
EFFICIENT IMPLEMENTATION OF
IDEAL LATTICE-BASED

CRYPTOGRAPHY

DISSERTATION

for the degree of Doktor-Ingenieur
of the Faculty of Electrical Engineering and Information Technology

at the Ruhr-University Bochum, Germany

by Thomas Pöppelmann
Bochum, June 2015



Copyright © 2015 by Thomas Pöppelmann. All rights reserved.
Printed in Germany.



Thomas Pöppelmann
Place of birth: Oelde, Germany
Author’s contact information:
thomas.poeppelmann@rub.de

Thesis Advisor: Prof. Dr.-Ing. Tim Güneysu
Ruhr-Universität Bochum, Germany

Secondary Referee: Prof. Dr. Ir. Ingrid Verbauwhede
K.U.Leuven, Belgium

Thesis submitted: June 16, 2015
Thesis defense: July 23, 2015
Last revision: June 12, 2016

iii





Abstract

Digital signatures and public-key encryption are used to protect almost any secure communica-
tion channel on the Internet or between embedded devices. Currently, protocol designers and
engineers usually rely on schemes that are either based on the factoring assumption (RSA) or
on the hardness of the discrete logarithm problem (DSA/ECDSA). But in case of advances in
classical cryptanalysis or progress on the development of quantum computers the hardness of
these closely related problems might be seriously weakened. In order to prepare for such an
event, research on alternatives is required to provide long-term security.
In this thesis, we focus on the efficient implementation of such alternative public-key cryp-

tosystems whose security is based on the intractability of certain computational problems on
ideal lattices. While an extensive theoretical background exists for lattice-based and ideal lattice-
based cryptography, not much is known about the efficiency of practical instantiations, especially
on constrained and cost-sensitive platforms. We thus investigate novel algorithms and imple-
mentation techniques for fast and flexible polynomial multiplication and Gaussian sampling and
then use these building blocks to implement public-key encryption and signature schemes. The
results provided in this thesis show that lattice-based schemes can be optimized for high perfor-
mance or resource efficiency on embedded microcontrollers and reconfigurable hardware. Our
implementations of a public-key encryption scheme based on the ring learning with errors prob-
lems (RLWE) or of the bimodal lattice signature scheme (BLISS) can even outperform classical
ECC- and RSA-based implementations.
Lattice-based cryptography can also be used to realize homomorphic cryptography that allows

computation on encrypted data. However, due to the large parameter sets and complex oper-
ations required, even for simple homomorphic evaluation operations, the performance of these
schemes is a major issue preventing practical usage. In this thesis we investigate options for
acceleration of homomorphic cryptography in a cloud environment using reconfigurable hard-
ware. We implement all evaluation operations of the YASHE homomorphic encryption scheme
and propose methods to deal with large ciphertext and key sizes as well as limited memory
bandwidth.

Keywords

Post-quantum cryptography, public-key cryptosystem, embedded system, microcontroller, FPGA





Kurzfassung

Digitale Signaturen und Public-Key-Verschlüsselung werden für den Schutz nahezu jeder sicheren
Kommunikation über das Internet oder zwischen eingebetteten Systemen genutzt. Die Sicher-
heit basiert dabei entweder auf der Faktorisierungsannahme (RSA) oder der Annahme, dass es
schwer ist, das diskrete Logarithmus-Problem (DSA/ECDSA) zu lösen. Durch Fortschritte in
der klassischen Kryptoanalyse oder bei der Entwicklung von Quantencomputern könnten diese
Probleme allerdings in Zukunft ernsthaft geschwächt oder gelöst werden. Daher ist Forschung
zu alternativen Public-Key-Kryptosystemen erforderlich, die in der Lage sind, auch in diesem
Fall Langzeitsicherheit zu gewährleisten.
In der vorliegenden Arbeit wird die effiziente Implementierung von alternativen Public-Key-

Kryptosystemen betrachtet, deren Sicherheit auf schwer lösbaren Problemen in Idealgittern ba-
siert. Während in der Literatur bereits ein umfangreicher theoretischer Hintergrund zu Krypto-
graphie basierend auf Gittern und Idealgittern vorhanden ist, ist die Effizienz solcher Kon-
struktionen, insbesondere auf eingeschränkten und kostensensitiven Plattformen, noch nicht
ausreichend erforscht. In dieser Arbeit werden daher neuartige Algorithmen und Implemen-
tierungstechniken für schnelle und flexible Polynommultiplikation und das Erzeugen von dis-
kret normalverteilten Polynomen diskutiert. Diese Bausteine werden anschließend genutzt, um
Public-Key-Verschlüsselungs- und digitale Signaturverfahren zu implementieren. Im Ergebnis
kann nachgewiesen werden, dass gitterbasierte Kryptosysteme hohe Leistung erreichen und effi-
zient auf Mikrocontrollern und rekonfigurierbarer Hardware realisiert werden können. Implemen-
tierungen eines Public-Key-Verschlüsselungsverfahrens basierend auf dem Ring Learning With
Errors (RLWE) Problem oder des gitterbasierten Signaturschemas BLISS übertreffen sogar die
Ausführungsgeschwindigkeit von klassischen ECC- und RSA-basierten Implementierungen.
Gitterbasierte Kryptographie kann auch verwendet werden, um homomorphe Verschlüsse-

lungsverfahren zu konstruieren, die Rechenoperationen auf verschlüsselten Daten ermöglichen.
Allerdings ist aufgrund der großen Parametersätze und des hohen Rechenaufwands selbst für ein-
fache Operationen die praktische Anwendbarkeit derzeit unklar. In dieser Arbeit werden daher
Möglichkeiten betrachtet, um homomorphe Verschlüsselungsverfahren in einer Cloud-Umgebung
mit Hilfe von rekonfigurierbarer Hardware zu beschleunigen. Die vorgestellte Implementierung
des homomorphen Verschlüsselungsverfahrens YASHE erlaubt die Ausführung aller Operationen,
die für die Berechnung auf verschlüsselten Daten benötigt werden. Ein besonderer Fokus liegt
auf der Entwicklung neuer Konzepte, um mit den großen Geheimtexten und Schlüsseln sowie
begrenzter Speicherbandbreite umzugehen.

Schlagworte

Post-Quantum-Kryptographie, Public-Key-Kryptosystem, Eingebettetes System, Mikrocontrol-
ler, FPGA





Acknowledgements

This thesis would not have been possible without continuous support by my parents, my brother,
friends, colleagues, and co-authors and I would like to say thank you.
Especially, I would like to thank my advisor Tim Güneysu for accepting me as a doctoral

student, introducing me to the world of secure hardware, and for providing me with the necessary
freedom and funding to pursue my research. Working and studying in the Hardware Security
Group (sometimes also known as Secure Hardware Group) was a great pleasure and I was able
to learn a lot. Special thanks also to my colleagues Alexander, Ingo, Oliver, Pascal, Stefan, and
Tobias who always helped me out and supported me. I would also like to thank Christof Paar
and all colleagues from EMSEC and I will always recall the Monday morning group breakfasts
at 11am, traveling to sunny conference locations, social events, and after-work Glühwein. A
special thank you goes also to Irmgard for helping with administrative tasks and being the good
soul of the group as well as to Horst who runs a tight ship in his IT department and who always
provided the best hardware and software to get the job done.
Additionally, I would like to thank all hard-working students I was able to supervise or work

with, especially I would like to thank Tobias, Fabian, and Friedrich. I am also thankful to
Kristin Lauter, Michael Naehrig, and Andrew Putnam for providing me the opportunity to
do an internship at Microsoft Research in Redmond. My research would also not have been
possible without teaming up with co-authors and academic collaborators and thus I would like
to thank you. I would also like to thank Ingrid Verbauwhede for agreeing to be my second
referee. Moreover, I am thankful to everybody who volunteered to proof read some parts of this
work.





Table of Contents

Imprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Summary of Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background on Lattices, Polynomial Multiplication, and Gaussian Sampling 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Lattices and Ideal Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Computational Problems on Lattices . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Average-Case Problems on Standard Lattices . . . . . . . . . . . . . . . . 12
2.3.3 Ring Variant of LWE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Polynomial Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Schoolbook Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 The Number Theoretic Transform . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Efficient Computation of the NTT . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Discrete Gaussian Sampling over the Integers . . . . . . . . . . . . . . . . . . . . 19
2.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Review of Algorithms for Discrete Gaussian Sampling . . . . . . . . . . . 20
2.5.3 A Sampler Based on Bernoulli Trials . . . . . . . . . . . . . . . . . . . . . 21
2.5.4 A Sampler Based on a CDT and Gaussian Convolutions . . . . . . . . . . 22

3 Introduction to Practical Ideal Lattice-Based Cryptography 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Post-Quantum Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Public-Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Quantum Computing and Post-Quantum Cryptography . . . . . . . . . . 29

3.3 Security Evaluation of Lattice-Based Cryptography . . . . . . . . . . . . . . . . . 30
3.4 A RLWE-Based Public-Key Encryption Scheme (RLWEenc) . . . . . . . . . . . . 31

3.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 The GLP Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.2 Parameters and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



Table of Contents

3.6 The Bimodal Lattice-Based Signature Schemes (BLISS) . . . . . . . . . . . . . . . 38
3.7 The Somewhat Homomorphic Encryption Scheme YASHE . . . . . . . . . . . . . 40

4 Polynomial Multiplication on Reconfigurable Hardware 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 Previous Work Unrelated to Lattice-Based Cryptography . . . . . . . . . 47
4.2.2 Design Decisions for Lattice-Based Cryptography . . . . . . . . . . . . . . 47

4.3 Design of an Efficient NTT-Based Polynomial Multiplier . . . . . . . . . . . . . . 48
4.3.1 Processing Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Modular Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.3 The NTT and Memory Access Restrictions . . . . . . . . . . . . . . . . . 51

4.4 A Microcode Engine for Ideal Lattice-Based Cryptography . . . . . . . . . . . . . 52
4.5 Implementation of Schoolbook Multiplication . . . . . . . . . . . . . . . . . . . . 55
4.6 Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6.1 Processing Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6.2 Polynomial Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6.3 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Implementation of Ring-LWE Encryption on Reconfigurable Hardware 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Optimization of RLWEenc for Efficiency and Correctness . . . . . . . . . . . . . . 65
5.2.1 Application of the NTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Ciphertext Expansion and Decryption Errors . . . . . . . . . . . . . . . . 66

5.3 High-Performance Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.1 High-Speed Gaussian Sampling Based on the CDT . . . . . . . . . . . . . 69
5.3.2 Design of the Encryption and Decryption Core . . . . . . . . . . . . . . . 69
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Low-Area Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.1 Row-Wise Polynomial Multiplication . . . . . . . . . . . . . . . . . . . . . 73
5.4.2 Area Efficient Rejection Sampling . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Implementation of Ring-LWE Encryption on an 8-bit Microcontroller 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Faster NTTs for Lattice-Based Cryptography . . . . . . . . . . . . . . . . . . . . 83
6.2.1 Merging the Inverse NTT and Multiplication by Powers of ψ−1 . . . . . . 83

xii



Table of Contents

6.2.2 Removing Bit-Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.3 Combination of Optimization Techniques . . . . . . . . . . . . . . . . . . 84

6.3 Implementation of RLWEenc Using the NTT . . . . . . . . . . . . . . . . . . . . . 86
6.3.1 Implementation of the NTT . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.2 Gaussian Sampling Based on the CDT-Approach . . . . . . . . . . . . . . 88
6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Implementation of RLWEenc Using the Schoolbook Algorithm . . . . . . . . . . . 89
6.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Implementation of RLWEenc Using Karatsuba’s Algorithm . . . . . . . . . . . . . 91
6.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5.3 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . . 93

6.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Lattice-Based Signatures on Reconfigurable Hardware 95
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Implementation of GLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2.1 Pipelined Message Signing . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2.2 Signature Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2.3 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3 Implementation of BLISS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3.1 Gaussian Sampling Using Convolutions and a CDT . . . . . . . . . . . . . 103
7.3.2 Design of a Signing and of a Verification Core . . . . . . . . . . . . . . . . 106
7.3.3 Huffman Encoding for Short Signatures . . . . . . . . . . . . . . . . . . . 108
7.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4 Comparison of our Implementations with Related Work . . . . . . . . . . . . . . 113
7.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8 Implementation of Lattice-Based Signatures in Software 117
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2 Improved Implementation of GLP on Intel/AMD CPUs . . . . . . . . . . . . . . . 119
8.2.1 Faster Uniform Sampling and Better Exploitation of the NTT . . . . . . . 119
8.2.2 Notes on Vectorized Sparse Multiplication for GLP . . . . . . . . . . . . . 120
8.2.3 Evaluation and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.3 Implementation of BLISS on the Cortex-M4F . . . . . . . . . . . . . . . . . . . . 121
8.3.1 Implementation of Different Discrete Gaussian Samplers . . . . . . . . . . 122
8.3.2 Polynomial Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xiii



Table of Contents

8.4 Implementation of BLISS on the ATxmega . . . . . . . . . . . . . . . . . . . . . . 127
8.4.1 Implementation of BLISS Using the NTT . . . . . . . . . . . . . . . . . . 127
8.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.4.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 130

9 Acceleration of Homomorphic Evaluation on Reconfigurable Hardware 131
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.2.1 Cached-FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.2.2 Catapult Architecture/Target Hardware . . . . . . . . . . . . . . . . . . . 136

9.3 High-Level Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.4 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.4.1 Implementation of the Cached-NTT and Memory Addressing . . . . . . . 139
9.4.2 Computation of the CT-NTT on the Cache . . . . . . . . . . . . . . . . . 142

9.5 Configuration of our Core for YASHE . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.5.1 Implementation of RMult . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.5.2 Implementation of KeySwitch . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.6 Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.6.1 Resource Consumption and Performance . . . . . . . . . . . . . . . . . . . 147
9.6.2 Comparison with Previous Work . . . . . . . . . . . . . . . . . . . . . . . 148
9.6.3 Software Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

10 Conclusion and Future Work 153
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.2 Directions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Bibliography 157

List of Abbreviations 189

List of Figures 193

List of Tables 195

List of Algorithms 197

About the Author 199

Publications and Academic Activities 201

xiv



Chapter 1

Introduction

In this chapter we briefly introduce the problem of missing diversity in practical
public-key cryptography and the threat to RSA and ECC posed by a quantum com-
puter. Moreover, we shortly discuss why lattice-based cryptography is a viable alterna-
tive to commonly used asymmetric encryption and signature schemes. Additionally,
we shortly detail the structure of this thesis and summarize the presented research
contributions regarding building blocks, public-key encryption, signature schemes, and
homomorphic encryption.

Contents of this Chapter
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Summary of Research Contributions . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivation

Security has become a crucial aspect of many recent hardware and software systems, in particular
for those being potentially exposed to attacks for the next 10 to 20 years. A major building
block in such systems are cryptographic functions that can guarantee protection over the entire
lifespan of a device, protocol, or system. Examples are long-lasting vehicular or avionic systems
that cause high load for servers and infrastructure but that also require the cost and energy
efficient implementation of cryptography on constrained and embedded devices. In vehicular
communication infrastructures, for example, elliptic curve cryptography (ECC) using 224-bit and
256-bit NIST curves was recently standardized [Soc06]. The relatively large security parameters
for ECC were considered a conservative choice to achieve long-term security.
However, in case one of the numerous attempts and approaches to build a quantum computer

turns out to be successful, Shor’s algorithm [Sho94] could be used to break RSA and ECC in
polynomial time. Due the popularity of RSA and ECC this would affect almost any practical
deployment of asymmetric cryptography and thus many servers, clients, but also embedded de-
vices. While quantum computers are not ready, yet, significant resources are spent to boost
their further development [Koe13,RG13] and IBM announced that they might become available
within the next 15 years [Cha12]. In addition, recent breakthroughs in classical cryptanaly-
sis [Jou13,BGJT14] have cast further doubts on the hardness of the discrete logarithm problem
as almost-polynomial time algorithms for the problem in small-characteristic fields are now avail-
able. It is also worth mentioning that even though ECC or RSA are currently considered secure,

1



Chapter 1. Introduction

future cryptanalysis or quantum computers could be used to break the encryption of stored
communication data. Already, such data is very likely collected by government bodies and also
by private organizations and even in two or three decades the decryption of medical records or
trade secrets might still pose a big threat to the users of the current cryptographic systems.

These imminent threats have motivated the investigation of other fundamental problems upon
which asymmetric cryptography can be based. The resulting cryptosystems that are executed on
classical computers but for which currently no fast quantum algorithms are known, are usually
referred to as post-quantum. And while quantum computers might still be several years away,
it is important to note that it usually takes several decades before alternative schemes have
been thoroughly tested, gained trust in the community, have been standardized, and adopted by
industry. However, currently available post-quantum candidate schemes suffer from relatively
large key length or are not as efficient as RSA or ECC (see [BBD08]). As a consequence, RSA
and ECC are still widely used and more research efforts are required to offer practical and
efficient substitutes.

One promising post-quantum alternative that could match the performance or key sizes of
RSA or maybe even ECC is lattice-based cryptography. While lattices have already been used
to construct cryptosystems for several decades (see GGH [GGH97] and NTRU [HPS98]) they
have received a lot more attention since the introduction of the user-friendly LWE [Reg05] and
RLWE [LPR10b] problems. In particular, lattice-based cryptosystems instantiated in polyno-
mial rings that allow a security reduction to hard problems on ideal lattices, instead of random
lattices, support the design of schemes that achieve practical public-key, ciphertext, and sig-
nature lengths. The downside of using ideal lattices is that the added structure, which is the
reason for the short public key length, might also allow more efficient cryptanalysis exploiting
this structure. However, so far no serious attacks are known that perform significantly better
for ideal lattices when parameters and underlying rings are chosen conservatively and with care.

While arguments like security proofs, asymptotic efficiency, and small public keys seem very
appealing, not much was known about the practical efficiency of ideal lattice-based cryptosystems
when this research was started. The first works covering the implementation of ideal lattice-based
cryptosystems appeared only in 2012 [GFS+12,GLP12]. Since then the performance of software
implementations has been improved by several orders of magnitude and the area consumption
of hardware implementations has been reduced by large factors. It is now possible to perform
a serious comparison of lattice-based cryptoschemes with other post-quantum schemes, based
on experimental results. Additionally, works on efficient implementation provide feedback to
cryptographers how to build even more efficient schemes and show which building blocks require
more attention or optimization.

Even though research on the practical implementation of ideal lattice-based cryptography is
still in an early stage, some ideal lattice-based schemes discussed and implemented in this work
come already close to the efficiency of well researched RSA and even ECC implementations
(for some metrics). Our research thus gives further evidence that lattice-based cryptography
is a serious post-quantum alternative. Additionally, we still see room for further improvement
and thus even better performance or security properties. The same was true for RSA or ECC
implementations, which got better and better over the years and got tuned and optimized for
more use-cases and platforms.

2



1.2. Structure of this Thesis

1.2 Structure of this Thesis

This thesis is structured as follows:

Preliminaries In Chapter 2 we review mathematical notation, computational problems on lat-
tices and ideal lattices, and efficient polynomial multiplication algorithms based on the
number theoretic transform (NTT). In Chapter 3 we introduce a previously proposed cryp-
tosystem (denoted RLWEenc) based on the ring learning with errors (RLWE) problem, the
Güneysu, Lyubashevsky, Pöppelmann (GLP) signature scheme, the bimodal lattice-based
signature schemes (BLISS), and a somewhat homomorphic encryption (SHE) scheme de-
noted as YASHE (yet another somewhat homomorphic encryption).

Polynomial multiplication on reconfigurable hardware In Chapter 4 we describe an implemen-
tation of a microcode engine that is implemented on reconfigurable hardware and which is
the basis for some of our implementations of encryption and signature schemes. It is built
on top of an NTT-based polynomial multiplier and offers a simple instruction set suitable
to realize the polynomial arithmetic and random sampling operations required by ideal
lattice-based cryptosystems.

Public-key encryption In Chapter 5 we propose a performance optimized implementation of
RLWEenc, which is based on our microcode engine. Moreover, we discuss methods to
implement RLWEenc with a small area footprint. An optimized implementation of the
NTT on constrained 8-bit devices is discussed in Chapter 6 and used to accelerate a
RLWEenc software implementation.

Signature schemes We describe our efficient implementations of the GLP and BLISS signature
schemes on reconfigurable hardware in Chapter 7. Our results for software implementations
of lattice-based signature schemes are covered in Chapter 8.

Somewhat homomorphic encryption A hardware design to accelerate the YASHE somewhat
homomorphic encryption scheme (SHE) on a cloud platform is proposed in Chapter 9.

Future work To conclude the thesis we review the results and discuss future work like imple-
mentation security, the implementation of advanced schemes, as well as optimization of
building blocks like the NTT.

1.3 Summary of Research Contributions

Most of the contribution of this thesis has already been published in conferences or jour-
nals. The works of the author on lattice-based cryptography that are the foundation of this
thesis are [PG12,PG13,OPG14,PG14,PDG14a,PDG14b,GLP15,HPO+15,POG15a,POG15b,
PNPM15a,PNPM15b]. Note that some papers are the basis for chapters or sections but that we
sometimes also rearranged content for better readability. The contributions in [GLP12,GOPS13,
DBG+14] are also related to lattice-based cryptography and some parts written by the author of
this thesis are included. However, the main results of these papers are not part of the contribu-
tion and only used for comparison. The papers [BEE+12a,DGK+12,EDW+14] were co-authored
during the time-frame of the author’s doctoral project but are not part of the contribution and

3



Chapter 1. Introduction

unrelated to lattice-based cryptography. The work published in [EHvM+10,LPR+10a,BNP+11]
was carried out before the beginning of the author’s doctoral project.
We would also like to note that due to the previous publication in conference proceedings

some results of this thesis have already been improved by other researchers or have been used
as basis for different optimizations or implementations on other platforms. In some cases we
have incorporated these new results into our implementation and description but sometimes we
also refer to the related work and detail the differences or improvements. Works that directly
or indirectly rely on our research or improve results discussed in this work are, e.g., [APS13,
MBFK14,CMV+14,RVM+14,AS15,dCRVV15].
The actual contribution of this thesis can be structured into four categories. The first category

are general purpose building blocks applicable to a whole range of schemes. The second and
third category are novel implementations of public-key encryption and signature schemes on
various platforms. The fourth is an implementation of a homomorphic encryption scheme.

Building Blocks for Lattice-Based Cryptography

We provide building blocks that are applicable to a wide range of current ideal lattice-based cryp-
tographic schemes and that are supposed to be relevant for future schemes as well. Our most
versatile contribution is a microcode engine, implemented on reconfigurable hardware that sup-
ports NTT-based polynomial multiplication and storage of a configurable number of temporary
polynomials (see Chapter 4). Moreover, we propose optimizations of the NTT on constrained
devices and achieve high speed by efficiently moving permutations and preceding computations
into the actual NTT algorithm (see Section 6.2). Additionally, we describe efficient uniform and
Gaussian samplers required by lattice-based encryption and signature schemes. On a micro-
controller we evaluate the Knuth-Yao, Ziggurat, and Bernoulli-based sampling algorithms (see
Section 8.3.1). Furthermore, we evaluate the performance of an optimized discrete Gaussian
sampler on reconfigurable hardware (see Section 7.3.1) as well as the ATxmega 8-bit microcon-
troller platform (see Section 8.4). The sampler was developed by Léo Ducas and is based on a
convolution theorem on discrete Gaussians, the cumulative distribution table (CDT) approach,
and Kullback-Leibler divergence.

Implementation of a Public-Key Encryption Scheme

By relying on the microcode engine as building block we propose a high performance imple-
mentation of RLWE-based public-key encryption (RLWEenc) on reconfigurable hardware. Due
to the versatility of the microcode engine and decomposition of polynomial multiplications us-
ing the NTT, one core can support key generation, encryption, and decryption and achieves
exceptional performance and relatively low area consumption (see Section 5.3). At the time
the original work was published, it provided a significant improvement of the time-area product
compared to previous work. Additionally, we propose a fast implementation of RLWEenc on an
8-bit ATxmega platform (see Chapter 6) that is using an optimized NTT implementation.

Implementation of Signature Schemes

We provide the first implementations of the GLP and BLISS signature schemes on reconfigurable
hardware (see Chapter 7). The GLP core supports signing and verification in dual-mode and is

4



1.3. Summary of Research Contributions

using the NTT for fast polynomial multiplication. With our BLISS core we show that signature
schemes that require Gaussian sampling can be implemented efficiently on reconfigurable hard-
ware. For similar area consumption, BLISS signing is about five times faster than the GLP core
and our core outperforms implementations of other post-quantum and classical schemes as well.
It uses more efficient sparse multiplication, the KECCAK hash function, and Huffman encoding to
reduce the final signature size close to its theoretical minimum. Moreover, we propose a perfor-
mance improvement for a GLP software implementation and the first software implementation
of BLISS on a Cortex-M4F microcontroller. Our implementation of BLISS on an ATxmega 8-bit
microcontroller is several times faster than previous work.

Implementation of a Homomorphic Encryption Scheme

We provide the first fully functional FPGA implementation of the evaluation operations of the
somewhat homomorphic encryption scheme YASHE (see Chapter 9). The implementation is
developed and tested on an accelerator board optimized for the usage in cloud servers. To deal
with the huge parameter sets required for meaningful homomorphic capabilities, we propose
methods for efficient multiplication of large polynomials using a cache-friendly NTT algorithm.
Due to external memory accesses being a significant bottleneck, we optimize the evaluation
algorithms and the NTT computations for optimal usage of the DRAM’s burst mode. Our
results show that it is feasible to accelerate SHE on FPGAs despite of the complexity and size
of the parameters.

5





Chapter 2

Background on Lattices, Polynomial
Multiplication, and Gaussian Sampling

In this chapter we review mathematical notation and provide background informa-
tion on lattices, ideal lattices, and related computationally hard problems. Addi-
tionally, we cover variants of the schoolbook and number theoretic transform (NTT)
polynomial multiplication algorithms as well as algorithms that can be used to sam-
ple from a discrete Gaussian distribution. This chapter contains only preliminar-
ies but no original work by the author of this thesis. The background regarding
the NTT and polynomial multiplication is based on [PG12,GLP15] and some gen-
eral content from [OPG14,HPO+15] is included. The description of the Bernoulli
and convolution cumulative distribution table (CDT) samplers originally appeared
in [PDG14a,PDG14b]. The approach and analysis of using a convolution of Gaus-
sians in combination with the Kullback-Leibler divergence has been developed by Léo
Ducas.

Contents of this Chapter
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Lattices and Ideal Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Polynomial Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Discrete Gaussian Sampling over the Integers . . . . . . . . . . . . . . . . . 19

2.1 Introduction

Lattice-based cryptography has received much attention from cryptographers and a compre-
hensive background on hard problems and security reductions exists. However, the focus of
this thesis is the practical implementation of lattice-based schemes. We thus only cover the
background that is essential for the understanding of our work. For a general introduction to
lattice problems we refer to the book by Micciancio and Goldwasser [MG02] and the chapter
by Micciancio and Regev [MR09] in [BBD08]. We particularly focus on intermediate problems
like the learning with errors (LWE) problem, the short integer solution problem (SIS), and the
ring learning with errors problem (RLWE) as they appear in almost any lattice-based scheme.
When constructing cryptosystems, these problems hide a large amount of the complexity of
lattice-based cryptography.

7



Chapter 2. Background on Lattices, Polynomial Multiplication, and Gaussian Sampling

For additional information on the mathematical foundations of ideal lattice-based cryptogra-
phy we refer to the PhD theses of Lyubashevsky [Lyu08b], Xagawa [Xag10], Schneider [Sch11],
Ducas [DB13], Lepoint [Lep14], and Langlois [Lan14] and to the courses by Micciancio [Mic14]
and Regev [Reg09] for a treatment of theoretical foundations of modern lattice-based cryptog-
raphy and cryptanalysis.
As the focus of this work is the efficient implementation of ideal lattices we also discuss al-

gorithms for polynomial multiplication and discrete Gaussian sampling. When working with
schemes based on ideal lattices, polynomial addition, polynomial subtraction, and polynomial
multiplication are basic operations. A particularly useful tool to speed up polynomial multiplica-
tion is the number theoretic transform (NTT), which is basically a fast Fourier transform (FFT)
over the integers modulo q [Nus82,Win96,GG03,Bla10] and also discussed in this chapter. An-
other major building block in a lot of lattice-based encryption and especially signature schemes
is discrete Gaussian sampling, which can be expensive to implement on constrained devices for
large standard deviations. Thus we review various algorithms that allow certain trade-offs and
optimization for specific goals, e.g., performance, table size, or no dependency on floating point
arithmetic (see [Fol14,DG14]).

2.2 Notation

In this thesis we use the following notation and definitions of vectors, matrices, polynomials,
and distributions.

Sets

By the symbol N we denote the set of positive integers, by Z we denote the ring of integers, and
by Zq the ring Z/qZ of integers modulo an integer q which is represented by elements in the
interval [−q/2, q/2) ∩ Z. By the symbol R we denote the set of real numbers.

Vectors and Matrices

We denote column vectors by bold lower case letters (e.g., v = (v1, . . . , vn)T where vT is the
transpose) and matrices by bold upper case letters (e.g., M). In case of matching dimensions of
two vectors x,y, their inner product is denoted by 〈x,y〉 =

∑
i xiyi. The Euclidean norm of a

vector (`2 norm) is defined as

‖x‖ =
√
〈x,x〉 =

√√√√ n∑
i=1

x2i .

For the general case we define the `p norm for p ∈ (0,∞) as

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

and the infinity norm `∞ is defined as ‖x‖∞ = maxni=1 |xi|.

8



2.2. Notation

Polynomials

By Z[x] and R[x] we denote the sets of polynomials (in an indeterminate variable x) with
coefficients in Z and R, respectively.

Definition 1 (Characteristics of Polynomials, statement from [Lyu08b]). A polynomial is monic
if the coefficient of the highest power is one. A polynomial in Z[x] is irreducible if it cannot be
represented by polynomials of lower degree that are also in Z[x]. A polynomial with degree less
than n can be represented as a n-dimensional vector with the coefficients of the polynomial as
coordinates.

We further denote by g[i] the coefficient gi of a polynomial g = g0+g1x+ · · ·+gn−1xn−1. The
product of two n-dimensional vectors xy is the (2n−1)-dimensional vector that is the product
of the corresponding polynomials.

Definition 2 (The Ring R, statement from [BLLN13b]). Let d be a positive integer and define
R = Z[x]/(Φd(x)) as the ring of polynomials with integer coefficients modulo the d-th cyclotomic
polynomial Φd(x) ∈ Z[x]. The degree of d is n = ϕ(d), where ϕ is Euler’s totient function.
The elements of R can be uniquely represented by all polynomials in Z[x] of degree less than
n. Arithmetic in R is arithmetic modulo Φd(X), which is implicit whenever terms or equalities
involving elements in R are used. An arbitrary element a ∈ R can be written as a =

∑n−1
i=0 aix

i

with ai ∈ Z and we identify a with its vector of coefficients (a0, a1, . . . , an−1).

When multiplying two polynomials f ,g in R we assume that the result fg is automatically
reduced into R. The object that is primarily used in this work is the ring Rq = R/qR where all
coefficients are automatically reduced modulo an integer modulus q into the interval [−q/2, q/2).
To denote the modulo q reduction of all coefficients of an element a ∈ R we sometimes write
[a]q.

Definition 3 (Invertibility of Polynomials in R, statement from [BLLN13b]). A polynomial
f ∈ R is invertible modulo q if there exists a polynomial f−1 such that ff−1 = f̃ , where f̃(x) =∑

i aix
i with a0 = 1 mod q and aj = 0 mod q for all j 6= 0.

Sampling

By a $← S we denote the action of picking a independently and uniformly at random from some
set S. For a finite S we sometimes denote the uniform distribution on S by U(S). Sometimes
we also use the notation a

$← Rq,k to denote the uniformly random sampling of a ∈ Rq where
all coefficients of a are [−k, k]. For a probability distribution χ on R we assume that we
can sample efficiently and use the notation a

$← χ to denote the random sampling of a ∈ R
from χ. The discrete Gaussian distribution DZ,σ with mean 0 and standard deviation σ > 0

over the integers associates the probability ρσ(x)/ρσ(Z) to x ∈ Z for ρσ(x) = exp(−x
2

2σ2 ) and
ρσ(Z) = 1 + 2

∑∞
x=1 ρσ(x). Thus by d $← DZ,σ we denote the process of randomly sampling a

value d ∈ Z according to DZ,σ.

9



Chapter 2. Background on Lattices, Polynomial Multiplication, and Gaussian Sampling

Miscellaneous

We define the logarithm log x to be base 2 unless otherwise stated. We use the standard Landau
notation O so that f(n) = O(g(x)) is defined as limx→∞

f(x)
g(x) 6=∞. We use iff as a short form

for if and only if.

2.3 Lattices and Ideal Lattices

A lattice is an arrangements of points in an Euclidean space with a regular structure.

Definition 4 (Lattice, statement from [Reg09,MR09]). Given n linearly independent vectors
b1, . . . ,bn ∈ Rm, the lattice generated by them is defined as

L(b1, . . . ,bn) =
{∑

xibi|xi ∈ Z
}
.

We refer to b1, . . . ,bn as the basis of the lattice. We can equivalently define the basis B as the
m × n matrix whose columns are b1, . . . ,bn such that B = [b1, . . . ,bn] ∈ Rm×n. The lattice
that is generated by B is

L(B) = L(b1, . . . ,bn) = {Bx|x ∈ Zn} .

The rank of the lattice is defined as n and its dimension is m. If n = m, the lattice is called a
full-rank lattice.

Every point in the lattice can be described as linear combination of the linearly independent
basis vectors b1, . . . ,bn by multiplying them with integer coefficients. The same lattice can be
defined by different bases. Two bases are equivalent in case column vectors of the basis matrix
are permuted, vectors of the basis matrix are negated, or vectors are added to integer multiples
of other vectors. These operations can be described by the multiplication of the basis matrix B
by any unimodular matrix U (i.e., det(U) = ±1). Thus, two bases B1 and B2 are equivalent if
and only if B2 = B1U, given a unimodular matrix U and two bases B1 and B2.

Definition 5 (Span of a Lattice, statement from [Reg09]). The span of a lattice L(B) is the
linear space spanned by its vectors,

span(L(B)) = span(B) = {By|y ∈ Rn}.

The length (`2 norm) of the shortest non-zero vector in a lattice, which equals the minimum
distance, is denoted by λ1. The generalization denoted as the i-th successive minima is defined
such that the ball B̄(0, r) = {x ∈ Rm | ‖x‖ ≤ r}, of radius r and center 0, contains at least i
linearly independent vectors [Mic11].

Definition 6 (Successive Minima, statement from [Reg09]). Let Λ be a lattice of rank n. For
i ∈ {1, . . . , n} we define the i-th successive minimum as

λi(Λ) = inf{r|dim( span(Λ ∩ B̄(0, r))) ≥ i}

where B̄(0, r) = {x ∈ Rm | ‖x‖ ≤ r} is the closed ball of radius r around 0.

10



2.3. Lattices and Ideal Lattices

For more details on lattices we refer to the lecture notes of Regev [Reg09] and Miccian-
cio [Mic14] and comprehensive works like [MG02,MR09,Mic11].

2.3.1 Computational Problems on Lattices

The shortest vector problem (SVP) and the closest vector problem (CVP) are two fundamental
problems in lattices and their conjectured intractability is the foundation for a large number of
cryptographic applications of lattices.

Definition 7 (The (Approximate) Shortest Vector Problem, statement from [Mic14], SVP).
The shortest vector problem (SVP) asks, given a lattice basis B, to find a shortest nonzero
lattice vector, i.e., a vector v ∈ L(B) with ‖v‖ = λ1(L(B)). In the γ-approximate SVPγ, for
γ ≥ 1, the goal is to find a shortest nonzero lattice vector v ∈ L(B) \ {0} of norm at most
‖v‖ ≤ λ1(L(B)).

The SVP asks for a shortest nonzero vector in a lattice, but not the shortest nonzero vector
as several shortest vectors can exist. The approximate SVPγ is more difficult for a small factor
γ and becomes easier for an increasing γ. An algorithm that solves SVP in polynomial time
and with exponential approximation factor 2O(n) is the Lenstra, Lenstra, Lovász (LLL) algo-
rithm [LLL82], which was extended in works like [Sch87,SE94,GN08a] (see [NV09] for a survey).
Algorithms that achieve an exact solution or approximate solutions of SVP within poly(n) fac-
tors, either run in 2O(n) and require exponential space [AKS01] or in 2O(n logn) and require only
polynomially space [Kan83]. Based on these observations Micciancio and Regev conclude that
"there is no polynomial time algorithm that approximates lattice problems to within polynomial
factors" [MR09].

Definition 8 (The (Approximate) Closest Vector Problem, CVP, statement from [Mic14]). The
closest vector problem (CVP) asks, given a lattice basis B and target vector t, to find the lattice
vector v ∈ L(B) such that the distance to the target ‖v− t‖ is minimized. In the γ-approximate
CVPγ, for γ ≥ 1, the goal is to find a lattice vector v ∈ L(B) such that ‖v−t‖ ≤ γ · dist(t,L(B))
where dist(t,Λ) = inf{‖v − t‖ : v ∈ Λ} is the distance of t to Λ.

The CVP is the inhomogeneous version of SVP and can also be formulated as syndrome
decoding problem for full rank lattices [Mic14].
For SVP NP-hardness was shown by van Emde Boas in [vEB81] for the `∞ norm. Ajtai then

proved that SVP is NP-hard for the `2 norm using randomized reductions [Ajt98] where the
corresponding decision problem is NP-complete. For CVP it was also shown in [vEB81] that
the problem is NP-hard. However, when building cryptosystems in practice only subclasses of
CVP or SVP are used that are not supposed to be NP-hard (see [HPS08, Remark 6.24.]). A
comprehensive discussion of the hardness of SVP, CVP, and its variants can be found in [Xag10,
Section 2.3] and [MG02]. In [HPS11] Hanrot et al. provide a survey on the history and state-
of-the-art of solvers for SVP and CVP.

Definition 9 (The Approximate Shortest Independent Vectors Problem, SIVP, statement
from [Mic14]). The γ-approximate shortest independent vectors problem (SIVPγ) asks, for γ ≥ 1
and when given a basis B of an n-dimensional lattice, to find linearly independent vectors
v1, . . . ,vn ∈ L(B) such that maxi ‖vi‖ ≤ γλn(L(B)).

The SIVP asks for n short linearly independent vectors and is also provided as it plays an
important role in the construction of cryptographic primitives [Mic11].

11



Chapter 2. Background on Lattices, Polynomial Multiplication, and Gaussian Sampling

2.3.2 Average-Case Problems on Standard Lattices

For lattice-based cryptography two extremely popular average-case problems with a connection
to hard lattice problems are the short (or small) integer solution (SIS) problem and the learning
with errors (LWE) problem. These two problems (and their variants) appear to be extremely
versatile and allow the construction of a variety of schemes, without explicit usage of lattices or
standard lattice problems like the SVP or CVP. Note that we mostly adopt the notation and
wording of Ducas [DB13] for the introduction of the following lattice problems and hardness
results. For further information we provide a reference to the original work.

Definition 10 (The Short Integer Solution Problem [MR07], SIS). The short integer solution
problem SISn,m,q,β with m unknowns, n ≤ m equations modulo q and norm-bound β is as follows:
given a random matrix A ∈ Zm×nq chosen uniformly, find a non-zero short vector v ∈ Zmq \ {0}
such that vTA = 0T and ‖v‖ ≤ β.

The SIS problem was first described by Ajtai [Ajt96] who proved that average-case one-way
functions exist if certain lattice problems are hard in the worst-case. This result was improved
by Micciancio and Regev in [MR07], who denoted the average-case problem as small integer
solution problem. It is usually used to construct one-way functions, collision-resistant hash
functions, or signature schemes and for appropriate parameters it is at least as hard as SIVP
or a variant of SVP, the unique shortest vector problem (uSVP).

Theorem 1 (Hardness of SIS [Ajt96,MR04,GPV08], statement from [DB13]). If there exists a
probabilistic polynomial time (PPT) algorithm A that solves SISn,m,q,β instances with q ≥ 2β

√
n

with non negligible probability then there exists a PPT algorithm B that solves uSVP2β
√
n and

SIVP2β
√
n on any lattice of dimension n.

The LWE problem was popularized by Regev [Reg05] who showed that, under a quantum
reduction, solving a random LWE instance is as hard as solving certain worst-case instances
of certain lattice problems. The LWE problem can be seen as a generalization of the learning
parity with noise (LPN) problem [BFKL93] and is related to hard decoding problems [MR09].
In general, to solve the LWE problem, one has to recover a secret vector s ∈ Znq when given a
sequence of approximate random linear equations on s. Non-quantum reductions from variants
of the shortest vector problem to variants of the LWE problem have also been shown [Pei09].
The LWE problem is usually used to construct primitives such as CPA or CCA-secure public-key
encryption, identity-based encryption (IBE), or fully-homomorphic encryption schemes [Reg10].
It can be defined as a search (sLWE) problem where the task is to recover the secret vector s or
as a decision problem (dLWE) that asks to distinguish LWE samples from uniformly random
samples.

Definition 11 (The Learning With Errors Problem [Reg05], search version, sLWE, statement
from [DB13]). The learning with errors problem, search version, sLWEn,m,q,χ, with n unknowns,
m ≥ n samples, modulo q and with error distribution χ is as follows: for a random secret s
uniformly chosen in Znq , and given m samples of the form (a, b = 〈s,a〉+e mod q) where e $← χ
and a is uniform in Znq , recover the secret vector s.

Definition 12 (The Learning With Errors Problem [Reg05], decisional version, dLWE, state-
ment from [DB13]). The learning with errors problem, decisional version, dLWEn,m,q,χ, with n

12



2.3. Lattices and Ideal Lattices

unknowns, m ≥ n samples, modulo q and with error distribution χ is as follows: for a random
secret s uniformly chosen in Znq , and given m samples either all of the form (a, b = 〈s,a〉 + e

mod q) where e $← χ, or from the uniform distribution (a, b)
$← U(Znq ×Zq), decide if the samples

come from the former or the latter case.

