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Abstract: In the future, cognitive activity will be tracked

in the same way how physical activity is tracked today.

Eye-tracking technology is a promising off-body technology

that provides access to relevant data for cognitive activity

tracking. For building cognitive state models, continuous

and longitudinal collection of eye-tracking and self-reported

cognitive state label data is critical. In a field study with 11

students, we use experience sampling and our data collec-

tion system esmLoop to collect both cognitive state labels

and eye-tracking data. We report descriptive results of the

field study and develop supervised machine learning mod-

els for the detection of two eye-based cognitive states: cog-

nitive load and flow. In addition, we articulate the lessons

learned encountered during data collection and cognitive

state model development to address the challenges of build-

ing generalizable and robust user models in the future.

With this study,we contribute knowledge to bring eye-based

cognitive state detection closer to real-world applications.

Keywords: experience sampling; cognitive states; eye track-

ing; cognitive load; flow; machine learning

1 Introduction

Similar to physical activities such as steps per day that can

be easily detected bywearables nowadays, it should become

possible to detect cognitive user states like cognitive load,

flow or mind wandering in the future. Cognition in gen-

eral refers to the mental processes related to the acquisi-

tion, organization, and use of knowledge covering attention,
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memory, reasoning, decision making and problem solv-

ing.1,2 Recently, there has been a call for research aimed at

automatically detecting cognitive user states from on-body

and off-body technologies.3,4 Following the paradigm of

biosignal-adaptive systems described in Schultz and Maed-

che,5 the detection of cognitive user states based on biosig-

nal data would allow to design interactive systems that

adapt to the user’s current needs, ultimately improving the

user’s performance and well-being. For example, in learn-

ing, the ability to detect cognitive states such as cognitive

load, mind wandering, flow or situation awareness can be

used to personalize learning content for the learner.6,7 In the

workplace, this capability can help to design work environ-

ments that enhance employee performance and well-being

(e.g., through flow-adaptive notification management, load-

adaptive task assignment, adaptive video meeting systems8

or visual attention feedback9,10). By recognizing the user’s

cognitive state, interactive systems cannot only better adapt

to their users in a specific situation, but may also support

users to learn from their past cognitive states in relation to

their behavior. For example, users could adjust their work

schedules based on identified patterns in the individual

cognitive demands of specific tasks.

In particular, commercial off-the-shelf (COTS) eye track-

ers are a promising off-body technology that can provide

access to cognitive user states.6 Advances in eye-tracking

technology combined with supervised machine learning

(ML) have demonstrated that it is possible to identify cog-

nitive user states based on collected eye data.6,11 Current

studies investigating cognitive state detection using eye-

tracking technology and supervised ML have focused on

collecting data from well-defined tasks in laboratory envi-

ronments.12–14 However, the resulting cognitive state ML

models have the drawback of requiring data collected in

highly controlled environments. To move these cognitive

state models out of the laboratory and into real-world appli-

cations, the models must not only be accurate, but also

robust and generalizable across tasks, users, and environ-

ments. To achieve high generalizability and robustness, data

and labels must be collected for a variety of tasks and

from users in different environments, ideally continuously

over time. So far, only few studies have investigated the

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/icom-2023-0035
mailto:moritz.langner@kit.edu
https://orcid.org/0000-0001-7860-7118
mailto:peyman.toreini@kit.edu
mailto:alexander.maedche@kit.edu
https://orcid.org/0000-0002-2468-1715
https://orcid.org/0000-0002-2468-1715
https://orcid.org/0000-0001-6546-4816


110 — M. Langner et al.: Cognitive state detection with eye tracking in the field

development of eye-based cognitive state ML models out-

side the laboratory or used eye-tracking data recorded over

a longer period of time.6,15 Thus, this remains an important

research gap.

The Experience Sampling Method (ESM) is an estab-

lished method for building user models and collecting a

variety of data at random times and locations.16 In ESM

studies, participants are interrupted randomly, event-based,

or interval-based to complete a self-report survey, typically

in the form of questionnaires.17 Therefore, ESM is a com-

mon method for systematically capturing people’s activi-

ties, emotions, and thoughts during their daily lives based

on self-reported information.18 In addition, data from sen-

sors such as GPS, gyroscope, temperature, air pressure, or

electrocardiography are continuously collected and later

correlated with the self-reported survey data.19 ESM can

also be used in combination with eye tracking to collect

self-reported cognitive state data, also called labels in this

context, to developmore robust, accurate, and generalizable

eye-based cognitive state models. Such labels, in combina-

tion with eye-tracking data, serve as input for supervised

ML algorithms to predict the corresponding cognitive state

of the user. Since eye trackers are sensitive to changes in

the environment and eye movements are task dependent,

guidelines on how to apply eye tracking in ESM studies and

develop eye-based cognitive state models based on label

data collected in the field are crucial. However, guidelines

for applying eye tracking in ESM studies are lacking, and

existing ESM knowledge should be extended to an eye track-

ing context.

In this paper, we investigate whether it is feasible to

use an ESM approach to collect cognitive state labels and

eye-tracking data in the field as a foundation for the devel-

opment of accurate, generalizable, and robust cognitive

state models. We conduct an exploratory longitudinal ESM

study to collect eye-tracking data in the field and develop

eye-based cognitive state models on this basis. First, we

introduce our experience sampling-based system, esmLoop,

which is designed to collect eye-tracking data continuously

and cognitive state labels randomly.We then outline the var-

ious steps required in preparing and conducting our ESM

field study, which involved collecting data from 11 students

working on their thesis project over 5 days using esmLoop.

We provide detailed insights into the participants’ interac-

tion with esmLoop during the field study and their opinions

andneeds regarding this system, as articulated in post-study

interviews. We focus on two exemplary cognitive states for

supervised ML model development, namely cognitive load

and flow. First, we develop supervised ML models follow-

ing a classification- and regression-based approach for both

cognitive states, using all collected label and eye-tracking

data from different window sizes. Since the models do not

significantly outperformbaselinemodels, this highlights the

challenge of developing eye-based ML models that are gen-

eralizable across tasks and participants, even though we

collect a reasonable amount of labels for different tasks.

Subsequently, we focus solely on the labels obtained dur-

ing writing tasks to investigate the feasibility of building

task-focused cognitive load and flow models based on eye-

tracking data collected in the field. These writing task-

focused models ultimately outperform the baseline models,

demonstrating the feasibility of developing accurate and

robust cognitive state models that are generalizable across

participants using eye-tracking data collected in the field.

Finally, we present the lessons learned during ESM data

collection and cognitive statemodel development to address

our challenges in building generalizable and robust models

in the future. By sharing our experiences and providing the

aggregated data and analysis scripts according to the open

science paradigm, we fill the introduced research gap of

usingESM to collect eye tracking and cognitive state labels in

thefield anddevelop eye-based cognitive statemodels based

on it, thus contributing to the field of eye-tracking research.

We believe our experience will facilitate the integration of

eye tracking and eye-based cognitive state detection into

real-world applications. Additionally, it can aid researchers

in designing better ESM studies and developing cognitive

state models in the future.

2 Related work

2.1 Eye-based recognition of user states:
cognitive load and flow

The saying “the eyes are the window to our soul” highlights

that the eyes provide more information about us humans

than just visual attention.20 Eye tracking is a technology

that can provide access to much more user information,

in particular with regards to cognitive user states. Lever-

aging the eye-mind hypothesis by Just and Carpenter,21 fix-

ations are directly reflecting what humans are cognitively

processing. In recent years, eye-tracking technology has

advanced a lot, especially in terms of robustness, so that

it has made its way out of research laboratories into real-

world applications.22 With advances in computing power

and machine learning algorithms, new approaches to eye-

tracking data analysis have become possible. Support vector

machines, k-nearest-neighbor and random forests are the

most commonly applied machine learning algorithms in
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combination with eye-tracking data for user state and trait

recognition.23–26 In particular, fixation, saccade and pupil-

based features are used in both low-level and high-level

(AOI-based) gaze features.

