolution neural networks (CNN)

method: CNN is a deep neural network that uses a grid-like arrange-

ment to analyze input. It is made up of three layers: convolutional,

pooling, and fully connected (FC). The convolutional layer filters data,

whereas the pooling layer samples featuremaps. The final layer, the FC,

generates the final output using an activation function such as sigmoid

or SoftMax (93).

The architecture of the proposed model (Di-eyeNET) is separated

into two blocks, as illustrated in Figure 10, Table 3:

 

Conv 1 (5×5) 

Max_Pooling 1 

Conv 2 (2×2) 

Max_ Pooling 2 

Dropout 1 (0.45) 

Max_Pooling 1 

Conv 1 (2×2) 

Dropout 2 (0.8) 

Dense 1 (128) 

Dropout 3 (0.8) 

Dense 2 (FC5) 

Flatten 

Block1 

Block 2 

Figure 10: Architecture of Di-eyeNET.

Table 3: Summary of the parameters for training of Di-eyeNET.

Parameters Local

Total images 5000

No. images-train 4000

No. images-test 1000

No. class 5

Total parameters 46,822

Trainable parameters 46,822

Non-trainable parameters 0

No. epoch 100

Batch-size 32

val_loss 0.0183

val_accuracy 0.9959

Early stopping After 98 epochs val-loss not improved

Optimizer Adam

Loss function Categorical cross-entropy

The initial block is made up of two convolutional layers that

use 128 large 5 × 5 filters that have a stride of 2 to collect adequate

spatial information while reducing the dimension of the output fea-

ture maps. The layer is followed by a max-pooling layer that reduces

the feature map size by 2 × 2 along each dimension using ReLU

activations.

The second block is then used,which consists of one convolutional

layer plus a max-pooling layer with two filters. The spatial dimensions

associated with the feature maps reduce by half after block 1 and after

each max-pooling function, we increase the total number of filters in

the convolutional layers.

To ensure that the feature maps have enough representational

capacity, the last two blocks’ output is routed to a flattened layer, which

is subsequently routed to a 128-D Fully Connected (FC) layer. To limit the

number of trainable parameters while retaining great performance,

the proposed design avoids a significant number of FC layers. Finally,

the FC layer is connected to a single SoftMax layer that defines the

identification of four eye directions.

To extract just the necessary characteristics while discarding the

others, a two-step technique was used: Block 1 of the first stage com-

prises two convolutional layers. Since, after the first stage, wemade the

dropout of nearly half of the variables (characteristics), dropout was

used after block 2 to reduce by about a quarter.

The model was run for more than 100 epochs with an Adam

optimization strategy, a learning rate of 0.001, a batch size of 16, and an

MAE loss function, with an input shape of 64 × 64. Each model’s input

image comprised three channels.

The models of CNN employed in the present research were built

with Keras, an open-source neural network library written in Python.

Additionally, we applied the most effective ResNet50 and VGG16 pre-

trained model architectures.

VGG16 is a convolutional neural network model for image recog-

nition. It is unique because it uses only 16 layers with weights rather

than a large number of hyper-parameters (94, 95).

We used this pseudo code to import and load the VGG16 pre-

trained model:

from keras. applications. vgg16 import VGG16

model= VGG16 ( )

where the size image must be (224 × 224).
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As part of the skip connection concept, the Resnet50 classic neural

network served as the foundation for several computer activities. Using

150 layers, this model enables us to train CNN (94).

We loaded the ResNet50 pre-trained model with this pseudo code:

keras.models.load_model(’resnet_50.h5’)

where the size image must be (64 × 64).

Several training experiences for Di-eyeNET, ResNet50, and the

VGG16 were undertaken. Analyses of the results demonstrate that the

suggested model (Di-eyeNET) beats other techniques on certain param-

eters. The accuracy of Di-eyeNET, ResNet50, and VGG16 were 0.9959,

0.7933, and 1.7965, respectively; the MAEs of Di-eyeNET, ResNet50, and

VGG16 were 0.0183, 0.5532, and 0.1416, respectively; during the testing

phase, all models have almost comparable loss values; however, VGG16

has greater loss values during the training phase.

The size of the suggested model is decreased to 75 %, and the

response time to 80 % when contrasted with the other models.