An interesting property of the LWE problem is the equivalence of the (search) sLWE problem
and the (decisional) dLWE problem. While it is clear that a solver for the sLWE problem can
be used to solve the dLWE problem, it is also possible to solve the sLWE problem if the dLWE
problem can be solved.

Theorem 2 (Decision to Search Reduction for LWE, statement from [DB13]). For any integers
n and m, any prime q ≤ poly(n), and any distribution χ over Zq, if there exists a PPT algorithm
that solves dLWEn,m,q,χ with non-negligible probability, then there exists a PPT algorithm that
solves sLWEn,m′,q,χ for some m′ = m · poly(n) with non-negligible probability.

The LWE problem is a particular case of the bounded distance decoding (BDD) problem,
which is a special version of the CVP. For a given basis B and a target vector t for which it
holds that dist(t,B) ≤ γλ1(B), the γ-approximate BDDγ problem asks to find a lattice vector
v ∈ L(B) closest to t [LM09]. Thus the BDD problem is a variant of the CVP where the target
vector is within a guaranteed distance of the lattice [HPS11]. LWE is then basically an instance
of the BDD problem in the lattice.

Theorem 3 (Worst-case to Average-case Connection for LWE [Reg05], statement from [DB13]).
If there exists a PPT algorithm A that solves LWEn,m,q,χ for χ = DZ,αq where αq > 2

√
n with

non negligible probability, then there exists a quantum polynomial time algorithm B that solves
uSVPγ and SIVPγ on any lattice (i.e., in the worst case) of dimension n where γ = O(n/α).

The reduction in Theorem 3 uses the original result by Regev who showed that solving LWE
is at least as hard as solving the uSVPγ and SIVPγ problem using quantum algorithms and
appropriate approximation factors. Subsequent classical reductions for LWE have been provided
in works like [Pei09,BLP+13]. The reduction by Regev also somehow explains the prevalence of
the discrete Gaussian distribution in lattice-based cryptography as the original proof only holds
if e is sampled from the discrete Gaussian distribution DZ,σ with standard deviation σ = αq.
Recently, the hardness of LWE was also shown for different small error distributions, e.g., uni-
formly random from (0, 1), under the assumption that the number of samples is limited [MP13].

Definition 13 (LWE with Small Secret, dLWE’, statement from [DB13]). The learning with
errors problem dLWE’n,m,q,χ, with n unknown, m ≥ n samples, modulo q and with error dis-
tribution χ is as follows: for a random secret s drawn from −χn, and given m samples ei-
ther all of the form (a, b = 〈s,a〉 + e mod q) where e $← χ, or from the uniform distribution
(a, b)

$← U(Znq × Zq); decide if the samples come from the former or the latter case.

For some cryptographic applications it is important that both the error as well as the secret
of LWE samples are small, e.g., to limit noise growth in public-key encryption or homomorphic
encryption. In [ACPS09] an algorithm is given that solves dLWE using an efficient algorithm
to solve dLWE’. Thus the LWE problem is no easier for a secret s with coefficients drawn from
the error distribution χ and not uniformly random in Zq.

13



Chapter 2. Background on Lattices, Polynomial Multiplication, and Gaussian Sampling

2.3.3 Ring Variant of LWE

The biggest practical issue of lattice-based cryptography based on SIS and LWE are huge key
sizes and also quite inefficient matrix-vector and matrix-matrix arithmetic. A more efficient
alternative is to define LWE over polynomial rings [LPR10b]. While certain properties can be
established for various rings, we restrict ourselves to the ring Rq = Zq[x]/〈xn + 1〉 where n is a
power of two.

Definition 14 (The Search Ring-LWE Problem [LPR10b], RsLWE). Let R denote the ring
R = Z[x]/〈xn + 1〉 for n being an integer power of 2, and Rq = R/(qR) for some integer q.
The RdLWEm,q,χ problem, for m ≥ 1 samples, modulo q and with error distribution χ over Z
is defined as follows: for a secret s ∈ Rq and a ∈ Rq, both with uniform coefficients in Zq, and
given m samples of the form (a,b = a · s + e) where e ∈ Rq has coefficients drawn from χ,
recover the secret polynomial s.

Definition 15 (TheDecisionalRing-LWEProblem [LPR10b],RdLWE, statement from [DB13]).
Let R denote the ring R = Z[x]/〈xn + 1〉 for n being an integer power of 2, and Rq = R/(qR)
for some integer q. The RdLWEm,q,χ problem, for m ≥ 1 samples, modulo q and with error
distribution χ over Z is defined as follows: for a secret s ∈ Rq and a ∈ Rq, both with uniform
coefficients in Zq, and given m samples either all of the form (a,b = a · s + e) where e ∈ Rq
has coefficients drawn from χ, or from the uniform distribution (a,b)

$← U(R2); decide if the
samples come from the former or the latter case.

The RsLWE and RdLWE problems translate the LWE problem into the ring setting
(see [LPR10b] for more details and proofs). The hardness of RsLWE and RdLWE is then
based on the worst-case hardness of short-vector problems on ideal lattices, which are a subclass
of standard lattices. A decision to search reduction, as given in Theorem 2, was also shown
for RsLWE and RdLWE but places certain restrictions on the underlying rings. Analog to
Definition 13, it is also possible to sample the secret s from the error distribution χ instead of
the uniform distribution U(Zq). This form of the RLWE (and also standard LWE) problem is
sometimes called the "Hermite normal form". In the remaining parts of the thesis we will use
the RLWE either in its Hermite or standard form.

2.4 Polynomial Arithmetic

Most cryptographic schemes based on ideal lattices that target practical application scenarios
are instantiated using polynomial rings Rq = R/(qR) = Zq[x]/〈xn+1〉 for integer n and integer
q (see Chapter 3).1 In this case the basic operations required are polynomial addition and
polynomial multiplication. While polynomial addition can be performed with O(n) operations
in Zq, a naive implementation of polynomial multiplication requires O(n2) operations in Zq and
can thus become very expensive for large dimensions n. In this section we thus shortly revisit
well-known polynomial multiplication algorithms that are important for the implementations of
ideal lattice-based cryptosystems discussed in this thesis.

1In almost all cases q is also a prime and n a power of two.

14



2.4. Polynomial Arithmetic

2.4.1 Schoolbook Multiplication

The product c = a·b of polynomials c,a,b ∈ Zq[x]/〈xn + 1〉 can be computed by considering
the special rule that xn ≡ −1. This leads to

a·b =

n−1∑
i=0

n−1∑
j=0

a[i]b[j]xi+j

 mod 〈xn + 1〉 =

n−1∑
i=0

n−1∑
j=0

(−1)b
i+j
n ca[i]b[j]xi+j mod n (2.1)

where each coefficient is implicitly reduced modulo q. Note that reduction modulo n in Equa-
tion 2.1 can be performed efficiently by using a bit mask when n is a power of two and (−1)b

i+j
n c

is 1 for i+ j < n and −1 otherwise (note that i+ j ≤ 2n− 2).
In practice two basic methods exist to implement schoolbook multiplication (for certain hy-

brid approaches we refer to [GPW+04]). One is row-wise multiplication (alternatively called
"operand scanning" multiplication), which is also used in Equation 2.1 and where one coeffi-
cient of an operand is fixed while it is multiplied by all coefficients of the second operand. Thus
a complete row of partial products is added to the result. The second approach is column-wise
multiplication (alternatively called "product scanning" or "Comba" [Com90] multiplication)2

where a full column of the result is computed before moving on to the next column. Both
methods have a complexity of O(n2) operations in Zq and require n2 modular multiplications
and (n− 1)2 additions or subtractions.

2.4.2 The Number Theoretic Transform

Polynomial multiplication can be performed with O(n log n) operations in Zq using the convo-
lution property of the number theoretic transform (NTT) [Pol71,Nus82,Win96,GG03,Bla10].
The NTT is basically a fast Fourier transformation (FFT) defined over a finite field or ring so
that no inaccurate floating point or complex arithmetic is needed. Thus all complex roots of
unity of the FFT are exchanged for integer roots of unity and computations are carried out in
the ring of integers modulo an integer q. Main applications of the NTT, besides ideal lattice-
based cryptography, are integer multiplication (e.g., Schönhage and Strassen [SS71]) and signal
processing [Bla10]. As we want to use the NTT for polynomial multiplication we are only in-
terested in NTTs with parameters that support the so-called circular convolution property (see
Definition 18 and [Nus82]). Additionally, in this work we assume for simplicity that the modulus
q is prime. For more details on the NTT with composite moduli we refer to [Nus82] and first
introduce the definition of primitive roots of unity.

Definition 16 (Primitive Root of Unity, statement from [GG03]). Let R be a ring, n ∈ N≥1,
and ω ∈ R. The value ω is an n-th root of unity if ωn = 1. The value ω is a primitive n-th root
of unity (or root of unity of order n) if it is an n-th root of unity, n ∈ R is a unit in R, and
ωn/t − 1 is not a zero divisor for any prime divisor t of n.

Definition 17 (NTT Supporting Circular Convolutions, see [Nus82]). For a given primitive n-
th root of unity ω in Zq, where q is a prime, the generic forward NTT that is supporting circular

2See [HS15] for a short discussion on the history of the column-wise multiplication method.

15



Chapter 2. Background on Lattices, Polynomial Multiplication, and Gaussian Sampling

convolutions and transformation of a length-n vector a = (a0, . . . , an−1) to ã = (ã0, . . . , ãn−1)
with elements in Zq, denoted as ã = NTT(a), is defined as

ãi =

n−1∑
j=0

ajω
ij mod q, i = 0, 1, . . . , n− 1 (2.2)

with the inverse transformation, denoted as a = INTT(ã), is defined as

ai = n−1
n−1∑
j=0

ãjω
−ij mod q, i = 0, 1, . . . , n− 1. (2.3)

As q is required to be prime it is always ensured that n−1 mod q and ω−1 mod q exist and
thus the only remaining requirement for the existence of the NTT is the existence of a primitive
root of unity ω.

Theorem 4 (Existence of the NTT Supporting Circular Convolutions, see [Nus82]). An NTT
of length n that supports circular convolutions and that is defined modulo a prime q exists if and
only if n|(q − 1).

As previously stated, we are only interested in NTTs supporting circular convolutions to use
them for polynomial multiplication. The definition of the positive wrapped convolution and
negative wrapped convolution is thus provided below.

Definition 18 (Circular Convolutions, statement from [Win96]). Let a = (a0, . . . , an−1), b =
(b0, . . . , bn−1) be vectors over Z. The convolution of a and b, written as a � b, is the vector
c = (c0, . . . , c2n−1), with

ci =
n−1∑
j=0

ajbi−j

where ak = bk = 0 for k < 0 or k ≥ n.
The positive wrapped convolution of a and b is the vector c = (c0, . . . , cn−1) with

ci =
i∑

j=0

ajbi−j +
n−1∑
j=i+1

ajbn+i−j .

The negative wrapped convolution of a and b is the vector c = (c0, . . . , cn−1) with

ci =

i∑
j=0

ajbi−j −
n−1∑
j=i+1

ajbn+i−j .

These convolutions are highly related to polynomial multiplication. The multiplication of two
degree-n polynomials can be seen as the convolution of their coefficient vectors. Additionally,
the multiplication of two degree-n polynomials in Z[x]/〈xn − 1〉 corresponds to the positive
wrapped convolution of their coefficient vectors and the multiplication of two degree-n poly-
nomials in Z[x]/〈xn + 1〉 corresponds to the negative wrapped convolution of their coefficient

16



2.4. Polynomial Arithmetic

vectors. Thus an efficient algorithm to compute convolutions yields an efficient algorithm for
polynomial multiplication.

Theorem 5 (Convolution Theorem, see [Win96]). Let ω be a primitive 2n-th root of unity in
Zq. Let a = (a0, . . . , an−1) and b = (b0, . . . , bn−1) be vectors of length n with elements in Zq and
a′ = (a0, . . . , an−1, 0, . . . , 0), b′ = (b0, . . . , bn−1, 0, . . . , 0) be the corresponding vectors of length
2n, where the trailing components have been filled with zeros. With ◦ meaning component-wise
multiplication then a� b = INTT(NTT(a′)◦NTT(b′)).

Using Theorem 5 it is now possible to multiply arbitrary polynomials. The two input poly-
nomials are first mapped into a zero padded vector, transformed into the frequency domain,
multiplied coefficient-wise, and then transformed back into the time domain. If the polynomial
multiplication is performed in Zq[x]/〈xn + 1〉, the convolution theorem can also be used as the
2n-degree result can be reduced modulo 〈xn + 1〉 afterwards. However, this is not optimal as by
appending n zeros, the length of the input sequence to the transform doubles.
To remove the need for zero padding, we first, for a, ā ∈ Rq and ψ ∈ Zq, define ā =

PowMulψ(a) = (a0, ψa1, . . . , ψ
n−1an−1) as well as the inverse multiplication by powers of ψ−1

denoted as a = PowMulψ−1(ā).

Theorem 6 (Wrapped Convolution, see [Win96, LMPR08]). Let ω be a primitive n-th root of
unity in Zq and ψ2 = ω. Let a = (a0, . . . , an−1) and b = (b0, . . . , bn−1) be vectors of length n
with elements in Zq.

(1) The positive wrapped convolution of a and b is INTT(NTT(a)◦NTT(b)).

(2) Let d = (d0, . . . , dn−1) be the negative wrapped convolution of a and b. Let ā =
PowMulψ(a), b̄ = PowMulψ(b). It then holds that d = PowMulψ−1(INTT(NTT(ā)◦NTT(b̄))).

By using Theorem 6 we can directly perform a negative wrapped convolution without zero
padding. Additionally, we are getting the necessary reduction by the polynomial xn+1 for "free"
and can work with a transform length that is equal to the number of polynomial coefficients.
The only restriction is that we have to find an n-th root of unity ω and its modular square root
ψ such that ψ2 ≡ ω mod q. As a consequence, when q is a prime and n a power of two, the
negative wrapped convolution approach is only possible in case q ≡ 1 mod 2n [LMPR08].

2.4.3 Efficient Computation of the NTT

A straightforward computation of the NTT using Equation 2.2 would have quadratic complexity
and would not be more efficient than the schoolbook approach. Thus, to realize fast polynomial
multiplication using the convolution theorem a fast algorithm to compute the NTT is required.
The most straightforward implementation of the NTT with O(n log n) operations in Zq is a
Cooley-Tukey radix-2 decimation-in-time (DIT) algorithm [CT65].
The DIT NTT algorithm recursively splits the computation into a sub-problem on the even

inputs and a sub-problem on the odd inputs of the NTT and an iterative description is given
in Algorithm 1. It requires a so called bit-reversed reordering of the input polynomial (BitRev)
to enable in-place computation of the NTT. Thus for a′,a ∈ Rq we also define a′ = BitRev(a)
so that each coefficient a′i of a′ contains the coefficient of a with its bitreversed index such that
a′i = aBitrevInt(i) (see Algorithm 2 for BitrevInt).

17



Chapter 2. Background on Lattices, Polynomial Multiplication, and Gaussian Sampling

Algorithm 1 Fast Iterative Decimation-in-Time Number Theoretic Transform [CLRS09]

1: func Fast-NTTω, qDIT(a ∈ Rq)
2: a← BitRev(a)
3: N ← n
4: m← 2
5: while m ≤ N do
6: s← 0
7: while s < N do
8: for i to m/2− 1 do
9: N ← i · n/m

10: k ← s+ i
11: l← s+ i+m/2
12: c← a[k]
13: d← a[l]
14: a[k]← c+ ωNd mod q
15: a[l]← c− ωNd mod q
16: end for
17: s← s+m
18: end while
19: m← m · 2
20: end while
21: return a
22: end func

The algorithm applies the so-called Cooley-Tukey (CT) butterfly, which computes c + ωNd

and c−ωNd for some values of N ∈ {0, n/2−1} and ω, c, d ∈ Zq overall n log2(n)
2 times. It can be

used to calculate the forward transformations NTT(a) = Fast-NTT(a)DIT
ω,q as well as the inverse

transformation as INTT(a) = n−1Fast-NTT(a)DIT
ω−1,q.

The powers of the primitive root of unity ω (often referred to as twiddle factors) can be
precomputed or the algorithm can be rearranged to minimize the number of exponentiations or
multiplications to obtain them (see [RVM+14]). When we only use NTT or INTT we refer to
an implementation according to or very similar to Algorithm 1 (using a fast NTT algorithm).
When it is clear from the context that a negacyclic convolution is computed we do not explicitly
write PowMulψ or PowMulψ−1 before a call to the NTT algorithm.

Algorithm 2 Bit-Reversal of an Integer
1: func BitrevInt(x ∈ [0, 2n))
2: //x is an integer in binary form x = xn−1 . . . x0
3: for i = 0 to n− 1 do
4: yi ← xn−1−i
5: end for
6: return y
7: end func

18



2.5. Discrete Gaussian Sampling over the Integers

Early works dealing with the FFT already covered methods to parallelize or to optimize the
computation of the FFT/NTT on certain target architectures and a vast amount of research
exists on the design of FFT algorithms (see [CG00, CP01] for a comprehensive treatment).
We also refer to Chapter 6 where we discuss various optimizations of the NTT algorithms that
specifically target a constrained microcontroller environment. In Chapter 9 we adapt the cached-
FFT algorithm, which was proposed by Baas [Baa05,Baa99], to the NTT setting and use it for
the implementation of a homomorphic encryption scheme. It is also worth mentioning that
different flavors of the NTT like the Fermat and Mersenne variants exist [Nus82].

2.5 Discrete Gaussian Sampling over the Integers

The discrete Gaussian distribution plays an important role in lattice-based cryptography. For
some cryptosystems that use standard random lattices, like GPV [GPV08], it is usually necessary
to sample a point on a lattice L ∈ R that is distributed according to a discrete Gaussian
distribution. This expensive operation is usually mandated by the security proofs and worst-
case reductions. However, the implementation of Gaussian sampling, especially on a lattice, is
challenging and can lead to complex implementations. The sampling of polynomials according
to a discrete Gaussian distribution is simpler and for polynomials in Rq where n is a power of
two it is sufficient to sample each coefficient according to a discrete Gaussian distribution. Still,
no computer running with finite time is able to sample from a perfect Gaussian distribution, so
it is clear that sampled values can only approximate a Gaussian. However, the gap between the
real Gaussian distribution and the sampled one has to be small, so that the security proofs hold.
In this section we thus first revisit the definition of the discrete Gaussian distribution, list

general algorithms for discrete Gaussian sampling and then describe one approach designed for
embedded systems and one approach using a convolution of Gaussians in more detail.

2.5.1 Definitions

Before we revisit practical sampling algorithms we provide some definitions regarding the discrete
Gaussian distribution (see also Section 2.2). The continuous Gaussian distribution for a random
variable E on R, center c ∈ R, and for x ∈ R is defined as Pr(E = x) = 1

σ
√
2π
e−(x−c)

2/(2σ2).
However, it is not possible to obtain a discrete Gaussian distribution by simply rounding the
output of a continuous Gaussian sampler.

Definition 19 (Discrete Gaussian Distribution, statement from [DG14]). Let σ ∈ R>0 be fixed.
The discrete normal distribution or discrete Gaussian distribution on Z with center c ∈ R and
parameter σ is denoted DZ,σ,c and is defined as follows. Let

Sσ,c =

∞∑
k=−∞

e
−(k−c)2

2σ2 = 1 + 2

∞∑
k=1

e
−(k−c)2

2σ2

and let E be the random variable on Z such that, for x ∈ Z,Pr(E = x) = ρσ(x) = 1
S e
−(x−c)2/(2σ2).

In some works (e.g., [LP11]) the Gaussian parameter s is used and the distribution is written
as being proportional to e−πx2/(s2) for s =

√
2πσ. It is also possible to sample a lattice according

to a discrete Gaussian distribution. For x ∈ L and c ∈ Rm the discrete Gaussian distribution

19



Chapter 2. Background on Lattices, Polynomial Multiplication, and Gaussian Sampling

DL,σ,c on L is given by Pr(x) = ρL,σ,c(x)/ρL,σ,c(L) for ρL,σ,c(x) = exp(−‖x − c‖2/(2σ)2).
However, in this thesis we only deal with lattice-based cryptography that requires sampling
from a Gaussian distribution centered around 0 over the integers. Thus DZ,σ with mean 0 and
standard deviation σ > 0 over the integers associates the probability ρσ(x)/ρσ(Z) to x ∈ Z for
ρσ(x) = exp(−x

2

2σ2 ) and ρσ(Z) = 1 + 2
∑∞

x=1 ρσ(x) (see [DG14] for more details).
A tail bound for discrete Gaussians is given in [Lyu11, Lemma 4.4(1)] and states that for any

k > 0,

Pr
z

$←DZ,σ

[|z| > kσ] ≤ 2e
−k2
2 .

Thus, as also shown in [DG14], for k = 12

Pr
z

$←DZ,σ

[|z| > 12σ] ≤ 2e
−122

2 < 2−100.

When analyzing sampling algorithms it is helpful to be able to compare the required number
of random bits to sample one value with a theoretical lower bound (see the discussion in [DG14]).

Definition 20 (Entropy of a Discrete Gaussians, statement from [DG14]). The entropy of a
sample from DZ,σ is

H = −
∞∑

k=−∞
pk log2(pk)

for pk = ρσ(k).

2.5.2 Review of Algorithms for Discrete Gaussian Sampling

With the rising popularity of lattice-based cryptography and more focus on practical implemen-
tations, several algorithms for discrete Gaussian sampling have been proposed, which we shortly
review in this section. For a detailed comparison of some algorithms, with focus on constrained
architectures, we refer to work by Dwarakanath and Galbraith [DG14]. They state that discrete
Gaussian sampling is challenging due to the need for a large amount of random numbers, the re-
quirement for high precision floating point arithmetic or large tables, and quality requirements
regarding statistical distance. An additional challenge in practice is certainly the protection
against implementation attacks, especially attacks that exploit leakage of timing information.
For further information we also refer to a survey on Gaussian sampling in lattice-based cryp-
tography [Fol14] and to the PhD theses of Ducas [DB13] and Lepoint [Lep14] who dealt with
Gaussian sampling in the context of lattice-based cryptography.

Rejection Sampling

One of the conceptually simplest algorithms to sample from a discrete Gaussian distribution
is to choose a uniformly random u ∈ {−τσ, . . . , τσ} (in this case τ is denoted as tail-cut) and
to accept it with a probability proportional to exp(−x2/2σ2) [DDLL13a,DG14]. However, this
requires costly computation of the exp() function with high precision, a large number of random
bits, and leads to ≈ 10 trials per sample.

20



2.5. Discrete Gaussian Sampling over the Integers

Cumulative Distribution Table

The cumulative distribution table (CDT) requires a precomputed table to sample from a discrete
Gaussian distribution. First a table M with entries pz = Pr(x ≤ z : x ← Dσ) for z ∈ [0, τσ]
has to be precomputed and stored with precision λ [Pei10, DDLL13a, DG14]. The necessary
storage space is roughly τσλ bits and to save storage space commonly only z ∈ [0, τσ] is stored.
Sampling requires to choose a uniformly random y from the interval [0, 1) and a bit b and return
to return the integer (−1)bz ∈ Z such that y ∈ [pz−1, pz). Finding y in the table is just a search
problem and either a linear or binary search algorithm or something more advanced can be used.
Additionally, the CDT-table can contain a lot of zeros so that specific strategies can be used to
further reduce the size of the table. Note that no floating point arithmetic is required as it is
sufficient to just store the binary expansion of the fractional part instead of a float or double as
all numbers used are smaller than 1.0.

Knuth-Yao Algorithm

The Knuth-Yao algorithm allows to sample from a discrete Gaussian distribution [RVV13,DG14]
by constructing a binary tree from the probability matrix and by performing a random walk to
sample an element. The probability matrix consists of the binary expansion of the probabilities
of all x ∈ [0, τσ] ignoring leading zero digits. The matrix determines a rooted binary tree with
internal nodes that always have two successors, as well as terminal leaves. The leaves are labeled
with the value that is returned if this leaf is reached during the random walk through the tree.
The number of leaves at level n is equal to the number of 1’s in column n of the probability
matrix (starting with column 0). The row in which a one appears is used as label for one of the
leaves. Then all remaining nodes become internal nodes with two successors that get labeled
the same way.

Ziggurat Algorithm

The discrete Ziggurat algorithm [BCG+13] is an approach to optimize rejection sampling. For
this purpose m rectangles with the left corners on the y-axis and the right corners on the graph
of the probability distribution function are computed such that all rectangles have the same size.
The entire area under the graph is then covered by rectangles and a rectangle Ri can efficiently
be stored by just storing the coordinates (xi, yi) of the lower right corner.
To sample a value, first a rectangle Ri is uniformly random sampled. The next step is to

uniformly choose a x value within the sampled rectangle. If this x value is smaller or equal to
the x coordinate of the previous rectangle, x gets accepted, because all points (xj , yj) ∈ Ri with
xj ≤ xi−1 definitively lie within the area covered by the graph. Otherwise, one has to sample a
value y and compute the exp() function to determine whether a value gets rejected or accepted.

2.5.3 A Sampler Based on Bernoulli Trials

A sampler that is based on the usage of Bernoulli distributed variables was originally proposed
in [DDLL13a]. A Bernoulli distributed variable Bc outputs one with a probability of c ∈ [0, 1]
and zero otherwise. Sampling from this distribution is easy and can be performed by lazily
evaluating if y < c for a uniformly random y ∈ [0, 1) and precomputed c. The general idea of
the sampler is to optimize rejection sampling by reducing the probability of rejections. This is

21



Chapter 2. Background on Lattices, Polynomial Multiplication, and Gaussian Sampling

done by sampling first from an intermediate distribution, called binary Gaussian distribution,
and then from the target distribution. The rejection rate is thus reduced to ≈ 1.47 (compared
to 10 for classical rejection sampling) and no computations of the exponentiation function exp()
or large precomputed tables are necessary any more.
The first tool used in [DDLL13a] to construct the sampler is an algorithm to sample according

to Bexp(−x/f) for any positive integer x using log2 x precomputed values as described in Algo-
rithm 3. Next, this algorithm is used to transform a simple Gaussian distribution to a discrete
Gaussian of arbitrary parameter σ. This simple Gaussian (called the binary Gaussian because
the probability of each x is proportional to 2−x

2) has parameter σbin =
√

1/(2 ln 2) ≈ 0.849. It
is straightforward to apply (Algorithm 4) because of the form of its (unnormalized) cumulative
distribution

ρσbin({0, . . . , j}) =

j∑
i=0

2−i
2

= 1 . 1 0 0 1 0 . . . 0︸ ︷︷ ︸
4

1 0 . . . 0︸ ︷︷ ︸
6

1 . . . 0 . . . 0︸ ︷︷ ︸
2(j−2)

1 0 . . . 0︸ ︷︷ ︸
2(j−1)

1 .

From there, one easily builds the distribution k ·DZ+,σbin +U({0 . . . k− 1}) as an approximation
of DZ+,kσbin which is corrected using rejection sampling technique (Algorithm 5). This rejection
only requires variables of the form Bexp(−x/f) for integers x. The last step is to extend the
distribution from Z+ to the whole set of integers Z as described in Algorithm 6.

Algorithm 3 Sampling Bexp(−x/f) for x ∈ [0, 2`)

for i = `− 1 to 0
if xi = 1 then

sample Ai ← Bci
if Ai = 0 then return 0

return 1

2.5.4 A Sampler Based on a CDT and Gaussian Convolutions

Gaussian sampling using a large CDT has been shown to be an efficient strategy (see [DDLL13a]).
In this section, we describe an enhanced CDT-based Gaussian sampler for use on constrained
devices3. For simplicity, we explicitly refer to the parameter set of the BLISS-I signature scheme
(see Section 3.6) that requires σ = 215.73. However, the result can be transferred to any other
parameter set as well. To increase performance, we first analyze and improve the binary search
step to reduce the number of comparisons. Secondly, we decrease the size of the precomputed
tables. In Section 2.5.4 we therefore apply a convolution lemma for discrete Gaussians adapted
from [Pei10] that enables the use of a sampler with much smaller standard deviation σ′ ≈
σ/11, reducing the table size by a factor 11. In Section 2.5.4 we finally reduce the size of the
precomputed table further by roughly a factor of two using floating-point representation by
introducing an adaptive mantissa size.

3The content of this section was taken from a joint publication with Tim Güneysu and Léo Ducas [PDG14b].
Note that the proofs and ideas are attributed to Léo Ducas. However, we include this section for easy reference
and self-contained description of the implementation but do not consider the algorithmic design and proof of the
properties of the sampler as original contribution of this thesis.

22



2.5. Discrete Gaussian Sampling over the Integers

Algorithm 4 Sampling DZ+,σbin

func DZ+,σbin(x ∈ Z+ from D+
σbin

)
Generate a bit b← B1/2
if b = 0 then return 0
for i = 1 to ∞ do
draw random bits b1 . . . bk for k = 2i−1
if b1 . . . bk−1 6= 0 . . . 0 then restart
if bk = 0 then return i

end for
end func

Algorithm 5 Sampling DZ+,kσbin for k ∈ Z

sample x ∈ Z according to D+
σbin

sample y ∈ Z uniformly in {0, . . . , k − 1}
z ← kx+ y
sample b← Bexp(−y(y+2kx)/(2σ2))

if ¬b then restart
return z

Algorithm 6 Sampling DZ,kσbin for k ∈ Z

Generate an integer z ← D+
kσbin

if z = 0 restart with probability 1/2
Generate a bit b← B1/2 and return (−1)bz

Algorithm 7 Sampling Ba � Bb
sample A← Ba; if A then return 1

sample B ← Bb; if ¬B then return 0

restart

For those last two steps we require the “measure of distance”4 for a distribution, called
Kullback-Leibler divergence (KL) [KL51,CT91], which offers tighter proof than the usual statis-
tical distance. Kullback-Leibler is a standard notion in information theory and already played
a role in cryptography, mostly in the context of symmetric cryptanalysis [Vau03,BG09].

Binary Search with Shortcut Intervals

The CDT sampling algorithm uses a table 0 = T [0] ≤ T [i] ≤ · · · ≤ T [S + 1] = 1 to sample from
a uniform real r ∈ [0, 1). The unique result x is obtained from a binary search satisfying that
T [x] ≤ r < T [x+1] so that each output x has a probability T [x+1]−T [x]. For BLISS-I we need
a table with S = 2891 ≈ 13.4σ entries to dismiss only a portion of the tail less than 2−128. As a
result, the naive binary search would require C ∈ [blog2 Sc, dlog2 Se] = [11, 12] comparisons on
average.
As an improvement we propose to combine the binary search with a hash map based on the

first bits of r to narrow down the search interval in a first step (an idea that has already been
described in [CA74,Dev86] as guide tables). For the given parameters and memory alignment
reasons, we choose the first byte of r for this hash map: the unique v ∈ {0 . . . 255} such that
v/256 ≤ r < (v + 1)/256. This table I of intervals has length 256 and each entry I[v] encodes
the smallest interval (av, bv) such that T [av] ≤ v/256 and T [bv] ≥ (v + 1)/256. With this
approach, the search can be directly reduced to the interval (av, bv). By letting C denote the
number of comparison on average, we have that

∑
v
blog2(bv−av)c

256 ≤ C ≤
∑

v
dlog2(bv−av)e

256 . For
this distribution this would give C ∈ [1.3, 1.7] comparisons on average.

4Technically, Kullback-Leibler divergence is not a distance; it is not even symmetric.

23



Chapter 2. Background on Lattices, Polynomial Multiplication, and Gaussian Sampling

Preliminaries on the Kullback-Leibler Divergence

We now present the notion of Kullback-Leibler (KL) divergence that is later used to further
reduce the table size. Detailed proofs of following lemmata are given in [PDG14b].

Definition 21 (Kullback-Leibler Divergence). Let P and Q be two distributions over a common
countable set Ω, and let S ⊂ Ω be the strict support of P (P(i) > 0 iff i ∈ S). The Kullback-
Leibler divergence, denoted as DKL of Q from P is defined as:

DKL(P‖Q) =
∑
i∈S

ln

(
P(i)

Q(i)

)
P(i)

with the convention that ln(x/0) = +∞ for any x > 0.

The Kullback-Leibler divergence shares many useful properties with the more usual notion
of statistical distance. First, it is additive so that DKL(P0 × P1‖Q0 × Q1) = DKL(P0‖Q0) +
DKL(P1‖Q1) and, second, non-increasing under any function DKL(f(P)‖f(Q)) ≤ DKL(P‖Q).
An important difference though is that it is not symmetric. Choosing parameters so that the
theoretical distributionQ is at KL-divergence about 2−128 from the actually sampled distribution
P, the next lemma will let us conclude the following5: if the ideal scheme SQ (i.e., BLISS with a
perfect sampler) has about 128 bits of security, so has the implemented scheme SP (i.e., BLISS
with our imperfect sampler).

Lemma 1 (Bounding Success Probability Variations). Let EP be an algorithm making at most
q queries to an oracle sampling from a distribution P and returning a bit. Let ε ≥ 0, and Q be
a distribution such that DKL(P‖Q) ≤ ε. Let x (resp. y) denote the probability that EP (resp.
EQ) outputs 1. Then, |x− y| ≤

√
qε/2.

In certain cases, the KL-divergence can be as small as the square of the statistical dis-
tance. For example, noting Bc the Bernoulli variable that returns 1 with probability c, we
have DKL(B 1−ε

2
‖B 1

2
) ≈ ε2/2. In such a case, one requires q = O(1/ε2) samples to distinguish

those two distributions with constant advantage. Hence, we yield higher security using KL-
divergence than statistical distance for which the typical argument would only prove security
up to q = O(1/ε) queries. Intuitively, statistical distance is the sum of absolute errors, while
KL-divergence is about the sum of squared relative errors.

Lemma 2 (Kullback-Leibler divergence for bounded relative error). Let P and Q be two distri-
butions of same countable support. Assume that for any i ∈ S, there exists some δ(i) ∈ (0, 1/4)
such that we have the relative error bound |P(i)−Q(i)| ≤ δ(i)P(i). Then

DKL(P‖Q) ≤ 2
∑
i∈S

δ(i)2P(i).

Using floating-point representation, it seems now possible to halve the storage ensuring a
relative precision of 64 bits instead of an absolute precision of 128 bits. Indeed, storing data

5Apply the lemma to an attacker with success probability 3/4 against SP and number of queries < 2127

(amplifying success probability by repeating the attack if necessary), and deduce that it also succeeds against
SQ with probability at least 1/4.

24



2.5. Discrete Gaussian Sampling over the Integers

with slightly more than of relative 64 bits of precision (that is, mantissa of 64 bits in floating-
point format) one can reasonably hope to obtain relative errors δ(i) ≤ 2−64 resulting in a
KL-divergence less than 2−128. We further exploit this idea in Section 2.5.4. But first, we will
also use KL-divergence to improve the convolution Lemma of Peikert [Pei10] and construct a
sampler using convolutions.

Reducing Precomputed Data by Gaussian Convolution

Given that x1, x2 are variables from continuous Gaussian distributions with variances σ21, σ22,
then their combination x1 + cx2 is Gaussian with variance σ21 + c2σ22 for any c. While this is not
generally the case for discrete Gaussians, there exists similar convolution properties under some
smoothing condition as proved in [Pei10,MP13]. Yet those lemmata were designed with asymp-
totic security in mind; for practical purpose it is in fact possible to improve the O(ε) statistical
distance bound to a O(ε2) KL-divergence bound. We refer to [Pei10] for the formal definition of
the smoothing parameter η; for our purpose it only matters that ηε(Z) ≤

√
ln(2 + 2/ε)/π and

thus our adapted lemma allows to decrease the smoothing condition by a factor of about
√

2.

Lemma 3 (Adapted from Thm. 3.1 from [Pei10]). Let x1 ← DZ,σ1, x2 ← DkZ,σ2 for some
positive reals σ1, σ2 and let σ−23 = σ−21 + σ−22 , and σ2 = σ21 + σ22. For any ε ∈ (0, 1/2) if
σ1 ≥ ηε(Z)/

√
2π and σ3 ≥ ηε(kZ)/

√
2π, then distribution P of x1 + x2 verifies

DKL(P‖DZ,σ) ≤ 2
(

1−
(1 + ε

1− ε

)2)2
≈ 32ε2.

Remark. The factor 1/
√

2π in our version of this lemma is due to the fact that we use the
standard deviation σ as the parameter of Gaussians and not the renormalized parameter s =√

2πσ often found in the literature.
To exploit this lemma, for BLISS-I we set k = 11, σ′ = σ/

√
1 + k2 ≈ 19.53, and sample

x = x′1+kx′2 for x′1, x′2 ← DZ,σ′ (equivalently k ·x′2 = x2 ← DkZ,kσ′). The smoothness conditions
are verified for ε =

√
2−128/32 and ηε(Z) ≤ 3.8606. Due to usage of the much smaller σ′ instead

of σ the size of the precomputation table reduces by a factor of about k = 11 at the price of
sampling twice. However, the running time does not double in practice since the enhancement
based on the shortcut intervals reduces the number of necessary comparisons to C ∈ [0.22, 0.25]
on average. For a majority of first bytes v the interval length bv − av is reduced to 1 and x is
determined without any comparison.

Asymptotic cost. If one considers the asymptotic costs in σ, our methods allow one to sample
using a table size of Θ(

√
σ) rather than Θ(σ) by doubling the computation time. Actually, for

much larger σ one could use O(log σ) samples of constant standard deviation and thus achieve
a table size of O(1) for computational cost in O(log σ).

CDT Sampling with Reduced Table Size

We recall that when doing floating-point error analysis, the relative error of a computed value v
is defined as |v − ve|/ve where ve is the exact value that was meant to be computed. Using the

6In a previous version we stated ηε(Z) ≤ 3.92 which is not accurate and has been fixed in this version.

25



Chapter 2. Background on Lattices, Polynomial Multiplication, and Gaussian Sampling

table 0 = T [0] ≤ T [i] ≤ · · · ≤ T [S+1] = 1, the output of a CDT sampler follows the distribution
P with P(i) = T [i+ 1]− T [i]. When applying the results from KL-divergence obtained above,
the relative error of T [i + 1] − T [i] might be significantly larger than the one of T [i]. This is
particularly true for the tail, where T [i] ≈ 1 but P(i) is very small. Intuitively, we would like the
smallest probability to come first in the CDT. A simple workaround is to reverse the order of the
table so that 1 = T [0] ≥ T [i] ≥ · · · ≥ T [S+ 1] = 0 with a slight modification of the algorithm so
that P(i) = T [i]− T [i+ 1]. With this trick, the subtraction only increases the relative error by
a factor of roughly σ. Indeed, leaving aside the details relative to discrete Gaussian, for x ≥ 0
we have ∫ ∞

y=x
ρs(y)dy

/
ρs(x) ≤ σ whereas

∫ x

y=0
ρs(y)dy

/
ρs(x) −→

x→∞
+∞.

The left term is an estimation of the relative-error blow-up induced by the subtraction with
the CDT in the reverse order and the right term the same estimation for the CDT in the
natural order. We aim to have a variable precision in the table T [i] so that δ(i)2P(i) is about
constant around 2−128/|S| as suggested by Lemma 2 while δ(i) denotes the relative error δ(i) =
|P(i) − Q(i)|/P(i). As a trade-off between optimal variable precision and hardware efficiency,
we propose the following data-structure. We define 9 tables M0 . . .M8 of bytes for the mantissa
with respective lengths `0 ≥ `1 ≥ · · · ≥ `8 and another byte table E for exponents, of length `0.
The value T [i] is defined as

T [i] = 256−E[i] ·
8∑

k=0

256−(k+1) ·Mk[i]

where Mk[i] is defined as 0 when the index is out of bound i ≥ `k. In other terms, the value
of T [i] is stored with p(i) = 9 −min{k|`k > i} bytes of precisions. More precisely, lengths are
defined as [`0, . . . , `8] = [262, 262, 235, 223, 202, 180, 157, 125, 86] so that we store at least two
bytes for each entry up to i < 262, three bytes up to i < 213 and so forth. Note that no actual
computation is involved in constructing T [i] following the plain CDT algorithm.
For evaluation, we used the closed formula for KL-divergence and measured DKL(P‖Q) ≤

2−128. The storage required by the table is 2`0 + `1 + · · · + `8 ≈ 2.0 KB. The straightforward
CDF approach requires each entry up to i < 262 to be stored with 128 + log2 σ bits of precisions
and thus requires a total of at least 4.4 KB.

26



Chapter 3

Introduction to Practical Ideal Lattice-Based
Cryptography

In this chapter we shortly revisit some basic definitions related to asymmetric cryp-
tography and introduce post-quantum cryptography. We then recall a public-key en-
cryption scheme that is based on the ring learning with errors problem (denoted RL-
WEenc). Moreover, we describe the GLP and BLISS digital signature schemes and
introduce the somewhat homomorphic encryption (SHE) scheme YASHE. All schemes
that are discussed in this chapter have been previously designed and proposed by var-
ious authors and the chapter contains no original work done by the author of this
thesis. However, for the background on RLWEenc some parts from [PG13,POG15a]
were used. For the description of GLP we included parts of [GLP15,HPO+15] and for
BLISS we used material from [PDG14a,PDG14b,OPG14,HPO+15]. The description
of YASHE was taken from [PNPM15a].

Contents of this Chapter
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Post-Quantum Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Security Evaluation of Lattice-Based Cryptography . . . . . . . . . . . . . . 30
3.4 A RLWE-Based Public-Key Encryption Scheme (RLWEenc) . . . . . . . . . 31
3.5 The GLP Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 The Bimodal Lattice-Based Signature Schemes (BLISS) . . . . . . . . . . . . 38
3.7 The Somewhat Homomorphic Encryption Scheme YASHE . . . . . . . . . . 40

3.1 Introduction

In this thesis we focus on four ideal lattice-based, asymmetric, and post-quantum cryptosys-
tems. Namely, a public-key encryption scheme denoted as RLWEenc [LPR10b, LP11], the
Güneysu, Lyubashevsky, Pöppelmann (GLP) signature scheme, the bimodal lattice-based signa-
ture schemes (BLISS), and the somewhat homomorphic encryption scheme YASHE (yet another
somewhat homomorphic encryption). The security of all four schemes is based on hard problems
on ideal lattices and the schemes are defined in Rq = Zq[x]/〈xn+1〉. In most cases n is chosen as
a power of two and q as a prime for which it holds that q ≡ 1 mod 2n so that efficient algorithms
for the computation of the NTT are available (see Section 2.4.2).