A recent trend is the investigation and detection of user

traits and characteristics as well as cognitive and affective

user states using eye-tracking technology. Research focused

on the detection of user characteristics such as personal-

ity, working memory and field dependence based on eye-

tracking data.24,27,28 Studies targeting the recognition of

affective user states using eye tracking focus mainly on the

arousal and valence dimensions of emotions or on discrete

emotions of Ekman.29,30 Typical cognitive user states studied

using eye-tracking technology are cognitive load and mind

wandering.6,11,31

In our study we specifically focus on two cognitive

states: cognitive load and flow. While cognitive load is

already researched with eye-tracking technology, flow to

the best of our knowledge was not yet investigated using

eye-tracking technology. Cognitive load refers to how many

mental resources are currently occupied and is typically

captured by the NASA TLX.32 The NASA TLX covers cog-

nitive load in terms of six dimensions: mental demand,

physical demand, temporal demand, performance, effort

and frustration. Kahneman andBeatty33 established the link

between pupil size and cognitive load and several studies

further investigated this link.34,35 Many studies that pre-

dicted cognitive load usingmachine learning rely heavily on

pupil-based metrics such as pupil dilation or blinking.11,14,25

However, pupil size is not only dependent on the person’s

current cognitive load, but also influenced by other envi-

ronmental factors such as the ambient light conditions.

Therefore, cognitive load recognition in the field requires

more elaborated approaches than justmeasuring pupil size.

Recent publications specifically investigated cognitive load

recognition including further typical eye-tracking features

such as fixations, saccades or microsaccades.3,36,37 In gen-

eral, for increasing robustness and generalizability, the fea-

ture set should to be extended.

The flow state refers to a state ofmind that people expe-

rience when they act with total involvement.38 Antecedents

of flow are clear goals, unambiguous feedback and the chal-

lenge of the task meets the persons skills (skill-challenge

balance).39 Characteristics of being in flow are a strong

focus on the task and a feeling of control, the merge of

action and awareness, a loss of self-consciousness and a

transformation of time.39 Flow theory is tightly connected to

attention and information processing theory because atten-

tion plays a critical role in achieving flow as it determines

what we perceive. Furthermore, attention is a necessary

condition for subsequent mental processes and events for

flow.38 Therefore, we argue that eye tracking can be a suit-

able technology to detect flow continuously and in real-

time. So far, flow was already investigated using biosensors

that rely on EEG and ECG technology.40,41 However, despite

the theoretical evidence, detecting the flow state using eye-

tracking technology to the best of our knowledge was not

evaluated so far.

In this study we continue the line of previous research

by harnessing the power of eye-tracking data collected in

the field to recognize cognitive user states. Consequently, we

do not only focus on recognizing cognitive load but we also

examine the recognition of flow using eye-tracking data. In

addition, our research broadens the scope of cognitive state

recognition by considering a wide range of tasks collected

across several users.

2.2 Data collection methods: experience
sampling method & ecological
momentary assessment

The Experience SamplingMethod (ESM), also known as Eco-

logical Momentary Assessment (EMA), is a diary method

for systematically obtaining self-reports from people about

what they do, feel and think during activities in their daily

lives.18 While ESM primarily focuses on representativeness,

EMA focuses more on momentariness of recorded survey

data. However, there is no strict difference between the two

methods.16,42 Participants in ESM studies are typically given

a pager, pen and paper, mobile device, or PC-based applica-

tion that interrupts and displays a self-report questionnaire

capturing current experiences at random points in their

daily lives.18 The collected self-reported data can be used to

analyze affective and cognitive user states.43–45 In addition,

biosignal data collected along with the self-reported data

can be used to detect changes in affective and cognitive

user states.18,46 A common approach is to analyze the biosig-

nal data, such as ECG, EEG, or eye-tracking data, collected

just prior to questionnaire administration in the context of

the self-reported affective or cognitive state questionnaire

responses.44 Typically, the biosignal data from a given time

window (e.g., 5 s, 30 s, 1 min, or 3 min) is aggregated to a

specific metric, such as mean heart rate variability, mean

alpha power, mean fixation duration, and so on.41,47 By

correlating this data with the affective or cognitive state

labels, or by using this data along with the affective or

cognitive state labels as input to an ML classifier, insights

into the user’s cognitive or affective states can be gained. A

common approach is also to examine and comparemultiple

time windows of biosignal data for their influence on the

explainability of the self-reported data.47,48 This is typically
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done to investigate empirically what is the best window size

to capture the responses of triggers in the biosignal data that

explain best the self-reported affective or cognitive state.

ESM has the advantage that self-report data can be

collected in the natural environment, immediately during

the experience and for a range of different experiences.19

However, ESM also places a high burden on participants

as they are interrupted from their ongoing activity several

times a day.44 Previous studies also show that participants

experience fatigue during data collection, as the question-

naires in ESM studies are typically repetitive.19 If burden

and fatigue are too high, the risk of dropout increases,which

may ultimately affect data quality or the comparability of

data from different participants.49 Therefore, low effort

solutions such as collecting the self-reported data at the task,

rather than switching to a smartphone or pen and paper to

collect self-reported data, are key to reducing burdens. Fur-

thermore, the combination of an ESM study and biosignals

data collection can support researchers in accessing more

data sources. However, there is a lack of guidelines and tools

for conducting ESM studies in combination with biosignals,

despite being more susceptible to external influences dur-

ing data collection.

3 Field study

The goal of this field study is to explore the collection of

cognitive state labels and eye-tracking data in the field and

leverage the collected data to buildmodels for two cognitive

states, cognitive load and flow. As a foundation for our study

we developed an experience sampling-based system called

esmLoop. It supports collecting cognitive user state labels,

eye-tracking and interaction data in the field.

3.1 The data collection system esmLoop

To conduct the field study, we developed esmLoop a PC-

based desktop application that supports collecting data sets

necessary for the development of supervised ML cognitive

user statemodels. The user interface of esmLoop is depicted

in Figure 1. In a first step, esmLoop guides the user through

the process of setting up the eye tracker. When starting esm-

Loop, the start screen reminds the user to set up the display

for the eye tracker (1). Subsequently, it requests calibrating

the eye tracker as calibration is key to ensure high data

quality collection (2). Furthermore, the user has to select the

storage location for the recorded data to define where the

data is stored (3). Currently esmLoop integrates the Tobii eye

tracker 4C with the required research license that provides

access to the Tobii Pro SDK. For the calibration of the Tobii

4C, we rely on the standard 7 points calibration provided by

the Tobii 4C driver.

Once the user starts an experience sampling session by

clicking the start button, data is recorded until the session is

terminated by the user. The users have full control on start-

ing and ending the recording of the data (4). Furthermore,

the system can always be reached by the user through the

icon on the task bar as shown in Figure 1c.

In terms of data collection, esmLoops records raw gaze

data and pupil size during the experience sampling ses-

sions. In addition, the title of the active window including

a timestamp is recorded as well when the user swaps to

another application. esmLoop issues a questionnaire at a

randompoint in time every 20–60 min. Here, amessage box

pops up and asks whether the user is available to answer

a short experience sampling questionnaire. If yes, the user

is forwarded to the questionnaire window as demonstrated

in Figure 1b. The questionnaire window is divided into two

areas. The top area provides information about collected

Figure 1: esmLoop user interface design.
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labels and data. The user gets a transparent information

about how many labels and mega bytes of data were col-

lected on a specific day and overall. The bottom part shows

the likert-scale based questions of the experience sampling

questionnaire. In this study, we specifically asked partici-

pants adapted version the flow short scale and the NASA

TLX questionnaire32,50 on a 7 point likert scale. Further-

more, we also survey the currently interrupted task.

3.2 Study design

The study design went through the institutional review pro-

cess in terms of ethics and data security and was approved

prior to the study. This study focused on university students

working on their final thesis projects. We selected thesis

work because students continuously work on their thesis

projects for several hours a day over several weeks, most

phases of a thesis have to be completed at a computer, and

it involves a variety but limited set of tasks. In addition,

students experience higher levels of cognitive load during

thesis work because the goal of the thesis is usually to work

on a complex task or problem. In addition, thesis work typi-

cally also fulfills the requirements established byNakamura

and Csikszentmihalyi39 of meeting the skill-challenge bal-

ance, having a clear goal, and experiencing unambiguous

feedback about the progress of solving the tasks.

3.2.1 Participants

We recruited eight Bachelor and fourMaster students (total:

12 participants (4 female, 8 male)) with an average age of

25.03 years (SD = 3.15 years) who were invited through a

university experimental lab panel and were working on

their thesis project. In order to be eligible for participation,

students had to work for at least 4 h per day on their the-

sis project for the duration of the study and they had to

use their own PC or notebook for the data collection. To

provide some flexibility for the students, they could select

a minimum of 5 days during a time frame of 7 days for

the data collection. Furthermore, we allowed participants

to use their personal computers and collect data at any

location (e.g., at home, library, student room etc.) that they

would also work at under normal circumstance in order to

increase external validity. Participants received 100AC as a

compensation for study participation.