3.3.2.2 Engineering method: The engineering method is based on

calculating distances, where after finding the eye region using

Python libraries to determine the landmarks of the face and the

eye.

There are many ways to know the position of the iris of the eye,

which reflects the direction of the gaze, as the following:

Draw two perpendicular lines (horizontal and vertical) using spe-

cific equations (horizontal line, vertical line) on the iris region (blackest

region), which is detected using the Hough transform and contour

detection. After that, we identify the point of junction of the two straight

lines, which represents the location of the iris and the direction of

the gaze. The pseudo-code Python to draw two perpendicular lines are

shown in Figure 11:

Used the Euclidean Distance function to find the point of inter-

section (ratio) of two perpendicular lines in Python as shown in

Figure 12:

Divide the eye region into five regions: three horizontally, in

which the blackest region represents the direction of gaze (left, center,

# horizontal (hori), vertical (ver) 
    hori_right = landmarks[dir_indices[0]] 
    hori_left = landmarks[dir _indices [8]] 
       ver_top = landmarks[dir _indices [12]] 
    ver_bottom = landmarks[dir_indices [4]] 
       cv.line(img, hori_right, hori_left, utils.RED, 3) 
       cv.line(img, ver_top, ver_bottom, utils. RED, 3) 

Figure 11: Draw two perpendicular lines procedure.

    hori_Distance = euclaidean_Distance (hori_right, hori_left) 
    ver_Distance = euclaidean_Distance (ver_top, ver_bottom) 
    left_Ratio = left_hori_Distance/left_ver_Distance 
    right_Ratio = right_hori_Distance/ right_ver_Distance

ratio = (right _Ratio+left_Ratio)/2 

Figure 12: Point of intersection of two perpendicular lines procedure.

piece_w = int(w/3) 
 piece_h = int(h/2) 
    right_piece = threshed_eye[0:h, 0:piece_h] 
    center_piece = threshed_eye[0:h, piece_h: piece_h+piece_h] 
    left_piece = threshed_eye[0:h, piece_h +piece_h:w]  
    top_piece = threshed_eye[0:piece_w,0:w] 
    down_piece = threshed_eye[piece_w+piece_w:h,0:w] 

Figure 13: Divide the eye region procedure.

right), and two vertically, in which the blackest region represents the

direction of gaze (up, down), as shown in Figure 13:

Used the EAR feature to calculate the proportion of the distance

between both landmarks of the eyes to know the closed-eye state, which

is shown in Figure 14.

                lefte = calc_EAR(left_Eye) 
                righte = calc_EAR(right_Eye) 
                EAR_F = (lefte+righte)/2 
                EAR_F = round(EAR_F,2) 
                if EAR_F <0.16: 
                 closed-eye 
                else: 
                     opened-eye 

Figure 14: EAR procedure.

4 Results and discussion

This section contains results. The experimental strategies

are described, followed by a discussion of the particular

results.

4.1 Experimental setup

The suggested system was created using the Num Py, Open

CV, Tensor Flow, Keras, dlib, and MediaPipe libraries in

Python 3.9 for training the models.

To create this system, we utilized a laptop with an

i7 processor, 16 GB of RAM, and a GeForce GTX graph-

ics card. The development environment utilized was Ana-

conda. Training and testing were conducted as two separate

steps in the system’s adoption.

4.2 System evaluation

Evaluation is an important phase inwhich the experimental

data are utilized to forecast the results and assess the algo-

rithms. Accuracy, loss (MAE), response time, and model size
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are some of the metrics used to assess the performance of

the various models (1).

1. Accuracy: is the key statistical effectiveness parameter

used to evaluate a model. Accuracy is explained in

Equation (3).

ACC = TP+ TN

TP+ FP+ TN+ FN
× 100

Here, true positives are denoted by TP, true nega-

tives by TN, false positives by FP, and false negatives by

FN.

2. Mean Absolute Error (MAE): is a statistical indicator

of the differences (loss) between measured (y′) and

real (y). Equation (4) shows the formula for calculating

MAE.

MSE = 1

N

N∑
i=1

|||Yi − Y
′
i

|||
Here, n is the total number of classes, y′ denotes output

measured, and y denotes output actually.

3. Response time: For real-time applications, response

time is critical.

4. Models Size (Load Time): When implemented in real-

time, size models must load rapidly and easily. It is

difficult to load the model instantly when it is too huge.