27



Chapter 3. Introduction to Practical Ideal Lattice-Based Cryptography

Additionally, we would like to refer to the lattice-based NTRU PKE (denoted as NTRUEn-
crypt) by Hoffstein, Pipher, and Silverman [HPS98] and to the NTRU signature scheme (denoted
as NTRUSign) [HHP+03]. In this thesis we do not provide an implementation of original NTRU
schemes and thus do not introduce them formally but we would like to note that schemes like
BLISS, GLP, and YASHE heavily rely on ideas and assumptions related to NTRU. Moreover,
NTRU predates ideal lattice-based cryptography and properly instantiated NTRUEncrypt in-
stances have survived more than 15 years of cryptanalysis while NTRUSign is considered to be
broken [NR09,DN12]. Therefore, NTRUEncrypt can be considered as a serious candidate post-
quantum PKE scheme. However, as it has already been implemented on various architectures
(see, e.g., [ABF+08,KY09,HVP10]) its implementation and optimization is not in the scope of
this work. Also note that we focus on implementation aspects in this chapter and thus we only
describe the computations that have to be performed but do not go into detail on the security
proofs or the parameter selection process. For these information we refer to the original papers.

3.2 Post-Quantum Cryptography

Cryptography deals with the protection of information at rest or in transit in the presence
of malicious third parties. A general introduction to all relevant aspects of cryptography and
basic schemes and constructions like RSA, DSA, ECC, ECDSA, hash functions, and AES is
provided in works like [KL07,HPS08,PP09,Gal12]. As we focus on asymmetric cryptography we
shortly recall necessary notation on digital signatures and public-key encryption (PKE) schemes.
Moreover, we introduce the concept of post-quantum cryptography.

3.2.1 Public-Key Cryptography

A PKE scheme is a tuple of probabilistic polynomial time (PPT) algorithms (Gen,Enc,Dec)
where Gen(1n) takes as input the security parameter 1n and outputs a keypair (sk,pk) consisting
of the secret key sk and the public key pk. To encrypt, Enc(µ, pk) takes as input the public key pk
and a message µ ∈M, whereM is the plaintext space, and outputs a ciphertext c. To decrypt,
Dec(c, sk) takes as input the ciphertext c and the secret key sk and outputs the message µ ∈M.
In case of failure, Dec(c, sk) outputs ⊥. A PKE scheme is correct if, for a negligible function
negl, Pr[Dec(Enc(µ, pk), sk) 6= µ] ≤ negl(n). A basic security notion for a PKE is security against
chosen plaintext attacks (CPA) or semantic security. In this model an adversary has access to
the public key and an encryption oracle. To achieve CPA-security the adversary should not
be able to distinguish between two ciphertexts that are returned by the oracle and which are
encryptions of two messages of the adversary’s choice. A more comprehensive security notion is
security against chosen ciphertext attacks (CCA). In this model an attacker is basically given
access to a decryption oracle for ciphertexts of his choice. This is a realistic scenario, e.g.,
considering a smart card, and the goal of the attacker is usually to extract the secret key or to
decrypt a challenge ciphertext. For a more rigid definition of CPA and CCA security (and their
variants) we refer to [KL07].
A digital signature scheme (DSS) is defined as a tuple of PPT algorithms (Gen, Sign,Verify)

where Gen(1n) takes as input the security parameter 1n and outputs a keypair (sk,pk) consisting
of the secret key sk and the public key pk. The signing algorithm Sign(µ, sk) takes as input a
message µ ∈M and the secret key sk and outputs a corresponding signature σ. The verification

28



3.2. Post-Quantum Cryptography

algorithm Verify(µ, σ, pk) takes as input the message µ, the signature σ and the public key pk and
outputs 1 if and only if (µ, σ) is a valid message/signature pair under pk, otherwise it outputs 0
(invalid). A signature scheme is correct if for every n, every (sk, pk)← Gen(1n), every µ ∈M it
holds that Verify(µ, Sign(µ, sk), pk) = 1 (note that it would also be possible to have a definition
with a negligible error as we gave for PKEs). An adversary breaks the signature scheme if he
is able to produce a forgery. This means an adversary without access to the secret key is able
to output a message µ and a signature σ for which Verify(µ, σ, pk) = 1. A signature scheme
is existentially unforgeable under an adaptive chosen message attack if the probability of an
attacker producing a forgery is negligible, even if he has access to a signing oracle (in this case
µ must not have been queried before to be considered a valid forgery). Again we refer to [KL07]
for formal definitions, more refined security notions, and discussions.

3.2.2 Quantum Computing and Post-Quantum Cryptography

Most PKEs or DSSs that are commonly used in practice are either based on the factoring prob-
lem, like RSA, or the (elliptic curve) discrete logarithm problem (DLP), like DSA or ECDSA.
However, since Shor’s seminal result [Sho94] it is known that those asymmetric cryptosystems
can be broken in polynomial time on a quantum computer (see [BBD08]). Currently, quantum
computers are not available but in recent years there has been a big financial push, by both
governments and private enterprises (see [Cha12,Koe13,RG13]), to construct a fully-functioning
and large enough quantum computer. Such a device would have the capability to render the
security guarantees of virtually all currently used public-key cryptography obsolete. An addi-
tional concern, given the dependence of basically all deployed schemes and protocols on only two
very related problems, are further results in classical cryptanalysis. By demonstrating almost-
polynomial time algorithms for the discrete logarithm problem in small-characteristic fields the
authors of works like [Jou13,BGJT14] have also increased the awareness that cryptanalytic ad-
vances are possible even for relatively well researched problems. Note that symmetric encryption
schemes like AES or hash algorithms are also affected by quantum computers [Gro96]. However,
protection against attacks by quantum computers just requires the doubling of the symmetric
key length and does thus not necessarily require new schemes and only moderately impacts
performance.
However, when long-term security is required (see [BMV06]), the previously mentioned DLP

or factoring-based public-key schemes are certainly risky to use, even today. The natural conse-
quence is the need for more diversification and investigation of alternative asymmetric schemes
based on problems that withstand classical cryptanalysis and resist attacks that rely on quan-
tum computers. Such schemes are called post-quantum and the research area that deals with
the design, analysis, and evaluation of cryptographic schemes that will still be secure in a world
where quantum computers exist, is called post-quantum cryptography (PQC). In this field four
major research areas have emerged, which are hash-based, code-based, multivariate-quadratic-
equations-based, and lattice-based cryptography [BBD08]. Additionally, cryptosystems based on
supersingular elliptic curve isogenies are also supposed to be secure against attacks by quantum
computers [JF11].
Currently, most of the proposed schemes and underlying problems have not yet received as

much attention as RSA or ECC and thus there is still need to establish confidence into the
parameter selection approaches. Additionally, the key size of post-quantum schemes is usually

29



Chapter 3. Introduction to Practical Ideal Lattice-Based Cryptography

larger than what is recommended for RSA or ECC and the operations carried out are different
or more complicated so that the implementation on constrained devices can be challenging. For
more details on PQC and more details on the previously mentioned alternative problems we
refer to [BBD08].

3.3 Security Evaluation of Lattice-Based Cryptography

In this section we provide some references and information on the selection of parameters for
ideal lattice-based cryptography and on the estimation of the security level provided by these
parameter sets. However, cryptanalysis of lattice constructions is not in the scope of this thesis.
We also refer to Section 3.4.2 for details on the parameter selection of the RLWEenc PKE, and to
Section 3.5.2 and Section 3.6 for details on the parameter selection of GLP and BLISS signatures,
respectively. Additionally, results of security reductions of LWE or RLWE to hard lattice
problems and the asymptotic hardness of these underlying problems are given in Section 2.3.
In this thesis we are dealing with practical implementations so it is clear that concrete pa-

rameters are necessary and that an asymptotic security analysis is not sufficient. Additionally,
the choice of parameters can have a big impact on the performance of an implementation. As
we are interested in an evaluation of lattice-based cryptography in comparison to other post-
quantum and classical proposals, it is important to compare schemes of similar security levels.
As a consequence, the estimation of a bit-security level is necessary that relates the hardness
of breaking the asymmetric scheme to the hardness of breaking a symmetric encryption scheme
using brute force.
One approach for parameter selection is to rely on security reductions. In this case only

the concrete hardness of the underlying lattice problems (e.g., SVP, CVP, or SIVP) has to
be analyzed. However, most reductions are not tight so that this approach might result in
schemes with parameters that are too large to be competitive. If the tightness is ignored this
approach could also lead to average case problems that are reduced to easy instances of worst-
case problems. As an example, Regev’s worst-case to average-case reduction (see Theorem 3)
provides a reduction from LWE to uSVPγ and SIVPγ of dimension n where γ = O(n/α) but
requires a quantum algorithm. The classical reductions [Pei09, BLP+13] do not preserve the
dimension and reduces a problem in dimension n to a problem in dimension

√
n.

A more direct method for parameter selection is the development of attacks on concrete average
case problems like LWE or RLWE. In this case the security proof is used as an argument that
shows that the scheme does not possess structural weaknesses and that possible attacks can be
mitigated by raising the parameters, while retaining the constructions. However, bit security is
estimated based on an extrapolation of the runtime of the best known attacks.
In this thesis we only use ideal lattices and the additional structure of ideal lattices might lead

to more efficient attacks than for standard (or random) lattices. A general rule of thumb is that
too much or unnecessary structure should be avoided. However, the benefits of ideal lattices
seem to outweigh the risk of more efficient attacks - at least given the current state-of-the-art
in cryptanalysis. The security argument for using ideal lattices is that current algorithms that
attack LWE or SIS do not profit from the additional structure. As an example, some attacks
require the reduction of the lattice using variants of the LLL algorithm [LLL82] and these
algorithms do not retain the structure. As a consequence, problems like RLWE are currently
analyzed by looking at the best algorithms to solve LWE. An open problem is to construct

30



3.4. A RLWE-Based Public-Key Encryption Scheme (RLWEenc)

algorithms that target ideal lattices or RLWE and RSIS directly and that provide a meaningful
improvement in runtime over the best generic attacks on LWE or SIS. Some ideas for an
algorithm that could exploit the multiplicative structure of ideals were provided in a blog post
by Bernstein [Ber14]. However, an actual implementation and analysis of the attack idea is still
an open problem. Additionally, care has to be taken when selecting the ring used to instantiate
an ideal lattice-based cryptosystem. The security reduction in [LPR10b] of RLWE holds only
for some rings and in [ELOS15] Elias et al. show some weak instances.
A serious issue when using the best known attacks for parameter estimation is to identify

which algorithms perform best. Due to the large number of parameters (e.g., σ, n, q) that
impact the efficiency of certain algorithms it appears necessary to consider many approaches
simultaneously to find the most efficient one. One approach to solve LWE directly is the Blum,
Kalai and Wasserman (BKW) [BKW03] algorithm that has been designed to solve the LPN
problem. In [Fit14,ACF+15] an analysis of the complexity of BKW, when used to solve LWE,
is provided. However, the biggest obstacle for the application of BKW is the requirement of a
subexponential number of samples, which are usually not available in practice.
One possible approach to obtain LWE parameters is an analysis relying on variants of Babai’s

nearest planes algorithm [Bab86]. The general idea is to convert an LWE instance into a CVP
instance which is then solved using a CVP solver. The usage of the nearest planes algorithm
for the LWE case has, for example, been evaluated by Lindner and Peikert [LP11] and Liu and
Nguyen [LN13]. A practical evaluation of the runtime of nearest planes is given in [BBD+14].
To increase the success rate of the nearest planes algorithm a basis reduction algorithm like
BKZ [CN11] can be applied. Another approach to solve LWE is the reduction of LWE to
uSVP and the usage of an SVP solver. This so called "embedding approach" or "embedding
attack" is analyzed in [AFG13]. However, still no attack has emerged that works best in all
cases.

3.4 A RLWE-Based Public-Key Encryption Scheme (RLWEenc)

The properties of the RLWE problem [LPR10b] can be used to realize a semantically secure
public-key encryption scheme with a reduction to decisional ring learning with errors (RdLWE).
The general idea is to hide the secret key inside of a RLWE sample that becomes the public key
and to mask the message with a RLWE sample. Thus the public key and each ciphertext appear
uniformly random to a passive adversary and semantic security is achieved. The scheme we are
going to discuss is usually attributed either to Lyubashevsky, Peikert, and Regev [LPR10b] or
Lindner and Peikert [LP11]. The first peer-reviewed publication of the scheme can be found in
the work by Lindner and Peikert [LP11] and then later on in the full version of the paper by
Lyubashevsky, Peikert, and Regev [LPR12]. However, the presentation of [LPR10b] by Peikert
at Eurocrypt’10 already contained the description of the scheme [LPR10c]. Due to the unclear
origin we refer to the scheme as RLWEenc.

3.4.1 Definition

The RLWEenc PKE is instantiated in the polynomial ringRq = Zq[x]/〈xn+1〉. Its key generation
procedure RLWEencgen is detailed in Algorithm 8 and just requires the random sampling of two
noise polynomials r1, r2 from a discrete Gaussian distribution with Gaussian parameter σ. The

31



Chapter 3. Introduction to Practical Ideal Lattice-Based Cryptography

Algorithm 8 RLWEenc Key Generation
Precondition: Access to global constant a that was uniformly random chosen from Rq
1: func RLWEencgen()
2: r1, r2

$← DZn,σ
3: p← r1 − ar2
4: Return (pk, sk) = (p, r2)
5: end func

Algorithm 9 RLWEenc Encryption
Precondition: Access to global constant a
1: func RLWEencenc(pk=p, µ∈{0, 1}n)
2: e1, e2, e3

$← DZn,σ
3: m̄← Encode(µ)
4: c1 ← ae1 + e2
5: c2 ← pe1 + e3 + m̄
6: Return c = [c1, c2]
7: end func

Algorithm 10 RLWEenc Decryption
1: func RLWEencdec(c = [c1, c2], sk = r2)
2: Return µ← Decode(c1r2 + c2)
3: end func

public key is p← r1 − ar2. According to [LP11] the polynomial a
$← Rq can be chosen during

key generation (as part of each public key) or regarded as a global constant. We use a as
global constant as this allows further optimizations but note that care has to be taken that a
is generated from a public verifiable random generator (e.g., by using a binary interpretation of
π). The polynomial r1 is used only during key generation and discarded afterwards, while r2
is the secret key. Extraction of r2 from the public key p is equivalent to solving the RsLWE
problem with one given sample.

The encryption procedure RLWEencenc, as given in Algorithm 9, requires the sampling of three
noise polynomials e1, e2, e3 from the discrete Gaussian distribution DZn,σ. To hide the message
in the ciphertext, it is encoded as m̄ and added to pe1+e3. The ciphertext c ∈ Rq×Rq consists
of c1 and c2 which are basically both RLWE samples in Hermite normal form. Security against
chosen plaintext attacks (CPA) follows from the fact that everything that is returned by the
encryption algorithm is indistinguishable from random. We refer to [LP11, Theorem 3.2] for
a security proof that assumes hardness of dLWE and which could also be applied to the ring
version we are discussing (in this case hardness is based on RdLWE).

The decryption procedure RLWEencdec is given in Algorithm 10. It requires knowledge of the
secret key r2 since otherwise the large term ae1r2 cannot be eliminated when computing c1r2+c2.
The encoding of the n-bit message µ is necessary as some small noise (i.e., e = e1r1 +e2r2 +e3)
is still present after calculating c1r2 + c2 and would prohibit the retrieval of the message after
decryption. Note that the noise is relatively small as all noise terms are sampled from a narrow
Gaussian distribution DZn,σ. To deal with the remaining noise, Lindner and Peikert [LP11]

32



3.4. A RLWE-Based Public-Key Encryption Scheme (RLWEenc)

proposed threshold encoding functions for individual coefficients which we implicitly also apply
to polynomials. For a coefficient of the message µ′ ∈ Zq they define

Encode(µ′) = µ′ ·
⌊q

2

⌋
and the decoding of µ̄′ ∈ Zq as

Decode(µ̄′) =

{
return 1 iff µ̄′ ∈

[
−
⌊ q
4

⌋
,
⌊ q
4

⌋)
⊂ Zq

return 0 otherwise.

}
Thus the error tolerance is t =

⌊ q
4

⌋
and decryption correctness is assured as long as ei ∈ [−t, t)

for each coefficient ei of e. In other words, the maximum error added to each coefficient must
not be larger than or equal to

⌊ q
4

⌋
in order to decrypt correctly. The probability of a decryption

error is mainly dominated by the tailcut and the standard deviation of the Gaussian parameter
σ = s√

2π
. Decreasing s decreases the error probability but also negatively affects the security of

the scheme and a trade-off between correctness and security has to be found.

3.4.2 Parameter Selection

In Table 3.1 we summarize previously proposed RLWEenc parameter sets (n, q, s) for s = σ
√

2π
with regard to security as well as ciphertext, public key, and secret key size. Lindner and Peik-
ert [LP11] were the first to provide parameter sets and chose (192, 4093, 8.87), (256, 4093, 8.35)
and (320, 4093, 8.00) which provide 62.8, 105.5, and 156.9 bits of security, respectively, accord-
ing to a refined security analysis by Liu and Nguyen [LN13] for standard LWE. In the original
work of Lindner and Peikert [LP11] the parameter sets were labeled low security, medium se-
curity, and high security, where medium security was considered equivalent to the security of
the symmetric AES-128 block cipher. To support the NTT, Göttert et al. [GFS+12] intro-
duced hardware-friendly parameter sets for medium and for high security with (256, 7681, 11.31)
and (512, 12289, 12.18). These sets are not explicitly analyzed in [LN13] but we expect the
(256, 7681, 11.31) parameter set to provide similar security to the (256, 4093, 8.35) one. For the
two parameter sets by Göttert et al., n is chosen as a power of two and q as a prime such that
q = 1 mod 2n and as a consequence, the NTT and negative wrapped convolution property can
be used for efficient implementation. For the ciphertext expansion given in Table 3.1 we assume
that the complete polynomial c1, c2 is transmitted (see Section 5.2.2 for improvements) and
that the message size is n bits so that we get an expansion factor of 2dlog2(q)e per message
bit. We also set pk = (a,p) but it would be possible to set a as a global constant as in Algo-
rithm 8. The secret key size depends on the tailcut τ of the discrete Gaussian. For compliance
with the security reduction the tailcut is set to τ = 13.4 for 128 bits of security by most au-
thors [DG14,BCNS15]. Thus coefficients of the secret key are in [−τσ, τσ]. With the help of a
compression algorithm the secret key size could be further reduced (see Section 5.2.2) but this
would also require resources for decoding the secret key during decryption.

33



Chapter 3. Introduction to Practical Ideal Lattice-Based Cryptography

Table 3.1: Security levels, ciphertext sizes, public key sizes, and secret key sizes of previously
proposed RLWEenc parameter sets.

Set Parameter Security |c| = |c1, c2| |pk| = |(a,p)| |sk| = |r2|
(n, q, s) bits 2ndlog2(q)e bits 2ndlog2(q)e bits ndlog2(τσ)e bits

Ib (192,4093,8.87) [LP11] 63 4,608 4,608 1,344
IIb (256,4093,8.35) [LP11] 106 6,144 6,144 1,792
IIIb (320,4093,8) [LP11] 157 7,680 7,680 2,240
Ia (256,7681,11.32) [GFS+12] 106 6,656 6,656 1,792
IIa (512,12289,12.18) [GFS+12] 256 14,336 14,336 3,584
Ic (256,4096,8.35) [This work] 106 6,144 6,144 1,792

3.5 The GLP Signature Scheme

In [GLP12,GLP15] Güneysu, Lyubashevsky, and Pöppelmann proposed a signature scheme that
is a combination of the schemes from [Lyu09] and [Lyu12] as well as an additional optimization
that allows the reduction of the signature length by almost a factor of two. The security of the
scheme is based on a particular version of the ring-SIS problem, where one is given an ordered
pair of polynomials (a, t) ∈ Rq × Rq where a is chosen uniformly from Rq and t ← as1 + s2,
where s1 and s2 are chosen uniformly from {−k, . . . , k}n, and is asked to find an ordered pair
(s′1, s

′
2) such that as′1 + s′2 = t. This can also be considered as the RdLWE problem with

particularly "aggressive" parameters. The decisional compact knapsack (DCKq,n) problem is
defined to be the problem of distinguishing between the uniform distribution over Rq ×Rq and
the distribution (a,as1 + s2) where a is uniformly random in Rq and s1 and s2 are uniformly
random in {−1, 0, 1}n. Currently, no efficient algorithms are known that can exploit that s1
and s2 are uniform (i.e., not Gaussian) and consist of only −1/0/1 coefficients. The Arora-
Ge algorithm for solving LWE with small noise [AG11] does not apply to the DCK problem
because this algorithm requires polynomially-many samples of the form (ai,ais + ei), whereas
in the DCK problem, only one such sample is given. Based on the lack of efficient algorithms
it is conjectured in [GLP12,GLP15] that this problem is still hard. Recently, Micciancio and
Peikert also showed that by imposing a limit on the number of samples, the LWE problem can
still be hard with smaller noise [MP13].

3.5.1 Definition

In [GLP12,GLP15] two versions of the GLP signature scheme were proposed. In this section
we just introduce the "optimized" variant which, compared to the "basic" variant, includes a
compression algorithm for the second component of the signature.
The key generation algorithm GLPgen is described in Algorithm 11. Similar to RLWEenc a

global constant a
$← Rq is used to reduce the size of the public key. Key generation basically

requires sampling of random polynomials s1, s2 followed by one polynomial multiplication and
an addition. The polynomials s1 and s2 have small coefficients in {−1, 0, 1} while all coefficients
of a and t are in the range [− q−1

2 , q−12 ]. The private key sk consists of the values s1, s2 while t

34



3.5. The GLP Signature Scheme

is the public key. Extraction of the secret key from the public key would require an adversary
to solve the search version of the DCK problem.

Algorithm 11 GLP Key Generation
Precondition: Access to global constant a
1: func GLPgen()
2: a

$← Rq
3: s1, s2

$← Rq,1
4: t← as1 + s2
5: return pk = (t), sk = (s1, s2)
6: end func

Algorithm 12 GLP Signing
Precondition: Access to global constant a
1: func GLPsign(µ∈{0, 1}∗, sk=(s1, s2))
2: y1,y2

$← Rq,k
3: c← H

(
(ay1 + y2)

(1), µ
)

4: z1 ← s1c + y1, z2 ← s2c + y2

5: if z1 or z2 /∈ Rq,k−32, then goto step 1
6: z′2 ← Compress(az1 − tc, z2, p, k − 32)
7: if z′2 = ⊥, then goto step 1
8: return (z1, z′2, c)
9: end func

Algorithm 13 GLP Verification
Precondition: Access to global constant a
1: func GLPverify(µ∈{0, 1}∗, pk=t, (z1, z

′
2, c))

2: Accept iff z1, z
′
2 ∈ Rq,k−32 and

c = H
(
(az1 + z′2 − tc)(1), µ

)
3: end func

The signing procedure GLPsign is detailed in Algorithm 12. In step 2, two polynomials y1,y2

are chosen uniformly at random with coefficients in the range [−k, k]. In step 3, a hash function
H is applied on the higher-order bits of ay1 + y2 which outputs a polynomial c by interpreting
the first 160-bit of the hash output as a sparse polynomial. In step 4, y1 and y2 are used to
mask the private key by computing z1 and z2. The algorithm only continues if z1 and z2 are
in the range [−(k − 32), k − 32] and restarts otherwise. The polynomial z2 is then compressed
into z′2 in step 6 by Compress. This compression is part of the aggressive size reduction of the
signature σ =(z1, z′2,c) since only some portions of z2 are necessary to maintain the security of
the scheme. For the implemented parameter set, Compress has a chance of failure of less than
two percent which results in the restart of the whole signing process.

The verification algorithm GLPverify as described in Algorithm 13 first ensures that all coef-
ficients of z1, z

′
2 are in the range [−(k − 32), k − 32] and does not accept the invalid signature

otherwise. In the next step, az1 + z′2 − tc is computed, transformed into the higher-order bits
(see below) and then hashed. If the polynomial c from the signature and the output of the hash
match, the signature is valid and the algorithm accepts the signature.

35



Chapter 3. Introduction to Practical Ideal Lattice-Based Cryptography

The Compression Algorithm

In Algorithm 15 the transformation of a polynomial into a higher-order representation is de-
scribed. This algorithm exploits the fact that every polynomial y ∈ Rq can be written as

y = y(1)(2(k − 32) + 1) + y(0)

where y(0) ∈ {−(k−32), (k−32)}n. Due to this bijectional relationship, every polynomial y can
be also written as the tuple (y(1),y(0)) and we use the y(1) notation to describe a transformation
of y ∈ Rq by HigherOrder (see Algorithm 14).

Algorithm 14 GLP Higher-Order Transformation y(1)

1: func HigherOrder(y ∈ Rq, k)
2: for i=0 to n− 1 do
3: y(0)[i]← y[i] mod (2(k − 32) + 1)

4: y(1)[i]← y[i]−y(0)[i]
2(k−32)+1

5: end for
6: return y(1)

7: end func

Algorithm 15 describes the compression algorithm Compress which takes a polynomial y, a
polynomial z with small coefficients, and the security parameter k as well as q as input. It is
designed to return a polynomial z′ that is compact but still maintains the equality between the
higher-order bits of y+z and y+z′ so that (y+z)(1) = (y+z′)(1). In particular, the parameters
of the scheme are chosen in a way that the if-condition specified in step 4 is true only for rare
cases. This is important since only values assigned to z′[i] in step 7 to step 16 can be efficiently
encoded.

Instantiation of the Random Oracle

The hash function H maps an arbitrary-length message µ = {1, 0}∗ to a 512-coefficient polyno-
mial with 32 coefficients in {−1, 1} and sets all other coefficients to zero. The whole process of
generating this string and its transformation into a polynomial with the above described behav-
ior is shown in Algorithm 16. In step 2 the message is concatenated with a binary representation
of the polynomial x generated by the algorithm BinRep. It takes a polynomial x ∈ Rq as input
and outputs a (somehow standardized) binary representation of this polynomial. The 160-bit
hash value is processed by partitioning it into 32 blocks of 5 side-by-side bits (beginning with
the lowest ones) that each correspond to a particular region in the polynomial c. These bits are
r4r3r2r1r0 where (r3r2r1r0)2 represents the position in the region interpreted as a 4-bit unsigned
integer and the bit r4 determines if the value of the coefficient is −1 or 1.

3.5.2 Parameters and Security

In Table 3.2, two parameter sets, GLP-I and GLP-II, are provided. For some intuition on how
these parameters were selected, how the security level has been computed, and a security proof
in the random-oracle model we refer again to [GLP12,GLP15].

36



3.5. The GLP Signature Scheme

Algorithm 15 GLP Signature Compression
1: func Compress(y, z, p, k)
2: uncompressed← 0
3: for i=1 to n do
4: if |y[i]| > p−1

2 − k then
5: z′[i]← z[i]
6: uncompressed← uncompressed+ 1
7: else
8: write y[i] = y[i](1)(2k + 1) + y[i](0) where −k ≤ y[i](0) ≤ k
9: if y[i](0) + z[i] > k then

10: z′[i]← k
11: else if y[i](0) + z[i] < −k then
12: z′[i]← −k
13: else
14: z′[i]← 0
15: end if
16: end if
17: end for
18: if uncompressed ≤ 6kn

p then return z′

19: else return ⊥
20: end if
21: end func

Algorithm 16 GLP Random Oracle Instantiation
Precondition: Definition of a standard cryptographic hash function Hash that outputs a 160-

bit string.
1: func H(x ∈ Rq, µ ∈ {0, 1}∗)
2: r ← Hash(µ||BinRep(x))
3: for i=0 to n− 1 do
4: c[i]← 0
5: end for
6: for i=0 to 31 do
7: pos← 8 · r5i+3 + 4 · r5i+2 + 2 · r5i+1 + r5i
8: if r5i+4 = 0 then
9: c[i · 16 + pos]← −1

10: else
11: c[i · 16 + pos]← 1
12: end if
13: end for
14: end func

37



Chapter 3. Introduction to Practical Ideal Lattice-Based Cryptography

Table 3.2: GLP signature parameters [GLP12,GLP15].

Name of the scheme GLP-I GLP-II

Security 80 bits 256 bits

n 512 1024
p 8383489 16760833
k 214 215

Signature size 8,950 bit 18,800 bit
Secret key size 1,620 bit 3,250 bit
Public key size 11,800 bit 25,000 bit

Repetition rate 7 7

Root Hermite factor 1.0066 1.0035

In general, the security of the signature scheme is based on the DCKq,n problem and the
hardness of finding a preimage in the hash function. As the signature scheme is based on the
Fiat-Shamir transform [FS86] one only needs random oracles that output λ bits (i.e., collision-
resistance is not a requirement) to achieve λ bits of security. While finding collisions in the
random oracle does allow the valid signer to produce two distinct messages that have the same
signature, this does not constitute a break. Finding a preimage in the hash function has classical
time complexity of 2l but is lowered to 2l/2 by Grover’s quantum algorithm [Gro96]. As l = 160
output bits from the hash function are used, the implemented scheme is supposed to achieve a
security level of roughly 80 bits of security against attacks by a quantum computer on the hash
function.
In [GLP12] the security level of parameter set GLP-I is estimated to be 100 bits of security

based on the hardness of solving the underlying lattice problem. However, in [GLP15] the
claimed security level is reduced to 80 bits due to experiments given in the full version of the
BLISS signature paper [DDLL13a]. The general approach for security estimation in [GLP12,
GLP15] is based on the so-called root Hermite factor. Gama and Nguyen [GN08b] and Chen
and Nguyen [CN11] carried out various experiments and state that a root Hermite factor of 1.01
is achievable now, a factor of 1.007 seems to have around 80 bits of security, and a factor of 1.005
has more than 256-bit security. Thus GLP-I with root Hermite factor 1.0066 is somewhere around
80 bits of security, while the second parameter set GLP-II is supposed to provide more than 256
bits of security. However, it does not seem clear whether these attacks could be accelerated
using a quantum computer.

3.6 The Bimodal Lattice-Based Signature Schemes (BLISS)

The most efficient instantiation of the BLISS signature scheme [DDLL13a] is based on ideal
lattices and operates on polynomials over the ring Rq = Zq[x]/〈xn+ 1〉. As the design is similar
to GLP and also uses the Fiat-Shamir transformation to turn an identification scheme into a
signature scheme we provide a more compact description. Note that BLISS also requires the

38



3.6. The Bimodal Lattice-Based Signature Schemes (BLISS)

Algorithm 17 BLISS Key Generation
1: func BLISSgen()
2: Choose f ,g as uniform polynomials with exactly d1 = dδ1ne entries in {±1} and d2 = dδ2ne

entries in {±2}
3: S = (s1, s2)

t ← (f , 2g + 1)t

4: if Nκ(S) ≥ C2 · 5 · (dδ1ne+ 4dδ2ne) · κ then restart
5: aq ← (2g + 1)/f mod q (restart if f is not invertible)
6: return (pk = A, sk = S) where A = (a1 = 2aq, q − 2) mod 2q
7: end func

Algorithm 18 BLISS Signing
1: func BLISSsign(µ∈{0, 1}∗, pk=A, sk=S)
2: y1,y2 ← DZn,σ
3: u← ζ · a1 · y1 + y2 mod 2q
4: c← H(bued mod p, µ)
5: Choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: Continue with probability

1
/(

M exp
(
−‖Sc‖

2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
otherwise restart

9: z†2 ← (bued − bu− z2ed) mod p

10: return (z1, z
†
2, c)

11: end func

Algorithm 19 BLISS Verification
1: func BLISSverify(µ∈{0, 1}∗, pk=A, sk=S)
2: if ‖(z1|2d · z†2)‖2 > B2 then Reject
3: if ‖(z1|2d · z†2)‖∞ > B∞ then Reject
4: Accept iff c = H

(⌊
ζa1z1 + ζqc

⌉
d

+

z†2 mod p, µ)
5: end func

usage of rejection sampling to ensure that the signature is independent of the secret key and
distributed according to a discrete Gaussian distribution DZ,σ. The usage of bimodal Gaussian
noise instead of uniform noise to hide the secret key is the biggest difference compared to GLP.
This allows smaller signatures and much less rejections.
The key generation algorithm BLISSgen is provided in Algorithm 17 and is similar to the key

generation algorithm of NTRU. First polynomials f and g with densities δ1 and δ2 are sampled
such that they have d1 = dδ1ne coefficients in {±1} and d2 = dδ2ne coefficients in {±2}. The
secret key is computed as S = (s1, s2)

t ← (f , 2g + 1)t and the public key is A = (2aq, q − 2)←(
2·(2g+1)

f , q − 2
)
. For successful key generation, it is necessary to find a polynomial f that is

invertible. If this is not the case, key generation is restarted. The size of the signature depends
on the maximum possible norm of the vector Sc, which is defined as Nκ(S) and computed as

Nκ(S) = max
I⊂{1,...,n}
#I=κ

∑
i∈I

 max
J⊂{1,...,n}
#J=κ

∑
j∈J

Ti,j

 ,

39



Chapter 3. Introduction to Practical Ideal Lattice-Based Cryptography

where T = St · S ∈ Rn×n. A private key S whose Nκ(S) value is too big is rejected, to keep the
signature size small.
The signing algorithm BLISSsign is described in Algorithm 18. First two masking polynomials

y1,y2 are sampled where each coefficient is randomly chosen according to the Gaussian distribu-
tion Dσ. Then the polynomial u is computed as u = ζ ·a1 ·y1 +y2 mod 2q where multiplication
by ζ = 1

q−2 mod 2q and reduction modulo 2q are necessary in order to achieve a low rejection
rate. Note that despite the even modulus 2q, it is still possible to compute a1 ·y1 using FFT or
NTT-techniques that require a prime modulus for maximum efficiency. Then only the higher-
order bits1 bued of the polynomial u are hashed together with the message µ. This is done using
a standard cryptographic hash function to instantiate the random oracle. The pseudo-random
string returned by the hash function is then used to construct the sparse polynomial c with κ
coefficients equal to one and the remaining coefficients set to zero. The secret key is multiplied
by c (which depends on the message and the random y1,y2) and masked using the Gaussian
distributed masking polynomials y1,y2. The rejection step is performed in step 8 to make the
signature independent of the secret key. Due to this rejection step the signature generation
restarts with a certain probability. Finally the size of the signature (z1, z

†
2, c) is reduced by

compressing z2 into z†2. To avoid explicit computation of 1/ cosh for the final rejection step, the
authors of [DDLL13a] suggested that B1/ cosh(X) = Bexp(−|X|)�

(
B1/2 ∨ Bexp(−|X|)

)
and that this

approach requires at most three calls to Bexp(−|X|) on average.
The verification procedure BLISSverify is given in Algorithm 19. To verify a signature it is

checked if (z1, z
†
2, c) is a valid signature of the message µ. First the l2 and l∞ norms of z1 and z2

are computed and the signature is rejected if they are too large (depending on the parameters
B2 and B∞). The actual verification is done by computing H(bζ · a1 · z1 + ζ · q · ced + z†2 mod
p, µ) and testing whether the result is equal to c. Parameters as well as achievable signature
and key sizes are listed in Table 3.3. The parameters are based on an extensive security analysis
provided in [DDLL13b].

3.7 The Somewhat Homomorphic Encryption Scheme YASHE

The homomorphic encryption scheme YASHE [BLLN13b] is based on the multi-key fully homo-
morphic encryption scheme from [LTV12] and the modified, provably-secure version of NTRU
presented in [SS11]. Stehlè and Steinfeld show in [SS11] how to modify the NTRU public-key
scheme [HPS98] in order to make it provably secure based on the RLWE problem [LPR10b].
López-Alt et al. [LTV12] demonstrate that this modified NTRU encryption can be used to
construct a multi-key fully homomorphic encryption scheme. However, they only prove secu-
rity under an additional assumption, the so-called decisional small polynomial ratio (DSPR)
assumption. In [BLLN13b], it is shown that a scale-invariant version of the modified NTRU
scheme can be used as a basis for a fully homomorphic scheme with security only relying on
the assumption that the RLWE problem is hard. The homomorphic multiplication operation in
this scheme is very costly and [BLLN13b] contains a more practical variant, denoted as YASHE’,
with a much more efficient homomorphic multiplication algorithm. This is achieved by rein-
troducing the DSPR assumption in addition to RLWE. YASHE’ is leveled homomorphic and

1 For any integer x, the d high-order bits of x are denoted by bxed so that x can be written as x = bxed ·2d+[x
mod 2d].

40



3.7. The Somewhat Homomorphic Encryption Scheme YASHE

Table 3.3: BLISS signature parameters [DDLL13a].

Name of the scheme BLISS-I BLISS-II BLISS-III BLISS-IV

Security 128 bits 128 bits 160 bits 192 bits

Optimized for Speed Size Security Security

(n, q) (512,12289) (512,12289) (512,12289) (512,12289)
Lattice Dim. m = 2n 1024 1024 1024 1024

Secret key densities δ1, δ2 0.3 , 0 0.3 , 0 0.42 , 0.03 0.45, 0.06
Gaussian std. dev. σ 215.73 107.86 250.54 271.93

Max Shift/std. dev. ratio α 1 .5 .7 .55
Weight of the challenge κ 23 23 30 39
Secret key Nκ-Threshold C 1.62 1.62 1.75 1.88

Dropped bits d in z2 10 10 9 8
Verif. thresholds B2, B∞ 12872, 2100 11074, 1563 10206,1760 9901, 1613

Repetition rate 1.6 7.4 2.8 5.2
Entropy of challenge c ∈ Bnκ 132 bits 132 bits 161 bits 195 bits

Signature size 5,600 bit 5,000 bit 6,000 bit 6,500 bit
Secret key size 2,000 bit 2,000 bit 3,000 bit 3,000 bit
Public key size 7,000 bit 7,000 bit 7,000 bit 7,000 bit

Root Hermite factor 1.0037 1.0037 1.0033 1.0031

due to its scale-invariance achieves its homomorphic capabilities without the modulus switching
technique. Next, we describe this scheme, which we use under the name YASHE in this thesis.
The system parameters are fixed as follows: a positive integer m = 2k that determines the

ring R = Z[x]/(xn + 1) and its dimension n = ϕ(m) = m/2, two moduli q and t with 1 < t < q,
discrete probability distributions χkey, χerr on R, and an integer base w > 1. We view R to be
the ring of polynomials with integer coefficients taken modulo the m-th cyclotomic polynomial
xn + 1. Let Rq = R/qR ∼= Zq[x]/(xn + 1) be defined by reducing the elements in R modulo q,
similarly we define Rt.
A polynomial a ∈ Rq can be decomposed using base w as a =

∑`w,q−1
i=0 aiw

i, where the ai ∈ R
have coefficients in (−w/2, w/2]. The scheme YASHE makes use of the functions Decw,q(a) =

([ai]w)
`w,q−1
i=0 and Poww,q(a) = ([awi]q)

`w,q−1
i=0 , where `w,q = blogw(q)c + 1. Both functions take

a polynomial and map it to a vector of polynomials in R`w,q . They satisfy the scalar product
property 〈Decw,q(a),Poww,q(b)〉 = ab (mod q) .
The homomorphic encryption scheme YASHE consists of algorithms for key generation, en-

cryption and decryption. The evaluation functions that allow computation on encrypted data
are the two functions Add and Mult. The latter consists of two parts, the rounded multiplication
RMult and the key switching step KeySwitch. The scheme is defined as follows:

Gen(d, q, t, χkey, χerr, w): Sample f ′ ← χkey until f = [tf ′ + 1]q is invertible modulo q.
Compute the inverse f−1 ∈ R of f modulo q, sample g← χkey and set h = [tgf−1]q. Sample
e, s← χ

`w,q
err , compute γ = [Poww,q(f)+e+h·s]q ∈ R`w,q and output (pk, sk, evk) = (h, f , γ).

41



Chapter 3. Introduction to Practical Ideal Lattice-Based Cryptography

Table 3.4: YASHE parameter sets and supported number of multiplicative levels for different
plaintext moduli t.

Set n q q′ `w,q Levels
t = 220 t = 210 t = 25 t = 2

I 4096 2124 − 264 + 1 2262 − 256 + 1 2 0 1 1 1
II 16384 2512 − 232 + 1 21040 − 232 + 1 8 6 9 11 14

Following the analysis in [LN14], these parameters provide at least 80 bits of security. The parameter
for sampling the discrete Gaussian error distribution is s = 8.

Encrypt(h,m): For a message m ∈ R/tR, sample s, e← χerr, scale [m]t by the value bq/tc,
and output c =

[⌊ q
t

⌋
[m]t + e + hs

]
q
∈ R.

Decrypt(f , c): Decrypt c as follows. First compute the ring product [fc]q modulo q, scale
it down by the factor t/q over the rational numbers, round it and reduce it modulo t, i.e.,
output m =

[⌊
t
q [fc]q

⌉]
t
∈ R.

Add(c1, c2): Add the two ciphertexts modulo q, i.e., output cadd = [c1 + c2]q.

RMult(c1, c2): Compute the product c1c2 without reduction modulo q over the integers,
scale by t/q, round the result and reduce modulo q to output

c̃mult =

[⌊
t

q
c1c2

⌉]
q

.

KeySwitch(c̃mult, evk): Compute the w-decomposition vector of c̃mult and output the scalar
product with the evaluation key evk and reduce modulo q: cmult = [〈Decw,q(c̃mult), evk〉]q.

Mult(c1, c2, evk): First apply RMult to c1 and c2 and then KeySwitch to the result. Output
the ciphertext cmult = KeySwitch(RMult(c1, c2), evk).