Later, we excluded one participant (female, P12) due

to technical issues with the eye-tracking software driver

during the experiment and continued with remaining 11

students. Two of the participants had previous experience

with eye-tracking technology. All participants had a normal

or corrected to normal vision except one participant who

had one eye and a second glass eye. Monitor setups varied

from single monitor to dual monitor setups with a screen

resolutions between 1920 × 1080 pixels to 3000 × 2000 pix-

els. If participants had a dual monitor setup, we required

them to install the eye tracker on the main monitor based

on their own evaluation.

3.2.2 Procedure

To execute the study, we first invited all participants to

an introduction workshop to introduce them to the study

design, cognitive load andflowmeasurement, aswell as eye-

tracking technology. In this workshop, participants installed

the required software esmLoop and the eye tracker jointly

with the experimenter on their own private computer. To

validate the correctness of the setup, they examplarily ran

through the daily procedure of an experience sampling

session within the esmLoop software including the setup

and calibration of the eye tracker. After the introduction

workshop, participants were ready for the actual field

study and could start with the first experience sampling

session.

The total duration of all experience sampling sessions

per day were required to be higher than 4 h. They were

allowed to be split into several session but each session had

to be at least 60 min in order to be able to reach flow during

that session. We decided for the 60 min minimum as many

students followa timeboxing technique like Pomodoro tech-

nique,51 meaning that after 1 h of focused work they take a

5–10 min break.

Participants were asked to calibrate the eye tracker and

check if the data recording works before they started the

session as shown in Figure 2. During the session, they were

interrupted every 20–60 min at a random point of time by

the experience sampling questionnaire. If the questionnaire

prompt popped up at an inconvenient moment, e.g., dur-

ing a video meeting, they were also allowed to postpone

the questionnaire. By postponing the questionnaire, a new

20–60 min cycle was started. At the end of an experience

sampling session, participants had to terminate the session

in the esmLoop system. Once they collect more than 4 h of

data on that day and finished the last session, participants

had to upload the recorded data to a cloud drive in order

to share the data for analysis. This procedure was repeated

during minimum 5 days of the 7 days study time frame. At

the end of the study, participants joined a final interview

which was conducted in a semi-structured format and took

30 min. In this part, we asked interview questions about the

experienceswith the esmLoop systemduring data collection

and labeling, about how they experience cognitive load and
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Figure 2: Procedure of study.

flowduring the study, and about their perceivedprivacy and

experiences with the eye tracker.

3.3 Data processing & modeling

In Figure 3we visualized the data processing steps thatwere

undertaken to develop and evaluate the cognitive statemod-

els. The eye-tracking data collected by the esmLoop software

was pre-processed to extract fixations and saccades using

the Pygaze Analyzer by Dalmaijer et al.52

First, we filtered the raw gaze data for gaze points that

were marked as valid for both eyes and on the screen.

Then, we calculated the average of both left and right eye

as the Pygaze Analyzer only takes one X- & Y -coordinate

as input for saccade and fixation calculation. For the par-

ticipant with one glass eye, we considered only valid data

Figure 3: Data processing & modelling procedure.

from the real eye and skipped the averaging step. Next, we

converted the normalized X- and Y -coordinates from the

Tobii Pro SDK to pixel coordinates based on a 1920 × 1080

screen resolution to treat recorded data on different screens

the same. Due to the frequency of the Tobii Eye Tracker 4C

we set the minimum duration threshold for a fixation to

50 ms. Aswe experienced several outliers regarding fixation

duration and saccade duration, we applied outlier detection

(IQR > 1.5) and removed the detected fixation and saccade

outliers. In addition, we decided to normalize the pupil

size per session usingmin-max normalization to account for

varying pupil size between sessions as pupil size is depend-

ing heavily on the light condition of the environment. After

calculating the fixations and saccades, we extracted the

features based on the fixations, saccades, and pupil size of

different window sizes (1, 2, 3, 4, 5, 10, 20 min) before the

questionnaire was issued. For example, for the one-minute

window size, we only considered the eye-tracking data col-

lected 1 min before the software administered the question-

naire and calculated the features using the eye-tracking data

during that time window. Exploring multiple window sizes

is a common approach in the development of eye-based

models,27,48 as eye-tracking data has a spatial and temporal

dimension. We calculated the following features: fixation

count, fixations per second, total fixation duration, mean

fixation duration, saccade count, saccades per second, total

saccade duration, saccade amplitude, saccade velocity, sac-

cade acceleration, saccade absolute angle, saccade relative

angle, saccade-fixation ration, fixation-saccade ratio, pupil

diameter. We also calculated statistical features like mean,

median, standard deviation, minimum, maximum, skew,

and kurtosis where applicable. In total, we calculated 52

features (9 fixation-based, 36 saccade-based, 5 pupil-based

and 2 ratio-based) as input for the model development. To

define the cognitive load and flow state labels of partici-

pants, we averaged their answers on the 7 point likert scale

regarding the 5 item NASA TLX questionnaire (excluded

physical effort) and the first 10 items of the Flow Short

Scale. We excluded the physical effort dimension of NASA

TLX questionnaire as thesis writing does not vary in terms

of physical effort. For the flow labels we focused on the
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first 10 items of the Flow Short Scale as these represent the

flow experience while the later three questions focus on

concerns.

The processing and modeling python scripts including

the aggregated data frames of all above mentioned eye-

tracking features and cognitive state labels can be down-

loaded here.53 The following steps can also be found in

the python scripts for the classification and regression. We

decided to follow a binary classification approach as it

was done in previous eye-tracking studies (e.g.23,27,54,55) and

also a regression-based approach as likert-scale data is suit-

able for regression models. The following paragraphs are

descriptions of the conducted modeling steps in the python

scripts.

As the first step we applied the SelectFromModel func-

tion of the sklearn package 1 to reduce the set of features

and therefore tried to avoid over-fitting of the models. To

increase generalizability and robustness to unseen data

we decided for a leave-one-out cross validation (LOOCV).

This means that we considered data of 10 participants for

training and fitting the model and then later evaluated the

model’s performance based on the data of the 11th partic-

ipant. This procedure was repeated 11 times so that each

participant’s data served once as a test data set. As the next

step, we splitted the data into a training and test data set.

Since the cognitive load and flow labels were not evenly

distributed across the binary classes of high and low cog-

nitive load and flow and no flow, we decided to also test

oversampling minority classes using the Synthetic Minority

Oversampling Technique (SMOTE) function of the imblearn

package2 for the classification models. Then, we conducted

hyper-parameter tuning using grid searchwith 10-fold cross

validation on the data set of 10 participants. After model

fitting, the performance of themodelwas evaluatedbyusing

the data set of the 11th participant. We developed the clas-

sification models using XGBoost (XGB), Random Forest (RF),

CART Decision Tree (DT) algorithms of the sklearn package

and compared them to the baseline majority class model

(Base) for various window sizes (1, 2, 3, 4, 5, 10, 20 min).

To calculate the overall performance of the classification

models, the F1-Score and Area Under Curve (AUC) scores of

all 11 folds of the LOOCV were averaged. We decided to use

these twometrics for evaluation as they reflect the accuracy,

generalizability and robustness of a model. For the regres-

sion models we used Linear Regression (LR), Decision Tree

Regressor (DTR), RandomForest Regressor (RFR) algorithms

of the sklearn package and for XGB Regressor (XGBR) the

1 https://scikit-learn.org/

2 https://pypi.org/project/imblearn/

algorithm of the XGBoost package3 and compared it to a

baseline model always predicting the mean of the cognitive

state labels of the test user. The overall performance of the

regressionmodels was evaluated by calculating the average

of all mean square error (MSE) and the mean R2 across

all 11 folds of the LOOCV. This procedure was repeated 10

further times until all participants’ data served once as a test

data set.

4 Results

4.1 Descriptive data

4.1.1 Recorded eye-tracking data

In total, more than 250 h or 15,000 min of data were col-

lected from the 11 participants in ourfield study. As shown in

the Table 1, we were able to collect approximately 186.84 h

of valid eye-tracking data. The Tobii SDK provides a Boolean

value for each eye separately, indicating whether the eye

tracker was able to correctly calculate the gaze point for

that eye. In total, 59.54 % of the time (151.23 h) the partici-

pants collected eye-tracking data that was marked as valid

for both eyes (see Table 1) and 73.56 % of the time at least

one eye was marked as valid, which is also in line with a

previous longitudinal eye-tracking field study.56 It should

be noted that invalid eye-tracking data can occur when the

participant is not present, looking at the screen, looking

at another screen, or due to technical problems. As this

is a field study, it must be emphasized that participants

may have left the computer for short breaks during data

collection.