Except for the proposed model, the majority of other

models are too huge to be employed in real-time.

4.3 Results and discussion

In this paper, four methods were proposed to track the

direction of eye gaze, which are: CNN of Haar, CNN of Mesh,

Mesh of Inter. Point, and Mesh of Split.

There are two methods of the first direct type: CNN of

Haar and CNN of Mesh which depend on training convolu-

tional neural networks, while Mesh of Inter. Point andMesh

of Split are two types of geometric methods, which depend

on calculating the distances between facial landmarks using

the Python library (MediaPipe).

Mesh of Inter. Point method uses three functions (a

function to determine the iris of the eye, a function to

draw the two perpendicular lines, and a function to know

and examine the intersection point of the straight lines),

whereas the Mesh of Split method uses two functions (a

function to divide the eye into five sections and a function

to determine the iris of the eye in any part after the division;

the darker region represents the direction of gaze).

The results in the following tables were acquired uti-

lizing the proposed approach to enhance the lighting since

the results of the Haar cascademethodwithout an enhance-

ment approachwere extremely few and did not exceed 50 %

in the event of a poorly lit examination room.

The difficulties of doing studies in real-time appear

apparent since the results obtained are high, but their accu-

racy may be reduced by half if standard criteria are not

followed.

It is important to note that while the results of the CNN

methods were nearly 99 % accurate in the training phase,

they were significantly lower in the real-time examination

phase due to the challenge of controlling the proper lighting

and the subject’s sitting position, as the angles of taking

pictures affect the quality of the image entering the network

and consequently affect the anticipated result. Therefore,

all of these factors were taken into consideration when the

results for the following tables were obtained, allowing for

a fair comparison of the proposed techniques.

In the CNN of Haar method, the dataset images for

training were constructed using the Haar Cascade Classifier

approach by drawing a rectangle around the eye and trun-

cating it, with the cut-out eye area defined as integrating the

brow and the area around the eye with the eye. Thus, the

large number of features trained by the Di-eyeNET method

influenced the decision-making stage of the real-time tests,

where only three classes were identified (it did not identify

the top direction in real-time); although training accuracy

was high (99 %) for all classes and test accuracy was 93 %

(see Table 4).

The experiments were repeated by increasing the num-

ber of images and persons and modifying the training

settings, but no satisfactory results were produced owing

to the existence of like features impacting the resolution,

such as the brow (which constitutes a major portion of the

image).

Table 4: The results of the accuracy experiments of the proposed methods in a limited mobility range.

Proposed methods No. of individual Accuracy % Total accuracy %

Right Center Right Center Right

CNN of Haar 15 95.12 98.594 95.257 86.891 89.44 93.0604

CNN of mesh 15 97.88 99.8 99.8 95.57 96 97.47

Mesh of inter. P. 15 93.85 95.97 92.087 90.54 91.99 92.8874

Mesh of split 15 85 96 86 88 79 89.2
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As a result, we used the mesh function to create images

for our dataset, which was distinguished by the creation

of images that took only the eye because it draws a frame

around the eye and then crops the eye only, and there are

no additional features, as it only focuses on the features

of the iris in the CNN method’s training phase. As a result,

the findings of the training and testing phases were highly

accurate (99.7 %) for all classes, as shown in Table 5.

The results of the proposed methods vary according to

the various assessment measures including accuracy, MAE,

model size, and response time. According to the results of

the experiments in Table 6, the CNN method outperforms

the engineering method. The CNN method is the direct

method because it uses a single function, whereas the engi-

neering method uses multiple functions, as well as its accu-

racy is higher because neural networks play a significant

role in determining whether the human eye looks up, for-

ward, or down by measuring the parameters of the top

eyelid and the amount of iris movement.

Moreover, the CNN of Mesh method is the most rapid

and accurate. As for the time to load the software when

running, which depends on the size of the software, note

that the time to load optimal method (CNN of Mesh) is rel-

atively longer, but the response time when working with it

in real-time is the shortest, which is important because the

faster the response, the more practical and acceptable the

software at the user.

As a result, the techniques based on CNN produce supe-

rior results in the limitedmobility range, whereas the geom-

etry methods produce the best results in the wide mobility

range.