In Table 3.4, we provide the implemented parameter sets and their number of supported
multiplicative levels determined by the worst case bounds given in [BLLN13b]. The plaintext
modulus in our implementation is t = 1024 for both parameter sets. Since changing t is relatively
easy, we also give the number of multiplicative levels for various other choices to illustrate the
dependence on t and possible trade-offs. The primes q and q′ we use in our implementation are
Solinas primes of the form q = 2y − 2z + 1, y > z such that q ≡ 1 (mod 2n). In order to find
a primitive 2n-th root of unity ψ ∈ Zq that is needed for the NTT, we simply chose random
non-zero elements in a ∈ Zq, until a(q−1)/2n 6= 1 and a(q−1)/2 = −1 and then set ψ = a(q−1)/2n.
According to the analysis in [LN14], the chosen moduli stay below the maximal bound

to achieve 80 bits of security against the distinguishing attack with advantage 2−80 as dis-
cussed there. The error distribution χerr is the n-dimensional discrete Gaussian with parameter
s = 8 and the key distribution samples polynomials with uniform random values in {−1, 0, 1}.

42



3.7. The Somewhat Homomorphic Encryption Scheme YASHE

Note that one ciphertext requires ndlog2(q)e bits (1 MiB for Set II) and the evaluation key is
(`w,q)ndlog2(q)e bits large (8 MiB for parameter Set II).
The advantage of a scale-invariant scheme like YASHE is that modulus switching can be avoided

so that a hardware implementation does not have to deal with various moduli. Additionally,
YASHE supports one-element ciphertexts compared to Fan and Vercauteren’s (FV) scale-invariant
version of BGV [BGV12]. A detailed comparison of FV [FV12] with YASHE [BLLN13b], as well
as details on the implementation and parameter selection can be found in [LN14].

43





Chapter 4

Polynomial Multiplication on Reconfigurable
Hardware

In this chapter we introduce a hardware architecture for efficient polynomial multi-
plication using the number theoretic transform (NTT). Our implementation targets
common parameters of lattice-based public-key encryption, signatures, and homomor-
phic encryption. Moreover, we introduce an efficient microcode engine that is built
on top of the multiplier. It supports a simple instruction set suitable to realize the
polynomial arithmetic of RLWEenc encryption (see Chapter 5) as well as parts of
GLP and BLISS signatures (see Chapter 7). This chapter is mainly based on work
published in [PG12]. However, more detailed coverage of efficient methods to realize
the processing element (PE) and general improvements to the architecture have been
added. Details on the microcode engine were published in [PG13] and the instruction
set appeared in [GLP15].

Contents of this Chapter
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Design of an Efficient NTT-Based Polynomial Multiplier . . . . . . . . . . 48
4.4 A Microcode Engine for Ideal Lattice-Based Cryptography . . . . . . . . . 52
4.5 Implementation of Schoolbook Multiplication . . . . . . . . . . . . . . . . . 55
4.6 Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Introduction

When considering the performance of proposed ideal lattice-based cryptosystems like RL-
WEenc [LPR10b, LP11], GLP [GLP12], and BLISS [DDLL13a], the most common and usually
also most expensive operation is polynomial multiplication in Rq = Zq[x]/〈xn + 1〉1. This is
also the reason for the often claimed asymptotic speed advantage of ideal lattice-based schemes
over number theoretical constructions, as polynomial multiplication in Rq is equivalent to the

1In this context polynomial multiplication is comparable to modular exponentiation being the basic operation
required for RSA and point multiplication for elliptic curve cryptography (ECC).

45



Chapter 4. Polynomial Multiplication on Reconfigurable Hardware

negacyclic or negative-wrapped convolution product, which can be efficiently computed with
O(n log n) multiplications in Zq using the NTT (see Section 2.4.2).
At the time this research was carried out2, not much was known about the actual speed of im-

plementations of polynomial multiplication targeting ideal lattice-based cryptography. The core
by Györf et al. [GCHB12] was designed only for small parameter sets and the implementation
of RLWEenc by Göttert et al. [GFS+12] consumed lots of FPGA resources to realize a parallel
NTT polynomial multiplier.
To enable the evaluation of a whole range of schemes on reconfigurable hardware (e.g., RL-

WEenc, GLP, and homomorphic encryption with small parameters [NLV11]) a more flexible
and also resource efficient multiplier was required. But as polynomial multiplication is not the
only operation, also addition and subtraction of polynomials, storage of key or temporary poly-
nomials, as well as sampling of random polynomials from certain distributions (e.g., uniform
or Gaussian) should be supported. As a consequence, a microcode approach seems advanta-
geous in which a state machine can issue commands that are decoded and then executed by a
processor-like design.

4.1.1 Related Work

Techniques for the efficient implementation of the FFT in hardware have been explored in
numerous works like [Pea68, Ber69, WLT07, GRH11] but the focus is usually the computa-
tion of approximate results due to the required complex floating-point arithmetic. We are
not aware of any works published before the year 2012 that specifically deal with polynomial
multiplication targeting ideal lattice-based cryptography, e.g., encryption [LPR10b] or signature
schemes [Lyu12, GLP12]. First works were [GCHB12, GFS+12] and since then the state-of-
the-art regarding the efficient hardware implementation of polynomial multiplication for ideal
lattice-based cryptography has been continuously improved. An optimized polynomial multi-
plier was proposed by Aysu, Patterson and Schaumont [APS13]. A microcode engine with an
even more efficient multiplier was introduced by Roy et al. [RVM+14] and used to implement
RLWEenc. An implementation targeting larger parameter sets required for somewhat homo-
morphic encryption (SHE) was proposed in [CMV+14]. Examples of previous implementations
of polynomial multiplication targeting Galois fields GF(2n) used in elliptic curve cryptography
(ECC) are [vzGS05,BS06].

4.1.2 Contribution

In this section we present a flexible and extensible FPGA implementation of polynomial mul-
tiplication based on the NTT. All arithmetic operations are specifically optimized for the ring
Rq = Zq[x]/〈xn+1〉, which is heavily used in ideal lattice-based cryptography. We further show
how to efficiently realize basic arithmetic and the required NTT butterfly for specific moduli q.
Building on top of these results our implementation supports a broad range of parameters and
we give instantiations for previously proposed parameter sets for public-key encryption and SHE.
Our design is scalable, has small area consumption on a low-cost FPGA, and offers decent per-
formance compared to general purpose computers. Additionally, we present a microcode engine

2The first publication in which our multiplier appeared is [PG12].

46



4.2. Design Decisions

with the polynomial multiplier as core component that allows polynomial additions and subtrac-
tions, storage of polynomials in registers, and random sampling of polynomials. This processor
has been used as a building block for the implementations covered in Chapter 5 (RLWEenc) as
well as Chapter 7 (GLP and BLISS).

4.2 Design Decisions

In this section we deal with the overall design of a polynomial multiplier using the NTT for the
implementation of lattice-based cryptography. The necessary mathematical background is cov-
ered in Section 2.4.2. When we write polynomial multiplication as c = INTT(NTT(a)◦NTT(b))
for a,b, c ∈ Rq this usually also includes multiplication by powers of ψ and ψ−1.

4.2.1 Previous Work Unrelated to Lattice-Based Cryptography

The implementation of the FFT in hardware has been extensively researched for more than forty
years and a large variety of approaches exist for certain demands regarding throughput, power
consumption as well as memory and resource usage, or latency [Pea68,Ber69]. A common ap-
proach is a pipelined implementation [DMH+11] where usually one stage of the FFT is computed
in one clock cycle in parallel. However, while being extremely fast, this approach is expensive
in terms of hardware resources and the FFT can also be implemented memory-based [WLT07]
with the coefficients and constants being stored in one large memory block. The processing
is usually controlled by a digital address generator and performed iteratively by only one or a
small number of processing elements (PE) carrying out the actual computations. For radix-2
algorithms the PE usually resembles the well-known butterfly structure and is used to multiply
elements of the processed vector by powers of ω (twiddle factors). In some cases the length of the
processed sequence is fixed but there exist also very flexible, variable length, and memory-based
FFT implementations [GRH11]. A more detailed characterization of FFT architectures can be
found in [SSHA08]. The implementation of the NTT on graphic cards is described in [Eme09].
A cryptographic processor for performing elliptic curve cryptography (ECC) in the frequency
domain is presented in [BKPS07].

4.2.2 Design Decisions for Lattice-Based Cryptography

As lattice-based cryptography is a very active field of research and as the hardness of underlying
problems is not fully understood, no standard parameters like specific moduli or certain numbers
of polynomial coefficients have emerged yet. This is different for established cryptosystems, e.g.,
elliptic curve cryptography (ECC). For the ECC example, NIST primes have been specified for
efficient modular reduction [GP08] and just a few parameter sets have to be considered which
allows much more optimized implementations. As such standardization is not yet achieved for
lattice-based cryptography, we have made our implementation of polynomial multiplication as
generic as possible to support a large number of application scenarios – consequently this also
gives room for parameter or application specific tuning of the architecture (see [APS13,RVM+14,
CMV+14]). The only general requirement on supported parameters, which is also common in
the literature, is that q mod 2n ≡ 1, n is a power of two, and q is a prime so that the NTT can
be efficiently computed in Zq (see parameters of schemes discussed in Chapter 3).

47



Chapter 4. Polynomial Multiplication on Reconfigurable Hardware

Moreover, a memory-based implementation where two polynomials a,b ∈ Rq are stored in two
separate block memories that can be accessed by the NTT engine seems to offer a good trade-off
between performance and area utilization. This allows to load a and b for multiplication into
the registers, to perform the NTT in-place, and to overwrite one polynomial with the result
c = INTT(NTT(a)◦NTT(b)) – leaving the other in NTT form for further use. In this case the
NTT engine is involved in two forward and one inverse transformation and is fully utilized the
whole time.

Note also that the NTT is not considered as a very efficient method for most applications in
signal processing as approximate solutions are usually sufficient (see [Per03] for calculations of
the required accuracy for polynomial multiplication). Especially, the complexity of the butterfly
structure in the PE requires a lot of resources as multiplication by the twiddle factor is just a
general purpose multiplication followed by a modular reduction. When using the Fermat [AB74]
or Mersenne [Rad72] number theoretic transform the butterfly can be implemented by shifters
(as ω can be 2), no read-only memory (ROM) for twiddle factors is needed and the modular
reduction is also heavily simplified [Bla10, Chap. 10] [BS06]. However, in this case the transform
length has to be doubled (Theorem 5), more storage space for coefficients is needed, and the
reduction mod〈xn + 1〉 has to be performed separately. But the most important observation
when reusing the PE for polynomial multiplication is that the component-wise multiplication
step a◦b requires a general purpose multiplication and cannot be implemented just with shifters.
As our iterative implementation of the NTT engine with just one PE seems sufficiently fast for a
lot of applications we do not implement parallel PEs and thus decided to reuse the multiplication
hardware that we need for the component-wise multiplication step also in the NTT. This makes
sense, as such hardware will be instantiated and would idle most of the time otherwise.

When utilizing (2) of Theorem 6 it seems that more arithmetic operations and additional
ROM storage space are necessary due to the needed table entries for powers of ψ and ψ−1.
However, storage costs do not increase compared to a general purpose NTT with zero-padding
(see Theorem 5). When multiplying two length n polynomials using a positive wrapped convo-
lution we would have to append n zeros and thus storage of 2n twiddle factors with 2 · n2 entries
for the forward and 2 · n2 entries for the inverse transform would be required3. When directly
implementing the negative wrapped convolution we can use a transform size of n. In this case
we need additional storage for the ψi values. But as (ψ2)i = ωi we just have to store n powers
of ψ to also store ω0 to ω

n
2
−1 (the same hold for ω−1). As a consequence, when implementing

the negative wrapped convolution directly also 2n entries in the ROM are necessary.

4.3 Design of an Efficient NTT-Based Polynomial Multiplier

In this section we describe our FPGA implementation of a flexible NTT-based polynomial mul-
tiplication core specifically designed for high-performance lattice-based cryptography. For a
detailed description and background on the NTT we refer to Section 2.4. The implementation
is based on Algorithm 1.

48



4.3. Design of an Efficient NTT-Based Polynomial Multiplier

log(q)

log(q)

log(q)

log(q)2

log(q)

log(q)

mod q

mod q

log(q)

mod q

d

c

z

A

B

Figure 4.1: Block structure of the processing element (PE).

4.3.1 Processing Element

The processing element (PE) of the polynomial multiplier is depicted in Figure 4.1. It resembles
the common butterfly structure of signal processing FFTs but relies on integer arithmetic and
modulo reductions instead of floating or fixed point arithmetic. The PE is used to compute
A = c+ zd mod q and B = c− zd mod q, where z is a power of ω, ψ, or their inverses. Thus
one node of the NTT flow is computed every clock cycle (see step 14 and step 15 of Algorithm 1).
In order to allow generic usage, a multiplier and a modular reduction circuit are synthesized for
every given modulus q < 264. However, our implementation also supports plug-ins (using the
VHDL if generate statement) that exploit specific structures in the prime number for a more
efficient reduction, e.g., for the Fermat prime 216 + 1. At synthesis time, it is checked if a
specific circuit is available, which then takes precedence over the generic implementation. This
also allows resource trade-offs, as the plug-ins can be designed to make use of slices, DSPs, or
table look-ups in block memory. The generic log2 (q)×log2 (q)-bit multiplier is instantiated using
the Xilinx provided multiplication IP cores where an appropriate core is selected considering the
size of q (maximum 64× 64-bit). The usage of these cores also allows trade-offs between DSPs
and logic slices as well as between performance and latency.

4.3.2 Modular Reduction

For modular reduction several options and algorithms have been developed where Barret reduc-
tion [Bar86], Montgomery reduction [Mon85], and reductions based on special primes [VOMV96]
are the most well known (see [DS07] for a comparison). For the realization of the NTT we have
evaluated some of these methods on certain primes and also introduce a generic implementation.
Note that some choices for the prime q would lead to simpler reduction circuits than others but
that the requirement that q ≡ 1 mod 2n, where n is a power of two, restricts the number of
available primes, especially for small values of q.

Generic primes

The purpose of our generic solution is to enable usage of the NTT for arbitrary values of q with
support for a high clock frequency. In this case we do not aim for high efficiency but want to
support quick prototyping and testability. For this purpose we instantiate a pipelined chain of

3Note that the efficient NTT algorithms covered in Section 2.4.2 only require access to ω0 to ω
n
2
−1 and ω−0

to ω−(n
2
−1), respectively.

49



Chapter 4. Polynomial Multiplication on Reconfigurable Hardware

comparison and conditional subtraction circuits using the VHDL for generate statement for
a q fixed at synthesis time. This resembles Algorithm 20 where the loop body is unrolled, each
left shifts of q precomputed, and x registered after every loop iteration.

Algorithm 20 Generic Reduction of x mod q

Input: x ∈ {0, (q − 1)2}
l← dlog2((q − 1)2)e − dlog2(q − 1)e
for i = l − 1 downto 0 do
if x ≥ (q � i) then
x← x− (q � i)

else
x← x

end if
end for
return x

Fermat primes

Fermat primes are prime numbers of the form 22
z

+ 1 for an integer z and thus satisfy the
requirement that q ≡ 1 mod 2n in most cases. However, the only known Fermat primes are
3, 5, 17, 257, 65537 where only 65537 seems a suitable choice for lattice-based encryption and
signature schemes4, e.g., assuming n = 256, n = 512, or n = 2048. The modular reduction for
Fermat primes is easy to compute. For q = 65537 it holds that 216 mod 65537 ≡ −1 and thus
for an integer x in [0, 232) it holds that x′ = x mod q ≡ x15,...,0 + (q − x31,...,16) where only one
final subtraction of q is necessary in case x′ ≥ q.

Barret reduction

Barret reduction [Bar86] is a common algorithm for a fixed modulus. It can be used to compute
r = x mod q and relies on the fact that r = x − q

⌊
x
q

⌋
. However, the computation of x

q would
normally require a floating or fixed point division which by itself is very expensive. But it is
possible to precompute u =

⌊
22dlog2 qe(1q )

⌋
so that the reduction is r = x− q((ux)� 2dlog2 qe).

As q and u are known in advance the multiplication can be realized as shifts-and-adds and does
not require an expensive multiplier or a DSP. To evaluate Barret reduction we have implemented
a reduction unit and PE for q = 7681, q = 12289, and q = 8383489. The algorithm for q = 12289
is given in Algorithm 21 and the algorithm for q = 8383489 is given in Algorithm 22. For the
q = 8383489 case the multiplication by q was optimized in the sense that we write q in non-
adjacent form (NAF) [CFA06, Definition 9.13] as q = 223 − 213 + 212 − 210 + 1 in order to
achieve a low hamming weight representation and thus a minimal number of additions. The
final implementation of our Barret reducers was done using Xilinx Vivado High-Level Synthesis
(HLS) [Xil14]. The tool allows the generation of VHDL code out of the description of the
circuit using the C or C++ programming language and the description for q = 7681 is given in
Figure 4.2.

4For the lattice-based hash function SWIFFT [LMPR08] q = 257 and n = 64 has been used.

50



4.3. Design of an Efficient NTT-Based Polynomial Multiplier

Algorithm 21 Reduction x mod 12289

Input: x ∈ {0, (12289− 1)2}
t← ((x� 1)+(x� 4)+(x� 6)+(x�
8) + (x� 10) + (x� 12) + (x� 14))�
28;
t← x− (t� 12 + t� 13 + t)
if t ≥ 12289 then
t← t− 12289

end if
return t

Algorithm 22 Reduction x mod 8383489

Input: x ∈ {0, (8383489− 1)2}
t← (x� 23+(x� 12)+x� 10+x)�
46;
t← x−(t� 23−(t� 13)+t� 13−(t�
10) + t)
if t ≥ 8383489 then
t← t− 8383489

end if
return t

ap_uint<13> vivado_hls_mod_7681 ( ap_uint<26> va l ) {
ap_uint<45> temp = val ;

temp = ( ( temp<<5) + (temp<<9)+(temp<<13)) >> 26 ;
va l = va l − ( ( temp<<13) − ( temp<<9) + temp) ;

i f ( va l >= 7681)
va l = va l − 7681 ;

return va l ;
}

Figure 4.2: Barret reduction modulo 7681 implemented in Vivado HLS.

Prime 8383489

For the reduction modulo q = 8383489 we rely on an idea by Solinas [Sol99]. Obviously, the
value 223 mod 8383489 = 5119 is small. By applying Solina’s idea to reduce a binary number
u = x45...0 mod q we write c = 223x45...23 + x22...0 mod q = 5119 · x45...23 + x22...0. Using this we
reduced the result of the multiplication by 10 bits (see Figure 4.3 for the complete block diagram).
Applying this trick iteratively for three times and after some subtractions we finally get the
reduced value u. In addition to that, the multiplication by the constant 5119 = 212 + 210 − 1
can be implemented very efficiently with two simple shifts, one addition, and one subtraction.

4.3.3 The NTT and Memory Access Restrictions

As previously explained, our polynomial multiplication unit uses two distinct RAMs, each of size
ndlog qe bits, to store the coefficients of the input polynomials a ∈ Rq and b ∈ Rq. All arithmetic
operations are carried out by the shared PE. When coefficients a[i] or b[i] with 0 ≤ i < n are
loaded sequentially into the core they are multiplied by ψi and stored at bit-reversed locations
in one of the RAMs. The twiddle factors ωk for 0 ≤ k < n

2 as well as ψj for 0 ≤ j < n (and
their inverse counterparts) are stored in a read-only 2ndlog qe-bit block memory. The NTT is
realized iteratively, in-place, and uses a decimation-in-time (DIT) algorithm to compute the

51



Chapter 4. Polynomial Multiplication on Reconfigurable Hardware

[45:23]

[22:0]

[35:23]

x 46

p

5119
5119

[22:0]

[25:23]

5119

[22:0]
>p

1

231

0

u

Figure 4.3: Pipelined reduction modulo q = 8383489 where multiplication by the constant 5119
is realized with shift-and-adds.

NTT of a polynomial in one of the RAMs. After the coefficient-wise multiplication the result is
stored in the second RAM while the first RAM still contains the transformed coefficient. After
an inverse NTT, which is a forward NTT with different constants, each j-th coefficient of the
second RAM is sequentially multiplied by the scalar n−1 and by ψ−j for 0 ≤ j < n. Note that
the butterfly structure depicted in Figure 4.1 needs two inputs and produces two outputs during
one clock cycle. However, block-RAM on FPGAs usually supports dual-port access so that only
two values can be written and/or read independently in one clock cycle. Therefore, we rely on
an observation by Pease [Pea68] that the parities of the address lines requesting the inputs and
outputs for the butterfly always differ to realize conflict free addressing.
The interface of our multiplication-only core consists of a port for coefficients of a and b and the

result c is then outputted on another port. Configuration of a top-level instantiation just requires
the specification of n, q, ψ, ψ−1, n−1 in a VHDL generic map statement. All needed tables are
computed by the synthesizer and mapped into a block RAM using inference5 [Xil09b, Chapter 3]
and thus no external script is required.

4.4 A Microcode Engine for Ideal Lattice-Based Cryptography

In practical lattice-based cryptography, polynomial multiplication is the most expensive, but
not the only operation. Usually, sampling of noise polynomials (uniform or Gaussian), accessing
and storage of temporary or preloaded polynomials (e.g., secret/public keys), and addition or
subtraction of polynomials is also required. Moreover, in practice a straightforward polynomial
multiplication c = INTT(NTT(a)◦NTT(b)) is usually not required or would not fully utilize the
power of the NTT. The reason is that we want to support cases in which one coefficient is fixed
and already stored in NTT format (e.g., a secret or public key) and another one is randomly
sampled. Moreover, in case of a computation like c1 = a1e and c2 = a2e it is only necessary

5Inference is the instantiation of a block RAM (or other hard macro) from an abstract VHDL description
instead of an instantiation using an (interactive) vendor tool.

52



4.4. A Microcode Engine for Ideal Lattice-Based Cryptography

to transform e once into the NTT format (and if possible a1,a2 would also be stored in NTT
representation).

Table 4.1: Basic instruction set of the proposed ideal lattice microcode engine.

Command Op 1 Op 2 Cycles Explanation

C-REV-{A/B} {2, 3 + k} - n+ ε Loads a polynomial into register R{0/1}
of the NTT engine, performs the bit-
reversal step and multiplies with NTT
constants.

C-NTT-{A/B} - - n
2 log n+ ε Executes the NTT on register R{0/1}.

C-PW-MUL - - 3
2n+ ε Point/coefficient-wise multiplication of

registers R0 and R1. The bit reversed
result is stored in register R1.

C-INTT - - n
2 log n+ ε Executes the inverse NTT on register R1.

C-INV-PSI - - n+ ε Multiplies coefficients in R1 and multi-
plies with NTT constants.

C-INV-N - - n+ ε Multiplies coefficients in R1 with n−1.
C-ADD {0, 3 + k} {0, 3 + k} n+ ε Adds two polynomials (R(op1) ←

R(op1) +R(op2))
C-SUB {0, 3 + k} {0, 3 + k} n+ ε Subtracts two polynomials (R(op1) ←

R(op1)−R(op2))
C-MOV {0, 3 + k} {0, 3 + k} n+ ε Moves a polynomial from one to another

register (R(op1)← R(op2)).
C-WAIT-SAMPLER - - ε Waits until the sampler has buffered

more than n coefficients.
C-NTT-GP-MODE - - ε Export special purpose NTT registers as

general purpose registers until the next
NTT operation.

The runtime depends mainly on the dimension n. The user can configure the instantiation of k general
purpose registers which start at address 4 as registers R0 to R3 are special purpose registers. Note that
between every instruction a certain number of wait cycles ε is required in order to clear the pipeline and
reconfigure the switch matrix (the depth of the pipeline depends, e.g., on q).

Thus we have used the NTT multiplier implementation described in the previous section as
core component of a synthesis-time configurable microcode engine that offers the user fine grained
access to NTT operations and general purpose instructions like random sampling, addition, and
subtraction. The microcode engine has to be configured by the instantiating component using
the VHDL generic map statement and the required constants are n, q, ψ, ψ−1, n−1 (assuming
the NTT supporting fast negative-wrapped convolutions exists for these parameters). Moreover,
the user can choose to instantiate a configurable number of registers k with a variable coefficient
width (widthi) that can be initialized with precomputed data during synthesis (path to a file
given in initi) for i ∈ {0, k − 1}. The variable coefficient width allows potential saving of block

53



Chapter 4. Polynomial Multiplication on Reconfigurable Hardware

memories in case of temporary values (e.g., noise) or secret and public keys having coefficients
smaller than q.
The instruction set of our microcode engine is given in Table 4.1. The most important in-

structions supported by the processor are the iterative forward (C-NTT) as well as the inverse
transform (C-INTT) which take ≈ n

2 log2 n cycles. Other instructions are for example used for
the bit-reversal step (C-REV), point-wise multiplication (C-PW-MUL), addition (C-ADD), or sub-
traction (C-SUB) – each consuming ≈ n cycles. Note that the sampler and the I/O port are just
treated as general purpose registers. Thus no specific I/O or sampling instructions are necessary
and for example the C-MOV command can be used. Note also that the implementation of the
NTT is performed in-place and commands for the inverse transformation (e.g., C-PW-MUL or
C-INTT) modify only register R1. Therefore, after an inverse transform a value in R0 is still
available. The C-WAIT-SAMPLER instruction has to be executed before accessing the sampler
port to ensure that enough data is available in the internal buffer of the sampler (usually n). This
is mandatory since some instructions (e.g., C-ADD or C-SUB) expect to read values continuously
for n cycles after invocation.

Butterfly

NTT)multiplier Register)file

instruction

ALU
Processing)

element

R0 R1
R4 R5 R6

SR2a

I/O)SR3a

ROM

Decoder
config

mod p

Sampler

Generic)
processor

R0_0

R0_1

R1_0

R1_1

config

fifo_full

config

Figure 4.4: Architecture of our implementation of the microcode engine showing a particular
instance of our generic lattice processor with three additional registers R4-6.

The datapath of our engine is depicted in Figure 4.4. Four registers are fixed where register
R0 and R1 are part of the NTT multiplier block, while the sampler is connected to register R2.
Register R3 is exported to upper layers and operates as I/O port. Each additional configured
register (with an index starting from R4) can hold a polynomial with n elements of size log2 q
or less (depending on widthi). A multiplexer connects registers to the ALU and the external
interface and is designed to process statements in two-operand form like R1 ← R1 + R2. This
is also the main reason for the separate instantiation of registers in block RAMs in contrast
to storage in a large continuous memory space as one register has to be read and written at

54



4.5. Implementation of Schoolbook Multiplication

the same time and another one read. All these additional registers are placed inside of the
Register file component. A decoder unit is responsible for interpreting instructions that
configure multiplexers and for determining whether the ALU has to be used (C-SUB, C-ADD,
C-MOV) or if NTT specific commands need to invoke the NTT multiplier. To improve resource
utilization of the overall system, the butterfly unit of the NTT core is shared between the NTT
multiplier and the ALU.

4.5 Implementation of Schoolbook Multiplication

To compare the proposed NTT multiplier with the naive approach we have developed a ba-
sic schoolbook polynomial multiplier according to the description in Section 2.4.1. For easier
comparison of the resource consumption we reuse the arithmetic already implemented in the
processing element (see Section 4.3.1 and Figure 4.1). Our constant time schoolbook implemen-
tation uses ≈ n2 + 2n cycles with the constant 2n being attributed to loading of the two inputs
while outputting of the result is performed directly in the final round. The multiplier needs
three distinct n × dlog2(q)e-bit memories to store the two input polynomials a and b and the
temporary result. The implementation results for selected parameters are given in Table 4.5.
An advantage of the schoolbook approach and the implementation is that it is more versatile

than the NTT core as it does not place restrictions on the modulus q and the degree of polyno-
mials n. However, in this section we specifically focus on dense polynomials of equal size and do
not exploit different densities of input polynomials (by skipping the addition of lines if a zero
is detected). However, we describe an implementation of a schoolbook multiplier that exploits
special characteristics of input polynomials for the implementation of RLWEenc in Section 5.4.
A schoolbook multiplier that exploits the sparseness of input polynomials in the context of
lattice-based signature schemes is provided in Section 7.3.2.

4.6 Results and Comparison

In this section we present synthesis results for the processing element (PE), the proposed NTT
multiplier, the schoolbook multiplier as reference, and the NTT microcode engine instanti-
ated with a uniform sampler. All results were obtained post place-and-route (PAR), gener-
ated with Xilinx ISE 14.7, and implemented stand-alone on the medium-cost Spartan-6 LX45
(xa6slx45fgg484-3) where the ATHENa tool was used for design exploration [GKA+10].

4.6.1 Processing Element

The results for different implementations of the processing element are given in Table 4.3. As the
multiplication is performed with the help of DSP cores, the usage of LUTs and FFs is dominated
by the modular reduction. It can be seen that the Barret reduction implemented in Vivado
HLS outperforms the generic approach. On the other hand, the special reduction for q = 65537
requires less area than the Barret reduction for the smaller prime q = 12289. Due to the usage
of a large number of FF the generic reduction allows higher clock frequencies than the other
approaches.

55



Chapter 4. Polynomial Multiplication on Reconfigurable Hardware

Table 4.3: Resource consumption and performance results for different instantiations of the PE.
q Algorithm Slice LUT FF DSP BRAM9 MHz

7681 Generic 286 699 420 1 0 293
7681 Barret 68 192 103 1 0 175
12289 Generic 245 782 473 1 0 298
12289 Barret 111 362 235 1 0 208
65537 Fermat 93 275 292 1 0 310
65537 Fermat 83 208 231 1 0 404
8383489 Special 190 603 602 4 0 250

257+25·213+1 Special 401 1195 1095 4 0 171
1061093377 Special 520 1492 1785 16 0 138

4.6.2 Polynomial Multipliers

In Table 4.4 we provide the performance and resource consumption of the polynomial multiplier
instantiated on a Spartan-6 FPGA (without the overhead caused by the microcode engine).
The general performance of the polynomial multiplication mainly depends on the runtime of
the NTT core which requires ≈ n log (n)

2 cycles for a forward or an inverse transformation as the
butterfly step executes the inner loop of Algorithm 1 every cycle. Therefore, by executing two
forward NTTs, multiplying the polynomials component-wise and then executing an inverse NTT
we multiply two polynomials in Zq[x]/〈xn + 1〉 in ≈ 3 · (n log (n)

2 ) + 5.5n cycles. The additional
5.5n cycles are introduced by loading of coefficients (2n), component-wise multiplication (1.5n)
and multiplication of the final result by powers of ψ−1 and by n−1 (2n). The resource consump-
tion is mainly influenced by the area required for the instantiation of the PE (see Table 4.3).
Additionally, for larger values of n the address path becomes larger. For our comparison we just
consider a scenario in which two dense polynomials (very few zero coefficients) with coefficients
in the range from zero to q − 1 are multiplied. By one BRAM we denote a full 18K-bit block
RAM which can be split into two independent 9K-bit block RAMs (denoted as 0.5 BRAM).
Our results show that the NTT can be used to achieve the often claimed quasi logarithmic

runtime for ideal lattice-based cryptography. Moreover, our design scales well as it support NTTs
for polynomials with large dimensions (e.g., n = 4096). The clock frequency mainly depends
on the critical path of the PE and is rather independent of the dimension n. More performance
results for the microcode engine for parameters supporting RLWEenc as well as GLP and BLISS
can be found in Chapter 5 and Chapter 7, respectively.
To benchmark the multiplier for parameter sets that require large moduli, we have instantiated

the design with parameters of a somewhat homomorphic encryption scheme (SHE) [NLV11]. It is
based on ideal lattices with the RLWE problem as hardness assumption [LPR10b] and allows the
computation of a fixed amount of additions and multiplications on encrypted data (depending
on the parameters). Encryption requires two multiplications in Zq[x]/〈xn+1〉 which make up for
most of the runtime. The number of coefficients of the used polynomials ranges from n = 512 to
n = 131072. A reasonable set is (n = 1024,q = 1061093377) for the homomorphic computation
of the mean and (n = 2048, q = 257 + 25 · 213 + 1 = 144115188076060673) for the computation
of the variance on encrypted data. In Table 4.4 the performance and resource consumption for

56



4.6. Results and Comparison

Table 4.4: Resource consumption and performance results for our NTT-based polynomial mul-
tiplier.

App. n q LUT FF Slice DSP BRAM9 MHz Cycles Mul/s
Fermat 128 65537 889 1116 375 1 5 211.149 2,342 90,158
Fermat 256 65537 872 1158 372 1 6 203.087 4,774 42,540
Fermat 512 65537 923 1196 425 1 8 197.707 10,014 19,743
Fermat 1024 65537 974 1231 408 1 13 214.823 21,278 10,096
Fermat 2048 65537 1064 1339 439 1 25 217.061 45,326 4,789
Fermat 4096 65537 1094 1378 470 1 50 218.15 96,526 2,260

LWE [GFS+12] 256 7681 831 978 376 1 6 212.269 4,790 44,315
LWE [GFS+12] 512 12289 1080 1066 418 1 7 183.184 10,161 18,028
SHE [NLV11] 1024 1061093377 2298 2486 912 4 23 172.058 21,405 8,038
SHE [NLV11] 2048 257+25·213+1 3104 4289 1321 16 86 135.704 45,453 2,986

Table 4.5: Resource consumption and performance results for our schoolbook algorithm-based
polynomial multiplier.

App. n q LUT FF Slice DSP BRAM9 MHz Cycles Mul/s
Fermat 128 65537 417 514 161 1 3 301 16,670 18,085
Fermat 256 65537 425 527 166 1 3 308 66,078 4,662
Fermat 512 65537 449 540 166 1 3 293 263,198 1,113
Fermat 1024 65537 464 603 192 1 6 288 1,050,654 274
Fermat 2048 65537 483 616 197 1 12 286 4,198,430 68
Fermat 4096 65537 504 630 206 1 27 303 16,785,438 18

LWE [GFS+12] 256 7681 447 434 154 1 3 244 66,078 3,689
LWE [GFS+12] 512 12289 590 475 199 1 3 182 263,210 690
SHE [NLV11] 1024 1061093377 1503 1608 545 4 12 181 1,050,854 172

these parameter sets is detailed. With a clock frequency of 161 MHz we can compute 3,542
polynomial multiplications in one second (0.28 ms per multiplication) for the larger parameter
set. In [NLV11] it is reported that the same operation takes 11 ms on a 2.1 GHz dual core
processor when implemented in Magma and thus we achieve a speed-up by a factor of 39 for
this operation that contributes heavily to the overall runtime.

Results for our schoolbook polynomial multiplier are given in Table 4.5. The design requires
very roughly only half of the slices of the NTT multiplier. However, the used amount of BRAMs
is larger and the performance is worse than the NTT multiplier for any value of n. As a
consequence, it appears that the NTT is the overall better choice for the implementation of high-
performance multiplication for dense and large polynomials in ideal lattice-based cryptography.

57



Chapter 4. Polynomial Multiplication on Reconfigurable Hardware

4.6.3 Comparison with Related Work

In this section we compare our implementation of polynomial multiplication with relevant im-
plementations on reconfigurable hardware and highlight the different approaches. Moreover, we
revisit follow-up works by other researchers.

Comparison with Previous Implementations

In [GCHB12,GCB13] Györfi et al. proposed an implementation of the SWIFFT(X) hash func-
tion [LMPR08] which uses the FFT/NTT as a core primitive. For their implementation they
utilize the fact that the small modulus q = 257 is fixed. This allows the usage of look-up tables
instead of DSP-based arithmetic. Furthermore, they utilize the diminished-one number system
in order to represent numbers modulo q = 2k + 1. The resource consumption is 3,639 slices
and 68 BRAMs on a Virtex-5 LX110T FPGA and their pipelined implementation is able to
compute the FFT in one clock cycle per sample with a latency of log2(n) at a frequency of 150
MHz. Note that a fair comparison with our results is not possible as the parameters of SWIFFT
(n = 64, q = 257) are much smaller parameter than those we have considered. A similar param-
eter set (n = 128, q = 257) was used for an implementation of the SPRING [BBL+14] pseudo
random generator (PRG) by Brenner et al. [BGL+14] that also utilizes the FFT/NTT.
A complete and fully functional reconfigurable hardware implementation of ring-LWE en-

cryption is given in [GFS+12] with a special emphasis on efficient Gaussian sampling and the
parallel implementation of the NTT. The result of a polynomial multiplication is available in
O(log n) time instead of O(n log n) required by our iterative implementation. However, due to
this parallel approach the resource consumption of the implementation is very high, especially
as no internal block RAMs or DSPs have been used. For a comparison of our implementation of
ring-LWE encryption based on the multiplier presented in this chapter with [GFS+12] we refer
to Section 5.5.

Review of Follow-up Work on Polynomial Multiplication

In this section we discuss follow-up works by other authors [APS13,CMV+14,RVM+14] works
who directly refer to the original publication of the proposed polynomial multiplier [PG12] or
the microcode engine [PG13] for comparison.

Polynomial Multiplier by Aysu et al. [APS13]. A polynomial multiplier supporting a variable
n but fixed q = 216 + 1 = 65537 for simple modular reduction (see Section 4.3.1) was proposed
by Aysu et al. in [APS13]. Their implementation is a pure polynomial multiplier designed to
compute c = ab ∈ Zq[x]/〈xn + 1〉 and does not target a specific scheme or parameter set. The
implementation takes two polynomials a,b ∈ Zq[x]/〈xn + 1〉 as input and transforms them in
parallel into the NTT domain, performs point-wise multiplication and the inverse transform to
obtain the result c. The main difference to our work is a simplified state logic which stems from
a rewriting of Algorithm 1 and the ability to compute powers of ω and ω−1 (twiddle factors) as
well as powers of ψ and ψ−1 on-thy-fly. The biggest challenge when using this approach instead
of a table is the required short pipeline as subsequent computations depend on the previous
results. This approach thus trades the ROM used in our implementation against one or two
additional multipliers (realized by DSPs) and reduction circuits (which are rather cheap for

58



4.6. Results and Comparison

q = 65537). In the 2DSP architecture one DSP is used to realize the processing element (as
in Figure 4.1) and one DSP is used for twiddle factor generation. In the 3DSP architecture
an additional DSP is used to compute twiddle factors which allows a longer pipeline and thus
a higher clock frequency. The block memory requirements of the implementation by Aysu et
al. are lowered, as no ROM is necessary to store powers of ω, ω−1, ψ, ψ−1. Moreover, two
input coefficient pairs are stored adjacent in one block RAM address. As each coefficient is
17 bits, two adjacent coefficients require 34 bits (maximum is 36 bits on a Spartan-6). As a
consequence, the numbers of BRAM reads is decreased and thus the RAM does not have to be
split in even and odd parity RAMs as in our implementation which leads to an efficient forward
transformation. Additionally, as BRAMs are a discrete element that can usually not be shared
easily, one large and fully utilized BRAM (n × 2 log2 q bits) is usually more efficient than two
small and underutilized BRAMs (each n×log2 q bits) that have to be divided further into an odd
and an even parity BRAMs (each n

2 × log2 q bits), especial when the BRAMs are not completely
filled and thus waste unused memory6. However, this approach leads to so called "bubbles"
during the inverse transformation as not enough memory ports are available to feed the two
inputs and to write back the two outputs of the butterfly and thus every second cycle the PE is
unused. As a consequence, the implementation proposed in [APS13] requires 2n(log2(n)) + 7n
cycles7 which is more than the ≈ 3

2(n log n) + 5.5n of our implementation for common choices
of n. As an example, for n = 512 the implementation of Aysu et al. needs 11,264 cycles while
our work requires ≈ 9,728 cycles.

Polynomial Multiplier by Chen et al. [CMV+14]. An NTT polynomial multiplier to compute
c = ab ∈ Zq[x]/〈xn + 1〉 targeting RLWEenc [RS10] and somewhat homomorphic encryption
(SHE) [NLV11] parameter sets of [PG12] has been given by Chen et al. in [CMV+14]. Their
design goal is high speed and low latency which is achieved by using two PEs and two additional
integer modular multipliers. During the forward transformation one PE is used for each input
polynomial a,b and during the inverse transformation both PEs are used to compute c in
parallel. The two additional multipliers are responsible for the multiplication of polynomials
by powers of ψ and ψ−1 as well as point-wise multiplication. To achieve a high frequency the
constant geometry FFT [Pea68] is used which simplifies address generation as the same datapath
can be used in every FFT stage. Additional optimizations include the precomputation of n−1ψ−i

(instead of just ψ−i) for 0 ≤ i < n and the observation that in the first FFT stage multiplications
by ω0 = 1 can be removed. The authors further introduce a method to select primes that lead
to an efficient implementation of modular reduction based on the techniques introduced by
Solinas [Sol99] that were also used previously for efficient modular reduction in [PG12,GLP12].

Microcode Engine by Roy et al. [RVM+14]. A resource efficient NTT multiplier controlled by
a microcode engine for the implementation of the RLWEenc parameter sets (n = 256, q = 7681)
and (n = 512, q = 12289) has been proposed by Roy et al. in [RVM+14]. It basically supports

6As an example, for n = 256 the implementation of Aysu et al. requires a 256 × 34 BRAM (one BRAM9)
while our implementation needs four 128× 17 BRAMs (four BRAM9) which are only filled up to 24%. However,
this effect is less important for larger values of n as the utilization increases.

7We assume from the description in the paper that the parallel forward transform of two polynomials requires
n log2(n) cycles and the inverse transform also n log2(n) cycles where 50% cycles required for the inverse transform
are wait cycles.

59



Chapter 4. Polynomial Multiplication on Reconfigurable Hardware

the same operations as the microcode engine discussed in Section 4.4. The design consists of an
NTT multiplier with access to a register file and offers instructions for storing, loading, adding,
and sampling of polynomials from a Gaussian distribution. The proposed multiplier design builds
on top of the work by Aysu et al. [APS13]. The most important improvement is a technique
to remove the bottleneck when accessing the BRAM holding polynomial coefficients where two
coefficients are stored pairwise in one memory address. Additionally, on-the-fly computation of
twiddle factors is optimized by reordering of the NTT algorithm and storage of few intermediate
powers of ω and ω−1. From the description we assume the costs of a polynomial multiplication
to be in the order of 3

2 log2 n + 2n cycles as the only operations with linear complexity are
point-wise multiplication and the final multiplication of coefficients by n−1ψ−i for 0 ≤ i < n.