In Tables 2 and 3, we demonstrate descriptive data for

selected eye-tracking data based features of flow/no flow

and high/low cognitive load labels. We report fixation dura-

tion (total fixation duration during the timewindowdivided

by window size), fixation count per second, saccade dura-

tion (total saccade duration during the timewindow divided

Table 1: Collected valid eye tracking data.

Both eyes valid At least one eye valid Total

Duration 151.23 h 186.84 h 254.01 h

Percentage 59.54 % 73.56 % 100 %

3 https://pypi.org/project/xgboost/

https://scikit-learn.org/
https://pypi.org/project/imblearn/
https://pypi.org/project/xgboost/
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Table 2: Descriptive eye tracking data for flow.

Window

size

Fixation

dur.

[flow]

Fixation

dur.

[no flow]

Fixation

count

[flow]

Fixation

count

[no flow]

Saccade

dur.

[flow]

Saccade

dur.

[no flow]

Saccade

count

[flow]

Saccade

count

[no flow]

Pupil size

mean

[flow]

Pupil size

mean

[no flow]

1 45 % 41 % 2.59 2.46 50 % 48 % 1.55 1.29 0.58 0.58

2 44 % 40 % 2.54 2.39 50 % 45 % 1.55 1.31 0.58 0.59

3 43 % 39 % 2.50 2.31 48 % 43 % 1.53 1.32 0.57 0.59

4 42 % 39 % 2.43 2.30 46 % 42 % 1.48 1.30 0.56 0.58

5 42 % 39 % 2.41 2.31 44 % 41 % 1.46 1.29 0.55 0.57

10 42 % 39 % 2.41 2.30 41 % 40 % 1.38 1.27 0.54 0.54

20 42 % 39 % 2.40 2.33 39 % 39 % 1.32 1.23 0.53 0.53

Table 3: Descriptive eye tracking data for cognitive load.

Window

size

Fixation

dur

[high]

Fixation

duration

[low]

Fixation

count

[high]

Fixation

count

[low]

Saccade

dur

[high]

Saccade

dur

[low]

Saccade

count

[high]

Saccade

count

[low]

Pupil size

mean

[high]

Pupil size

mean

[low]

1 46 % 40 % 2.64 2.40 52 % 46 % 1.49 1.37 0.59 0.57

2 46 % 38 % 2.67 2.22 51 % 44 % 1.58 1.27 0.59 0.57

3 45 % 38 % 2.61 2.17 49 % 42 % 1.54 1.31 0.58 0.57

4 44 % 37 % 2.56 2.13 47 % 40 % 1.52 1.26 0.57 0.56

5 44 % 37 % 2.56 2.11 45 % 39 % 1.50 1.24 0.57 0.55

10 44 % 36 % 2.57 2.09 44 % 36 % 1.41 1.23 0.55 0.53

20 44 % 37 % 2.56 2.13 42 % 35 % 1.33 1.22 0.54 0.51

by window size), saccade count per second, and mean nor-

malized pupil size to account for the influence of window

size. It can be seen that the average of almost all fixation-

and saccade-based metrics is higher for the flow/high cog-

nitive load labels than for the no flow/low cognitive load

labels. Moreover, the larger the time window, the lower the

differences in the features between the flow/high cognitive

load labels than for the no flow/low cognitive load labels.

4.1.2 Recorded label data

During this study, participants completed 293 experience

sampling questionnaires about their current cognitive load,

flow state, and current task. We observed a compliance rate

of 98.75 %, which means that 98.75 % of all questionnaires

distributed were actually answered by the participants, and

only a small fraction of 1.25 % of the questionnaires were

postponed. However, we did not incentivize the number of

answered questionnaires.

The averaged responses of the cognitive load (NASA

TLX) and flow state (Flow Short Scale) questionnaires are

shown in Figure 4a and b. From these visualizations we

can see that the participants experienced cognitive load and

flow state differently during the study.

We normalized the averaged responses using a

min–max normalization since the final interview results

confirm that all participants experienced both high and low

cognitive load as well as flow and no flow during the study.

The normalized cognitive load and flow state distribution

can be seen in Figure 5a and b. Finally, we considered

a label as high cognitive load or flow if the normalized

mean was greater than 0.5 (visualized by the red line) and

otherwise as low cognitive load or no flow.

In Table 4 you can see the distribution of cognitive

load and flow labels before and after normalization. Before

normalization, we considered a label as high cognitive load

or flow if the averaged questionnaire answers were greater

than 4. We can see that the label distribution became closer

to a 50:50 distribution due to normalization.

In addition, we examined the tasks reported in the

experience sampling questionnaires to explore the tasks

that users were engaged in during the experiment. Figure 6

visualizes the number of tasks that participants were work-

ing on when they were interrupted. Since we recruited

participants who were working on their thesis project, the

two most frequently reported tasks were writing a text (94

times) and literature research (87 times). Both tasks account

for more than half of all recorded task labels. Other tasks
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Figure 4: Mean cognitive state labels.

were other tasks (30 times), proofreading (19 times), and

creative tasks (19 times).

4.1.3 Recorded interaction data

To provide further context to the collected labels, we also

recorded the duration that an application was the active

window on the screen during the entire experience sam-

pling session. Figure 7 shows all of the applications we

tracked and the total amount of time each application was

the activewindowon the screen. The analysis shows that the

most used application was the internet browser (87.60 h).

The second and third most used applications were Word

(58.40 h) and Overleaf (38.38 h), reflecting the writing task

of thesis projects. The “Other” block (29.29 h) represents all

other applications that were not tracked to increase pri-

vacy and may not be related to thesis project work, such as

Spotify.

4.2 Interview results

At the end of the study, each participant was interviewed

for 30 min. After using the esmLoop for 5 days, 91 % of

participants (10/11) rated their experience with the software

and data collection process as positive, and they experi-

enced only minor problems during the course of using the

Figure 5: Normalized mean cognitive state labels.
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Table 4: Label distribution of high/low cognitive load and flow/no flow

before and after normalization.

High cognitive

load

Low cognitive

load

Flow No flow

Not normalized 37.9 % 62.1 % 65.6 % 34.4 %

Normalized 57.0 % 43.0 % 57.7 % 42.3 %

esmLoop. Only one participant rated the experience asmod-

erate due to connectivity issues with the eye tracker. In

addition, P04, P06, and P08 particularly emphasized that

the introductoryworkshopwas helpful and supported them

in familiarizing themselves with the study and the eye-

tracking technology.

Regarding the labeling task, 36 % of the participants

(4/11) stated that filling out the questionnaires was some-

times interrupting, while 18 % of the participants (2/11)

did not feel interrupted in their work. For example, P03

said that the esmLoop questionnaire schedule fitted to her

schedule as she was following the Pomodoro approach

with 50 min focused work and 10 min break. P01 and P05

reported that their usual break schedule was partially

affected by esmLoop as they wanted to wait until the next

questionnaire pops up to finally have a break. Furthermore,

four interviewees stated that the report of the number of

collected labels (see Figure 1b) was useful to see a progress

in the data collection process and stay motivated.

Regarding cognitive load, 36 % of the participants

(4/11) experience a high cognitive load several times during

the study. 27 % of interviewees stated that most of the time

they operated on a medium level of cognitive load. Partici-

pants defined cognitive load based on different dimensions,

like time pressure, focus, stress or a challenging tasks. How-

ever, five out of 11 interviewees regarded cognitive load as

a spectrum while one interview would define it as binary.

Moreover, P09 stated that “for a good flow you need a high

mental workload” and P06 reported that “when you have a

task that requires a high mental workload, you definitely get

into the flow state easily”. All in all these two participants

Figure 6: Overview of tasks that participants have been accomplishing when answering the questionnaire about their flow and cognitive load state.

Figure 7: Applications.
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related a high cognitive load to flow as either a requirement

or a facilitator.

Regarding experiencing flow during the task, the inter-

view results highlight that all participants experienced flow

during this studydifferently. Thenumber of times and inten-

sity of experiencing flow varied across the study’s partici-

pants. Two participants (P02, P04) stated that they experi-

enced more flow during the study than they would have

anticipated. On the other side, P05 disclosed that he was

more often not in flow than in flow. Furthermore, five par-

ticipants also associated flow with productivity. P01 stated

“I was already productive and noticed that I was productive

and then when it was a very strong flow (. . . ) then it was

so that I didn’t even think about it anymore”. The timing

of the questionnaire sometimes had an influence on their

flowaccording to four participants as theywere either inter-

rupted in themiddle of finishing a task or theywaited for the

next questionnaire to pop up.

In terms of privacy and data protection, 72 % of inter-

viewees (8/11) had no concerns during the study. At the

beginning three participants felt observed due to the eye

tracker and recorded data but this feeling vanished over

the course of the study. However, two of them reported that

this effect got less over the course of the study as they got

used to it and that it increased their focus on the thesis.