An analysis of all experiments led to a conclusion,

the software performed better when utilizing ready-made

videos rather than trying the system in real-time since real-

time results are affected by head movement and light, and

the person’s distance from the screen, which has a direct

effect on the testing results. The individual must be no

more than 50 cm from the screen and must not turn their

head since the camera is not sufficiently accurate to capture

images clearly if they are farther away. Furthermore, to

improve the system’s real-time performance, we proposed a

strategy to improve the lighting of the webcam. The results

in the table show that the accuracy was greatly improved

while not affecting the response time, which is one of the

most important measures of the system’s success when

implemented in real-time.

Despite the use of eye trackers, appearance-based

approaches have low accuracy in gaze evaluation. Variable

lighting, changes in ocular images, and head posture fluctu-

ations all contribute to this variability, making high accu-

racy in camera-based gaze detection algorithms difficult

(70).

Table 7 shows that all researchers employed strong

constant light and maintained a consistent head position.

Table 5: The results of the accuracy experiments of the proposed methods in a wide mobility range.

Proposed methods No. of individual Accuracy % Total accuracy %

Right (0) Center (1) Left (2) Top (3) Down (4)

CNN of Haar 15 95.3 98.9 95.4 87.09 89.9 93.318

CNN of mesh 15 98.58 99.887 99.809 97.597 98 98.7746

Mesh of inter. point 15 97.599 99.9432 95.099 97.11 97.544 97.459

Mesh of split 15 96.6 99.8 98.8 90.2 91.13 95.2

Table 6: The results of the experiments of the proposed methods using the measures of the evaluation.

Proposed methods Mobility range No. of individual ACC MAE Response real-time Load time

CNN of Haar
Wide 15 93.318 0.0763 1.5 s 4 s

Limit 15 93.06 0.0799 1.5 s 4 s

CNN of mesh
Wide 15 98.774 0.0183 1 s 12 s

Limit 15 97.47 0.0312 1 s 12 s

Mesh of inter. P
Wide 15 97.459 0.0362 3 s 5 s

Limit 15 92.8874 0.0577 3 s 5 s

Mesh of split
Wide 15 95.2 0.0453 2 s 10 s

Limit 15 89.2 0.1996 2 s 10 s
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Table 7: Comparison of the recent works of researchers with the suggested study.

References Equipment Accuracy (˚ or %) Method Dataset Function

(10) (2020) Tobii eye tracker 80 % Model and appearance-based 289,222 images CNN

(11) (2020) One camera 5.65◦ Appearance-based 90 subjects CNN

(15) 2021 Webcam 94.39 % Appearance-based NITSGoP database CNN & ESR

(68) (2021) Infrared sensors &

wearable eye tracker

80 % Appearance-based 7094 eye images CNN

(70) (2022) Webcam 84 % Appearance-based 6800 images CNN

This study (2023) Webcam 98.77 % Model and appearance-based MediaPipe – local dataset CNN of mesh

Table 7 compares the recent works of researchers who use

CNNbased on specific tunable factors (equipment, accuracy,

method, dataset, and function).

It demonstrates that there is now a trend toward

employing a standard camera and away from eye-tracking

equipment since the emphasis has been on methods based

on appearance. The accuracy results in Table 7 also indicate

that the method presented for this study is the best.

5 Conclusions

This study provided affordable real-time gaze-tracking soft-

ware that may be utilized with standard laptop or desktop

computers regardless of the need for any extra devices.

The cutting-edge CNN network (Di-eyeNET) was employed

together with the MediaPipe library of Face Mesh, using

unmodified webcams typically used with PCs.

Unaltered webcams provide images of poor quality

that are especially susceptible to changes in illumination.

As a result, getting excellent results was extremely hard

in real-time. This research, on the other hand, shows that

the use of well-organized parameters with a CNN network

can yield valuable findings for real-run implementation.

The proposed model (Di-eyeNET) was used to determine

the direction of gaze in our research, and it has proven its

effectiveness, as the implementation of themethodof neural

networks when the direction of gaze is required within

a limited mobility range (i.e., a computer screen), while

engineering methods increase their effectiveness when the

direction of gaze is required within a wide mobility range.

However, the proposed method proved effective when

compared to existing methods. In addition to its high accu-

racy, it is a comfortable method for the user because it is

non-intrusive and relies on appearance.

In the future, we look forward to using the proposed

method on mobile devices and working on improving it for

use in mobile environments.
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