Comparison of Proposed Polynomial Multipliers

A comparison of the previously discussed polynomial multipliers for selected parameter sets and
design variants is given in Table 4.6. Note that due to its high resource consumption, lack of
a detailed analysis, and embedding into an RLWEenc core we do not consider the polynomial
multiplier by Göttert et al. [GFS+12] in this section. The given results show that the authors
of the APS design were able to reduce the number of required slices by approximately 400 and
also use less block RAMs. The CMVRCPV design focuses on speed and low latency by introducing
more parallelism into the NTT computation, achieves a high clock frequency, but is currently
the largest one. The listed resource consumption of the RVMCV accounts for a full implementation
of RLWEenc and is still only as large as our stand-alone polynomial multiplier.

Table 4.6: Comparison of the polynomial multiplier designs of Aysu et al. [APS13] (APS), Chen
et al. [CMV+14] (CMVRCPV), and Roy et al. [RVM+14] (RVMCV).

Design App. n q LUT FF Slice DSP BRAM9 MHz Cycles Mul/s
APS - 128 65537 592 547 241 2 1 244 2688 90671
APS - 256 65537 608 527 247 2 1 231 5888 39205
APS - 512 65537 632 535 256 2 2 224 12800 17517
APS - 1024 65537 653 543 260 2 4 222 27648 8029
APS - 2048 65537 670 552 270 2 8 217 59392 3648
APS 4096 65537 676 562 265 2 16 211 126976 1660

CMVRCPV SHE 1024 536903681 6689 - 2112 4 8 211 7967 26458
CMVRCPV SHE 2048 257+25·213+1 14105 - 4406 12 50 208 17402 11959
RVMCV RLWE 256 7681 1349 860 - 1 2 313 3584 87333
RVMCV RLWE 512 12289 1536 953 - 1 3 278 7936 35030

Note that the design RVMCV is a full implementation of RLWEenc and thus also contains a Gaussian
sampler and additional memory.

60



4.7. Conclusion and Future Work

4.7 Conclusion and Future Work

In conclusion, it can be seen that the polynomial multiplier proposed in this chapter was a huge
improvement over previous work [GFS+12] and applicable for the implementation of lattice-
based encryption [PG13] and signature schemes [PDG14a,GLP15]. Moreover, our initial design
was a first approach that has been extended by follow-up work. Examples are designs that
improved speed [CMV+14] or area consumption [APS13,RVM+14] or that were optimized for
certain application scenarios. However, we would like to note that in practice a multiplier has
to be flexible enough to deal with already transformed inputs (e.g., public keys, polynomials
used twice) in order to exploit the full potential of the NTT. Thus a pure comparison of the
speed for a multiplication c = ab can be misleading as it heavily depends on the application
scenario and a fast forward transformation (e.g., using two PEs) is probably more useful than
two parallel but slower forward transformations (where one PE is used per transformation). Ad-
ditionally, a multiplier should be embedded into a configurable microcode engine like [RVM+14]
as most practical applications do not only require polynomial multiplication but also addition
and subtraction, which can be handled by the arithmetic in the PE.
When reviewing some design decisions, given the availability of follow-up work and applica-

tions, the general multiplier design still seems to be sound, which is not surprising as it has
been already used for numerous FFT implementations. However, the biggest structural deficit
of the microcode engine from Section 4.4 (addressed in [RVM+14]) is the distinction between
the two internal NTT-enabled registers and external registers for temporary values which adds
additional complexity and requires time for memory transfers between these two register spaces.
Moreover, our implementation allows operations in two operand from (e.g., R2=R2+R5). This is
possible as each register is realized in a separate block RAM (two ports are required). However,
a different approach with a continuous memory space but more restrictions on the operations
would offer much better utilization and simpler access logic. From an implementation point of
view, the use of inference of block memories turned out to be convenient and allowed simple
configuration using the VHDL generic statement in the top-level component. However, inferred
memories are usually larger compared to memory generated with the less flexible core generator.
Additionally, our implementation contains too many pipeline stages for small parameter sets and
too few for the larger ones.
Certainly, there is still room for improvement in several directions; usage of more PEs and

improved memory organization could lead to even faster implementations, resource consumption
could be further lowered, or applications like homomorphic cryptography could profit from
designs supporting very large values of n and q. Another possible future work would be to realize
the optimizations of the NTT discussed in Section 6.2 on reconfigurable hardware. However,
from an application perspective it seems that lattice-based cryptography is already extremely
fast (see [RVM+14] and Chapter 5) and the question arises whether application that used public-
key encryption or signatures in hardware could really profit from even higher speed enabled by
faster polynomial multipliers. Additionally, we would like to note that this research was inspired
to a large extend by literature on the implementation of the FFT for signal processing and that
most techniques used in [APS13, RVM+14, CMV+14] were also previously proposed (see e.g.,
publications like [Pea68,Ber69] that date back into the years 1968 and 1969, respectively). This
is certainly an advantage for lattice-based cryptography as a lot of implementation techniques
are already available. They just have to be evaluated and adapted for the specific use case but

61



Chapter 4. Polynomial Multiplication on Reconfigurable Hardware

not invented anymore. We additionally see huge opportunities for collaboration between the
lattice-based cryptography community and the signal processing community on this issue.

62



Chapter 5

Implementation of Ring-LWE Encryption on
Reconfigurable Hardware

In this chapter we provide two implementations of the RLWEenc public-key encryp-
tion scheme on reconfigurable hardware. By leveraging our microcode engine (see
Chapter 4) and its fast NTT-based polynomial multiplication routines we realize a
high-speed implementation that significantly reduces the time-area product compared
to previous work. We also present a design that aims at minimal area consumption
and still achieves performance that seems to be sufficient for most applications. Our
work shows that public-key encryption based on the RLWE problem can be realized ef-
ficiently and fast on reconfigurable hardware. Additionally, we cover some techniques
to reduce decryption errors and ciphertext expansion. The high-speed implementa-
tion presented in this chapter is based on [PG13] and the low-area implementation
appeared in [PG14]. Some background material from [POG15a] is also used.

Contents of this Chapter
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Optimization of RLWEenc for Efficiency and Correctness . . . . . . . . . . . 65
5.3 High-Performance Implementation . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Low-Area Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Introduction

Public-key encryption (PKE) is a fundamental asymmetric cryptographic primitive and plays
an important role in a huge number of applications or security protocols. The first popular
lattice-based PKE scheme is NTRUEncrypt which was proposed by Hoffstein, Pipher, and Silver-
man [HPS98] and operates on polynomials in Zq[x]/〈xn−1〉. Since its introduction, several works
have covered efficient implementation on various platforms [ABF+08,KY09,HVP10] as well as
analysis of security properties [HHHW09]. Stehlé and Steinfeld [SS11] also proposed a provably
secure NTRUEncrypt variant that is based on ideal lattices and defined in Zq[x]/〈xn + 1〉. How-
ever, the provably secure variant requires rather large parameters and Cabarcas et al. [CWB14]
concluded that it is inferior to other lattice-based PKEs.

63



Chapter 5. Implementation of Ring-LWE Encryption on Reconfigurable Hardware

Alternatively, the LWE problem [Reg05] can also be used in a rather straightforward manner
to construct a lattice-based PKE [LP11]. However, it is not clear whether schemes with reduc-
tions to hard lattice problems are more efficient than classical schemes or other post-quantum
schemes, e.g., NTRU. The currently and arguably most efficient instantiation of a lattice-based
PKE with a security reduction is based on the RLWE problem [LPR10b]. We refer to this
scheme as RLWEenc [LPR10b, LP11] and introduce it in Section 3.4. From a hardware point
of view, RLWEenc appears very interesting as it is conceptually simple and only requires poly-
nomial multiplication, polynomial addition, as well as sampling of polynomials according to a
narrow discrete Gaussian distribution. Moreover, it is not covered by any patents (up to our
knowledge), allows fast key generation, and already achieves CPA-security in its plain version.
A huge advantage of RLWEenc is that the scheme can be optimized for high performance

when using the NTT. The idea is to store secret and public-key polynomials in the NTT domain
during key generation, which simplifies the encryption and decryption algorithms. Additionally,
one noise polynomial (e1) is used in two polynomial multiplications (ae1 and pe1) and has to
be transformed only once into the NTT domain. As a consequence, only a small extension of
the microcode engine discussed in Chapter 4 is necessary to realize the scheme on reconfigurable
hardware supporting high performance key generation, encryption, and decryption in one core.
Moreover, RLWEenc can also be implemented in a more lightweight manner without exploiting
the benefits of the NTT but by relying on simple schoolbook multiplication. In this case ad-
dress generation becomes extremely simple, no precomputed constants like twiddle factors are
necessary, and restriction on parameter choice are relaxed as no roots of unity are required.
Additionally, a result proposed by Brakerski et al. [BLP+13] on parameter selection gives hints
that it is also possible to choose a power-of-two modulus, which simplifies modulo reduction.
While performance, simplicity, and security properties of RLWEenc are a convincing argument

for further considerations, there are also some drawbacks that need to be addressed by cryp-
tographers and implementers. The biggest issues with RLWEenc and most LWE-based schemes
in general are large ciphertexts and that decryption errors can occur for some parameter sets.
When selecting parameters, one basically has to make a trade-off between the desired security
level, ciphertext size, and an acceptable decryption error rate. As an example, the medium
security parameter set RLWEenc-Ia proposed in [GFS+12] results in a ciphertext expansion by a
factor of 26 for every plaintext bit but has still non-negligible error rates. Moreover, in the plain
scheme the plaintext space is limited to n bits where n is the dimension of the used polynomials.

5.1.1 Related Work

The RLWEenc scheme we are focusing on in this chapter has been introduced in [LPR10b,
LPR10c,LP11] and is discussed in detail in Section 3.4. Commonly used parameters have been
proposed in [LP11,GFS+12] and a security analysis of the scheme can be found in [LP11,LN13].
The first FPGA implementation has been provided by Göttert et al. [GFS+12]. In [RVM+14]
Roy et al. presented the currently fastest implementation by using new techniques for faster
NTT-based polynomial multiplication. The efficient sampling of polynomials from a narrow
discrete Gaussian distribution has been examined in [DG14] and a hardware implementation of
a sampler has been proposed in [RVV13]. The RLWEenc scheme is also employed in a recently
proposed identity-based encryption scheme (IBE) [DLP14] and is similar to a key exchange
protocol [Pei14] that can be used in the transport layer security (TLS) protocol [BCNS15].

64



5.2. Optimization of RLWEenc for Efficiency and Correctness

5.1.2 Contribution

The first part of the contribution of this chapter is a fast implementation of RLWEenc on re-
configurable hardware that exploits the properties of the NTT. Using the same parameters as
in work by Göttert et al. [GFS+12] we improve their results by at least an order of magnitude
considering a throughput to area ratio on a similar reconfigurable platform (Virtex-6). On the
low-cost Spartan-6 family our core achieves significant performance, namely 39.39 µs to encrypt
and 20.13 µs to decrypt a block, with very moderate resource requirements. Moreover, all parts
of our implementation have constant runtime and inherently provide resistance against timing
attacks.
The second part of the contribution is a low-area implementation that additionally evaluates

the consequences of a result by Brakerski et al. [BLP+13] on parameter selection, i.e., the usage
of power-of-two moduli. We are able to provide a decryption circuit that can be implemented
with only 32 slices, one BRAM, and one DSP block on a Xilinx Spartan-6 FPGA. The encryp-
tion module is slightly larger – the reason is that the scheme requires costly sampling from a
discrete Gaussian distribution. To implement this operation we combine rejection sampling with
Bernoulli trials in order to evaluate the exp() function as proposed in [DDLL13b]. For the neces-
sary standard deviation of σ = 3.33 we just use 37 slices for the sampler (excluding a random bit
source). This approach complements the work of Roy, Vercauteren, and Verbauwhede [RVV13]
who also proposed a sampler for the same application scenario.
All in all we provide evidence that public-key encryption based on the RLWE problem can be

both fast and area efficient in hardware. Our work demonstrates that lattice-based cryptography
is indeed a promising and practical alternative for asymmetric encryption in future real-world
systems.

5.2 Optimization of RLWEenc for Efficiency and Correctness

In this section we provide a description of RLWEenc with explicit usage of the NTT. Additionally,
we cover and evaluate inexpensive techniques to reduce the error rate and ciphertext expansion.

5.2.1 Application of the NTT

When using the RLWEenc-Ia and RLWEenc-IIa parameter sets as proposed in [GFS+12], the
NTT and efficient algorithms for its computation exist as q is chosen to be prime and as it
holds that 1 ≡ q mod 2n for n being a power-of-two. Then it is further possible to exploit the
general characteristic of the NTT which supports to decompose a multiplication into two forward
transforms and one inverse transform. If one coefficient is fixed or needed twice it is then possible
to directly store it in NTT representation to save subsequent transformations. In Algorithm 23,
24, and 25 the Gen, Enc, and Dec routines of the RLWEenc scheme are described utilizing this
property of the NTT. By SampleGaussPoly we denote a function that samples a polynomial
from a discrete Gaussian distribution where all coefficients have standard deviation σ = s√

2π
.

Additionally, all polynomials r̃2, ã, p̃ returned by the key generation algorithm are already stored
in the NTT domain. The only drawback is that this increases the storage requirement for
the secret key from ndlog2(τσ)e bits to ndlog2(q)e bits as r̃2 is distributed uniformly and not
Gaussian when being stored in the NTT domain. In our proposal, the second part of the

65



Chapter 5. Implementation of Ring-LWE Encryption on Reconfigurable Hardware

Algorithm 23 RLWEenc Key Generation
Precondition: Access to global constant ã = NTT(a)
1: func RLWEencgenNTT()
2: r̃1 ← NTT(SampleGaussPoly())
3: r̃2 ← NTT(SampleGaussPoly())
4: p̃ = r̃1 − ã◦r̃2
5: return (pk, sk) = (p̃, r̃2)
6: end func

Algorithm 24 RLWEenc Encryption
Precondition: Access to global constant ã =

NTT(a)
1: func RLWEencencNTT(ã, p̃, µ ∈ {0, 1}n)
2: ẽ1 = NTT(SampleGaussPoly())
3: ẽ2 = NTT(SampleGaussPoly())
4: c̃1 = ã◦ẽ1 + ẽ2
5: h̃2 = p̃◦ẽ1
6: e3 ← SampleGaussPoly()
7: c2 = INTT(h̃2) + e3 + Encode(m)
8: return c = (c̃1, c2)
9: end func

Algorithm 25 RLWEenc Decryption

1: func RLWEencdecNTT(c = [c̃1, c2], r̃2)
2: return Decode(INTT(c̃1◦r̃2) + c2).
3: end func

ciphertext c2 is not transmitted in NTT representation to allow the application of compression
techniques introduced in Section 5.2.2. An alternative placement of NTT operations has been
shown by Roy et al. [RVM+14]. A comparison of a naive approach, using the NTT just for
polynomial multiplication, with our proposal1 and the proposal by Roy et al. can be found in
Table 5.1. Note that Roy et al. describe the key generation without explicit usage of the NTT
and just propose to transform the final keys pk = (a,p) and sk = r2.

5.2.2 Ciphertext Expansion and Decryption Errors

Compared to ECC or RSA the ciphertext expansion of RLWEenc is rather large and despite the
threshold decoding (see Section 3.4) infrequent decryption errors appear that lead to flipped bits
in the decrypted and decoded message. In this section we show how to reduce the ciphertext
expansion and propose methods to deal with decryption errors. One mitigation approach, as
discussed in [GFS+12], is to adapt parameters so that the error/noise introduced by the term
e1 · r1 + e2 · r2 + e3 gets smaller. However, completely eliminating the error would require large
values for q (or smaller σ) and lead to decreased efficiency and increased ciphertext size (or a
decreased security level). We thus decided not to change the parameter set but to investigate
additional techniques to correct decryption errors with a marginal impact on performance only.

1Note that in [PG13] a different placement of NTT transformations is used which requires one additional
NTT transformation compared to Roy et al. [RVM+14].

66



5.2. Optimization of RLWEenc for Efficiency and Correctness

Table 5.1: Operation counts for RLWEenc when using the NTT.
Scheme Operation NTT INTT ADD/SUB Point-wise
Naive Gen 2 1 1 1

Enc 4 2 3 2
Dec 2 1 1 1

Our work Gen 2 0 1 1
Alg. 23, 24, and 25 Enc 2 1 3 2

Dec 0 1 1 1
Roy et al. [RVM+14] Gen - - - -

Enc 3 0 3 2
Dec 0 1 1 1

An additional benefit of a better mechanism to deal with errors is that it might also allow
parameter choices that increase security (roughly speaking a larger s or smaller q).

Reduction of Ciphertext Expansion

Threshold encoding was proposed in [LP11,GFS+12] for RLWEenc to transfer n bits resulting
in an inflated ciphertext of size 2ndlog2 qe. However, when it is only necessary to transfer
a 128-bit AES key, the plaintext space is not fully utilized. As the RLWEenc scheme suffers
from random decryption errors this allows to put redundancy in the message to correct those
errors. In the following we analyze a simple but effective way to reduce the ciphertext expansion
without significantly affecting the error rate. This approach has been previously applied to
homomorphic encryption schemes in [BLLN13a, Section 6.4] and [Bra12, Section 4.2] where the
idea is basically to remove a certain number of least significant bits of c2. This works as the
lower order bits mostly carry noise but only little information supporting the threshold decoding.
We experimentally verified the applicability of this approach in practice with regard to concrete
parameters by measuring the error rates for reduced versions of c2 as shown in Table 5.2 (u = 1).

Table 5.2: Bit-error rate for the encryption and decryption of 160,000,000 bytes of plaintext
when removing a certain number x of least significant bits of every coefficient of c2
in RLWEenc.

u Remove bits x 0 1 2 3 4 5 6 7 8 9 10 11

1 Errors (103) 46 46 45.5 45.6 46 46.5 48.6 56.1 94.4 381 5359 135771
Error rate (10−5) 3.59 3.59 3.56 3.57 3.59 3.63 3.80 4.38 7.38 29.81 418.7 10610

2 Errors 26 20 26 27 23 21 21 32 71 957 125796 44 · 106

Error rate (10−8) 2.03 1.56 2.03 2.11 1.80 1.64 1.64 2.5 5.55 74.7 9830 34 · 105

The experiment was performed for the parameter set (n = 256, q = 7681, s = 11.31) where u is the
parameter of the additive threshold encoding (see Algorithm 26) and ±d2se the tailcut bound. For a
cutoff of 12 or 13 bits almost no message can be recovered.

67



Chapter 5. Implementation of Ring-LWE Encryption on Reconfigurable Hardware

Algorithm 26 Additive Encoding

1: func Encode’(µ ∈ {0, 1}b
n
uc, u ∈ N)

2: for i=0 to
⌊
n
u

⌋
− 1 do

3: for j=0 to u-1 do
4: m̄[u · i+ j] = µ[i] · q−12
5: end for
6: end for
7: return m̄
8: end func

Algorithm 27 Additive Decoding
1: func Decode’(m̄ ∈ Rq, u ∈ N)
2: for i=0 to

⌊
n
u

⌋
do

3: s = 0
4: for j=0 to u-1 do
5: s = s+ |m̄[u · i+ j]|
6: end for
7: if s < u·q

4 then
8: µ[i] = 0
9: else

10: µ[i] = 1
11: end if
12: end for
13: return µ
14: end func

As it turns out the error rate does not significantly increase – even if we remove seven least
significant bits of every coefficient and thus have halved the size of c2. A further option to
reduce ciphertext expansion is to omit whole coefficients of c2 in case they are not used to
transfer message bits, e.g., to securely transport a symmetric key. Note that this approach does
not affect the concrete security level of the scheme as the modification does not involve any
knowledge of the secret key or message and thus does not leak any further information.

Decreasing the Error Rate

A simple approach to deal with decryption errors is to modify the threshold encoding scheme.
Instead of encoding one bit into each coefficient of c2 a plaintext bit can be encoded into u
coefficients of c2. This additive threshold encoding algorithm is shown in Algorithm 26 where
Encode’ takes as input a plaintext bit-vector µ of length

⌊
n
u

⌋
and outputs the threshold encoded

vector m̄ of length n. The decoding procedure Decode’, described in Algorithm 27, is given the
encoded message vector m̄ affected by an unknown error vector.
The impact on the error rate by using additive threshold encoding (u = 2) jointly with the

removal of least significant bits is shown in Table 5.2. Note that this significantly lowers the
error rate without any expensive encoding or decoding operations and is much more efficient
than, e.g., a simple repetition code [MS06]. This method seems especially useful for cases when
the message space is not completely used. As an example, when a plain 128-bit AES key has to
be transferred it just uses half of the message space of the scheme for n = 256.

5.3 High-Performance Implementation

In this section we present our high-speed core implementing RLWEenc, which is using the NTT-
aware algorithms as discussed in Section 5.2.1. The goal is to provide a high performance

68



5.3. High-Performance Implementation

hardware implementation with reasonable area consumption that is also flexible by supporting
key generation, encryption, and decryption in one core. Especially the ability to generate keys
would enable the usage of our implementation in a key exchange protocol that requires the gen-
eration of temporary session keys (ephemeral keys). Our implementation relies on the microcode
engine discussed in Chapter 4 and the main additional components required by RLWEenc is a
Gaussian sampler, message encoding, and control logic.

5.3.1 High-Speed Gaussian Sampling Based on the CDT

For our implementation we use the cumulative distribution table (CDT) method (sometimes also
referred to as inverse transform method) and we refer to works like [Dev86,GPV08,DDLL13b,
DG14] and Section 2.5 for more details. When applying this method in general, a table of
cumulative probabilities pz = Pr(x 6 z : x ← Dσ) for integers z ∈ [−τσ, ..., τσ] is computed
with a precision of λ bits. For a uniformly random chosen value x from the interval [0, 1) the
integer y ∈ Z is then returned for which it holds that pz−1 ≤ x < pz.
In hardware we perform this operation on integers by feeding a uniformly random value into

a parallel array of comparators. Each comparator ci compares its input to the commutative
distribution function scaled to the range of the PRNG outputting r bits. As we have to cut
the tail at a certain point, we compute the accumulated probability over the positive half (as it
is slightly smaller than 0.5) until we reach the maximum value j (e.g., j = d2se) so that w =∑j

k=0 ρσ(x)/ρσ(Z). We then compute the values fed into the comparators as vk = 2r−1−1
w (vk−1+∑j

k=0 ρσ(x)/ρσ(Z)) for 0 < k ≤ j and with v0 = 2r−1−1
2w ρσ(0)/ρσ(Z). Each comparator ci is

preloaded with the rounded value vi and outputs a one bit if the input was smaller or equal to
vi. A subsequent circuit then identifies the first comparator cl which returned a one bit and
outputs either l or −l.
The block diagram of the sampler is shown in Figure 5.1 for the concrete parameter

set RLWEenc-Ia (n=256, q=7681, s=11.32) where the output of the sampler is restricted to
[−d2se, d2se] = [−5.09σ, 5.09σ] and the amount of required randomness is 25 bits per sam-
ple. These random bits are supplied by a PRNG for which we used the output of an AES block
cipher operating in counter mode. Each 128-bit output block of our AES-based PRNG allows
sampling of 5 coefficients. One random bit is used for sign determination while the other 24
bits form a uniformly random value. Finally, the output of the sampler is buffered in a FIFO.
When leaving the FIFO, the values are lifted to the target domain [0, q− 1]. Although it is pos-
sible to generate a sampler directly in VHDL by computing the cumulative distribution function
on-the-fly during synthesis, we have implemented a Python script to support computation with
arbitrary precision.

5.3.2 Design of the Encryption and Decryption Core

For our implementation of RLWEenc we use the medium RLWEenc-Ia (n = 256, q = 7681, s =
11.31) and high security RLWEenc-IIa (n = 512, q = 12289, s = 12.18) parameter sets as proposed
in [GFS+12] which are specifically optimized for implementation in hardware (see Table 3.1).
To carry out polynomial arithmetic we rely on the microcode engine as discussed in Section 4.
Thus the size of the data-path depends mainly on the size of the modulus q and is dlog2(q)e bits
as polynomial coefficients are processed serially in a pipeline. A block diagram of the top-level

69



Chapter 5. Implementation of Ring-LWE Encryption on Reconfigurable Hardware

AES
24

<1482086

<4374472

..........

<1677215

<1677209

1

0 1 22 23

..........

1

 (-1)
5 6 6

mod p
13

FIFO

24

IV CTR ..........

25

Figure 5.1: Gaussian sampler using the cumulative distribution table (CDT) method and an
array of comparators.

module LWEenc is given in Figure 5.2. The LWEenc module instantiates the microcode engine and
uses a block RAM as external interface to export or import ciphertexts c̃1, c2, keys r̃2, p̃ or the
message µ with straightforward clock domain separation (see again Figure 5.2). The processor is
controlled by a finite-state machine (FSM) issuing commands to the lattice processor to perform
encryption, decryption, key import, or key generation. The microcode engine is configured with
three general purpose registers R4-R6 in order to permanently store the public key p̃, the global
constant ã and the private key r̃2. More registers for additional key-pairs are also supported,
but optional. The implementation supports pre-initialization of registers so that all constant
values and keys can be directly included in the bitstream. Note that, for encryption, c1 and
c2 can be computed independently from the message which is then only added in the last step.
This is similar to the mode of operation of a symmetric stream cipher and the XORing of the
keystream to the ciphertext.

5.3.3 Results

For performance analysis we primarily focus on Virtex-6 platforms (speed grade -2) but would
also like to emphasize that our solution can be efficiently implemented even on a small and
low-cost Spartan-6 FPGA. Results were obtained post-place and route (post-PAR) with Xilinx
ISE 14.2 and Xilinx ISE 14.7, which was used to re-synthesize the toplevel modules.

Gaussian Sampling

In Table 5.4 we summarize resource requirements of six setups of the implemented comparator-
based Gaussian sampler for different tail cuts and precision. The entry rnd denotes the number
of used random bits to sample one value. Our random number generator is a round based
AES in counter mode that computes a 128-bit AES block in 13 cycles and comprises 349 slices,
1,181/350 LUT/FF, two 18K block RAMs and runs with a maximum frequency of about 265
MHz. Combined with this PRNG2, Gaussian sampling based on the inverse transform method
is efficient for small values of s (as typically used for RLWEenc) but would not be suitable for
larger Gaussian parameters like, e.g., s =

√
2π2688 = 6737.8 for the signature scheme presented

in [Lyu12]. While our sampler needs a huge number of random inputs, the AES engine is still able
2Generation of true random numbers is not in the scope of this work; we refer to the survey by Varchola [Var08]

how to achieve this.

70



5.3. High-Performance Implementation

Butterfly

NTT)multiplier Register)file

instruction

ALU
Processing)

element

RE RC R4 R5 R6

SR:a

IWO)SR~a

ROM

Decoder
config

mod p

Sampler

Generic)
processor

Threshold
encoder

RAM

m_in

m_out

FSM

addr

din

we

dout

ctl

LWEenc

RE_E

RE_C

RC_E

RC_C

FIFO

AES

Comparator
array

start

Instruction
memory

config

fifo_full

Content:
p

Content:
a

Content:
r:

config

config

~ ~~

Figure 5.2: Architecture of our RLWEenc core using our microcode engine with three additional
registers R4-6.

to generate these numbers (for each encryption we need 3n samples). Table 5.4 also shows that
it is possible to realize an efficient sampler even for a small statistical distances since its resource
consumption of roughly 250 slices is quite moderate (setup III/IV). With additional register
levels and pipelining for versions I/II we achieved the overall clock frequency for the whole
core reported in Table 5.7 in this section. As the PRNG does not provide enough randomness
to sample a value in every clock cycle it is not necessary to evaluate the comparator array in
every single cycle so that in particular setups III-VI can use several clock cycles until output
is provided. This lowers the critical path and thus allows higher clock frequencies without
costs for pipelining registers. Setups V/VI are even more accurate and support (theoretical)
requirements of a statistical distance smaller than 2−100 [DG14]. However, then a faster PRNG
would be required and to encrypt we would need 105·3n = 80,640 bits of random input, assuming
n = 256.

Performance of RLWEenc

Table 5.5 lists the resource consumption and performance of our implementation of RLWEenc.
As stated in Section 4.4 our implementation combines key generation, encryption, and decryp-
tion in a holistic design and would not significantly benefit from removing any one of these
functional units. The only exception might be a decryption-only core in which no Gaussian
sampling is needed. It can be seen that our proposed work is very compact as it only uses 11%
of the slices of the smallest Virtex-6 and also fits onto the low-cost Spartan-6 LX16 devices
(see Table 5.7). The maximum achievable clock frequency of 245 MHz is quite high, especially
for a relatively complicated and highly configurable public-key encryption implementation. The

71



Chapter 5. Implementation of Ring-LWE Encryption on Reconfigurable Hardware

Table 5.4: Performance, resource consumption, and precision of the core part (shaded gray in
Figure 5.1) of our Gaussian sampler on a Virtex-6 LX75T (post-PAR).

Setup s Max s rnd Slices LUT/FF MHz

I 11.32 23 25 42 136/5 115
II 12.18 25 25 46 149/5 118
III 11.32 48 85 231 863/6 61
IV 12.18 51 85 255 911/6 61
V 11.32 53 105 314 1157/6 58
VI 12.18 57 105 342 1248/6 50

required time for key generation, encryption, and decryption is well balanced and should meet
most real world demands. Additionally we would like to note that our implementation of RL-
WEenc is fully pipelined and has no data-dependent operations. The processor core does not
support any branches and Gaussian sampling based on the inverse transform operates in con-
stant time. Summarizing, all cryptographic operations of our core are timing-invariant. As a
consequence, the implementation is protected against side-channel attacks [MOP07] that use
timing information of the security algorithm by measuring execution time or cycles.

Table 5.5: Resource consumption and performance of our RLWEenc core on a Virtex-6 LX75T
(post-PAR).

Aspect Medium security (set Ia) High security (set IIa)
(n=256,q=7681,s=11.32) (n=512,q=12289,s=12.18)

R
es
ou

rc
es Slices 1,323 1,601

LUT/FF 3,644/3,368 4,759/4,484
18K BRAM 12 13
DSP48E1 1 1

P
er
fo
rm

an
ce MHz 261 245

RLWEencgenNTT (cycles/time) 7,076/27.11 µs 14,337/58.52 µs
RLWEencencNTT (cycles/time) 6,263/24.00 µs 12,750/52.04 µs
RLWEencdecNTT (cycles/time) 3,200/12.26 µs 6,377/26.03 µs

5.4 Low-Area Implementation

In this section we provide an area efficient implementation of RLWEenc that is still able to achieve
high performance. Additionally, we use a result by Brakerski et al. [BLP+13]. They show that
q is not necessarily required to be prime for security reductions to hold for LWE and cryptanal-

72



5.4. Low-Area Implementation

q=4096

DSP blockA

D

B

C

OP0: A*B+C 
OP1: (D-A)*B+C 

q=4093
[11:0]

[11:0]

[11:0]

[11:0]

[11:0]

[11:0]

[11:0]
<<1

[12:0]

[23:0]

[13:0]

2*4093
4093

[11:0]

[11:0]

Figure 5.3: Block diagram of our log2 (q)× log2 (q)-bit multiplier, log2 (q) adder, and reduction
modulo q for q = 4093 and q = 4096.

ysis does also not exploit or require that q is a prime3. As a power of two modulus allows a
significantly more efficient implementation of modular reduction we propose, based on the work
of Brakerski et al. [BLP+13], the modified parameter set RLWEenc-Ic (256, 4096, 8.35). In this
section we then describe a lightweight implementation of separate encryption and decryption
modules for the parameter sets RLWEenc-Ib (256, 4093, 8.35) and RLWEenc-Ic (256, 4096, 8.35) of
RLWEenc (see Table 3.1). We are using a pipelined DSP-enabled schoolbook polynomial multi-
plier and a recently proposed method for efficient sampling from a discrete Gaussian distribution
using the Bernoulli distribution and small tables as described in [DDLL13a].

5.4.1 Row-Wise Polynomial Multiplication

For our implementation we used row-wise polynomial multiplication, which can be implemented
efficiently with just two counters and a log2 (q) × log2 (q) modular multiplication unit. An
advantage over recursive algorithms is the low memory consumption and the immediate modular
reduction modulo xn+1. In Algorithm 28 we give the RLWEencencSchool algorithm used to compute
the encryption operation, which takes the public key pk = (a,p) and the binary message vector
µ ∈ {0, 1}n as inputs. The SampleGauss(τ, σ) algorithm returns an integer sampled from the
discrete Gaussian distribution DZ,σ. As we just have one polynomial multiplier we first sample
a coefficient of e1 (step 8), compute a row of c1 (step 9), and then a row of c2 (step 13). In
every execution of the loop in step 5 we also sample one coefficient of e2 and e3. The reason for
mixing the sampling into the polynomial multiplication is that we want to minimize buffers in
the non-constant time sampler that is used in the low-area implementation (see Section 5.4.2).
Sampling the complete e1, e2, or e3 polynomials at once would require additional storage space
or a very fast sampler.
The log2 (q)×log2 (q)-bit multiplier, accumulator, and modulo reduction circuit used in step 11

and step 15 is implemented as depicted in Figure 5.3. For the q = 4096 case no reduction is
necessary as we just need the 12 lowest output bits of the DSP block. For q = 4093 we observe
that 212 mod 4093 = 3. So we can write x23..0 mod 4093 ≡ 212x23..12 +x11..0 ≡ 3x23..12 +x11..0 ≡
(x23..12 � 1) + x23..12 + x11..0 (by � we denote a shift-left operation). This result can then be

3In recent work like [EHL14,ELOS15] several restrictions regarding the choice of parameters for LWE and
RLWE instances have been shown. However, when using a power of two dimension n and a power of two modulus
q the attacks do not appear to be successful.

73



Chapter 5. Implementation of Ring-LWE Encryption on Reconfigurable Hardware

Algorithm 28 RLWEenc Encryption Using the Schoolbook Algorithm

1: func RLWEencencSchool(pk=(a,p), µ∈{0, 1}n)
2: for i = 0 do n− 1
3: c1[i]← 0, c2[i]← 0
4: end for
5: for i = 0 do n− 1
6: c1[i]← c1[i] + SampleGauss(τ, σ)
7: c2[i]← c2[i] + SampleGauss(τ, σ)
8: e← SampleGauss(τ, σ)
9: for j = 0 do n− 1

10: h← i+ j mod n

11: c1[h]← (c1[h] + (−1)b
i+j
n ca[j]e) mod q

12: end for
13: for j = 0 do n− 1
14: h← i+ j mod n

15: c2[h]← (c2[h] + (−1)b
i+j
n cp[j]e) mod q

16: end for
17: end for
18: for i = 0 do n− 1
19: c2[i]← (c2[i] + b q2mie) mod q
20: end for
21: return c1, c2
22: end func

reduced into the range [0, 4092] by at maximum two subtractions of q. The implemented circuit
is shown in Figure 5.3 and translates efficiently into hardware. Note that we are using a full
log2 (q) × log2 (q)-bit multiplier, although the values sampled from Dσ are small and only in
the range [−τσ, τσ] (for the specific parameter set we set τ = 12). In general this would allow
a smaller signed multiplier. However, in this case the reduction of both positive and negative
multiplication results would be more complicated. Additionally, we already use a DSP block
(see [Xil09a]) which natively supports a 18 × 18-bit multiplication without additional resource
usage. A multiplication by a negative number is implemented by choosing the corresponding
mode of operation of the DSP block. The mode AB+C is used for unsigned multiplication and
the mode (D − A)B + C = (q − A)B + C for signed multiplication, respectively. As this mode
is supported directly by the DSP block it does not require further resources, e.g., a multiplexer
or subtraction circuit.
In Figure 5.4 we show the block diagram of the encryption core. We use one 9 Kb dual-port

block RAM (BRAM9) to store the public key a,p (2 · 256 · 12 = 6144 bits) and one dual-port
BRAM9 to hold temporary variables and the final ciphertext c1, c2 (2 ·256 ·12 = 6144 bits). The
multiplication is basically controlled by two counters implementing the interleaved multiplication
where the state machine can select whether (c1,a) or (c2,p) are accessible (set_h). A block
diagram of the modular multiplication design is given in Figure 5.3. To save a block RAM we

74



5.4. Low-Area Implementation

A

BRAM1
a

p

BRAM2

A

C
ou
nt
er
1

C
ou
nt
er
2

Sampler

modPRNG

set_h1

set_h2

addr

dout B
addr

din
A

addr

dout
[11:0]

[11:0]

1

c1

c2

1

[7:0] [7:0]

[7:0]

[8:8]

sign

[11:0]

[6:0]

FIFO
[6:0]

[11:0]

Figure 5.4: Block diagram of the lightweight RLWEenc encryption circuit where the public key
a,p is stored in BRAM1 and the ciphertext c1, c2 in BRAM2.

store the private key in a 256×7-bit ROM, which is realized using memory LUTs. In case a
key update is necessary it is also possible to use a RAM with low overhead. As the decryption
circuit requests the ciphertext coefficient by coefficient, only one dual-port BRAM9 is necessary.

5.4.2 Area Efficient Rejection Sampling

Implementing discrete Gaussian sampling with high precision and low resource consumption is
challenging. Simple rejection sampling using floating-point arithmetic is definitely too costly, es-
pecially on an FPGA without hardware supported floating point operations. For the cumulative
distribution table (CDT) approach a precomputed table of roughly τλσ bits is required. While
the inversion/CDT method using comparators has shown high performance (see Section 5.3.1) it
also leads to a rather large implementation. Roy et al. [RVV13] provided an implementation of a
Gaussian sampler using the Knuth-Yao method which allows halving the size of the precomputed
table. In order to further reduce the need for precomputation, we consider a proposal by Ducas
et al. [DDLL13a]. They propose a simple method to sample according to the Bernoulli distri-
bution4 Bexp(−x/f) with very low memory overhead using log2 (dmax (x)e) precomputed entries
with λ-bit precision (see Algorithm 29). The sampling with constant and precomputed biases in
step 5 can be performed by sampling the binary expansion of a uniform number r ∈ [0, 1) with
λ bits of precision and returning one if and only if r < c. To save random bits we evaluate the
comparison bit-by-bit instead of sampling a λ-bit r at once.

4The Bernoulli distribution Bc outputs one (acceptance) with probability c ∈ [0, 1) and zero (rejection)
otherwise.

75



Chapter 5. Implementation of Ring-LWE Encryption on Reconfigurable Hardware

Algorithm 29 Bernoulli Sampling: Bexp(−x/f)
1: Precomputation: ci = exp(−2i/f) for 0 ≤ i ≤ l − 1
2: func SampleBer(x ∈ [0, 2l))
3: for i = l − 1 do 0
4: if xi = 1 then
5: sample Ai ← Bci
6: end if
7: if Ai = 0 then
8: return 0
9: end if

10: end for
11: return 1
12: end func

Algorithm 30 Rejection Sampling Using Algorithm 29
1: func SampleGauss(τ, σ)
2: u← Uniform(0, dτσe)
3: if Bexp(−u2/(2σ2)) = 0 then
4: restart
5: end if
6: if u = 0 then
7: b← Uniform(0, 1)
8: end if
9: if b = 0 then

10: restart
11: end if
12: b← Uniform(0, 1)
13: return (−1)bu
14: end func

The general idea of rejection sampling is to choose a uniformly random u ∈ {−τσ, ..., τσ} which
is then accepted with a probability proportional to exp(−x2/2σ2). In Algorithm 30 we provide
a sampling procedure which picks a uniformly random u ∈ {0, ..., τσ} and uses Algorithm 29
to accept proportional to exp(−u2/2σ2). In order to sample in the range {−τσ, ..., τσ} we
then reject the output zero (u = 0) with probability 1

2 and sample a sign bit. The number of
required table entries is log2 (τ2σ2) and for σ = 3.33, τ = 12 and λ = 80 we get a table size
of 880 bits implemented in memory LUTs (LUTM). Although we have eliminated the need for
high precision evaluation of the exp() function, we still need 2τ/

√
2π ≈ 10 trials and thus a

high number of uniformly random bits. This is mitigated by using an implementation of the
resource efficient Trivium stream cipher as a PRNG that can generate a sufficient amount of
randomness to match the speed of the polynomial arithmetic. To ensure a constant run-time
of the encryption we have implemented a small buffer FIFO (see Figure 5.4) which holds up to

76



5.5. Comparison with Related Work

16 sampled values. They are saved in the range [−dστe, dστe] and then lifted into the range
[0, q − 1] at the output port of the FIFO.

5.4.3 Results

Performance results and resource consumption of our low area implementation of RLWEenc
using the RLWEencencSchool and RLWEencdecSchool algorithms are provided in Table 5.6. Our results
were obtained post-PAR with Xilinx ISE 14.6 and a small Spartan-6 LX9 (speed grade -2)
as target device. Synthesis and place-and-route options were optimized for small area and we
also utilize the memory LUT capabilities of the device (LUTM). In Table I we give the overall
resource consumption of the encryption and decryption cores and demonstrate the significant
advantage in applying the result of Brakerski et al. [BLP+13] to the design. This is especially
striking for the decryption core since the core for q = 4096 needs only 63% of the slices of the
core for q = 4093. The size of the encryption core is dominated by the resource consumption
of the sampler. Still the core for q = 4096 is 19 slices smaller than the core for q = 4093.
The achieved clock frequencies of 128/144 MHz and 179/189 MHz match the requirements of
typical lightweight scenarios and result in 934/1,057 and 2,700/2,849 encryption and decryption
operations per second, respectively (each handling n bits of plaintext).

Table 5.6: Resource consumption and performance of our area optimized FPGA implementation
of RLWEenc.