Four interviewees also reported that the eye tracker did

not disturb them. Regarding the eye-tracking technology,

in general, many participants were surprised by the accu-

racy of the eye tracker. However, 82 % of participants (9/11)

reported problems with the Tobii 4C eye tracker because

it sometimes randomly disconnected itself from the com-

puter while using it for a longer time. This created some

frustration at the participants site as P03 reported that “the

recording has been running for three quarters of an hour

and then an error message comes out of nowhere, that’s

frustrating”. Furthermore, two participants feared that the

red infrared light sources of the eye tracker would bother

them which eventually was not the case.

4.3 Cognitive state models

In chapter 3 we described the data processing & modelling

procedure in detail which we followed to develop the cog-

nitive state models for cognitive load and flow using the

collected field data.

4.3.1 Models considering all labels

First, we developed the cognitive state models using all

the label data collected during the study to investigate the

feasibility of generalizable and accurate eye-based cognitive

state models using field data. We used the SelectFromModel

function of the sklearn package to reduce the feature set to

the most important features for each algorithm separately.

After selecting the features, we trained with and without

applying SMOTE and evaluated the models using LOOCV.

4.3.1.1 Classification models for all tasks

For the classificationmodels, we evaluated the performance

of the models based on the average F1-Score and AUC of

the LOOCV and the results can be found in Table 5. If

we compare the performance of the classifiers without

SMOTE/oversampling with the baseline classifier, we can

see that for flow only, the Random Forest classifier per-

formed as well as the baseline classifier for both F1-Score

(F1− Score = 72.80) and AUC (AUC = 0.5) for a window size

of 1 min. However, a closer look at the confusion matri-

ces of each LOOCV step shows that the classifier always

predicted the negative class, i.e., no flow, in 11 out of 11

cross-validation steps. This shows that the classifier has little

discriminative power and therefore does not show general-

izability. Considering SMOTE/oversampling for the evalua-

tion of the flow classifier, a Decision Tree classifier with a

window size of 10 min performed best in terms of F1-Score

(F1− Score = 62.12, AUC = 0.542), while a Random Forest

classifier with a window size of 10 min performed best in

terms of AUC (AUC = 0.586). However, none of the classifiers

outperformed the baseline classifier for both metrics using

SMOTE/oversampling.

Similar results can be observed for the cognitive load

classifier. Without SMOTE/oversampling, the best perform-

ing classifier in terms of F1-Score is based on Decision Trees

and a window size of 3 min (F1− Score = 71.09, AUC =
0.517) and outperformed the baseline model by a small

margin, but exhibited a low discriminative power slightly

above 0.5. In terms of AUC an XGBoost based classifier and

a window size of 3 min is performing best (AUC = 0.566)

but did not outperform the baseline model in terms of

F1-Score. Using SMOTE/oversampling, the best performing

classifier in terms of F1-Score is based on Decision Trees and

a window size of 2 min (F1− Score = 65.83) and in terms

of AUC, a Random Forest based classifier with a window

size of 20 min performs best (AUC = 0.579). Overall, none of

the classifiers performed significantly better than the base-

line classifier for both metrics. Furthermore, none of the

window sizes significantly outperformed the other window

sizes.

4.3.1.2 Regression models for all tasks

For the regressionmodels, we evaluated the performance of

the models based on the average MSE and R2 of the LOOCV
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Table 5: Classifier performance for all window sizes (1, 2, 3, 4, 5, 10, 20 min) and classifiers (DT, RF, XGB, Base) including labels from all tasks. Bold

marked results of classifiers outperformed the baseline classifier of the corresponding window size in terms of both metrics.

Window size Classifier Flow Flow Cognitive load Cognitive load

[oversampled] [oversampled]

F1-Score [%] AUC F1-Score [%] AUC F1-Score [%] AUC F1-Score [%] AUC

1 DT 72.58 0.498 60.40 0.471 67.73 0.506 57.51 0.491

1 RF 72.80 0.500 51.13 0.470 68.06 0.498 56.48 0.550

1 XGB 66.17 0.495 51.51 0.478 63.92 0.556 57.22 0.530

1 Base 72.80 0.500 66.67 0.500 69.51 0.500 66.67 0.500

2 DT 67.67 0.496 62.12 0.490 69.77 0.528 65.83 0.563

2 RF 71.22 0.506 55.66 0.499 70.28 0.558 57.88 0.565

2 XGB 60.40 0.493 54.16 0.505 66.20 0.561 57.34 0.577

2 Base 71.78 0.500 66.67 0.500 70.33 0.500 66.67 0.500

3 DT 71.08 0.509 59.32 0.542 . . 61.67 0.497

3 RF 70.41 0.545 52.07 0.481 64.97 0.521 56.60 0.524

3 XGB 64.58 0.511 51.75 0.480 65.82 0.566 58.16 0.564

3 Base 71.13 0.500 66.67 0.500 70.75 0.500 66.67 0.500

4 DT 70.86 0.496 58.57 0.500 66.97 0.497 56.52 0.503

4 RF 69.82 0.523 57.40 0.555 69.15 0.534 46.64 0.467

4 XGB 65.70 0.518 56.06 0.526 61.56 0.499 54.81 0.513

4 Base 71.44 0.500 66.67 0.500 69.90 0.500 66.67 0.500

5 DT 66.27 0.495 55.36 0.462 68.10 0.493 60.57 0.483

5 RF 69.46 0.523 53.39 0.537 67.23 0.523 53.35 0.521

5 XGB 63.36 0.502 56.17 0.546 59.71 0.511 55.65 0.539

5 Base 71.53 0.500 66.67 0.500 70.11 0.500 66.67 0.500

10 DT 66.68 0.528 62.12 0.542 69.05 0.530 63.98 0.539

10 RF 69.77 0.519 61.12 0.586 65.27 0.502 53.72 0.520

10 XGB 67.79 0.588 55.02 0.554 59.01 0.505 50.59 0.478

10 Base 71.55 0.500 66.67 0.500 70.28 0.500 66.67 0.500

20 DT 71.26 0.505 51.29 0.517 69.34 0.515 65.44 0.507

20 RF 70.59 0.511 53.08 0.531 67.77 0.515 58.35 0.579

20 XGB 64.71 0.510 52.81 0.514 57.12 0.525 53.68 0.517

20 Base 71.55 0.500 66.67 0.500 70.28 0.500 66.67 0.500

and the results can be found in Table 6. Note that R2 can

become negative if the residual sum of squares is very large,

indicating a poor fit of the model.

Comparing the performance of the regressions with-

out label normalization to the baseline model, we see

that for flow, the Decision Tree Regressor with a win-

dow size of 3 min performed best in terms of MSE (MSE =
0.969), while for R2, Decision Tree Regressor with a win-

dow size of 2 min performed best (R2 = 0.047). This Deci-

sion Tree regressor also outperformed the basline model by

a small margin regarding the MSE (MSE = 1.044), making

it slightly superior to the baseline model. However, an R2

of 0.047 indicates that the model is performing relatively

poorly on unseen data, as only 4.7 % of the variance in

the dependent variable is explained by the independent

variables included in the model. Applying normalization

to the flow labels, the Random Forest Regressor for a

window size of 3 min performed best regarding the MSE

(MSE = 0.084) and also outperformed the baselinemodel by

a small margin, while a Random Forest Regressor for a

20 min window size performed best for the R2 score (R2 =
0.168). This Random Forest Regressor model also performed

as well as the baseline model in terms of the MSE (MSE =
0.088). Overall, none of the models for flow significantly

outperformed the baseline model while also having a good

predictive power.

For cognitive load, none of the regression models

outperformed the baseline model in terms of MSE and

achieved an R2 score >0. The best performing model with-

out normalization was a Random Forest Regressor for the
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Table 6: Regression-based model performance for all window sizes (1, 2, 3, 4, 5, 10, 20 min) and regression based models (LR, DTR, RFR, XGBR, Base)

including labels from all tasks. Bold marked results of models outperformed the baseline model of the corresponding window size in terms of MSE

and had a R2 > 0.