Operation Parameter LUT/LUTM/ BRAM9/ MHz Cycles OP/s
FF/Slice DSP

RLWEencencSchool (256, 4093, 8.35) 360/36/290/114 2/1 128 avg. 136,986 934
RLWEencencSchool (256, 4096, 8.35) 282/35/238/95 2/1 144 avg. 136,212 1,057
RLWEencdecSchool (256, 4093, 8.35) 162/18/136/51 1/1 179 avg. 66,304 2,700
RLWEencdecSchool (256, 4096, 8.35) 94/18/87/32 1/1 189 avg. 66,338 2,849

5.5 Comparison with Related Work

In this section we compare our high performance and low area core with related work. In Ta-
ble 5.7 we provide our results as well as results by Göttert et al. [GFS+12], Roy et al. [RVM+14],
our original publication [PG13], and we list other relevant asymmetric schemes. We also add
performance figures for a Spartan-6 instantiation.
Note that a detailed comparison with [GFS+12] is not possible due to inaccuracies of synthesis

results5. Figures for clock frequency, overall slice consumption, and cycles counts for individual
operations or the whole encryption block are not given in [GFS+12]. We therefore can only
refer to numbers providing the resource consumption of registers and LUT usage. For a rough
comparison we apply the throughput to area (T/A) metric and define area equivalent to the

5The Virtex-6 LX240T FPGA used in [GFS+12] was overmapped so that the subsequent PAR step providing
final results could not have been performed.

77



Chapter 5. Implementation of Ring-LWE Encryption on Reconfigurable Hardware

usage of LUTs due to the restriction mentioned above. It turns out that our implementation for
n = 256 is 40 times smaller regarding key generation, 81 times smaller for encryption and 34
times smaller for decryption, at a loss of a factor of about 3 and 1.5 in performance for encryption
and decryption, respectively. When employing a bit/s

LUT metric6 for medium security encryption
we achieve 10.66·106 bits

4549LUTs = 2,927 while the work presented in [GFS+12] gives 31.8·106 bits
298,016 LUTs = 106.

This results in an improvement of a factor of roughly 27.6.
The implementation by Roy et al. [RVM+14] appeared after the original publication [PG13] of

the work presented in this chapter and is significantly smaller and also faster. Better efficiency
is gained through the use of a more efficient microcode engine and by an implementation of a
Knuth-Yao table-based discrete Gaussian sampler. For a comparison of our microcode engine
with Roy et al. [RVM+14] we refer to Section 4.6.3. The main improvement in this regard
appears to be that the polynomial multiplier of Roy et al. does not have separate NTT-enabled
registers but a large address space which can be directly accessed by the multiplier. Thus no
loading of polynomials into the NTT-enabled registers and block memory space is required.
In comparison with a recent implementation of the code-based Niederreiter scheme [HG12]

our decryption is faster and we also use fewer resources on the same platform. Another natural
target for comparison is the patent-protected NTRU scheme which has been implemented on
a large number of architectures [BCE+01,ABF+08,HVP10]. The implementation in [KY09] is
clearly faster than ours. However, the implemented NTRU(251,3,12) variant in [KY09] seems to
be less secure than RLWEenc-Ia [HHHW09]. Unfortunately, we are not aware of any newer NTRU
FPGA implementations in order to determine the impact of increased security parameters on
runtime and area consumption. In software, NTRU even seems to be rather slow for higher
security levels what can be obtained from the 256-bit secure NTRU software implementation
(ntruees787ep1) benchmarked using the eBACS framework [BL] with secret/public key sizes
of 1,854/1,574 bytes and a ciphertext of 1,574 bytes. For the ideal lattice-based NTRU version
presented in [SS11], no hardware implementation has been published yet. In comparison with
ECC over prime curves (i.e., a single point multiplication [GP08]) and RSA (random-exponent
1024-bit exponentiation [Suz07]) our implementation is by an order of magnitude faster, scales
better for higher security levels, and also consumes less resources. However, we are not able to
beat the recent binary curve implementation of Rebeiro et al. [RRM12] in terms of throughput
and performance.

5.6 Conclusion and Future Work

In this chapter we have shown that the RLWEenc scheme can be efficiently implemented on
reconfigurable hardware for high-performance and low-area application scenarios. Our results
for the high-performance implementation were even further improved in related work by Roy et
al. [RVM+14]. However, we still see some opportunities for further work. While the Knuth-Yao
sampler employed in [RVM+14] is very efficient, it might also be possible to tune the CDT
approach for high speed by using techniques from Section 2.5.4. Additionally, RLWEenc would
directly benefit from a more efficient implementation of the microcode engine and a more efficient
NTT-based polynomial multiplier.

6For this comparison we assumed that for each encryption 256 bits are transmitted.

78



5.6. Conclusion and Future Work

Table 5.7: Performance comparison of our implementations with other implementations of 80-bit
to 128-bit secure PKEs.

Scheme Device Resources OP Speed
(LUT/FF/BRAM/DSP)

RLWEenc (speed, our work) S6LX16 3,564/3,307/13/1 Gen 44.50 µs
(n = 256, q = 7681) @159 MHz - Enc 39.39 µs

- Dec 20.13 µs

RLWEenc (speed, our work) V6LX75T 3,644/3,368/12/1 Gen 27.11 µs
(n = 256, q = 7681) @261 MHz - Enc 24.00 µs

- Dec 12.26 µs

RLWEenc(area, our work) S6LX9 396/290/2/1 Enc 1.07 ms
(n = 256, q = 7681) S6LX9 180/136/1/1 Dec 370.00 µs

RLWEenc [PG13] S6LX16 4121/3513/14/1 Gen 45.22 µs
(n = 256, q = 7681) @160 MHz - Enc 42.88 µs

- Dec 27.51 µs

RLWEenc [PG13] V6LX75T 4549/3624/12/1 Gen 27.61 µs
(n = 256, q = 7681) @262 MHz - Enc 26.19 µs

- Dec 16.80 µs

RLWEenc [RVM+14] V6LX75T 1,349/860/2/1 Enc 20.10 µs
(n = 256, q = 7681) V6LX75T - Dec 9.10 µs

RLWEenc [GFS+12] V6LX240T 146,718/82,463/-/- Gen -
(n = 256, q = 7681) V6LX240T 298,016/143,396/-/- Enc 8.05 µs

V6LX240T 124,158/65,174/-/- Dec 8.10 µs

Niederreiter [HG12] V6LX240T 888/875/17/- Enc 0.66 µs
(80-bit security) V6LX240T 9,409/12,861/9/- Dec 57.78 µs

QC-MDPC [vMG14] V6LX240T 224/120/1/- Enc 2.2 ms
(80-bit security) V6LX240T 568/412/3/- Dec 13.4 ms

NTRU [KY09] XCV1600E 27,292/5,160 Enc 1.54 µs
- Dec 1.41 µs

1024-bit mod. Exp. [Suz07] XC4VFX12 3,937 slice/17 DSP - 1.71 ms

ECC-P224 [GP08] XC4VFX12 1,825/1,892/11/26 - 365.10 µs

ECC-B233 [RRM12] XC5VLX85T 18,097 LUT/5,644 slice - 12.30 µs

79



Chapter 5. Implementation of Ring-LWE Encryption on Reconfigurable Hardware

Another area of future work are high-level protocols. Currently, the RLWEenc scheme is mainly
used for implementations of lattice-based public-key encryption. However, often key exchange
and key transport is an important application and public-key encryption is just a building block
in a protocol. It would be interesting to investigate how efficient key exchange algorithms like
the one presented in [BCNS15,ZZD+15] are. Moreover, it appears possible to exploit synergies
between a public-key encryption and a signature core with regard to polynomial multiplication
(RLWEenc and BLISS can be instantiated with the same dimension n and modulus q). Such a
core could be used for authenticated key exchange (AKE) and it is an open question if such a
design would be more efficient than a direct implementation of a dedicated AKE protocol like
the one given in [ZZD+15].

80



Chapter 6

Implementation of Ring-LWE Encryption on
an 8-bit Microcontroller

In this chapter we study the efficiency of RLWEenc public-key encryption on an 8-bit
Atmel ATxmega128 microcontroller and implement the number theoretic transform
(NTT) as well as schoolbook multiplication and Karatsuba’s algorithm. We specifi-
cally focus on tuning the NTT and provide an approach that allows to significantly
lower the runtime of polynomial multiplication and thus encryption and decryption
in RLWEenc. Our final implementation that uses the NTT is faster than previous
work and achieves a small memory footprint. This chapter is an extended version
of [POG15a,POG15b].

Contents of this Chapter
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Faster NTTs for Lattice-Based Cryptography . . . . . . . . . . . . . . . . . 83
6.3 Implementation of RLWEenc Using the NTT . . . . . . . . . . . . . . . . . . . 86
6.4 Implementation of RLWEenc Using the Schoolbook Algorithm . . . . . . . . 89
6.5 Implementation of RLWEenc Using Karatsuba’s Algorithm . . . . . . . . . . 91
6.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Introduction

Besides the previously covered threat of quantum computers, it has been shown that RSA
and ECC are quite inefficient on very small and constrained devices like 8-bit AVR microcon-
trollers [GPW+04, HS13]. Thus asymmetric cryptosystems based on hard problems on ideal
lattices might be a viable alternative to established schemes on these platforms. A particular
advantage of RLWEenc, besides short keys, applicability of the NTT, and simplicity (see Chap-
ter 3.4), is that the computations are performed on polynomials with small coefficients. Many
operations on small coefficients of size less than 16 bits can presumably be easier processed on
an 8-bit architecture than the multiprecision arithmetic required for RSA and ECC. However,
so far only few works like [BSJ14,BJ14] cover the implementation of lattice-based cryptography
on constrained 8-bit architectures.
It is also worth mentioning that current works dealing with high performance implementa-

tion of ideal lattice-based cryptography usually rely on the straightforward Cooley-Tukey (CT)

81



Chapter 6. Implementation of Ring-LWE Encryption on an 8-bit Microcontroller

radix-2 decimation-in-time (DIT) NTT algorithm (e.g., [PDG14a,BSJ14,RVM+14,dCRVV15]).
However, by taking a closer look at works on the implementation of the highly related
FFT [CG00,CP01], it becomes evident that the sole focus on CT radix-2 DIT algorithms prevents
further optimizations of the NTT, especially given the constraints of an 8-bit architecture.

Furthermore, implementations on constrained devices should not be solely written for perfor-
mance as RAM consumption and code size can also be important for certain applications. An
example scenario is a smart card which might only require few asymmetric encryption opera-
tions per second. But in this case large code-size and RAM consumption might significantly
contribute to the costs of the whole device. Thus, it makes sense to investigate algorithms
with worse asymptotic runtime than the NTT that could lead to a more compact implementa-
tion. Additionally, similar to the low-area implementation in Section 5.4, not using the NTT
allows more freedom when selecting parameters, e.g., usage of power-of-two moduli, and thus
performance and code saving due to the lack of modular reduction routines.

6.1.1 Related Work

The RLWEenc public-key encryption scheme [LPR10b,LPR10c,LP11] is covered in Section 3.4.
In Chapter 5 we discuss decryption errors and two hardware designs optimized for performance
and area, respectively. Implementations of RLWEenc on the 8-bit ATxmega and ATmega family
of microcontrollers have been proposed in [BSJ14,BJ14] and an implementation on a Cortex-M4F
device is given in [dCRVV15]. Details on the (software) implementation of the FFT and NTT
can be found in works like [CG00,CP01,Har14,MBFK14]. A vectorized implementation of the
NTT on standard Intel/AMD CPUs targeting lattice-based cryptography is shown in [GOPS13].
Optimizations of the NTT computation for lattice-based cryptography, with a focus on hardware
implementation, have been proposed in [APS13,RVM+14].

6.1.2 Contribution

The main contribution of this chapter is the optimization of the NTT and its fast implementation.
To optimize the NTT we review different approaches and varieties of FFT algorithms and then
adapt these algorithms for the polynomial multiplication use-case prevalent in ideal lattice-based
cryptography. Improvements compared to previous work are mainly achieved by merging certain
operations into the NTT itself (multiplication by n−1, powers of ψ and ψ−1) and by removing
the expensive bit-reversal step. Additionally, we provide an efficient implementation of these
NTT algorithms on the 8-bit AVR/ATxmega architecture. Our work shows that lattice-based
public-key encryption is fast on the AVR architecture and an encryption operation takes only
27ms while 6.7ms are required for decryption. Additionally, we investigate fast polynomial
multiplication using the schoolbook method and Karatsuba’s algorithm. However, while both
algorithms allow a slightly smaller code size they are also much slower compared to the NTT.

82



6.2. Faster NTTs for Lattice-Based Cryptography

6.2 Faster NTTs for Lattice-Based Cryptography

In this section we examine fast algorithms for the computation of the NTT and show tech-
niques to speed up polynomial multiplication for lattice-based cryptography1. The most straight-
forward implementation of the NTT is a Cooley-Tukey radix-2 decimation-in-time (DIT) ap-
proach [CT65] that requires a bit-reversal step as the algorithm takes bit-reversed input and
produces naturally ordered output (from now on referred to as NTTCTbo→no). To compute the
NTT as defined in Section 2.4.2 the NTTCTbo→no algorithm applies the Cooley-Tukey (CT) butter-
fly, which computes a′ ← a+ ωb and b′ ← a− ωb for some values of ω, a, b ∈ Zq, overall n log2(n)

2

times. The biggest disadvantage of relying solely on the NTTCTbo→no algorithm is the need for bit-
reversal, multiplication by constants, and that it is impossible to merge the final multiplication
by powers of ψ−1 into the twiddle factors (powers of ω) of the inverse NTT (see [RVM+14]).
With the assumption that twiddle factors are stored in a table and thus not computed on-the-fly
it is possible to further simplify the computation and to remove bit-reversal and to merge cer-
tain steps. This assumption makes sense on constrained devices like the ATxmega, which have
a rather large read-only flash.

6.2.1 Merging the Inverse NTT and Multiplication by Powers of ψ−1

In [RVM+14] Roy et al. use the standard NTTCTbo→no algorithm for a hardware implementation
and show how to merge the multiplication by powers of ψ (see Section 2.4.2) into the twiddle
factors of the forward transformation. However, this approach does not work for the inverse
transformation due to the way the computations are performed in the CT butterfly as the mul-
tiplication is carried out before the addition. In this section we show that it is possible to merge
the multiplication by powers of ψ−1 during the inverse transformation using a fast decimation-
in-frequency (DIF) algorithm [GS66]. The DIF NTT algorithm splits the computation into a
sub-problem on the even outputs and a sub-problem on the odd outputs of the NTT and has the
same complexity as the NTTCTbo→no algorithm. It requires usage of the so-called Gentleman-Sande
(GS) butterfly which computes a′ ← a + b and b′ ← (a − b)ω for some values of ω, a, b ∈ Zq.
Following [CG00, Section 3.2], where ωn is an n-th primitive root of unity and by ignoring the
multiplication by the scalar n−1, the inverse NTT and application of PowMulψ can be defined
as

a[r] =ψ−r
n−1∑
`=0

A[`]ω−r`n = ψ−r

n
2
−1∑
`=0

A[`]ω−r`n +

n
2
−1∑
`=0

A[`+
n

2
]ω
−r(`+n

2
)

n

 (6.1)

=ψ−r

n
2
−1∑
`=0

(
A[`] + A[`+

n

2
]ω
−r n

2
n

)
ω−r`n , r = 0, 1, . . . , n− 1. (6.2)

1Most of the techniques discussed in this section have already been proposed in the context of the fast Fourier
transform (FFT). However, they have not yet been considered to speed up ideal lattice-based cryptography (at
least not in works like [RVM+14,dCRVV15,PDG14a,BSJ14]). Moreover, some optimizations and techniques are
mutually exclusive and a careful selection and balancing has to be made.

83



Chapter 6. Implementation of Ring-LWE Encryption on an 8-bit Microcontroller

When r is even this results in

a[2k] =

n
2
−1∑
`=0

(
A[`] + A[`+

n

2
]
)
ω−k`n

2
(ψ2)

−k (6.3)

and for odd r in

a[2k + 1] =

n
2
−1∑
`=0

(
A[`]−A[`+

n

2
]ω−`n

)
ω−k`n

2
ψ−(2k+1) (6.4)

=

n
2
−1∑
`=0

((
A[`]−A[`+

n

2
]
)
ψ−1ω−`n

)
ω−k`n

2
(ψ2)

−k
, k = 0, 1, . . . ,

n

2
− 1. (6.5)

The two new half-size sub-problems where ψ is exchanged by ψ2 can now be again solved using
the recursion. As a consequence, when using an in-place radix-2 DIF algorithm it is necessary
to multiply all twiddle factors in the first stage by ψ−1, all twiddle factors in the second stage
by ψ−2 and in general by ψ−2s for stage {0, 1, . . . , log2(n) − 1} to merge the multiplication by
powers of ψ−1 into the inverse NTT (see Figure 6.1 for an illustration). In case the PowMulψ
or PowMulψ−1 operation is merged into the NTT computation we denote this by an additional
superscript ψ or ψ−1, e.g., as NTTCT,ψbo→no.

6.2.2 Removing Bit-Reversal

For memory efficient and in-place computation a reordering or so-called bit-reversal step is
usually applied before or after an NTT/FFT transformation due to the required reversed input
ordering of the NTTCTbo→no algorithm used in works like [RVM+14,PDG14a,BSJ14,dCRVV15].
However, by manipulation of the standard iterative algorithms and independently of the used

butterfly (CT or GS) it is possible to derive natural order to bit-reversed order (no → bo) as
well as bit-reversed to natural order (bo→ no) forward and inverse algorithms. The derivation
of FFT algorithms with a desired ordering of inputs and outputs is described in [CG00] and
we follow this description to derive the NTT algorithms NTTCTbo→no, NTT

CT
no→bo, NTT

GS
no→bo, and

NTTGSbo→no, as well as their respective inverse counterparts. It is also possible to construct self-
sorting NTTs (no→ no) but in this case the structure becomes irregular and temporary memory
is required (see [CG00]).

6.2.3 Combination of Optimization Techniques

The optimizations discussed in this section so far can be used to generically optimize polynomial
multiplication in Zq[x]/〈xn + 1〉. However, for lattice-based cryptography there are special
conditions that hold for most practical algorithms; in the NTT-enabled algorithms of RLWEenc
and BLISS every point-wise multiplication (denoted by ◦) is performed with a constant and a
variable, usually a randomly sampled polynomial. Thus the most common operation in lattice-
based cryptography is not simple polynomial multiplication but multiplication of a (usually
random) polynomial by a constant polynomial (i.e., global constant or public key). Thus, the
scaling factor n−1 can be multiplied into the pre-computed and pre-transformed constant ã =

84



6.2. Faster NTTs for Lattice-Based Cryptography

stage 0 stage 1 stage 2 stage 0 stage 1 stage 2

Figure 6.1: Signal flow graph for a multiplication of a polynomial x by a pre-transformed poly-
nomial ã = NTTCT,ψno→bo(a), using the NTTCT,ψno→bo and INTTGS,ψ

−1

bo→no algorithms.

Precomputation (offline)

Precomputation (offline)

(1)

(2)

Figure 6.2: Comparison of our NTT implementation using NTTCT,ψno→bo and INTTGS,ψ
−1

bo→no with a
naive implementation of polynomial multiplication using the straightforward NTT.

n−1NTT(a). Taking into account that we also want to remove the need for bit-reversal and
want to merge the multiplication by powers of ψ into the forward and inverse transformation (as
discussed in Section 6.2.1) we propose to use an NTTCT,ψno→bo for the forward transformation and
an INTTGS,ψ

−1

bo→no for the inverse transformation. In this case a polynomial multiplication c = a ·e
can be implemented without bit-reversal as c = INTTGS,ψ

−1

bo→no

(
NTTCT,ψno→bo(a)◦NTTCT,ψno→bo(e)

)
. In

Figure 6.2 we compare the necessary blocks for the straightforward approach and our proposal
and provide an example flow diagram for n = 8 in Figure 6.1. For more details, pseudo-code of
NTTCT,ψno→bo is provided in Algorithm 31 and pseudo-code of INTTGS,ψ

−1

bo→no is given in Algorithm
32.

85



Chapter 6. Implementation of Ring-LWE Encryption on an 8-bit Microcontroller

Algorithm 31 CT Forward NTT

Precondition: Store ψi for i = 0 . . . n−1 in
bit-reversed order in psi∗

1: func NTTCT,ψ
no→bo(a)

2: m← 1
3: k ← n/2
4: while m < n do
5: for i = 0 to m− 1 do
6: jF irst← 2 · i · k
7: jLast← jF irst+ k − 1
8: ψi ← psi∗[m+ i]
9: for j = jF irst to jLast do
10: l← j + k
11: t← a[j]
12: u← a[l] · ψi
13: a[j]← t+ u mod q
14: a[l]← t− u mod q
15: end for
16: end for
17: m← m · 2
18: k ← k/2
19: end while
20: return a
21: end func

Algorithm 32 GS Inverse NTT

Precondition: Store ψ−i for i = 0 . . . n−1
in bit-reversed order in invpsi∗

1: func INTTGS,ψ−1

bo→no (a)
2: m← n/2
3: k ← 1
4: while m > 1 do
5: for i = 0 to m− 1 do
6: jF irst← 2 · i · k
7: jLast← jF irst+ k − 1
8: ψi ← invpsi∗[m+ i]
9: for j = jF irst to jLast do
10: l← j + k
11: t← a[j]
12: u← a[l]
13: a[j]← c+ d mod q
14: a[l]← (c− d) · ψi mod q
15: end for
16: end for
17: m← m/2
18: k ← k · 2
19: end while
20: return a
21: end func

6.3 Implementation of RLWEenc Using the NTT

For the use in RLWEenc and BLISS we focus on the optimization of the NTTCT,ψno→bo and
INTTGS,ψ

−1

bo→no transformations. We implemented both algorithms in C and optimized modular
multiplication using assembly language.

6.3.1 Implementation of the NTT

For the use in RLWEenc we focus on the optimization of the NTTCT,ψno→bo and INTTGS,ψ
−1

bo→no trans-
formations.

Modular Multiplication

To implement the NTT according to Section 6.2, a DIT NTTCT,ψno→bo and a DIF INTTGS,ψ
−1

bo→no
transformation are required and the most expensive computation in both algorithms is the com-
putation of approximately n log2(n)

2 butterflys consisting of integer multiplication and reduction
modulo q. In [BSJ14] Boorghany, Sarmadi, and Jalili report that most of the runtime of their
FFT/NTT is spent on the computation of modulo operations. They review modular reduction

86



6.3. Implementation of RLWEenc Using the NTT

mm12289(a , b)
uint8_t v [ 4 ] ;
c = a∗b ;
v = 12289 << 14

REDUCE28:
i f ( c >= v)

c = c −v
v = v << 1 ;

REDUCE27:
i f ( c >= v)

c = c −v
v = v << 1 ;
REDUCE26:
i f ( c >= v)

c = c −v
v = v << 1 ;

REDUCE25:
i f ( c >= v)

c = c −v
v = v << 1 ;
REDUCE24:
i f ( c >= v)

c = c −v
v = v << 1 ;

. . .

Figure 6.3: Modular multiplication for q = 12289.

algorithms for suitability and propose an approximate variant of Barrett reduction [Bar86] that
leads to an FFT/NTT that is 1.26 times faster for n = 256 than one using the compiler generated
modulo reduction (see Table 4 of [BSJ14]). However, a straightforward implementation using
the C %-operator with a constant modulus is quite expensive and requires around 600 cycles
in our own experiments due to the generic libc modular reduction (call __udivmodsi4). As a
consequence, the software of the authors of [BSJ14] still consumes approx. 754668

256
2

log2(256)
= 737

cycles for one FFT/NTT butterfly.
Another approach is a subtract-and-shift algorithm which loads the shifted modulus as con-

stant and the input into a temporary register. It then continues to compare the value in the
temporary register to this modulus, subtracts if the input is larger or equal to the modulus
and then shifts the modules by one to the right. This continues until the shifted modulus is
equal to the original modulus. The pseudo-code for this operation is shown in Figure 6.3. The
biggest improvement in assembly stems from the ability to limit the operations on the active
registers. As an example, when the input is 28-bits wide the first comparisons and shifts have to
be performed on four registers (REDUCE28 to REDUCE25), but after four iterations all operations
(comparison, subtraction, shift) have to be performed only on three registers (from REDUCE24),
or two registers (from REDUCE16). This approach guarantees that one modular multiplication for
q = 7681 takes at most 216 cycles. While we do not take into account constant time operation
for side-channel protection, the implementation can be made trivially constant time and then
always runs with the worst-case runtime.
An even more efficient implementation has been proposed by Liu et al. [LSR+15] who intro-

duce an assembly optimized shifting-addition-multiplication-subtraction-subtraction algorithm
(SMAS2). They compute a modular multiplication in 53 clock cycles for q = 7681, which beats
the subtract-and-shift approach mentioned above. For all reductions modulo q = 7681 and
q = 12289 we thus rely on the SMAS2 method.

Extraction of Stages

As additional optimization we use specific routines for the first and the last stage of each NTT.
A common optimization is to recognize that ω0 = 1 in the first stage of the NTTCTno→bo so that
only additions are required. As we merge the multiplication by powers of ψ into the NTT this is
not the case anymore (see Figure 6.1). However, it is still beneficial to write a specific loop that

87



Chapter 6. Implementation of Ring-LWE Encryption on an 8-bit Microcontroller

performs the first stage of the NTTCT,ψno→bo and the last stage of the INTTGS,ψ
−1

bo→no transformation
to achieve less loop overhead (simpler address generation) and less loads and stores.

Usage of Look-up Tables for Narrow Input Distributions

As discussed in Section 6.2.3 it is common in lattice-based cryptography to apply forward trans-
formations mostly to values sampled from a narrow Gaussian error/noise distribution (other
polynomials are usually constants and pre-computed). In this case only a limited number of in-
puts to the butterfly of the first stage of the NTTCT,ψno→bo transformation exist and a pre-computed
look-up table can be used instead of modular multiplications. The range of possible input co-
efficients to the first stage butterfly is rather small, since they are Gaussian distributed and
bounded by [−τσ, τσ] for standard deviation σ and tail-cut factor τ . Additionally, we only store
the result of multiplications of two positive factors. That means that for negative inputs we
invert before the look-up and again after the look-up. The same approach would also work for
the binary error distribution used for the IBE scheme in [DLP14] and it would be possible to
cover even two or more stages due to the very limited input range.

6.3.2 Gaussian Sampling Based on the CDT-Approach

Our implementation of RLWEencencNTT and RLWEencdecNTT of the RLWEenc scheme, as described
in Section 3.4, mainly consists of forward and inverse NTT transformations (NTT and INTT),
Gaussian sampling (SampleGaussPoly), and point-wise multiplication (Pointwise, also denoted
as ◦). We assume that secret and public keys are stored in the read-only flash memory, but
loading from RAM would also be possible, and probably even faster. Due to the usage of the
NTT, the NTTCT,ψno→bo transformation is only applied on the Gaussian distributed polynomials
e1, e2. Thus we can optimize the transformation for this input distribution and with either
σ = 4.52 or σ = 4.85 it is possible to substitute approx. 99.96% of the multiplications in
stage one of NTTCT,ψno→bo by look-ups to a table of 16 entries that requires only 32 bytes of flash
memory. For the sampling of the Gaussian distributed polynomials with high precision2 we use
a cumulative distribution table (CDT) [Dev86,DG14]. We construct the table M with entries
pz = Pr(x ≤ z : x ← Dσ) for z ∈ [0, τσ] with a precision of λ = 128 bits. The tail-cut factor
τ determines the number of entries |zt| = dτσe of the table and reduces the output of the final
sampler to the range x ∈ {−dτσe, . . . , dτσe}.
To sample a value we choose a uniformly random y from the interval [0, 1) and a bit b and

return the integer (−1)bz ∈ Z such that y ∈ [pz−1, pz). As we store only the positive half of
the table and then sample a sign bit the probability of sampling zero has been pre-halved when
constructing the table. For efficiency reasons we just work with the binary expansion of the
fractional part instead of floating point arithmetic as all numbers used are smaller than 1.0.
The constant CDT matrix M is stored in the read-only flash memory with k = dστe rows and
l = dλ/8e columns. In order to sample a Gaussian distributed value we perform a linear search
in the table to obtain z. Another option would be binary search, however, for this table size with
x ← Dσ being small, the evaluation can already be stopped after only a few comparisons with

2It is debatable which precision is really necessary in RLWEenc and what impact less precision would have on
the security of the scheme, e.g., λ = 40. But as the implementation of the CDT for small standard deviations σ is
rather efficient and for better comparison with related work like [BJ14,BSJ14,dCRVV15] we chose to implement
high precision sampling and set λ = 128.

88



6.4. Implementation of RLWEenc Using the Schoolbook Algorithm

high probability. The test if the random y is in the range [pz−1, pz) is performed in a lazy manner
on bytes. In this terms laziness means that a comparison is finished when the first bit (or byte
on our 8-bit architecture) has been found that differs between two values. Thus we do not need
to sample the full λ bits of y and obtain the result of the comparisons early. Random numbers
are obtained from a pseudo random number generator (PRNG) using the hardware AES-128
engine running in counter mode. The PRNG is seeded by noise from the least significant bit
of the analog digital converter. For the state (key, plaintext) 32 bytes of statically allocated
memory are necessary. The final table size is 624 bytes for σ = 4.52 (q = 7681) and 672 bytes
for σ = 4.85 (q = 12289).

6.3.3 Results

All implementations are measured on an ATxmega128A1 8-bit microcontroller running at 32
MHz and featuring 128 Kbytes read-only flash, 8 Kbytes RAM and 2 Kbytes EEPROM. Cy-
cle accurate performance measurements were obtained using two coupled 16-bit timer/coun-
ters and dynamic RAM consumption is measured using stack canaries. All public and pri-
vate keys are assumed to be stored in the flash of the microcontroller and we consider the
.text + .data + .bootloader sections to determine the flash memory utilization. For our im-
plementation we used no calls to the standard library, the avr-gcc compiler in version 4.7.0,
and the following compiler options (shortened): -Os -fpack-struct -ffunction-sections
-fdata-sections -flto.
Detailed cycle counts for the encryption and decryption as well as the most expensive opera-

tions are given in Table 6.1. The runtime of encryption is dominated by the NTT (two calls of
NTTCT,ψno→bo and one call of INTTGSbo→no) which requires approx. 62% of the overall cycles for the
RLWEenc-Ia parameter set. The Gaussian sampling requires 29% of the overall cycles which is
approx. 328 (RLWEenc-Ia) or 334 (RLWEenc-IIa) cycles per sample. The reason that NTTCT,ψno→bo
is slightly faster than INTTGS,ψ

−1

bo→no is that we use table look-ups for the first stage of the for-
ward transformation (see Section 6.3.2). The remaining amount of cycles (9%) is consumed by
additions, point-wise multiplications by a constant/key stored in the flash (PwMulFlash), and
message encoding (Encode). In Table 6.1 we also list cycle counts of operations that are now
obsolete, especially BitRev and PowMul. For PowMul we assume an implementation where the
powers of ψ are computed on-the-fly to save flash memory, otherwise the costs are the same as
PwMulFlash. Decryption is extremely simple, fast, and basically calls INTTGS,ψ

−1

bo→no , the decoding
and an addition so that roughly 148 decryption operations could be performed per second on the
ATxmega128. Note that we also evaluated RLWEenc-Ib, RLWEenc-IIb, and RLWEenc-IIIb using
classic schoolbook multiplication and Karatsuba multiplication and provide results in Section 6.4
and Section 6.5, respectively. However, it turned out that these algorithms cannot beat the NTT
and might only be advantageous when extremely small code size is required.

6.4 Implementation of RLWEenc Using the Schoolbook Algorithm

The advantage of the schoolbook polynomial multiplication algorithm is its simplicity, possibility
of in-place modular reduction modulo xn + 1, and that it works for any parameters n and q
of the multiplied polynomials. Different variants of the schoolbook algorithm are covered in
Section 2.4.1 but the obviously the drawback of this method is the quadratic time complexity.

89



Chapter 6. Implementation of Ring-LWE Encryption on an 8-bit Microcontroller

Table 6.1: Cycle counts and flash memory consumption in bytes of our implementation of RL-
WEenc on an 8-bit ATxmega128 microcontroller using the NTT.

Operation (n=256, q=7681) (n=512, q=12289)
Cycle counts and stack usage

RLWEencencNTT 874,347 (109 bytes) 2,196,945 (102 bytes)
RLWEencdecNTT 215,863 (73 bytes) 600,351 (68 bytes)
NTTCT,ψno→bo 185,360 502,896
INTTGS,ψ

−1

bo→no 168,853 427,827
SampleGaussPoly 84,001 170,861
PwMulFlash 22,012 53,891
AddEncode 16,884 37,475
Decode 4,407 8,759

Cycle counts of obsolete functions
NTTCTbo→no 198,491 521,872
BitRev 29,696 75,776
BitrevDual 32,768 79,872
PowMulψ 35,068 96,603

Static memory consumption in bytes
Complete binary 6,668 9,258
RAM 1,088 2,144

The stack usage is divided into a fixed amount of memory necessary for plaintext, ciphertext, and
additional components (like random number generation) and the dynamic consumption of the encryption
and decryption routine. We encrypt a message of n bits.

However, for some scenarios it was demonstrated in works like [GPW+04,HW11] that variants of
this method can still be very competitive compared to theoretically more efficient multiplication
techniques. In this section we thus provide an implementation of RLWEenc public-key encryption
using the schoolbook multiplication to investigate whether this is also the case for lattice-based
cryptography. We use the same components for message encoding and Gaussian sampling as in
Section 6.3.

6.4.1 Implementation

We realized the modular multiplication and reduction modulo q = 4093 (mm4093) in assembly
exploiting that 212 mod 4093 = 3. The multiplication by 3 is realized by shift and addition
operations. As we have chosen to represent Zq[x]/〈xn+ 1〉 as a polynomial with unsigned coeffi-
cients in [0, q) we do not have to deal with more complicated signed arithmetic and reduction. By
carefully assigning the available 8-bit registers according to the compiler’s calling convention we
ensure that no push and pop instructions are necessary in mm4093. The inner loop of the polyno-
mial multiplication routine implemented in assembly mainly consist of ld and lpm instructions
to read the first coefficient from RAM and the second coefficient from the flash. A subsequent
call to mm4093 performs the modular multiplication and a branch determines whether i+ j > n
so that the result has to be subtracted or just added to the memory address i+ j mod n. The

90



6.5. Implementation of RLWEenc Using Karatsuba’s Algorithm

Table 6.3: Cycle counts and flash memory consumption (in bytes) of our implementation of
RLWEenc on an 8-bit ATxmega128 microcontroller using the schoolbook algorithm.

Operation (n=192, q=4093) (n=256, q=4093) (n=320, q=4093)
Cycle counts and stack usage

encrypt 7,294,976 (446 bytes) 12,289,025 (573 bytes) 21,684,224 (705 bytes)
decrypt 3,205,121 (444 bytes) 5,491,712 (571 bytes) 9,822,330 (703 bytes)
SchoolMul 3,196,529 5,480,074 9,807,218
SampleGaussPoly 55,296 73,727 89,088
AddEncode 12,773 16,915 20,707
Decode 3,331 4,419 5,507

Static memory consumption in bytes
Flash 4,648 5,032 5,418
RAM 792+32 1,056+32 1,320+32

implementation of the encryption procedure consists of three calls to the Gaussian sampler, two
calls to SchoolMul, and one call to the AddEncode routing that merges the threshold encoding
step with an addition.

6.4.2 Results

Results for schoolbook multiplication given in Table 6.3 show that for n = 192 an encryption
operation takes more than seven million cycles and that approx. 90% of the computation time
is spent on the two polynomial multiplications (SchoolMul). All other operations like addition
and decoding have only a marginal impact on the runtime. Larger parameter sets turned out
to be impractical, e.g., the largest variant for n = 320 already consumes more than 21.7/9.8
million cycles for encryption/decryption. The RAM consumption is mainly dominated by the
need to be able to store one temporary polynomial which accounts for 2n bytes of memory
on the stack. However, improvements might be possible when q is chosen as a power of two
(see [BLP+13, PG14]) due to even simpler reduction. In our implementation the reduction
modulo 4093 accounts for approx. 25 cycles in mm4093 (called ≈ n2 times) but schoolbook
multiplication still does not seem to be competitive. Additionally, the savings in code size are
smaller than expected. For example, the n = 256 parameter set implemented using the NTT
requires 6,668 bytes of flash memory while our schoolbook implementations needs 5,032 bytes.
Thus usage of the schoolbook multiplication algorithm saves only 1,636 bytes of flash memory.

6.5 Implementation of RLWEenc Using Karatsuba’s Algorithm

Polynomial multiplication with improved complexity of O(nlog(3)) operations in Zq can be
achieved with Karatsuba’s method [KO63]. The idea behind this method is to trade one expen-
sive multiplication for three cheap additions by means of the divide and conquer principle. Our
implementation of polynomial multiplication applies the Karatsuba method up to a configurable
number of iterations. In practice it is reasonable to limit the recursion to a certain degree in
order to avoid too much computations due to the increasing number of additions. The remaining

91



Chapter 6. Implementation of Ring-LWE Encryption on an 8-bit Microcontroller

Table 6.4: Cycle counts and flash memory consumption (in bytes) of our implementation of
RLWEenc on an 8-bit ATxmega128 microcontroller using the Karatsuba algorithm.

Operation (n=192, q=4093) (n=256, q=4093) (n=320, q=4093)
Cycle counts and stack usage

encrypt 2,858,803 (2,143 bytes) 4,467,168 (2,760 bytes) 6,426,197 (3,392 bytes)
decrypt 1,336,957 (2,139 bytes) 2,108,398 (2,756 bytes) 3,054,861 (3,388 bytes)

Static memory consumption in bytes
Flash 5,920 6,304 6,690
RAM 792+34 1,056+34 1,320+34

low-degree polynomial multiplications are then performed with the schoolbook algorithm. In
case the degree of the input polynomials is not a power of two, we apply zero padding.

6.5.1 Implementation

Implementations of Karatsuba’s algorithm on constrained devices show typically the drawback
of a significant memory consumption, especially, with extensive recursions. We initially aim at
reducing memory allocation and thus reserve 2n words to store the result of a multiplication
and

∑r
i=0

n
2i

words of additional SRAM storage, depending on the number of recursions r.
Immediate reallocation of memory is performed after a recursion step has been completed. Since
the degree of the polynomial is then twice as large as the degree of the intermediate polynomials
in this recursion we can use the previously disposed memory as a temporary storage for further
intermediate polynomials.
For the modular multiplications of individual coefficients we apply the assembler implementa-

tion mm4093 introduced in Section 6.4. We also measure the impact of changing the parameter
q from 4093 to 40963 and implement a mm4096 function to exploit the fact that 4096 is a power
of two.

6.5.2 Results

In Table 6.4 and Table 6.5 we provide cycle counts of an implementation of RLWEenc where
polynomial multiplication is realized with the Karatsuba algorithm. We experimentally eval-
uated that six levels of recursion lead to the best runtime for all dimensions. With roughly
2.9 million cycles for one encryption and 1.3 million cycles for decryption, this implementation
outperforms schoolbook multiplication and is also able to deal with larger values of n. With
q = 4096 the performance is even better and also the flash memory consumption decreases since
we do not need a complex modular reduction function anymore. However, the recursive nature
of the Karatsuba algorithm and the need to reduce the polynomial modulo xn + 1 after it has
been completely multiplied leads to significant dynamic RAM consumption (i.e., stack usage).

3Note that the impact on security is currently not clear, but we still see it as an interesting experiment. We
also refer to [PG14] for a description of a hardware implementation of RLWEenc with q being a power of two and
a brief discussion on this choice.

92



6.6. Conclusion and Future Work

Table 6.5: Cycle counts and flash memory consumption (in bytes) of our implementation of
RLWEenc on an 8-bit ATxmega128 microcontroller using the Karatsuba algorithm
with a modified parameter q=4096.

Operation (n=192, q=4096) (n=256, q=4096) (n=320, q=4096)
Cycle counts and stack usage

encrypt 2,158,343 (2,128 bytes) 3,240,959 (2,820 bytes) 4,528,167 (3,458 bytes)
decrypt 994,944 (2,180 bytes) 1,508,089 (2,818 bytes) 2,124,268 (3,456 bytes)

Static memory consumption in bytes
Flash 4,956 5,340 5,726
RAM 792+34 1,056+34 1,320+34

6.5.3 Comparison with Related Work

A detailed comparison of our implementation with related work that also targets the AVR4

platform is given in Table 6.6. Our implementation of RLWEenc-Ia encryption outperforms the
software from [BSJ14] by a factor of 2.3 and results from [BJ14] by a factor of 3.8 in terms of
cycle counts. Decryption is 3.6 times and 6.5 times faster, respectively.
Compared with the 80-bit secure McEliece cryptosystem based on QC-MDPC codes [HvMG13]

we get 31 times less cycles for the encryption and even 402 times less cycles for decryption.
Translating the implementation results for RSA and ECC given in [GPW+04] to cycle counts,
it turns out that an ECC secp160r1 operation requires 6.5 million cycles. RSA-1024 encryption
with public key e = 216 + 1 takes 3.44 million cycles [GPW+04] and RSA-1024 decryption
using the Chinese remainder theorem (CRT) requires 75.68 million cycles (this number is taken
from [LGK10]). A comparison with NTRU implementations is currently not easily possible due
to lack of published results for the AVR platform5.
We also refer to [dCRVV15] for an implementation of RLWEenc-Ia and RLWEenc-IIa on an ARM

Cortex-M4 (32-bit, 168 MHz). The authors especially make use of the 32-bit wide registers (e.g.,
to load two coefficients with memory access) but a comparison across architectures with different
bit-widths is naturally hard.

6.6 Conclusion and Future Work

Our results indicate that the NTT is an efficient and suitable algorithm for high-performance im-
plementation of the polynomial multiplications required by RLWEenc on an 8-bit AVR platform.
The implementations of RLWEenc using Schoolbook and Karatsuba’s algorithms are significantly
slower compared to the NTT and the savings in code size are smaller than expected.
In future work, a certain speedup seems possible by implementing more parts of RLWEenc and

polynomial multiplication in assembly. Moreover, the most crucial operation is the reduction
modulo q and we expect the possibility of additional savings through different techniques. Some

4While the ATxmega128 and ATxmega64 compared to the ATmega64 differ in their operation frequency and
some architectural differences cycle counts are mostly comparable.