Window size Classifier Flow Flow Cognitive load Cognitive load

[normalized] [normalized]

MSE R
2 MSE R

2 MSE R
2 MSE R

2

1 LR 1.100 −0.269 0.098 −0.379 0.646 −1.555 0.079 −0.207
1 DTR 1.133 −0.482 0.096 −0.118 0.638 −1.626 0.068 −0.044
1 RFR 1.101 −0.162 0.091 −0.103 0.595 −1.515 0.068 −0.048
1 XGBR 1.349 −0.433 0.111 −0.224 0.743 −2.230 0.079 −0.201
1 Base 1.050 −0.079 0.090 −0.117 0.588 −1.421 0.071 −0.094

2 LR 1.086 −0.033 0.094 −0.139 0.605 −1.377 0.069 −0.102
2 DTR . . 0.096 0.115 0.626 −1.510 0.070 −0.126
2 RFR 1.093 −0.019 0.091 −0.001 0.600 −1.324 0.066 −0.063
2 XGBR 1.093 −0.154 0.096 0.039 0.658 −1.531 0.078 −0.238
2 Base 1.051 −0.046 0.090 −0.155 0.584 −1.322 0.068 −0.081

3 LR 1.068 −0.058 0.091 −0.079 0.601 −1.379 0.069 −0.103
3 DTR 0.969 −0.185 0.093 −0.020 0.605 −1.463 0.067 −0.075
3 RFR 1.011 −0.388 0.084 −0.002 0.639 −1.560 0.064 −0.035
3 XGBR 1.300 −1.155 0.104 −0.244 0.665 −1.690 0.081 −0.301
3 Base 1.043 −0.083 0.088 −0.124 0.580 −1.318 0.067 −0.080

4 LR 1.034 −0.125 0.091 −0.110 0.589 −1.283 0.068 −0.107
4 DTR 0.995 −0.412 0.095 −0.225 0.610 −1.487 0.065 −0.065
4 RFR 1.050 −0.496 0.085 −0.107 0.613 −1.423 0.065 −0.079
4 XGBR 1.145 −0.998 0.100 −0.651 0.646 −1.566 0.076 −0.249
4 Base 1.017 −0.086 0.087 −0.125 0.567 −1.217 0.065 −0.068

5 LR 1.039 −0.165 0.094 −0.070 0.582 −1.258 0.068 −0.119
5 DTR 1.055 −0.367 0.095 −0.037 0.624 −1.316 0.072 −0.189
5 RFR 1.033 −0.564 0.089 0.029 0.639 −1.550 0.066 −0.087
5 XGBR 0.983 −0.631 0.095 −0.343 0.651 −1.561 0.082 −0.382
5 Base 1.013 −0.084 0.087 −0.127 0.567 −1.221 0.065 −0.067

10 LR 1.077 −0.218 0.129 −0.357 0.593 −1.287 0.065 −0.084
10 DTR 1.016 −0.317 0.091 −0.013 0.575 −1.235 0.063 −0.055
10 RFR 1.037 −0.327 0.088 −0.005 0.551 −1.207 0.063 −0.077
10 XGBR 1.280 −0.748 0.106 −0.300 0.667 −1.619 0.069 −0.203
10 Base 1.000 −0.084 0.088 −0.129 0.562 −1.225 0.064 −0.067

20 LR 1.137 −0.124 0.094 −0.119 0.629 −1.376 0.065 −0.088
20 DTR 1.093 −0.341 0.088 −0.027 0.549 −1.471 0.068 −0.147
20 RFR 1.045 −0.388 0.088 0.168 0.488 −0.868 0.063 −0.068
20 XGBR 1.031 −0.219 0.089 −0.096 0.531 −1.620 0.073 −0.234
20 Base 1.000 −0.084 0.088 −0.129 0.562 −1.225 0.064 −0.067

20 min window size when considering MSE (MSE = 0.488)

and R2 (R2 = −0.868). Thismodel actually outperformed the
baseline model, but the R2 value was negative, indicating a

high residual sum of squares and low model fit. When nor-

malizing the cognitive load labels, a Decision Tree Regressor

and a Random Forest Regressor for the 10 min window size,

and a XGBoot Regressor for the 20 min window size outper-

formed the baseline model in terms of MSE (MSE = 0.063).

However, none of the regression models for normalized

cognitive state labels could achieve a positive R2 highlight-

ing that none of the models had a good model fit.

Overall, the results for both the eye-based cognitive

state classification and the regression models trained on all

label data show thatwe have not been successful in building

models that are generalizable across tasks and participants.

None of the developed classification and regression models

significantly outperformed the baselinemodels. Only one of

the developed classifiers slightly outperformed the baseline



122 — M. Langner et al.: Cognitive state detection with eye tracking in the field

classifier in terms of F1-Score and AUC, and only one regres-

sion model slightly outperformed the baseline model while

showing poor variance explainability.

4.3.2 Models considering writing task labels

As shown in the task and application analysis, the tasks

varied significantly during the field study and also between

participants. Therefore, we filtered our dataset for the most

frequently reported task “text writing” and followed the

same procedure as described above to evaluate the per-

formance of different classifiers trained with only 94 “text

writing” labels. However, not all participants reported labels

for the “text writing” task. Therefore, only P01, P02, P04,

P05, P06, P09, P10 could be considered in the following

section.

4.3.2.1 Classification models for writing tasks

In order to apply SMOTE with a minimum of k = 2

k-neighbors, at least three labels of the minority class must

be collected. Therefore, we could only include P1, P2, P4, P6

and P9 for the development of the flow classifier and P1,

P2, P4, P9, P10 for the development of the cognitive load

classifier. The results of the classification models using only

“text writing” labels can be found in Table 7. For flow, with-

out SMOTE/oversampling, XGBoost outperformed the base-

line classifier for the window sizes of 1 min (F1− Score =
67.54, AUC = 0.618) and 2 min (F1− Score = 74.38, AUC =
0.691). Using SMOTE to balance the flow labels, XGBoost

outperformed the baseline classifier for a window size of

2 min and was the best overall performer for both metrics

(F1− Score = 71.83, AUC = 0.689). In addition, a Decision

Tree classifier for the 20 min window also outperformed

Table 7: Classifier performance for all window sizes (1, 2, 3, 4, 5, 10, 20 min) and classifiers (DT, RF, XGB, Base) including labels from writing tasks only.

Bold marked results of classifiers outperformed the baseline classifier of the corresponding window size in terms of both metrics.

Window size Classifier Flow writing Flow writing Cognitive load writing Cognitive load writing

[oversampled] [oversampled]

F1-Score [%] AUC F1-Score [%] AUC F1-Score [%] AUC F1-Score [%] AUC

1 DT 60.74 0.463 52.73 0.452 68.46 0.517 49.45 0.493

1 RF 64.83 0.491 60.57 0.500 . . 52.04 0.626

1 XGB . . 60.33 0.537 41.51 0.513 49.42 0.563

1 Base 67.12 0.500 66.67 0.500 70.43 0.500 66.67 0.500

2 DT 68.77 0.582 66.11 0.595 69.31 0.547 . .

2 RF 66.32 0.506 63.98 0.563 67.46 0.580 64.95 0.635

2 XGB . . . . 54.83 0.540 50.92 0.534

2 Base 66.38 0.500 66.67 0.500 71.26 0.500 66.67 0.500

3 DT 65.76 0.521 56.35 0.489 . . 56.30 0.510

3 RF 62.94 0.498 58.67 0.503 65.72 0.605 62.95 0.616

3 XGB 52.58 0.490 57.07 0.536 70.40 0.678 59.64 0.626

3 Base 65.80 0.500 66.67 0.500 71.63 0.500 66.67 0.500

4 DT 62.34 0.517 61.23 0.450 . . 63.99 0.581

4 RF 61.53 0.512 65.89 0.607 67.46 0.550 59.77 0.633

4 XGB 55.66 0.524 60.70 0.550 60.56 0.604 . .

4 Base 65.80 0.500 66.67 0.500 70.68 0.500 66.67 0.500

5 DT 65.80 0.500 58.47 0.515 64.65 0.520 63.29 0.553

5 RF 59.95 0.475 56.02 0.480 61.39 0.490 42.63 0.467

5 XGB 51.40 0.442 57.05 0.567 66.62 0.541 56.88 0.524

5 Base 65.80 0.500 66.67 0.500 71.46 0.500 66.67 0.500

10 DT 58.29 0.439 62.30 0.492 72.08 0.500 63.70 0.620

10 RF 60.72 0.469 59.29 0.532 62.01 0.545 55.95 0.573

10 XGB 54.38 0.456 60.90 0.523 65.25 0.553 59.77 0.529

10 Base 65.80 0.500 66.67 0.500 72.08 0.500 66.67 0.500

20 DT 64.90 0.491 . . 68.01 0.477 54.09 0.427

20 RF 64.16 0.483 58.79 0.473 56.44 0.503 53.04 0.536

20 XGB 62.02 0.510 62.78 0.549 53.11 0.511 53.63 0.528

20 Base 65.80 0.500 66.67 0.500 72.08 0.500 66.67 0.500
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the baseline classifier for both metrics (F1− Score =
70.00, AUC = 0.571), but performed slightly worse than the

XGBoost classifier for the 2 min window. For cognitive load

and without SMOTE/oversampling, a Decision Tree classi-

fier produced the highest F1-Score (F1− Score = 74.64) and

in terms of AUC a Random Forest classifier for a window

size of 1 min (AUC = 0.66). Applying SMOTE/oversampling,

a XGBoost classifier for a window size of 4 min performed

best in terms of the F1-Score and AUC (F1− Score =

70.53, AUC = 0.711) while also outperforming the baseline

classifier.

4.3.2.2 Regression models for writing tasks

The results of the regression models using only “text

writing” labels can be found in Table 8. Without normal-

izing the flow labels, an XGBoost Regressor for a window

size of 2 min performed best in terms of the R2 value (R2 =
0.229), while also outperforming the baseline regression

Table 8: Regression-based model performance for all window sizes (1, 2, 3, 4, 5, 10, 20 min) and regression based models (LR, DTR, RFR, XGBR, Base)

including labels from writing tasks. Bold marked results of models outperformed the baseline model of the corresponding window size in terms of

MSE and had a R2 > 0.

Window size Classifier Flow writing Flow writing Cognitive load Cognitive load

[normalized] writing writing [normalized]

MSE R
2 MSE R

2 MSE R
2 MSE R

2

1 LR 1.750 −4.903 0.245 −15.985 0.481 −3.419 0.067 −0.268
1 DTR . . 0.082 −0.405 0.693 −3.062 0.077 −0.408
1 RFR 0.913 −0.026 0.093 −0.827 0.441 −2.716 0.058 −0.138
1 XGBR 0.859 −0.071 0.104 −1.465 0.559 −3.017 0.060 −0.169
1 Base 1.049 −0.006 0.091 −0.566 0.495 −3.584 0.067 −0.251

2 LR 1.132 −0.176 0.105 −1.204 0.552 −3.274 0.091 −0.603
2 DTR 1.159 0.076 0.089 −0.330 0.505 −3.130 0.081 −0.641
2 RFR 1.066 0.177 0.092 −0.535 0.559 −3.315 0.067 −0.257
2 XGBR . . 0.120 −1.880 0.765 −5.368 0.062 −0.147
2 Base 1.060 −0.009 0.094 −0.606 0.508 −3.480 0.064 −0.185

3 LR 1.163 −0.349 0.096 −0.112 0.509 −3.296 0.068 −0.253
3 DTR 1.136 −0.016 . . 0.637 −3.572 0.065 −0.184
3 RFR 1.136 −0.706 0.087 −0.334 0.577 −3.880 0.064 −0.252
3 XGBR 1.271 −1.235 0.107 −0.131 0.627 −3.858 0.063 −0.267
3 Base 1.082 −0.068 0.092 −0.117 0.493 −3.450 0.062 −0.155

4 LR 1.100 −0.071 . . 0.567 −3.558 0.073 −0.335
4 DTR 2.067 −1.661 0.095 −0.051 0.554 −3.809 0.068 −0.254
4 RFR 1.160 −0.186 0.093 −0.002 0.558 −3.842 0.066 −0.253
4 XGBR 1.502 −0.498 0.112 −0.184 0.585 −4.039 0.077 −0.404
4 Base 1.062 −0.072 0.090 −0.136 0.486 −3.390 0.062 −0.151

5 LR 1.176 −0.499 0.097 −0.537 0.525 −3.473 0.066 −0.260
5 DTR 1.224 −0.292 0.123 −2.467 0.522 −3.465 0.063 −0.179
5 RFR 1.144 −0.112 0.107 −1.037 0.571 −3.919 0.065 −0.221
5 XGBR 1.270 −0.623 0.105 −0.746 0.691 −4.048 0.072 −0.301
5 Base 1.049 −0.042 0.090 −0.199 0.481 −3.418 0.061 −0.151

10 LR 1.414 −2.010 0.159 −6.632 0.547 −5.032 0.074 −0.428
10 DTR 1.420 −0.379 0.102 −0.534 0.597 −5.925 0.098 −0.894
10 RFR 1.095 −0.132 0.100 −0.711 0.483 −4.860 0.067 −0.394
10 XGBR 1.155 −0.577 0.115 −0.693 0.631 −6.488 0.084 −0.699
10 Base 1.006 −0.042 0.089 −0.226 0.451 −4.745 0.059 −0.186

20 LR 3.685 −19.345 0.395 −30.206 0.806 −5.511 0.195 −2.434
20 DTR 1.154 −0.004 0.122 −1.197 0.436 −3.955 0.067 −0.261
20 RFR 1.056 −0.288 0.092 −0.409 0.475 −4.295 0.070 −0.385
20 XGBR 1.158 −0.227 0.127 −0.398 0.460 −3.709 0.097 −0.724
20 Base 1.006 −0.042 0.089 −0.226 0.451 −4.745 0.059 −0.186
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model in terms of MSE (MSE = 0.985). In addition, Deci-

sion Tree based regressors also outperformed the baseline

regression for a window size of 1 min (MSE = 0.916,R2 =
0.071). For normalized flow labels, Linear Regression based

models and a window size of 4 min performed best for

R2 (R2 = 0.318) and also outperformed the baseline regres-

sion model in terms of MSE (MSE = 0.087). For cognitive

load, none of the regression-based models achieved a lower

MSE than a baseline model while maintaining a positive R2

value.

Overall, the results of the classification- and regression-

based cognitive state models (flow and cognitive load)

for writing tasks demonstrate that cognitive state models

based on eye-tracking data collected in the field exhibit

robustness, accuracy and generalizability across partici-

pants. Moreover, these results highlight that cognitive state

models are generalizable across participants but not across

tasks.

5 Discussion

Our results show that developing generalizable, accurate,

and robust cognitive state models based on field eye-

tracking data is a challenging but feasible task. We were

unable to develop an eye-based cognitive state ML model

that generalizes across tasks and participants, as the devel-

oped models using labels from all tasks did not significantly

outperform the baseline classifier in terms of F1-Score and

AUC, or the baseline regression in terms of MSE and R2. Eye-

tracking data is known to be highly task dependent, which

may explain the poor performance of the eye-based cogni-

tive state models when considering labels from all tasks.

However, we were successful in developing eye-based cog-

nitive state models when considering only labels collected

during writing tasks, as they outperformed the baseline

classifier in terms of F1-Score and AUC, and the baseline

regression in terms of MSE and R2. Thus, for a writing task,

wewere able to develop accuratemodels that achieve gener-

alizability in terms of working across different participants.

Furthermore, this suggests that it is possible to develop

cognitive state models using eye-tracking data collected in

the field.

To further advance the development of eye-based cog-

nitive state models, we systematically examined the eye

tracking and log data collected, the labels collected, the

model performance, and the interviews with participants.

On this basis, we derived six major lessons learned (LLs)

from our field study that can help other researchers in

conducting field data collection studies with eye tracking

for the purpose of building cognitive state models. The first

three LLs relate to the data collection method and system,

and the subsequent LLs relate to model development using

eye-tracking data.

Many existing ESM studies have focused on collecting

data on mobile devices.44 This has typically required shift-

ing attention from the task to another platform. Therefore,

we implemented esmLoop to integrate ESM data collec-

tion directly into the operating system of the PC. With our

approach and the esmLoop system we were able to success-

fully collect a large amount of data during our study. Using

esmLoop, all participants were able to collect large amounts

of valid eye tracking (>150 h), interaction, and labeling data

(293 labels of cognitive load and flow) on their own, without

the active supervision of an experimenter. According to our

interviews, participants found esmLoop user-friendly and

liked its integration into the operating system. In addition,

they reported that resuming tasks after completing surveys

was quick because it was well integrated into their work

environment. However, even though the system was tightly

integrated and worked well on different PCs during test-

ing, participants reported some problems with the software

running on their computer during the field studies, which

ultimately affected data collection. In the case of partici-

pant P12, the eye-tracking driver software stopped work-

ing and recording data during the study, resulting in the

participant’s removal from the experiment. In addition, sev-

eral users reported that the software crashed due to random

disconnections of the eye tracker, causing some frustration

for the user. This may be because the students’ computer

hardware is not up to date, or because the external eye-

tracking hardware is not well integrated with the hardware

and operating system, or is not designed to record for sev-

eral hours. It also shows that tight integration of hardware

and software with the system is important for robust and

high quality data collection in our context. Hardware inte-

gration may change as computing devices with a built-in

eye tracker, such as the Apple Vision Pro, come to mar-

ket and continuously rely on eye tracking for interactions,

improving integration within the system. These findings

underscore our first lesson:

LL1: To make data collection more robust and ensure high

data quality, label and eye-tracking data collection should be

tightly integratedwith the system the user is using to perform

their task(s).