5One exception is a Master thesis by Monteverde [Mon08], but the implemented NTRU251:3 variant is not
secure anymore according to recent recommendations in [HHHW09].

93



Chapter 6. Implementation of Ring-LWE Encryption on an 8-bit Microcontroller

Table 6.6: Comparison of our AVR implementation of the NTT and RLWEenc with related work.

Scheme Device Operation Cycles OP/s

RLWEenc-Ia (n = 256) AX128 Enc/Dec 874,347 215,863 36.60 148.24
RLWEenc-IIa (n = 512) AX128 Enc/Dec 2,196,945 600,351 14.57 53.30
RLWEenc-Ia (n = 256) [LSR+15] AX128 Enc/Dec 671,628 275,646 48.65 116.09
RLWEenc-IIa (n = 512) [LSR+15] AX128 Enc/Dec 2,617,459 686,367 12.23 46.62
RLWEenc-Ia (n = 256) [BSJ14] AT64 Enc/Dec 3,042,675 1,368,969 2.63 5.84
RLWEenc-Ia (n = 256) [BJ14] AX64 Enc/Dec 5,024,000 2,464,000 6.37 12.99

NTTCT,ψno→bo (n = 256) AX128 NTT 198,491 161.21
NTTCTbo→no (n = 256) [LSR+15] AX128 NTT 193,731 165.17
NTTCTbo→no (n = 256) [BSJ14] AT64 NTT 754,668 10.60
NTTCTbo→no (n = 256) [BJ14] AX64 NTT 1,216,000 26.32
NTTCT,ψno→bo (n = 512) AX128 NTT 521,872 61.31
NTTCTbo→no (n = 512) [LSR+15] AX128 NTT 441,572 72.47
NTTCTbo→no (n = 512) [BSJ14] AT64 NTT 2,207,787 3.62
NTTCTbo→no (n = 512) [BJ14] AX64 NTT 2,752,000 11.63

QC-MDPC McEliece [HvMG13] AX128 Enc/Dec 26,767,463 86,874,388 1.20 0.37
RSA-1024 [GPW+04] AT128 Enc/Dec 3,440,000 87,920,000 2.33 0.09
RSA-1024† [LGK10] AT128 priv. key 75,680,000 0.11
Curve25519† [DHH+15] AT2560 Point mul. 13,900,397 1.15
ECC-ecp160r1 [GPW+04] AT128 Point mul. 6,480,000 1.23

By AX128 we identify the ATxmega128A1 clocked with 32 MHz, by AX64 the ATxmega64A3 clocked
with 32 MHz, by AT64 the ATmega64 clocked with 8 MHz, by AT128 the ATmega128 clocked with 8
MHz, and by AT2560 the ATmega2560 clocked with 16 MHz. Implementations marked with (†) are
claimed to be resistant against timing attacks.

of the proposed future work regarding authenticated key exchange (AKE) and unauthenticated
key exchange discussed in Section 5.6 could also be done on the AVR or a different constrained
device. Additionally, different or more specialized polynomial multiplication algorithms could
lead to further performance improvements (e.g., Nussbaumer multiplication [Nus80, Nus82]).
Another natural future work is protection against side-channel attacks, especially timing side-
channels, and implementation of conversions that achieve security against chosen ciphertext
attacks.

94



Chapter 7

Lattice-Based Signatures on Reconfigurable
Hardware

In this chapter we investigate the efficiency of two post-quantum signature schemes
on reconfigurable hardware. As the first contribution we describe a flexible core that
can be used to perform the signing and verification operations of the GLP [GLP12]
signature scheme. Additionally, we look at the efficiency of the bimodal lattice sig-
nature scheme (BLISS) [DDLL13a] and present an implementation of an efficient
discrete Gaussian sampler based on a cumulative distribution table (CDT) and con-
volutions of Gaussians. Both schemes rely on the previously discussed fast NTT
microcode engine, use a parallel multiplier for sparse polynomial multiplication, and
instantiate the Quark (GLP) or Keccak (BLISS) hash functions. The implementation
of GLP presented in this chapter was published in [GLP15] and is an extension and
redesign of the first implementation and proposal of GLP in [GLP12]. This major
redesign and extension justifies an inclusion into this thesis as the implementation
in [GLP12] was mainly derived from the author’s diploma thesis [Pöp11]. The de-
scription of our BLISS implementation is based on work published in [PDG14a] and
its extended version [PDG14b].

Contents of this Chapter
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Implementation of GLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3 Implementation of BLISS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4 Comparison of our Implementations with Related Work . . . . . . . . . . . 113
7.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1 Introduction

For a long time, lattice constructions and especially lattice-based signatures have only been con-
sidered secure for inefficiently large parameters that are well beyond practicability (e.g., [Lyu09])
or were, like GGH [GGH97] and NTRUSign [HHP+03], broken due to flaws in the ad-hoc de-
sign approaches [NR09, DN12]. This has changed since the introduction of cyclic and ideal
lattices [Mic07] and related computationally hard problems like RSIS [PR06, LM06,LMPR08]
and RLWE [LPR10b] (see Section 2.3). Especially, constructions that use the Fiat-Shamir



Chapter 7. Lattice-Based Signatures on Reconfigurable Hardware

paradigm [FS86] have led to a family of fast signature schemes with reasonable signature and
key sizes [Lyu09,Lyu12,GLP12,DDLL13a,BG14].
First efforts to tune an ideal lattice-based signature scheme for efficiency on constrained devices

or hardware were made in 2012 by Güneysu et al. [GLP12] who proposed the GLP signature
scheme (see Section 3.5). The small signatures and good performance were achieved by a new
signature compression mechanism, a more "aggressive", non-standard hardness assumption, and
the decision to use uniform (as in [Lyu09]) instead of Gaussian noise to hide the secret key
contained in each signature via rejection sampling. Additionally, the scheme features a simple key
generation mechanism that only requires uniform sampling of small polynomials and polynomial
multiplication.
While GLP allows high performance on low-cost FPGAs [GLP12] it later turned out that the

scheme is suboptimal in terms of signature size and its claimed security level compared to the
bimodal lattice signature scheme (BLISS) [DDLL13a]. The main reason for this is that Gaus-
sian noise, which is prevalent in almost all lattice-based constructions, allows more efficient,
more secure, and also even smaller signatures. However, while other techniques relevant for
lattice-based cryptography, like fast polynomial arithmetic on ideal lattices, received some at-
tention (see Chapter 4), it is currently not clear how efficient Gaussian sampling can be done on
reconfigurable and embedded hardware for large standard deviations. Results targeting signal
processing applications (e.g., [TLLV07,GTV12]) are not directly applicable, as usually continu-
ous Gaussians are considered and as the adaption of these algorithms for the discrete case is not
trivial (see, e.g., [BCG+13] for a discrete version of the Ziggurat algorithm). First progress was
recently made by Roy et al. [RVV13] based on work by Galbraith and Dwarakanath [DG14] but
the implemented sampler is only evaluated for very low standard deviations commonly used for
lattice-based encryption. Straightforward implementations of fast table-based discrete Gaussian
sampling lead to rather large tables, e.g., 40 to 50 KB on an ATxmega64A3 [BJ14], so that
more work is required to make lattice-based signature schemes efficient on constrained devices.
Despite the issue with inefficiencies caused by Gaussian sampling, BLISS seems to be currently
the most promising scheme with a signature length of 5,600 bits, equally large public keys, and
128-bit of equivalent symmetric security based on a reasonable security assumption. In com-
parision, signature schemes with explicit reductions to weaker assumptions or standard lattice
problems [GPV08,Lyu08a,MP12] currently seem to be too inefficient in terms of practical signa-
ture and public key sizes (see [BB13] for an implementation of [MP12]). However, there surely
is some room for theoretical improvement, as suggested by the compression ideas developed by
Bai and Galbraith [BG14].

7.1.1 Related Work

For an introduction and description of the GLP signature scheme [GLP12] we refer to Sec-
tion 3.5 while BLISS [DDLL13a] is covered in Section 3.6. Both schemes are based on works
by Lyubashevsky [Lyu09, Lyu12]. Other practical signature schemes are BG [BG14], PASS-
Sign [HPS+14], a modified NTRU signature scheme [MBDG14], or a signature scheme de-
rived from a recently proposed IBE scheme [DLP14]. Up to our knowledge, no other perfor-
mance optimized hardware implementations of ideal lattice-based signature schemes have been
proposed so far. Implementation results on microcontrollers and CPUs have been published
in [GOPS13,OPG14,BSJ14,BJ14,DBG+14,POG15a]. We also refer to [HPO+15] for a survey

96



7.2. Implementation of GLP

on lattice-based signatures and their efficient implementation. Techniques for sampling of contin-
uous Gaussians are surveyed in [TLLV07,GTV12] and algorithms for efficient and secure discrete
Gaussian sampling are given in [Dev86,GPV08,BCG+13,RVV13,DG14,RRVV14,BCNS15].

7.1.2 Contribution

In this work we examine the efficiency of GLP and BLISS on reconfigurable hardware. Our
GLP implementation is fully functional, contains a Trivium-based PRNG [Can06] as well as the
lightweight hash function QUARK [AHMN13] and makes use of the extremely efficient NTT
(contrary to the schoolbook approach from [GLP12]). For example, on the low-cost Xilinx
Spartan-6 we are 1.5 times faster and use only half of the resources of the optimized RSA
implementation of Suzuki [Suz07]. With 2,385 signatures and 10,899 signature verifications per
second, we can satisfy even high-performance demands with a low area footprint using a Xilinx
Virtex-6 device.
To speed up BLISS and other signature schemes that rely on Gaussian sampling and require

rather large standard deviations, we implement improved techniques for efficient sampling of
discrete Gaussian noise. We realize a sampler based on a CDT where binary search is improved
using a shortcut table of intervals and use an optimal data structure that saves roughly half of the
table space by exploiting the properties of the Kullback-Leibler divergence (see Section 2.5.4).
Based on these techniques we provide implementations of the BLISS-I, BLISS-III, and BLISS-

IV parameter sets on reconfigurable hardware that are tweaked for performance and offer 128
bits to 192 bits of security. For practical evaluation we compare our improvements for the
CDT-based Gaussian sampler to the Bernoulli approach presented in [DDLL13a]. Our imple-
mentation includes an NTT-based polynomial multiplier, more efficient sparse multiplication,
and the KECCAK-f [1600] hash function [BDPA13] to provide the full picture of the performance
that can be achieved by employing latest lattice-based signature schemes on reconfigurable hard-
ware. Our BLISS-I implementation on a Xilinx Spartan-6 FPGA supports up to 8,761 signatures
per second using 7,193 LUTs, 6,420 flip-flops, 5 DSPs, and 5.5 block RAMs, includes Huffman
encoding and decoding of the signature, and outperforms the GLP implementation in [GLP12]
in terms of time and area.

7.2 Implementation of GLP

In this section we describe the FPGA implementation of the signing and verification procedures
for parameter set I of GLP providing about 80 bits of equivalent symmetric security. We present
three implementation variants; both is a combined core for signing and signature verification.
The cores named sign and ver, however, support signing and verification only, respectively.
All three variants are built on top of a single code base and have been extensively tested.1

For instantiation of the signature scheme, we used a datapath of 23-bit due to pipelined
processing of coefficients of width dlog2 (q)e. The discrete Gaussian sampling and polynomial
multiplication in step 3 of Algorithm 12 (ay1 + y2) and step 2 of Algorithm 13 (az1 + z′2 − tc)
is performed using the previously discussed microcode engine (see Chapter 4). Four registers

1Note that we employed a pseudo-random number generator in our implementation for minimal footprint. If
required, it can be replaced or seeded by a true random number which was not in the scope of this work (see for
example [DG07,Gol06]).

97



Chapter 7. Lattice-Based Signatures on Reconfigurable Hardware

are already fixed where register R0 and R1 are part of the NTT block, R2 is associated to the
uniform random sampler while register R3 is exported to upper layers as I/O port. We use R4
to R7 to store temporary values like y1, y2, the public constant a and the public key t. As
we use the fine-grained access to NTT instructions, we can exploit that coefficients are fixed
most of the time (e.g., constants) or needed twice. We therefore store them directly in NTT
representation or transform them only once to save subsequent transformations.

7.2.1 Pipelined Message Signing

The general idea of our implementation is to separate the signing process into three inde-
pendent blocks which are executed in parallel (see Figure 7.1). These three main blocks are
the Lattice Processor core, the Hash unit implementing the random oracle, and the Sparse
Multiplication and compression component. Parallel operations are supported by pipelining.
As a consequence, input polynomials to the last two blocks are stored in buffers, realized as
BRAMs. Thus, we can avoid latencies for inputs r = ay1 +y2 to the hash engine and the sparse
multiplication. This allows to achieve high throughput and good resource and block utilization.
A direct benefit of this approach is that we can choose a moderately fast hash component that
just matches the performance of the other two blocks. This enables the use of a resource-efficient
implementation of the lightweight hash function Quark [AHMN13].

Lattice 
Processor Hash

Sparse
Multiplication

Figure 7.1: Simplified block diagram of our GLP signing engine showing the main blocks Lattice
Processor, Hash, and Sparse Multiplication.

The detailed architecture of our signing engine is given in Figure 7.2. We use the lattice
processor to sample values y1,y2

$← Rq,k and directly compute r = ay1 + y2 using the NTT.
Note that for this operation a is already stored in NTT representation. As a consequence, the
workload consists of sampling 2n uniformly random values, one forward and one inverse NTT
call as well as some additional overhead for point-wise multiplication and data movement. In
signing mode the processor actually starts processing independently of the message or secret key
and precomputes triples (r,y1,y2) for subsequent use. These triples are stored in a temporary
buffer and are accessed during signing by the hashing module. Note also that before r = ay1+y2

can be hashed we have to transform every coefficient into the higher-order representation r(0).
This operation is basically an integer division by the constant 32705 which makes use of the
specific bit-layout of the divisor. The hash module is realized by the S-Quark×16 lightweight
hash function [AHMN13] implementing the random oracle H. This variant of QUARK offers
224-bit preimage and 112-bit collision security. We employ Quark since it supports high clock
frequencies and consumes only few resources. The relatively low throughput just matches the
speed of the other pipelining stages of the engine.

98



7.2. Implementation of GLP

Lattice Processor Hash

Sparse 
MultiplicationPipeline Pipeline

R4
Content:
temp1

R5
Content:
temp2

R6
Content: 

R7
Content: 

NTT multiplier

R0 R1

Uniform
sampler

Trivium

FIFO

Decoder

ALU

Temporary 
RAM QUARK

FIFO

current
state

saved
state

Signature
buffer

Message
FIFO

MAC

Secret
key

Compress

Decoder

MAC

E
nc

od
er

Figure 7.2: Detailed architecture of our GLP signing engine.

In order to allow future extensions and clock domain separation using a FIFO, we have imple-
mented a wrapper around the hash function. Moreover, we have extended the hash in order to
be able to save the current state. This is beneficial in the context of rejection sampling. Since
on average the hash function has to be restarted seven times, this would imply re-hashing of the
message to be signed. In case those messages are long this would require significant additional
effort. As a consequence, we first hash the message µ, save the state, hash a binary represen-
tation of r and reload the saved state in case the signature was rejected. This approach is also
straightforward in terms of state management, as the message has just to be fed into the hash
function once and does not have to be temporarily stored in a RAM or FIFO during the signing
process. As S-Quark×16 is a sponge-based construction, we abort the squeezing phase after
obtaining 160 output bits to generate c.
The polynomial c, which is computed by the Hash unit, and a triple (r,y1,y2) are then

processed by the sparse multiplication and compression block. Due to the parallelism of the
three main blocks, the hash engine can directly request a new triple (r,y1,y2)

′ to generate a
new hash/polynomial c. In order to compute z1, z2 ∈ Rq,k−32 we have to multiply the sparse
polynomial c with the secret key polynomials s1, s2 ∈ Rq,1 that have coefficients in the range
[−1, 1]. For this, we implemented a Comba/product-scanning multiplier and compute z1 and
z2 in parallel. More precisely, we store the secret key polynomials s1, s2 in one block RAM and
merged them so that each address holds a coefficient of s1 and one of s2 (s1[i]||s2[i], for 0 ≤ i < n).
Since the coefficients of s1, s2 and c are in [−1, 0], the multiplication can be simply realized by an
adder so that the parallel computation of z1, z2 is actually not very resource-intensive. Since the
result is returned coefficient by coefficient, this allows immediate rejection when an out-of-range
value is detected (i.e., after adding the corresponding coefficient of y1 or y2). In this case the
signing procedure is directly restarted. In order to prevent memory-intensive expansion of the
160-bit binary hash c into a polynomial, we perform this transformation on-the-fly in the sparse
multiplier. The Compress component extracts the carry information needed to be able to perform
the transformation into the higher-order representation during the signature verification. The
component implementing Algorithm 15 maintains a counter to track the number of uncompressed
values but does not yield further state information. Returned values are directly encoded and
written into an output FIFO. When the signing operation needs to be restarted the FIFO is
reset. When successful, however, access to this FIFO is granted to the external interface for
retrieving the valid signature.

99



Chapter 7. Lattice-Based Signatures on Reconfigurable Hardware

7.2.2 Signature Verification

The verification algorithm is simpler compared to signing which also results in a smaller resource
consumption. Especially, the Sparse Multiplication block is obsolete (see Figure 7.1) so that
the verification core only consists of the Lattice Processor and Hash block. The simpler veri-
fication directly translates into less computation cycles so that we did not implement pipelining
for the two blocks. We first run the Lattice Processor to compute az1 + z′2 − tc and then
activate the hash engine in a next step. Therefore, the runtime for verification consists of the
amount of time to perform this computation and the time to hash the result.
The validity test if z1, z

′
2 ∈ Rq,k−32 is simply being performed during signature decoding

from the input FIFO. The main workload is caused by the three polynomial multiplications
az1, z

′
2, tc performed by the Lattice Processor. With the global constant ã = NTT(a) and

the verification key t̃ = NTT(t) stored directly in NTT representation, we finally compute the
input to the hash function as follows:

INTT(ã◦NTT(z1)− t̃◦NTT(c)) + z′2. (7.1)

As a consequence, three NTT operations (32n log n cycles), two point-wise multiplications (2n
cycles) and two addition/subtractions (2n cycles) have to be performed. The time-consuming de-
coding of the signature is concurrently performed with the operation of the Lattice Processor
to avoid further latencies. One design alternative would have been to implement the relatively
cheap multiplication tc in a separate unit operating in parallel to the lattice processor. This is
not too costly as c is sparse with only 32 coefficients that are either minus one or one. Thus
a schoolbook multiplier taking this sparseness into account would only require roughly 32 · 512
cycles. However, even then the multiplication would be not much faster compared to the NTT,
harder to manage by the state machine, and also add resource consumption.

7.2.3 Implementation Aspects

In this section we provide details on the optimization of our implementation to reduce resource
consumption or improve flexibility.

Flexible Instantiation

In order to allow flexible usage and maintainability of the design we developed one code base that
can be configured by VHDL generic statements to generate a core supporting either signing
(sign), verification (ver) or both operations (both). In this case if ... generate statements
are used to remove complete unnecessary blocks or just parts of a component (e.g., FSM states).
Between the both and the sign cores, the small savings in resources stem mainly from removal
of the signature decoder and a buffer BRAM. The verification core ver is significantly smaller
than both or sign since the Sparse Multiplication component and the resources for the
pipelining stages are not required.

Uniform Sampling

To generate uniformly random distributed coefficients in the range [−k, k] for the polynomials
y1,y2 we use rejection sampling in order to obtain a value from the range [0, . . . , (2k + 1)]. We

100



7.2. Implementation of GLP

therefore compute a coefficient by c = (r mod (2k+ 1))− k, resembling the approach that was
used for the software implementation in [GOPS13]. The necessary pseudo-random input bits
are generated using an implementation of the Trivium stream cipher [Can06]2 which outputs
one pseudo-random bit in every clock cycle. In the rejection sampling step, in order to obtain
a value from the range [0, . . . , (2k + 1)], we check that a 16-bit random value, interpreted as
integer, is not larger or equal to (2k + 1) = 32769. As a consequence, 50% of the inputs to the
sampler are rejected. To still provide sufficient performance, we instantiate three Trivium cores
in parallel to extract 3bits at a time and perform a rejection sampling in

⌈
dlog2 32769e

3 = 6
⌉
clock

cycles on average.

7.2.4 Results

All results below were obtained post place-and-route (PAR) and generated with Xilinx ISE 14.2
and we synthesized the signing and verification engine for the low-cost Spartan-6 (S6SLX25-3)
and on the high-speed Virtex-6 (V6LX75T-3) device family. Detailed performance results for
parameter set I are given in Table 7.1 and the corresponding resource consumption is addressed
in Table 7.3 for Spartan-6 and Table 7.4 for Virtex-6, respectively.

Detailed Performance Evaluation

Table 7.1 provides the actual runtime of several core components of our implementation for a
small message. Additionally, we outline theoretical extrapolations based on the parameter n. A
difference of roughly five to ten percent between estimation and measurement is due to the need
of setup phases, pipeline stalls, or instruction decoding, which are not included in our model.
The runtime of the Lattice Processor in signing mode is not constant due to a small amount

of wait cycles in the uniform sampler unit. Moreover, the overall runtime of our pipelined
implementation is finally limited by the Lattice Processor (10,505 cycles) and in case of no
early abort, by the Sparse Multiplication (worst-case 16,950 cycles). The Hash component
requires 10,192 cycles to transform and hash r. On average one signing attempt with one input
triple takes 15,908 cycles of which about seven attempts are necessary in order to generate a valid
signature. The computation of the valid signature requires a total of 114,865 cycles on average.
Signature verification involves polynomial arithmetic performed by the processor (13,851 cycles)
and hashing of the result (10,192 cycles). The overall verification runs at constant time and
takes 25,138 cycles, where the additional 1095 cycles are accounted for initial decoding of the
first polynomial and I/O. A significant acceleration of the scheme could be still achieved by
using a faster (but larger) hash function as the time to hash contributes roughly 40% to the
overall runtime of the verification process.

Resource Consumption and Performance

In Table 7.3 we give post-PAR results for a low-cost Spartan-6 LX25. The figures were obtained
after 12 runs of the Xilinx Smart Explorer to achieve the smallest timing score. Based on the
maximum clock frequency of 187 MHz, one signing operations takes on average 615 µs while

2The used implementation of Trivium is based on [Ste]. However, we removed asynchronous reset signals to
improve resource utilization.

101



Chapter 7. Lattice-Based Signatures on Reconfigurable Hardware

Table 7.1: Detailed performance evaluation of the main components of our GLP implementation
for a short message.

Aspect Description Cycles

Lattice processor
(sign)

Average amount of cycles to sample
y1,y2

$← Rqk and to compute
r← ay1 + y2 (averaged over 400
signatures).

10,505 (n log n+12n+23ε)

Lattice processor
(verify)

Computation of az1 + z′2 − tc csign=13,851. (n log n +
10n+ 18ε)

Hash Higher order transformation of r and
evaluation of the QUARK hash function
on r(1) and a short message µ:
H
(
r(1), µ

)
.

chash = 10,192

Sparse multiplication Computation of
z1 ← s1c + y1, z2 ← s2c + y2,
compression, rejection sampling, and
signature encoding.

50− 16,950 (32 to 32n)

One signing attempt Average amount of cycles required for
one signing attempt (averaged over 400
signatures).

15,908

Signing Average amount of cycles required to
successfully generate a signature
(averaged over 400 signatures).

114,865

Verification Amount of cycles required for the
verification of one message.

25,138 (csign + chash)

Whenever possible we provide actual cycle counts as absolute number and also the theoretical estimation
based on the dimension n as well as worst-case and average-case values. Small differences between
estimation and measurement are due to wait cycles, pipeline stalls, or setup phases.

verification is constant time and requires 134 µs on the both core. Compared to the combined
core for signing and verification, the core supporting signing only saves just a few logic elements
while the verification core is much smaller with only 65% LUT and 74% BRAM usage.

In Table 7.4 we provide results for a more expensive but also much faster (in the sense that
it supports higher clock frequencies) and larger Virtex-6 LX75. The resource consumption is
similar to the Spartan-6 implementation but the achievable clock frequency is nearly 100 MHz
higher. As a consequence, we can verify more than 10000 signatures per second with the both
and ver core. Note that the Spartan-6 supports 9/18K BRAMs while the Virtex-6 has been
designed with larger 18/36K BRAMs. Unfortunately, this leads to some wasted space in BRAMs

102



7.3. Implementation of BLISS

on the Virtex-6 as our design contains a large number of 9k BRAMs which are mapped to 18k
BRAMs on the Virtex-6.

Table 7.3: Performance and resource consumption of all three variants of our GLP implementa-
tion targeting a Xilinx Spartan-6 LX25 (speed-grade -3).

Aspect both sign-Only ver-Only

Slices 2,045 2,010 1,586
LUT/FF 6,088/6,804 5,614/6,188 3,966/4,318
18K BRAM 19.5 18.5 14.5
DSP48A1 4 4 4

Max clock freq. 187 MHz 197 MHz 187 MHz
Sign (Sig/s ) 1,627 1,715 -
Verify (Sig/s ) 7,438 - 7,438

Table 7.4: Performance and resource consumption of all three variants of our GLP implementa-
tion targeting a Xilinx Virtex-6 LX75T (speed-grade -3).

Aspect both sign-Only ver-Only

Slices 2,083 2,086 1,745
LUT/FF 6,591/6,791 6,073/6,183 4,571/4,338
18K BRAM 36 34 26
DSP48E1 4 4 4

Max clock freq. 274 MHz 286 MHz 280 MHz
Sign (Sig/s ) 2,385 2,489 -
Verify (Sig/s ) 10,899 - 11,138

7.3 Implementation of BLISS

In this section we provide details on our implementation of the BLISS signature scheme on
a Xilinx Spartan-6 FPGA. We especially focus on our implementation of discrete Gaussian
sampling.

7.3.1 Gaussian Sampling Using Convolutions and a CDT

In this section we present implementation details on the CDT sampler and the Bernoulli sampler
proposed in previous work [DDLL13a] to evaluate and validate our results in practice. The theo-
retical background and analysis of these samplers is discussed in Section 2.5 (see also [PDG14a]).

103



Chapter 7. Lattice-Based Signatures on Reconfigurable Hardware

Uniform

LIFO

Trivium

Trivium

Ring
Buffer
128x8

Trivium

Reverse
Table:tR

minmax

i

j

Comparator

Address

Exponents
Table:tE

RAM:tB

Startt
Table:tS

0:tttttttttt0
1:tttttttttt0
'''

1993:t198
1992:tt58

11

BinSearch Table:tT

1
-1

x1
.

x2
.

x

Figure 7.3: Block diagram of our CDT sampler that generates two samples x′1, x′2 of standard
deviation σ′ ≈ 19.53 which are combined to a sample x = x′1 + 11x′2 with standard
deviation σ = 215.73.

Enhanced CDT Sampling

Our hardware implementation is based on the proposal given in Section 2.5.4 and operates on
bytes in order to use the 1024x8-bit mode of operation of the Spartan-6 block RAMs. The
design of our CDT sampler is depicted in Figure 7.3 and uses the convolution lemma. Thus
two samples with σ′ ≈ 19.53 are combined into a sample with standard deviation σ ≈ 215.73.
The BinSearch component performs a binary search on the table T as described in [PDG14a]
for a random byte vector r to find a c such that T [c] ≥ r > T [c + 1]. It accesses T byte-wise
and thus Tj [i] = Mj−E[i][i] denotes the entry at index i ∈ (0, 261) and byte j where Tj [i] = 0
when j − E[i] < 0 or i ≥ `j−E[i]. When a sampling operation is started in the BinSearch
component we set j = 0 and initialize the pointer registers min and max with the values stored
in the reverse interval table R[r0] where r0 is the first random byte. The reverse interval table
is realized as 256x15-bit single port distributed ROM (6 bits for the minimum and 9 bits for
the maximum). The index of the middle element of the search radius is i = (min+max)/2. In
case Tj [i] > rj we set (min = i, i = (i + max)/2, max = max, j = 0). Otherwise, for Tj [i] < rj
we set (i = (min + i)/2, min = min, max = i, j = 0) until max − min < 2. In case of Tj[i] = rj
we increase j = j + 1 and thus compare the next byte. The actual entries of M0 . . .M8 are
consecutively stored in block memory B and the address is computed as a = S[j − E[i] + i]
where we store the start addresses of each byte group in a small additional LUT-based table S =
[0, 262, 524, 759, 982, 1184, 1364, 1521, 1646]. Some control logic takes care that all invalid/out of
bound requests to S and B return a zero.

For random byte generation we use three instantiations of the Trivium stream cipher [Can06]
(each Trivium instantiation outputs one bit per clock cycle) to generate a uniformly random byte
every third clock cycle and store spare bits in a LIFO for later use as sign bits. The random values
rj are stored in a 128x8-bit ring buffer realized as simple dual-port distributed RAM. The idea
is that the sampler may request a large number of random bytes in the worst-case but usually
finishes after one or two comparisons due to the lazy search. As the BinSearch component
keeps track of the maximum number of accessed random bytes, it allows the Uniform sampler
to refresh only the used max(j) + 1 bytes in the buffer. In case the buffer is empty, we stop
the Gaussian sampler until a sufficient amount of randomness becomes available. In order to

104



7.3. Implementation of BLISS

Uniform

x

y

Dgσbin

K<
clear

we

din

1100100001000...

Counter

Counter-
SLR

FSM

din

we

LIFO

LIFO
LIFO

K

2

Trivium

LIFO

BerInput

Bexp)−x/ fE
1111111010010...
...
1101011001100...
...Extract

position

LIFO

LIFO

LIFO

LIFO
LIFO

Sign

Trivium

Ber-Eval

Bexp)−x/ fE

LIFO

LIFO

LIFO

LIFO

Figure 7.4: Block diagram of the Bernoulli sampler using two instantiations of Trivium as PRNG
and two Bexp(-x/f) components (only one is shown in more detail).

compute the final sample x we assign individual random signs to two samples x′1, x′2 and finally
output x = x′1 + 11x′2.
To achieve a high clock frequency, a comparison in the binary search step could not be per-

formed in one cycle due to the excessive number of tables and range checks involved. We therefore
allow two cycles per search step which are carefully balanced. For example, we precompute the
indices i′ = (min+i)/2 and i′′ = (i+max)/2 in the cycle prior to a comparison to relax the
critical paths. Moreover, timing was improved by not performing checks on the validity of the
address used to access the block RAM but by just zeroing out the output in case the address
was invalid. Note also that we are still accessing the two ports of the block RAM holding B
only every two clock cycles which would enable another sampler to operate on the same table
using time-multiplexing. Implementations of the CDT sampler for σ ≈ 250.54 and σ ≈ 271.93
just differ by different tables and constants which are selected during synthesis using a generic
statement.

Bernoulli Approach

In [DDLL13a] Ducas et al. proposed an efficient Gaussian sampling algorithm which can be used
to lower the size of precomputed tables to λ log2(2.4τσ

2) bits without the need for long-integer
arithmetic and with low entropy consumption (≈ 6 + 3 log2 σ). A description and additional
background on the sampler is contained in Section 2.5.3. The general advantage of this sampler
is a new technique to reduce the probability of rejections by first sampling from an (easy to
sample) intermediate distribution and then from the target distribution.
The block diagram of the implemented sampler is given in Figure 7.4. In the D+σbin

component
a x ∈ D+

σbin
is sampled according to Algorithm 4. However, on-the-fly construction of the binary

distribution of ρσbin({0, . . . , j}) = 1.1001000010000001... (see Section 2.5.3) is not necessary as
we use two 64-bit shift registers (LUTM) to store the expansion precomputed up to a precision
of 128 bits. Uniformly random values y ∈ {0, . . . , k− 1} are sampled in the Uniform component

105



Chapter 7. Lattice-Based Signatures on Reconfigurable Hardware

using rejection sampling (for k = 254 with 2
256 the probability of a rejection is low3). The

pipelined BerInput component takes a (y, x) tuple as input and computes t = kx and outputs
z = t + y as well as j = y(y + 2t). While z is retained in a register, the Bexp(-x/f) module
evaluates the Bernoulli distribution of b← Bexp(−j/2σ2). Only if b = 1 the value z is passed to the
output and discarded otherwise. The evaluation of Bexp(−x/f) requires independent evaluations
of Bernoulli variables. Sampling from Bc is easy and can be done by just evaluating s < c for
a uniformly random s ∈ [0, 1) and a precomputed c. The precomputed tables ci = exp(−2i/f)
for 0 ≤ i ≤ l, f = 2σ2 where l is dlog2(max(j))e are stored in a distributed RAM. The Bexp(-x/f)
module (Algorithm 3) then searches for one-bit positions u in j and evaluates the Bernoulli
variable Bcu . This is done in a lazy manner so that the evaluation aborts when the first bit has
been found that differs between a random s and c. This techniques saves randomness and also
runtime. As the chance of rejection is larger for the most significant bits we scan them first in
order to abort as quickly as possible. In the last step the Sign component samples a sign bit
and rejects half of the samples where z = 0.
The Bernoulli sampler is suitable for hardware implementation as most operations work on

single bits (mostly comparisons) only. However, due to the non-constant time behavior of
rejection sampling we had to introduce buffers between each element (see Figure 7.4) to allow
parallel execution and maximum utilization of every component. This includes the distribution
and buffering of random bits. In order to reduce the impact of buffering on resource consumption
we included Last-In-First-Out (LIFO) buffers that solely require a single port RAM and a counter
as the ordering of independent random elements does not need to be preserved by the buffer
(what would be the case with a FIFO). For maximum utilization we have evaluated combinations
of sub-modules and finally implemented two Bexp(-x/f) modules fed by two instantiations of
the Trivium stream cipher to generate pseudo random bits. A detailed analysis is given in
Section 7.3.4.

7.3.2 Design of a Signing and of a Verification Core

The architecture of our implementation of a high-speed BLISS signing engine is given in Figure 7.5
and the same for all supported parameter sets (I,III,IV). Similar to the GLP design in [GLP12]
we implemented a two stage pipeline for signing where the polynomial multiplication a1y1 runs
in parallel to the hashing H(bued, µ) and sparse multiplication z1 = s1c ± y1 and z2 = s2c ±
y2. Another option would be a three stage pipeline, as in the GLP implementation given in
Section 7.2, with an additional buffer between the hashing and sparse multiplication. As a
trade-off this would allows to use a slower and thus more area efficient hash function but also
imply a longer delay and require pipeline flushes in case of an accepted signature.

Polynomial Multiplication

For FFT/NTT-based polynomial multiplication of a1y1 we rely on the microcode engine dis-
cussed in Chapter 4. As the public key a1 is already stored in NTT format, for BLISS we just
have to perform a sampling operation, a forward transformation, point-wise multiplication, and
one inverse transformation. In contrast to the conference version [PDG14a] we thus removed

3Rejection sampling could be avoided completely by setting k = 256 and thus by sampling using σ = kσbin ≈
217.43. However, we decided to stick to the original parameter as the costs of rejection sampling are low.

106



7.3. Implementation of BLISS

unnecessary flexibility of the core (e.g., polynomial addition or subtraction), fixed some generic
options to (n = 512, q = 12289), and also support only one NTT enabled register (instead of
two). Special NTT registers are necessary in the multiplier implementation to provide two write
and two read ports required by the NTT butterfly (see [RVM+14] for an improvement of this
aspect). As the registers are comprised of two block RAMs, which are only filled with n/2
coefficients (thus n/2 · log2(q) = 3584 bits), this saves one block memory.

Hash Block

When a new triple (a1y1,y1,y2) is available the data is transferred into the block memories
BRAM-U, BRAM-Y1 and BRAM-Y2 and the small polynomial u = ζa1y1 + y2 is computed on-the-fly
and stored in BRAM-U for later use. The lower order bits bued mod p of u are saved in the RAM-U.
As random oracle instantiation we have chosen the KECCAK-f [1600] hash function for its security
and speed in hardware [SSRG11, JA11]. A configurable hardware implementation4 is provided
by the KECCAK project and the mid-range core is parametrized so that the KECCAK state is
split into 16 pieces (Nb = 16). To simplify control logic and padding we just hash multiples of
1024-bit blocks and rehash in case of a rejection. Storing the state of the hash function after
hashing the message (and before hashing bued mod p) would be possible but is not done due to
the state size of KECCAK. After the hash generation, the ExtractPos component extracts the
κ positions of c which are one from the binary hash output and stores them in the 23x9-bit
memory RAM-Pos.

Sparse Multiplication

For the computation of z′1 = s1c and z′2 = s2c we then exploited that c has mainly zero
coefficients and only κ = 23 coefficients set to one. Moreover, only d1 = dδ1ne = 154 coefficients
in s1 are ±1 and s2 has d1 entries in ±2 where the first coefficient is from {−1, 1, 3}. The
simplest and, in this case, also best suited algorithm for sparse polynomial multiplication is the
row- or column-wise schoolbook algorithm (see Section 2.4.1). While row-wise multiplication
would benefit from the sparsity of s1,2 and c, more memory accesses are necessary to add and
store inner products. Since memory that has more than two ports is extremely expensive, this
also prevents efficient and configurable parallelization. As a consequence, our implementation
consists of a configurable number of cores (C) which perform column-wise multiplication to
compute z1 and z2, respectively. Each core stores the secret key (either s1 or s2) efficiently
in a distributed RAM and accumulates inner products in a small multiply-accumulate unit
(MAC). Positions of c are fed simultaneously into the cores. Another advantage of our approach
is that we can compute the norms and scalar products for rejection sampling parallel to the
sparse multiplication. In Figure 7.5 a configuration with C = 2 is shown for simplicity but our
experiments show that C = 8 leads to a good trade-off between speed and resource consumption.

Signature Verification

Our verification engine uses only the PolyMul (without a Gaussian sampler) and the Hash
component and is thus much more lightweight compared to signing. The polynomial c stored as

4See http://keccak.noekeon.org/mid_range_hw.html for more information on the core.

107

http://keccak.noekeon.org/mid_range_hw.html


Chapter 7. Lattice-Based Signatures on Reconfigurable Hardware

secret-key

SparseMul

PolyMul

DecoderALU

NTT

RvR'

Rf
tempv

R)

Hash
Ram2U

ExtractPos

Compression

Rejection-
Sampling

Ram2M

Keccak2f[vF'']

message

Zv

Z( Compress
Core2S(2v

Ram2S(

MAC
BRAM2Y(

BRAM2U

BRAM2Yv

Zv

Z( g

c

reject

Compute2U

Norm Scalar

TriviumB
expK−xY f[

FIFO

Ram2Pos

Core2S(2(

Ram2S(

MAC

Core2Sv2v

Ram2Sv

MAC

Core2Sv2(

Ram2Sv

MACGaussSamplerBer
or

Gaussian
Sampler

GaussSamplerCDT

Huffman
Encode

Sign

FIFO

FIFO

SignHuff

Figure 7.5: Block diagram our BLISS-I signing engine.

(unordered) positions and is expanded into a 512x1-bit distributed RAM and the input to the
hash function is computed in a pipelined manner when PolyMul outputs a1y1.

7.3.3 Huffman Encoding for Short Signatures

The Sign and Verify components described above operate on signatures (c, z1, z
†
2) that consist

of κ positions of bits that are one in the polynomial c, the Gaussian distributed polynomial
z1 (std. deviation σ), and the small polynomial z†2 where most lower order bits have already
been dropped. Storing the signature in this format would require ≈ κ · log2 (n) + n · d(1 +
log2 (τσ))e+ n · d(log2(3)e bits, which is ≈ 8,399 bits for BLISS-I. However, in order to achieve
the signature size stated in Table 3.3 of 5,600 bits for BLISS-I additional Huffman encoding of
z1, z

†
2 is necessary (c does not contain any easily removable redundancy). Savings are possible

as small coefficients are much more likely than large ones in a polynomial distributed according
to a discrete Gaussian distribution.
In order to perform the Huffman encoding efficiently, we aim at getting a small Huffman table

by not encoding too many values. Therefore, we focus on the higher-order bits of coefficients of
z1, z2 (for z2 already given by z†2), since the lower order bits are almost uniform and thus not
efficiently compressible. As the distributions are symmetric, we encode only absolute values, and
deal with the signs separately which further reduces the table size. To decrease the overhead
between theoretical entropy and actual efficiency of Huffman encoding we group two coefficients
from z1 and two coefficients from z†2 together.
To encode a signature we thus split z1, z

†
2 into n/2 blocks of the form b[i] = (z1[2i], z1[2i +

1], z†2[2i], z
†
2[2i+1]) and focus from now on a single block b = (z1, z

′
1, z2, z

′
2). The components z1,

and z′1, respectively, are then decomposed as a triple of higher-order bits hz1 , lower-order bits lz1 ,
and sign sz1 ∈ {−1, 0, 1} where z1 = sz1(·hz1 ·B+ lz1) with B = 2β and lz1 ∈ [0, . . . , B−1]. Note
that the value of sz1 is irrelevant in case the decomposed value is zero and that the coefficients
from z2 already have their lower-order bits dropped (thus hz2 = z2 and hz′2 = z′2). For possible
values of (hz1 , hz′1 , hz2 , hz′2) we have calculated the frequencies and accordingly a variable length
Huffman encoding where ẽ = encode(hz1 , hz′1 , hz2 , hz′2). The sign bits are also stored as a
variable length s̃ string where sign bits are only stored if the associated coefficient is non zero

108



7.3. Implementation of BLISS

Table 7.5: Huffman table for signature compression (BLISS-I parameter set).