Eye tracking and self-reported cognitive state data is known

to be sensitive data, as it is considered health data by law

and reveals a lot of information about the user. 72 % of

the users who participated in our experiment had no pri-

vacy concerns when using esmLoop during the study. They
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appreciated the ability to schedule the recording sessions

by starting and stopping them as needed, and that the data

was not automatically shared for analysis. During the data

collection phase, users could see that data collection was

in progress from the icon in the task bar. They found that

this visual cue gave them a sense of control over their own

data and transparency in the process. In addition, when

using esmLoop, users were curious about their contribu-

tion and found the reports on the number of labels and

the amount of data collected to be interesting features of

esmLoop, which increased their motivation to continue col-

lecting data. Finally, providing participants with informa-

tion about the goal of the experiment, the privacy check,

the experimental design approved by the ethics board, etc.

during the initial workshop also helped to increase their

confidence and motivation to actively participate in the

experiment. On this basis, we articulate the following lesson

learned:

LL2: For the collection of eye tracking and self-reported cog-

nitive state data, which are sensitive data and require high

effort, the system should follow a transparent data collection

policy to support user privacy and increase motivation to

provide data and labels.

The feeling of being tracked is known to be one of the

most common discussions about eye-tracking studies and

the potential to bias user behavior. Despite initial concerns

about the presence of the eye tracker and the potential

distraction of being recorded, as well as the light from the

infrared light sources of the eye tracker, users reported that

they became accustomed to the presence of the eye tracker

and that it did not affect their behavior. In fact, some partic-

ipants reported the positive effect of being more focused on

their task due to the eye tracker and felt that their behavior,

and specifically the importance of experiencing the flow

state, was important to this research goal. We summarize

this finding in the following lessons learned:

LL3: Study participants will become accustomed to the pres-

ence of eye trackers and to being recorded.

Similar to affect detection based on biosignal data collected

in the field,57 developing a generalizable cognitive state ML

model using eye-tracking data collected in the field is chal-

lenging. To limit the complexity, we decided to approach the

model development as a binary classification and regres-

sion problem rather than a multi-class problem. While the

label distribution analysis shows that cognitive load and

flow are experienced differently, this is also supported by

the interview data. Furthermore, it is still challenging to

define a generally valid threshold between high and low

cognitive load and flow or no flow state for training the

classification models. Although the visual behavior of the

participants was individual, the classification models had a

hard time identifying patterns for different cognitive states

across tasks that would lead to successful classification.

Even our regression models, which did not consider any

cognitive state label distribution, did not perform signif-

icantly better than the baseline model when considering

data from all participants and tasks. Therefore, we would

suggest the approach of buildingwithin-subjectmodels that,

on the other hand, require a large number of labels to cover

allmanifestations of cognitive states for different tasks from

one individual. In our study,we did not collect enough labels

per participant to follow this suggestion. Therefore, this

suggestion needs to be evaluated in future studies. Based

on the above findings, we articulate the following lessons

learned:

LL4: Developing an eye-based cognitive state ML model

that is generalizable across users is challenging because eye

movements are very individual and cognitive states are per-

ceived very differently by individuals.

The results of our study showed that we were able to collect

labels for a wider range of tasks, but for most tasks we col-

lected only a few labels. Themodel development results sug-

gest that the development of a cognitive load andflowmodel

generalizable across tasks and participants using real-world

data was not significantly successful. None of the developed

models significantly outperformed thebaselinemodelwhen

considering labels of all tasks. Only aDecision Tree classifier

for cognitive load slightly outperformed the baseline model

in terms of F1-Score and AUC but exhibited a low discrim-

inative power. Moreover, one regression models based on

decision tree regressors for flow slightly outperformed the

baseline model, but the R2 value was very low, indicating

that little of the variation in cognitive state is predictable

from the eye-based features. Only when considering labels

collected during a writing task were we able to develop

models generalizable across participants that outperformed

the baseline models for flow and cognitive load. This is also

reflected in the fact that eye movements are highly depen-

dent on task and environment, as shown in Yarbus.58 To

achieve generalizability of eye-based cognitive state models

across tasks, not only a large dataset covering a variety

of tasks and environments is needed, but also a variety of

cognitive state labels need to be collected for each of the

tasks.
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LL5: Developing an eye-based cognitive state ML model that

is generalizable across tasks and environments is challenging

because eye movements are highly task and environment

dependent. Therefore, it is important to collect enough labels

per task and cover a variety of environments.

At first glance, the performance of the developed cognitive

state models looks quite good especially when following

a binary classification-based approach. As shown in the

Tables 5 and 7, some classifiers achieved an F1-Score above

70 %.However, without a balanced dataset in terms of labels

and a comparison with a baseline classifier, an evaluation

based on the F1-Score may overestimate the performance

of the classifiers. For example, if a baseline classifier for

flow with a window size of 1 min also achieves an F1-Score

of 72.80 % due to unbalanced data (see Table 5), a Random

Forest classifier that achieves an F1-Score of 72.80 % and

AUC of 0.5000 is performing just equally and is not learning

from the data. One approach to overcome the risk of over-

estimating performance is to oversample the minority class

using SMOTE to create a balanced dataset. This approach

proved to be helpful as seen in the Table 5, since the Random

Forest classifier for flow and a window size of 1 min did not

achieve a higher F1-Score than the baseline classifier after

using SMOTE. Furthermore, checking the confusion matri-

ces of the LOOCV showed that the Random Forest classifier

did not provide any discriminative power to distinguish

between the two classes of flow and no flow, as the classifier

always predicted the no flow class for all iterations of the CV,

which is also supported by the AUC value of 0.5. In summary,

we draw the following lessons learned:

LL6: For the development of eye-based cognitive statemodels

following a binary classification approach, a differentiated

evaluation of classifier performance is important.

5.1 Limitations & future work

The findings of this study are limited to the context of the-

sis work by students. For the present study, we recruited

11 students as subjects who were working on their thesis

projects. The students were recruited from different study

programs and they worked on different tasks depending on

the different stages of their thesis projects. Furthermore,

we only collected data during a limited time frame of 5

days, during which we probably could not cover all tasks of

that specific thesis work stage. The interview results show

that users adjusted their break schedule based on when

survey questions might appear. Therefore, there is a need

to more dynamically adjust the frequency and timing of

survey questions so that users do not change their behav-

ior. In addition, we only examined the cognitive states of

cognitive load and flow. There are many more cognitive

states, such as situation awareness, comprehension, distrac-

tion, certainty, or fatigue, that are also worth investigating

using ESM and eye-tracking data to build supervised ML

models.

The approach we used to develop the eye-based cog-

nitive state models also has several limitations. Because

this was a field study, we focused on a rather broad

set of tasks, neglecting the collection of a balanced

data set for each task and participant. Despite collecting

data over 5 days, we were not able to collect enough

labels per participant (approximately 26 labels per par-

ticipant) to develop individual models for each partici-

pant. In the future, we propose to collect more labels

per participant and task to investigate the development

of within-subject cognitive state models. In addition, we

simplified the classification problem to a binary problem

and a regression problem, but did not take a multi-class

approach. Also, the models developed based on labels col-

lected only during the writing tasks are less representative.

They only consider data from a label subset of all partic-

ipants, since not all participants reported cognitive state

labels for the writing tasks.

6 Conclusions

In the future, advances in sensor technology and machine

learning will make it possible to monitor our cognitive

state like our physical activity. Eye-tracking technology is

a promising off- and on-body sensor technology that can

provide access to cognitive user states. We contribute to

this vision by investigating the development of cognitive

state models using eye-tracking data collected in the field.

In this paper, we present and apply an experience sam-

pling system called esmLoop to record eye-tracking data

and collect cognitive state labels from 11 students working

on their thesis project in the field. We develop cognitive

load and flow models using supervised machine learning

algorithms for classification and regression and the col-

lectedfield data.Wealso evaluate thesemodels for accuracy,

robustness, and generalizability across tasks and users. Our

results demonstrate that developing cognitive state mod-

els that are generalizable across participants and tasks is

challenging, and we have not been successful in developing

such models. However, the results of task-specific cognitive

state models highlight that it is possible to develop cognitive

statemodels that are generalizable across participants using

eye-tracking data collected in the field. Finally, we articulate
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six lessons learned during data collection and model devel-

opment to enable the development of cognitive statemodels

that are generalizable across participants and tasks in the

future.
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