(hz1 , hz′1 , hz2 , hz′2) Binary string (hz1 , hz′1 , hz2 , hz′2) Binary string

(0, 0, 0, 0) 100 (2, 0, 0, 0) 00011
(0, 0, 0, 1) 01000 (2, 0, 0, 1) 0000111
(0, 0, 1, 0) 01001 (2, 0, 1, 0) 0000101
(0, 0, 1, 1) 0011100 (2, 0, 1, 1) 000001001
(0, 1, 0, 0) 110 (2, 1, 0, 0) 00110
(0, 1, 0, 1) 01101 (2, 1, 0, 1) 0001000
(0, 1, 1, 0) 01011 (2, 1, 1, 0) 0001011
(0, 1, 1, 1) 0011110 (2, 1, 1, 1) 000001101
(0, 2, 0, 0) 00100 (2, 2, 0, 0) 0000001
(0, 2, 0, 1) 0000100 (2, 2, 0, 1) 0000011111
(0, 2, 1, 0) 0000110 (2, 2, 1, 0) 000000000
(0, 2, 1, 1) 000001010 (2, 2, 1, 1) 000001111001
(0, 3, 0, 0) 000000011 (2, 3, 0, 0) 000001111000
(0, 3, 0, 1) 00000000101 (2, 3, 0, 1) 00000001011010
(0, 3, 1, 0) 000001111011 (2, 3, 1, 0) 00000001011000
(0, 3, 1, 1) 00000111101000 (2, 3, 1, 1) 00000111101011010
(1, 0, 0, 0) 101 (3, 0, 0, 0) 000001000
(1, 0, 0, 1) 01100 (3, 0, 0, 1) 00000000100
(1, 0, 1, 0) 01010 (3, 0, 1, 0) 00000000110
(1, 0, 1, 1) 0011101 (3, 0, 1, 1) 00000001011011
(1, 1, 0, 0) 111 (3, 1, 0, 0) 000001011
(1, 1, 0, 1) 01110 (3, 1, 0, 1) 00000001010
(1, 1, 1, 0) 01111 (3, 1, 1, 0) 00000000111
(1, 1, 1, 1) 0011111 (3, 1, 1, 1) 00000111101001
(1, 2, 0, 0) 00101 (3, 2, 0, 0) 000000010111
(1, 2, 0, 1) 0001001 (3, 2, 0, 1) 00000001011001
(1, 2, 1, 0) 0001010 (3, 2, 1, 0) 000001111010111
(1, 2, 1, 1) 000001110 (3, 2, 1, 1) 00000111101011011
(1, 3, 0, 0) 000001100 (3, 3, 0, 0) 00000111101011001
(1, 3, 0, 1) 00000001000 (3, 3, 0, 1) 000001111010110000
(1, 3, 1, 0) 00000001001 (3, 3, 1, 0) 0000011110101100011
(1, 3, 1, 1) 00000111101010 (3, 3, 1, 1) 0000011110101100010

Computed for standard deviation σ ≈ 215, with B = 2β for β = 8.

109



Chapter 7. Lattice-Based Signatures on Reconfigurable Hardware

(maximum four bits). As a consequence, the encoding of a whole block b[i] is the concatenation
v = s̃|ẽ|lz′1 |lz1 . During decoding the values of (hz1 , hz′1 , hz2 , hz′2) have to be recovered from ẽ and
(z1, z

′
1, z2, z

′
2) can be computed using lz′1 , lz1 and the sign information.

For our FPGA implementation we have realized a separate encoder HuffmanEncode and
decoder HuffmanDecode component exclusively for the BLISS-I parameter set and developed
wrappers SignHuff and VerifyHuff using them on top of Sign and Verify, respectively (see
Figure 7.5). For faster development time we rely on high-level synthesis (HLS) to imple-
ment both cores5. The encoder requests pairs of z1, z

†
2 from a small FIFO necessary for short

term buffering and because z†2 coefficients are slightly more delayed due to compression. The
ẽ = encode(hz1 , hz′1 , hz2 , hz′2) function is realized as a look-up table where the concatenated
value hz1 |hz′1 |hz2 |hz′2 is used as an address for a table with 64 entries (see Table 7.5). The final
encoded signature is then written to the top-level component in 32-bit chunks. The maximum
size of one v is 39 bits with a maximum length of ẽ of 19 bits, 2 times 8 bits for the lz′1 |lz1
and 4 bits for signs. It can happen that from a previous run at maximum 31 bits stay in the
internal buffer of the encoder (with 32 or more bits the buffer would have been written to the
output). For decoding we first request chunks of the encoded signature into a shift register. The
values of (hz1 , hz′1 , hz2 , hz′2) for a given e are recovered by linear searching in the Huffman table
ordered by the size/probability of resulting bit strings. Using this information the signature
can be completely recovered and is stored in an internal dual-block memory instantiated by the
HuffmanDecode component. In the VerifyHuff top-level component this buffer is connected to
the Verify component and the buffer allows parallel decoding of one signature and verification
of an already decoded signature after it has been read from the HuffmanDecode buffer.

7.3.4 Results

In this section we discuss our results which were obtained post-PAR on a Spartan-6 LX25 (speed
grade -3) with Xilinx ISE 14.7.

Gaussian Sampling

Detailed results on area consumption and timing of our two discrete Gaussian sampler designs
(SamplerBER and SamplerCDT) are given in Table 7.7. The results show that the enhanced
CDT sampler consumes less logic resources than the Bernoulli sampler at the cost of one 18k
block memory to store the table B. This is a significant improvement in terms of storage size
compared to a naive implementation without the application of the Kullback-Leibler divergence
and Gaussian convolution. A standard CDT sampler implementation would require at least
στλ = 370 kbits (that is about 23 18K block RAMs) for the defined parameters matching a
standard deviation σ = 215.73, tailcut τ = 13.4, and precision λ = 128.

5While a hand-optimized plain VHDL implementation would probably be more efficient, we opted for the
HLS design flow mainly due to much higher development speed and faster verification using a C testbench. As
Huffman encoding is not a core component of the signature scheme and not a particularly new technique it did
not seem worthwhile to spend a large amount of time with low-level design of such a component. However, in
order to provide a complete implementation that achieves the theoretical signature size, Huffman encoding is
required and by using a HLS tool we can give good estimates for resource consumption and runtime (or at least
an upper bound). However, in future work it would certainly be interesting to compare our implementation to a
hand-optimized low-level VHDL implementation.

110



7.3. Implementation of BLISS

Regarding randomness consumption the CDT sampler needs on average 21 bits for one sample
(using two smaller samples and the convolution theorem) which are generated by three instan-
tiations of Trivium. The Bernoulli sampler on the other hand consumes 33 bits on average
where 12% of the random bits are consumed by the Dσbin module, 42% by the uniform sampler,
43% by both Bexp(-x/f) units and 2.8% for the final sign determination and zero rejection. As
illustrated in Figure 7.4, we feed the Bernoulli sampler with the pseudo-random output of two
Trivium instances and a significant amount of the logic consumption can be attributed to ad-
ditional buffers to compensate for possible rejections and distribution of random bits to various
modules. With respect to the averaged performance, 7.5 and 17.95 cycles are required by the
CDT and the Bernoulli sampler to provide one sample, respectively. We also provide results
for instantiations of the CDT sampler for larger standard deviations required by BLISS-III and
BLISS-IV that show that the performance impact caused by the increased standard deviation σ
is small. In general, the SamplerBER component could also be instantiated for larger standard
deviations but in this case random number generation and distribution and thus the design
would have to be changed for a fair comparison (e.g., sampling of k in Algorithm 5 requires
more random bits for σ > 217.34). As a consequence, we just give results for the optimized and
balanced instantiation with σ ≈ 215.

With regard to the SamplerCDT component, by combining the convolution lemma and
Kullback-Leibler divergence we were able to maintain the advantage of the CDT, namely high
speed and relative simple implementation, but significantly reduced the memory requirements
(from ≈ 23 18K block RAMs to one 18K block RAM). The convolution lemma works especially
well in combination with the reverse tables as the overall table sizes shrink and thus the number
of comparisons is reduced. Thus, we do not expect a CDT sampler that samples directly from
standard deviation σ to be significantly faster. Additionally, larger tables would require more
complex address generation which might lower the achievable clock frequency. The Bernoulli
approach on the other hand does not seem as suitable for an application of the convolution
lemma as the CDT. The reason is that the tables are already very small and thus a reduction
would not significantly reduce the area usage. Moreover, sampling from the binary Gaussian
distribution σbin (D+σbin

component) is independent of the target distribution and does not profit
from a smaller σ.

Previous implementations of Gaussian sampling for lattice-based public-key encryption can be
found in [RVV13,PG14]. However, both works target a smaller standard deviation of σ = 3.3.
The work of Roy et al. [RVV13] uses the Knuth-Yao algorithm (see [DG14] for more details), is
very area-efficient (47 slices on a Virtex-5), and consumes few randomness but requires 17 clock
cycles for one sample. Bernoulli sampling can also be used to optimize simple rejection sampling
by using Bernoulli evaluation instead of computation of exp() (see Section 5.4). However, without
usage of the binary Gaussian distribution (see [DDLL13a]) the rejection rate is high and one
sample requires 96 random bits and 144 cycles. This is acceptable for a relatively slow encryption
scheme and possible due to the high output rate (one bit per cycle) of the used stream cipher but
not a suitable architecture for BLISS. The discrete Ziggurat [BCG+13] performs well in software
and might also profit from the techniques introduced in this work but does not seem to be a
good target for a hardware implementation due to its infrequent rejection sampling operations
and its costly requirement of high-precision floating point arithmetic.

111



Chapter 7. Lattice-Based Signatures on Reconfigurable Hardware

Table 7.7: Performance and resource consumption of our implementation of various BLISS pa-
rameter sets on reconfigurable hardware.

Configuration and Slices LUT BRAM MHz Cycles Operations per
Operation FF DSP second (output)

SignHuff (BLISS-I, CDT) 2,291 7,193/6,420 5.5/5 139 ≈15,864 8,761 (signature)
VerifyHuff (BLISS-I) 1,687 5,065/4,312 4/3 166 ≈16,346 17,101* (valid/invalid)
Sign (BLISS-I, 2×BER) 2,646 8,313/7,932 5/7 142 ≈15,840 ≈8,964 (signature)
Sign (BLISS-I, CDT) 2,047 6,309/6,127 6/5 140 ≈15,864 ≈8,825 (signature)
Sign (BLISS-III, CDT) 2,079 6,397/6,179 6.5/5 133 ≈27,547 ≈4,828 (signature)
Sign (BLISS-IV, CDT) 2,141 6,438/6,198 7/5 135 ≈47,528 ≈2,840 (signature)
Verify (BLISS-I) 1,482 4,366/3,887 3/3 172 9,607 17,903 (valid/invalid)
Verify (BLISS-III) 1,435 4,298/3,867 3/3 172 9,628 17,760 (valid/invalid)
Verify (BLISS-IV) 1,399 4,356/3,886 3/3 171 9,658 17,809 (valid/invalid)

SamplerBER (BLISS-I) 452 1,269/1,231 0/1 137 ≈17.95 ≈7,632,311 (sample)
SamplerCDT (BLISS-I) 299 928/1,121 1/0 129 ≈7.5 ≈17,100,00 (sample)
SamplerCDT (BLISS-III) 265 880/1,122 1.5/0 133 ≈7.56 ≈17,592,593 (sample)
SamplerCDT (BLISS-IV) 281 922/1,123 2/0 133 ≈7.78 ≈17,095,116 (sample)

PolyMul (CDT, BLISS-I) 835 2,557/2,707 4.5/1 145 9,307 15,579 (a · y1)
Butterfly 127 410/213 0/1 195 6 195 · 106 [pipelined]
Hash (Nb = 16) 752 2,461/2,134 0/0 149 1,931 77,162 (c)
SparseMul (C = 1) 64 162/125 0/0 274 15,876 17,258 (c · s1,2)
SparseMul (C = 8) 308 918/459 0/0 267 2,436 109,605 (c · s1,2)
SparseMul (C = 16) 628 1,847/810 0/0 254 1,476 172,086 (c · s1,2)
Compression** 232 700/626 0/4 150 - parallel to SparseMul
EncodeHuff (BLISS-I) 244 752/244 0/0 150 - parallel to Sign
DecodeHuff (BLISS-I) 259 795/398 0/0 159 ≈5,639 28,196 (z1, z

†
2)

By ≈ we denote averaged cycle counts. The post PAR results where synthesized on a Spartan-6 LX25-3
for a 1024 bit message. (*) Regarding throughput the cycle count of the Huffman enabled verification
core is equal to the standard core as the decoded signature is saved in a buffer RAM and thus the
decoding and verification can work in parallel. However, the latency of VerifyHuff is Cycles(Verify)+
Cycles(DecodeHuff). (**) In the conference version Compression also contained the area count of the
Hash and SparseMul components. However, this does not match the block diagram in Figure 7.5.

112



7.4. Comparison of our Implementations with Related Work

BLISS Operations

Results for our implementation of the BLISS signing and verification engine and sub-modules
can be found in Table 7.7 including averaged cycle counts and possible operations per sec-
ond (sometimes considering pipelining).6 The SignHuff and VerifyHuff top-level modules
include the Huffman encoding for very short signatures which is just implemented for the
BLISS-I parameter set. The impact of Huffman encoding on the signing performance is neg-
ligible as the encoding is performed in parallel to the signing process. For verification we save
the decoded signature obtained from the DecodeHuff component in a buffer which is then ac-
cessed by the verification core. As a consequence, the latency of the verification operation is
Cycles(Verify)+Cycles(DecodeHuff) but for high throughput a signature can be decoded while
another signature is verified. Thus the number of verification operations per second is not af-
fected and similar to the amount of operations possible without Huffman decoding. For BLISS-I
one signing attempt takes roughly 10,000 cycles and on average 1.6 trials are necessary using the
BLISS-I parameter set. To evaluate the impact of the sampler used in the design, we instantiated
two signing engines (Sign) of which one employs a CDT sampler and the other one two Bernoulli
samplers to match the speed of the multiplier. For a similar performance of roughly 9,000 signing
operations per second, the signing instance based on the Bernoulli sampler has a higher resource
consumption (about 600 extra slices). Due to the two pipeline stages involved, the runtime
of both instances is determined by max(Cycles(PolyMul),Cycles(Hash)) + Cycles(SparseMul)
where the rejection sampling in Compression is performed in parallel. Further design space
exploration, e.g., evaluating the impact of a different number of parallel sparse multiplication
operations or a faster configuration of KECCAK always identified the PolyMul component as
performance bottleneck or did not provide significant savings in resources for reduced versions.
In order to further increase the clock rate it would of course also be possible to instantiate
the Gaussian sampler in a separate clock domain. The verification runtime is determined by
Cycles(PolyMul) + Cycles(Hash) as no pipelining is used inside of Verify. The PolyMul is
slightly faster than for signing as no Gaussian sampling is needed. It is also worth noting that
for higher security parameter sets like BLISS-III (160-bit security) and BLISS-IV (192-bit secu-
rity) the resource consumption does not increase significantly. Only the signing performance
suffers due to a higher repetition rate (see Table 3.3). Verification speed and area consumption
are almost constant for all security levels.

7.4 Comparison of our Implementations with Related Work

In Table 7.9 we summarize our results and provide implementation results for other signature
schemes. The main difference of our work, compared to the first implementation of the GLP
scheme [GLP12], is the use of the NTT instead of a schoolbook approach for polynomial multi-
plications (i.e., for computation of ay1 +y2). The schoolbook multiplier of [GLP12] was realized

6We also give size, runtime, and achievable clock frequency estimates for sub modules. However, due to
cross-module optimization, different design strategies, and constraint options the resource consumption cannot
just be added and varies slightly (e.g., achievable timing of a stand-alone instantiation might be lower than when
instantiated by a top-level module). Moreover, the target clock frequency in the constraints file can heavily
influence the achievable clock frequency (if too low, PAR optimization stops early, if too high, PAR optimization
gives up too quickly), and while we tried to find a good configuration for the top level modules we just synthesized
the sub modules as they are with a generic constraints file.

113



Chapter 7. Lattice-Based Signatures on Reconfigurable Hardware

using a DSP and placed in a separate clock domain to achieve high frequencies (e.g., 416MHz on
a Virtex-6). However, due to the need to perform roughly n2 = 5122 = 262144 multiplications
in Zq to compute ay1 and despite the high operating frequency several multipliers were required
to saturate the other parts of the signing engine. Thus the number of required DSP blocks is
rather high in [GLP12] (i.e., 28 instead of the four used in our work). Another difference is
that we now compute z1, z2 in parallel and not sequentially as in [GLP12]. Furthermore, and
contrary to [GLP12], we remark that our implementations of GLP and BLISS take the area costs
and timings of a hash function into account.

For a fair comparison with [GLP12] we compare only the separate signing and verification
cores. However, our both core provides support for both operations at almost no additional
costs compared to a core supporting only the signing operation. On the Spartan-6 platform we
need 75% LUTs, 92% BRAMs and 14 % DSPs for signing (see Table 7.3) compared with the
results of [GLP12] given in Table 7.9. With respect to performance, the cores presented in this
thesis can sign 1715 signatures per second compared to the previous 931 which is an improvement
of a factor of 1.8. Since in [GLP12] the computation of az1 +z′2− tc is not performed in parallel
with just one schoolbook multiplier, the performance for verification of this work is even better,
due to the usage of the NTT. Our verification core consumes almost the same amount of BRAMs
but only 67% LUTs, and 14 % DSPs and increases the performance by a factor of 7.4.

When just comparing the GLP and BLISS implementations given in this thesis, it becomes
evident that the BLISS design achieves higher throughput with a similar number of DSPs and
logic resources but only a fourth of the block memories required by GLP. The main reasons for
this advantage are that BLISS operates with a smaller modulus (GLP: q = 8383489/BLISS-I:
q = 12289) and that it requires less iterations to produce a valid signature (GLP: 7/BLISS-
I: 1.6). Moreover, BLISS provides a higher security level (GLP: 80 bit/BLISS-I: 128 bit) than
GLP. The biggest advantage of our GLP implementation (besides the improvements compared
to [GLP12]) is that one core is a signing/verification hybrid which might be useful for some
application scenarios and that an implementation of key generation could be added easily. A
signing/verification hybrid core (even supporting multiple security levels) would also be possible
for BLISS but would require a significant additional engineering and testing effort. However, an
implementation of BLISS key generation appears to be more challenging than GLP key generation
due to the more complicated rejection sampling and computation of an inverse. In summary,
our implementation of BLISS is superior to [GLP12] and also our GLP implementation in almost
all aspects.

Compared with implementations of RSA and ECC the performance and area consumption
of our implementations is competitive or even better. As an example, Glas et al. [GSS+11]
report a vehicle-to-X communication accelerator based on an ECDSA signature over 256-bit
prime fields. With respect to their work, our BLISS implementation shows higher performance
at less resource cost. An ECDSA implementation on a binary curve for an 80-bit security
level on an Altera FPGA is given in [JS07] and achieves similar speeds and area consumption
compared to our work. Other ECC implementations over 256-bit prime or binary fields (e.g.,
such as [GP08] on a Xilinx Virtex-4) only implement the point multiplication operation and not
the full ECDSA protocol. Finally, a fast RSA-1024/2048 hybrid core was presented for Virtex-4
devices in [SM11] which requires more logic/DSPs and provides significantly lower performance
(12.6 ms per 2048-bit private key operation) than our core.

114



7.5. Conclusion and Future Work

For the NTRUSign lattice-based signature scheme (introduced in [HHP+03] and broken by
Nguyen [NR09]) and the XMSS [BDH11] hash-based signature scheme we are not aware of
any implementation results for FPGAs. Implementations of several post-quantum multivariate
quadratic (MQ) signature schemes like Unbalanced Oil and Vinegar (UOV), Rainbow, and TTS
were given in [BERW08]. These schemes are usually faster (factor 2-50) than ECC but also suffer
from large key sizes for the private and public key (e.g., 80 Kb for UOV) [PTBW11]. While
implementations of the McEliece encryption scheme offer good performance [EGHP09,SWM+10]
the only implementation of a code based signature scheme [BSTV04] is extremely slow with a
runtime of 830 ms for signing.

7.5 Conclusion and Future Work

With this work we have shown that lattice-based digital signature schemes that support a broad
range of security levels (80-bit to 192-bit security) can be implemented efficiently on low-cost
FPGAs. Moreover, we have given an implementation of an efficient and theoretically sound
discrete Gaussian sampler using a small table. Our work on BLISS shows that Gaussian sampling
can be implemented efficiently on FPGAs and that the advantages of using Gaussian noise (e.g.,
security, smaller signatures, less rejections) outweigh the added resource costs compared to
schemes relying on uniform noise.
For future work it seems worthwhile to investigate the properties of other samplers (e.g.,

Knuth-Yao [RVV13,DG14]) and to implement different signature schemes like NTRUSign with
secure rejection sampling [MBDG14] or PASSSign [HPS+14]. Moreover, for practical adoption
of BLISS protection against side-channels is required. By using new compression techniques
or other tricks it might also be possible to further reduce the size of the BLISS signature or
to increase performance (see [Duc14]). For practical applications an (open-source) BLISS core
supporting multiple security levels and signing as well as verification might be useful. However,
for most real world applications a core would require protection against side-channel attacks
and fault injection. In general, also other configuration options could be explored (e.g., more
pipelining stages for the high-repetition rate BLISS-IV parameter set), usage of different hash
functions, or a faster NTT multiplier. As our work presented in this thesis focuses on speed it
is also not clear how small and fast a lightweight implementation of BLISS would be.

115



Chapter 7. Lattice-Based Signatures on Reconfigurable Hardware

Table 7.9: Signing and verification performance of our FPGA implementation of GLP and BLISS
in comparison with implementations of other signature schemes.

Operation Security Device Resources Ops/s

BLISS-I, our work 128 XC6SLX25 7,193 LUT/ 6,420 FF 8,761
[SignHuff] 5 DSP/ 5.5 BRAM18
BLISS-I, our work 128 XC6SLX25 5,065 LUT/4,312 FF 17,101
[VerHuff] 3 DSP/ 4 BRAM18

GLP-I, our work 80 XC6SLX25 6,088 LUT/ 6,804 FF/ 1,627/
[Sign/Verify] 4 DSP/ 19.5 BRAM18 7,438

BLISS-I, conf. version 128 XC6SLX25 7,491 LUT/7,033 FF 7,958
[Sign] [PDG14a] 6 DSP/ 7.5 BRAM18
BLISS-I, conf. version 128 XC6SLX25 5,275 LUT/1,727 FF 14,438
[Verify] [PDG14a] 3 DSP/ 4.5 BRAM18

GLP-I 80 XC6SLX16 7,465 LUT/ 8,993 FF/ 931
[sign] [GLP12] 28 DSP/ 29.5 BRAM18
GLP-I 80 XC6SLX16 6,225 LUT/ 6,663 FF/ 998
[verify] [GLP12] 8 DSP/ 15 BRAM18

ECDSA-secp256r1 128 XC5VLX110T 32,299 LUT/FF pairs 139
[sign/ver] [GSS+11] 128 XC5VLX110T 32,299 LUT/FF pairs 110

ECDSA-B163 80 EP2C20 15,879 LE / 8,472 FF/ 1,063/
[sign/ver] [JS07] 36 M4K 621

RSA-1024/2048 80/103 XC4VFX12-10 4190 SLICES/17 DSP 548/
[sign] [SM11] 7 BRAM18 79

ECDSA-B163 [point mult.]∗ [AH08] 80 XC4VLX200 7,719 LUT/ 1,502 FF 47,619

ECDSA-P224 [point mult.]∗ [GP08] 112 XC4VFX12-12 1,580 LS/ 26 DSP 2,739

ECDSA-P256∗ 128 XC5LX100 4,177 LUT/ 4,792 FF 2,631
[point mult.] [MLPJ13] 37 DSP/ 18 BRAM36

ECDSA-25519 128 XC7Z020 2,783 LUT/ 3,592 FF 2,518
[point mult.]∗ [SG14] 20 DSP/ 2 BRAM36

(*) The overall cost of an ECDSA signing operation is dominated by one point multiplication but a
full core would also require a hash function, logic for arithmetic operations, and inversion. ECDSA
verification requires one or two point multiplications depending on the curve representation but also a
hash function and logic for arithmetic operations.

116



Chapter 8

Implementation of Lattice-Based Signatures
in Software

In this chapter we examine the software performance of lattice-based signature
schemes on several platforms. We first revisit the vectorized GLP implementation
from [GOPS13] and show two simple optimizations for further speed-up. The sec-
ond contribution is an implementation of BLISS on a Cortex-M4F device and the
evaluation of several discrete Gaussian samplers. Moreover, we provide an im-
plementation of BLISS on the ATxmega which relies on a cumulative distribution
table (CDT) sampler combined with convolutions of Gaussians (see Section 2.5.4)
and previously discussed improvements of the NTT for software platforms (see Sec-
tion 6.2). The optimization of GLP proposed in this work appeared in the full version
of [DBG+14]. The implementation of BLISS on the Cortex-M4F has been published
in [OPG14] and some of the results of the paper are based on the Bachelor’s thesis of
Tobias Oder [Ode13]. The BLISS implementation on the ATxmega platform appeared
in [POG15a]. Moreover, some content from [HPO+15] is included and we refer to
results published in works like [GOPS13,DBG+14] that have been co-authored by the
author of this thesis.

Contents of this Chapter
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2 Improved Implementation of GLP on Intel/AMD CPUs . . . . . . . . . . . 119
8.3 Implementation of BLISS on the Cortex-M4F . . . . . . . . . . . . . . . . . . 121
8.4 Implementation of BLISS on the ATxmega . . . . . . . . . . . . . . . . . . . . 127

8.1 Introduction

If predictions regarding the upcoming Internet-of-things or Industry 4.0 hold, more and more
energy and cost-constrained embedded systems will be deployed in decentralized networks that
are connected to massive cloud services [AIM10, GBMP13]. To authenticate communicating
parties or software updates, long-term secure digital signature schemes (DSS) are required that
can be implemented efficiently on small devices but that also support fast execution on servers.
Candidate schemes could be the recently proposed lattice-based digital signatures like GLP and
BLISS, which are also fast in hardware (see Chapter 7). A particular advantage of these schemes

117



Chapter 8. Implementation of Lattice-Based Signatures in Software

is that they rely on polynomial multiplication as core function. Thus, no complicated data
structures or multiprecision arithmetic is necessary for their implementation. Most parts of the
computation basically require a large number of operations in Zq, usually for dlog2(q)e ≤ 32
that can be computed rather efficiently on common 8-bit, 16-bit, or 32-bit microcontrollers.
Additionally, for server implementation it has been shown in [GOPS13] that the NTT can
be vectorized efficiently and even a plain C implementation of BLISS already achieves high
speed [DDLL13a]. However, Gaussian sampling and polynomial multiplication are still expensive
and some effort is required to make implementations fast on a wide range of microcontrollers
and microprocessors.

8.1.1 Related Work

The GLP signature scheme was introduced in [GLP12] (see Section 3.5) and BLISS was proposed
in [DDLL13a] (see Section 3.6). Hardware implementations of GLP and BLISS are covered in
Chapter 7. A vectorized software implementation of GLP has been proposed in [GOPS13] and
a proof of concept software implementation of BLISS is already provided with the original pa-
per [DDLL13a]. An implementation of PASSSign is described in [HPS+14]. A library (NFLlib)
for the implementation of ideal lattice-based cryptography using the NTT and the Chinese re-
mainder theorem (CRT) is described in [MBFK14]. In [BSJ14,BJ14] implementations of BLISS
and GLP (instantiated as identification scheme) on 8-bit AVR platforms are proposed. An opti-
mized implementation of the NTT on the Cortex-M4F that improves upon the results discussed
in this chapter is provided by de Clercq et al. in [dCRVV15]. Usually, real world instantiations
of lattice-based signature schemes rely on ideal lattices to reduce the size of public and pri-
vate keys. One exception is an implementation of BG signatures [BG14] provided in [DBG+14]
that shows that even an instantiation using standard lattices can achieve high performance in
software.

8.1.2 Contribution

We revisit the implementation of GLP provided in [GOPS13] and show high-level optimizations
that increase signing speed by a factor of 1.4 without modification of the underlying vectorized
NTT implementation. Moreover, we discuss a possible approach for the implementation of vec-
torized sparse multiplication. While this approach does not lead to performance gains compared
to the NTT, it might be applicable for alternative schemes or on different architectures.
Additionally, we present an implementation of the BLISS signature scheme tailored to a 32-bit

ARM Cortex-M4F RISC (1024 KB flash/192 KB SRAM) microcontroller capable of running with
up-to 168 MHz. This common series of ARM microcontrollers is not only deployed in vehicular
environments but also in many other embedded devices, such as smart meter gateways, medical
devices, or industrial control systems so that our results are also likewise applicable to many
other applications. For this platform, we investigate the optimal implementation of polynomial
multiplication using the NTT as well as an analysis of the efficiency of several Gaussian samplers.
Our implementation on this low-cost platform achieves a significant performance, namely 28
signing and 167 verification operations per second, outperforming classical cryptosystems such
as RSA and ECC.
Targeting 8-bit architectures we provide the, up to our knowledge, fastest and smallest im-

plementation of BLISS on the AVR platform. We show the benefits of using the optimized

118



8.2. Improved Implementation of GLP on Intel/AMD CPUs

NTT algorithms from Chapter 6, and the approach of using the CDT and convolutions that
has previously been successfully implemented in hardware (see Section 7.3.1). One signature
computation requires only 329ms and verification requires 88ms.

8.2 Improved Implementation of GLP on Intel/AMD CPUs

In [GOPS13] Güneysu et al. described an optimized software implementation of the GLP signa-
ture scheme. The implementation for Intel’s Sandy Bridge and Ivy Bridge in particular targets
the advanced vector extensions (AVX) providing support for single instruction multiple data
(SIMD) operations. Their C-implementation features storing of parameters in NTT representa-
tion, lazy reduction, and representation of 512-coefficient polynomials as a 512 double-precision
array of floating-point values. By utilizing the AVX instruction set that implementation can
perform up to four multiplications and four additions of coefficients in each cycle. The reported
(average) cycle count for a successful signing operation is 634,988 cycles, while verification takes
45,036 cycles and key generation 31,140 cycles.
However, in [GOPS13] the secret key (s1, s2) is not stored in the NTT domain and transformed

during every signing attempt. This motivated a closer look at the implementation and led to
some optimizations and an alternative method for sparse multiplication.

8.2.1 Faster Uniform Sampling and Better Exploitation of the NTT

As mentioned, in [GOPS13] the secret key sk = (s1, s2) is not stored in NTT representation
and can thus be compressed into only 256 bytes. This is possible as s1 and s2 are polynomials
in Rq with n = 512 coefficients that are chosen uniformly random from {−1, 0, 1}. However,
when a larger secret key is acceptable, s1 and s2 can be stored in NTT representation in which
a polynomial requires at least ndlog2 qe bits (q = 8383489 in parameter set I). Thus, no forward
transforms of s1 and s2 are required during signing. As a consequence, in our improved imple-
mentation the computation of cs1 and cs2 can be performed with one forward transformation
of c, two point-wise multiplications with the already transformed s1 and s2, and two inverse
transforms. The secret key size of our optimized version is 2 · 512 · 8 = 8,192 bytes where each
coefficient is being stored in floating point representation as a 64-bit double variable.
Additionally, we optimized the uniformly random sampling of y1 and y2. GLP signing re-

quires to sample y1
$← [−k, k]n and y2

$← [−k, k]n for k = 214 and n = 512 (parameter set
I). In [GOPS13] a pool of 2,112 random bytes is sampled using a stream cipher and (with a
high probability) a 32-bit random integer results in a random coefficient of y1 or y2 that is in
[−214, 214]. However, it is easy to see that there is a considerable loss of entropy by converting
32 bits into a 16-bit value. The whole sampling process can be significantly improved when the
original parameter set I is changed1 and k is set to k = 214 − 1. We can now use the same
approach to sample as described in [DBG+14] and only need 1,056 pseudo random bytes for a
signing attempt.
The verification speed can also be improved, again by using the NTT. In Section 7.2.2 it

was proposed to compute the input az1 + z′2 − tc to the random oracle during verification as
INTT(ã ◦ NTT(z1) − t̃ ◦ NTT(c)) + z′2 where pk = (ã, t̃) is stored in NTT representation. The

1As we consistently reduce k only by one the impact on the correctness and security of the original scheme
is negligible.

119



Chapter 8. Implementation of Lattice-Based Signatures in Software

addition of two polynomials in NTT representation is possible due to the linearity of the NTT
and thus only one inverse transformation, instead of two separate inverse transformations of
ã ◦ NTT(z1) and t̃ ◦ NTT(c), is necessary.

8.2.2 Notes on Vectorized Sparse Multiplication for GLP

We also developed an alternative approach for the efficient and vectorized implementation of
sparse multiplication without using the NTT. However, for the computation of cs1 and cs2 we
were not able to achieve better performance or a smaller secret key than with the NTT. While
our approach did not result in a speed-up on the current architecture it might be advantageous on
different architectures. Our idea is based on the previously mentioned fact that in GLP the output
c of the random oracle is a sparse polynomial of weight 32 which is multiplied by polynomials s1
and s2 with small coefficients chosen uniformly from {−1, 0, 1}. The application of a standard
row-wise multiplication algorithm to this problem would usually require the addition of n = 512
shifted coefficients of s1 and s2 to the final results for every coefficient that is one or minus one
in c. However, usage of this approach (even with vectorization) is not competitive compared to
the NTT as it still requires 32 · 512 = 16,384 additions or subtractions.
However, it is easy to see that the coefficients of a result of a multiplication h1 = cs1 and

h2 = cs2 are small (maximum 32n) and not even remotely fill the 53-bit mantissa of a double
register. As a consequence, we pack seven coefficients of s1 and s2 into one double value. This
is possible as we need at most seven bits per coefficient and can thus prevent an overflow inside
the double value when computing cs1 and cs2. Basically, this now allows us to add or subtract
28 coefficients with one 256-bit AVX vector operation working on four double precision floating
point values at the same time. However, now the shifts resulting from the position of a one in
c are even more complicated, as we would also have to shift and negate the seven coefficients
packed into one double. To solve this issue, we store seven rotations of s1 and s2, respectively.
The first and the n-th double element of each rotation of either s1 or s2 are shown exemplary:

−s0 −s1 −s2 −s3 −s4 −s5 −s6
0 −s0 −s1 −s2 −s3 −s4 −s5
0 0 −s0 −s1 −s2 −s3 −s4
0 0 0 −s0 −s1 −s2 −s3
0 0 0 0 −s0 −s1 −s2
0 0 0 0 0 −s0 −s1
0 0 0 0 0 0 −s0

s0 s1 s2 s3 s4 s5 s6
−sn−1 s0 s1 s2 s3 s4 s5
−sn−2 −sn−1 s0 s1 s2 s3 s4
−sn−3 −sn−2 −sn−1 s0 s1 s2 s3
−sn−4 −sn−3 −sn−2 −sn−1 s0 s1 s2
−sn−5 −sn−4 −sn−3 −sn−2 −sn−1 s0 s1
−sn−6 −sn−5 −sn−4 −sn−3 −sn−2 −sn−1 s0

Before we perform the two row-wise multiplications h1 = cs1 and h2 = cs2 we initialize each
coefficient of h1 and h2 with 32 to avoid underflow when subtracting (each double is initialized
with 141845657554976).

120



8.3. Implementation of BLISS on the Cortex-M4F

8.2.3 Evaluation and Future Work

As a result, the vectorized and packed implementation of the sparse multiplication (without the
improved sampling of y1 and y2) allows signing in 572,889 cycles compared to 634,988 cycles
required in [GOPS13]. To store the rotations of the secret key 2·8,288 = 16,576 bytes of memory
are required. However, this implementation could not outperform a multiplication in which the
secret keys were stored in the NTT domain, as detailed in Section 8.2.1. The cycle counts for
our improved implementation (including the improved uniform sampling) and the original values
from [GOPS13] are given in Table 8.1. Due to the faster random sampling and storage of keys in
the NTT domain, signing is 1.4 times faster in our work compared to [GOPS13]. The verification
step is improved by a factor of 1.3.
For comparison other signatures schemes are also listed in Table 8.1 but as they were not all

measured on the same platform the results are not all directly comparable. The fastest scheme
with regard to signing and also with the smallest signature (5.6 kb) is currently BLISS (imple-
mented in plain C) due to the low amount of rejections, fast Gaussian sampling using a large
CDT, and small parameters for n and q. The structural disadvantage of GLP (more rejections,
larger n and q) is nearly compensated by the usage of assembly optimization and vectorization
(i.e., AVX extensions). As verification almost only requires polynomial multiplication, our GLP
implementation is almost three times faster than BLISS. Note also that for the signing procedure
of BLISS, the impact of higher security levels on performance is moderate as n and q stay the
same, with the significant changes being in the Gaussian sampler and number of rejections. As
Gaussian sampling is not needed for verification, the runtime of verification is basically inde-
pendent of the security level. The implementation of LYU signatures [Lyu12] from [WHCB13]
is not competitive, mainly due to larger parameters and also because the implementation uses
slow rejection sampling and relies on the number theory library (NTL) for basic arithmetic.
For GPV [GPV08], initial outputs and key sizes were many megabits long and even with im-
provements from [MP12] the signature and key sizes of the implementation by Bansarkhani and
Buchmann [BB13] are still large in practice.
Regarding future work, an implementation of the BLISS signature scheme that uses the vector-

ization ideas from [GOPS13] should lead to a significant performance improvement. In general,
the vectorized implementation of the NTT given in [GOPS13] could benefit a whole range of
ideal lattice-based schemes. Moreover, it would be worth investigating how efficiently the secure
NTRU signature scheme proposed in [MBDG14] can be implemented.

8.3 Implementation of BLISS on the Cortex-M4F

In this section we discuss our implementation of BLISS on the Cortex-M4F and evaluate different
methods to sample from a discrete Gaussian distribution. Additionally, we show how the NTT
can be used to accelerate the costly BLISS key generation. Note that possible future work on
the implementation of BLISS on microcontrollers is discussed in Section 8.4.4.
Our target device is the Cortex-M4F. It is currently the second most powerful device in the

Cortex-M series which consists of five 32-bit RISC processors (M0, M0+, M3, M4, M7)2. It
provides 21 core registers, divided into 13 general purpose registers, 5 special registers, as well
as a stack pointer, link register, and program counter register. The core features a floating point

2See http://www.arm.com/products/processors/cortex-m/

121

http://www.arm.com/products/processors/cortex-m/


Chapter 8. Implementation of Lattice-Based Signatures in Software

Table 8.1: Comparison of performance and signature size of selected post-quantum signature
software implementations on microprocessors.

Software Platform Sec. Cycles Sizes

bits sign verify pk sk sig

GLP(our work) Intel Core i5-3210M 80 452,223 34,004 1,536 8,192 1,184
GLP [GOPS13] Intel Core i5-3210M 80 634,988 45,036 1,536 4,096 1,184

BLISS-I [DDLL13a] Intel Core i7 128 424,600 102,000 875 250 700
BLISS-III [DDLL13a] Intel Core i7 160 690,200 105,400 875 375 750
BLISS-IV [DDLL13a] Intel Core i7 192 1,275,000 108,800 875 375 813

BG [DBG+14] Intel Core i5-3210M 128 1,973,610 608,870 1,619,940 912,380 1,495
GPV-matrix [BB13] AMD Opteron 8356 100 287,500,000 48,300,000 24,192,000 11,232,000 27,400
GPV-poly [BB13] AMD Opteron 8356 100 71,300,000 9,200,000 47,300 23,900 30,100
PASSSign [HPS+14] Intel Core i7-2640M 130 584,230 172,641 1,500 - 2,360
LYU [WHCB13] AMD Opteron 8356 80 93,633,000 13,064,000 13,087 13,240 8,294

mqqsig160 [GØJ+11] Intel Core i5-3210M 80 1,996 33,220 206,112 401 20
mqqsig256 [GØJ+11] Intel Core i5-3210M 128 4,560 87,904 789,552 593 32
tts6440 [CCC+09] Intel Core i5-3210M 80 33,728 49,248 57,600 16,608 43
Parallel-CFS [LS12] Intel Xeon W3670 80 4,200,000,000 - 20,968,300 4,194,300 75
XMSS [BDH11] Intel i5-M540 82 7,261,100 556,600 912 19 2,451

RSA2048 [DDLL13a] Intel Core i7 112 4,012,000 129,200 250 250 250
RSA4096 [DDLL13a] Intel Core i7 128 29,444,000 469,200 500 500 500
ed25519 Intel Core i5-3210M 112 67,564 209,328 32 64 64
ronald2048 Intel Core i5-3210M 112 5,768,360 77,032 256 2,048 256

pk stands for public key; sk stands for private key. The sizes are given in bytes.

unit (FPU) that makes the main difference between Cortex-M4 and Cortex-M4F and allows
execution of floating point addition or multiplication in one cycle. Devices from the Cortex-M4
series can also use a digital signal processor (DSP) that is capable of performing instructions
like multiplication with subsequent addition in a single cycle. For generation of randomness we
rely on the on-board true random number generator (TRNG) which is equipped with a fault
detector and employs ring oscillators and a linear feedback shift register (LFSR). The TRNG
runs with 48 MHz and can output 32 random bits every 40 periods.

8.3.1 Implementation of Different Discrete Gaussian Samplers

For each signing attempt in BLISSsign (see step 2 of Algorithm 18) it is necessary to generate
2n = 1024 discrete Gaussian distributed coefficients with standard deviation σ ≈ 215. As
promising candidates for this purpose, we evaluate the Knuth-Yao [RVV13,DG14] and discrete
Ziggurat [BCG+13] sampling algorithms as well as an approach using Bernoulli distributed
variables [DDLL13a] (see Section 2.5.3).

122



8.3. Implementation of BLISS on the Cortex-M4F

The actual implementation of the Bernoulli sampler is straightforward. The algorithm requires
to store 336 bytes of precomputed data and we use loop unrolling to speed up certain parts of
the algorithm. This reduces the average required cycles from 2,049 to 1,835 cycles per Gaussian
distributed coefficient. Our implementation of the Knuth-Yao algorithm is inspired by [RVV13]
which has been adapted to software. Necessary tables were computed using the computer algebra
system SAGE and we removed a large number of leading zeros that occur in the first columns.
The overall memory consumption is 19,064 bytes which is still large but favorable compared to
a naive CDT approach, which would require 41,280 bytes. However, the detection of leading
zeros leads to some overhead so that we need on average 2,404 cycles per sample. The main
challenge of an implementation of the Ziggurat algorithm is its computational complexity and
the infrequent high precision rejection sampling. Thus we had to implement expensive multi-
precision arithmetic and compute the exponential function using limit representation. We refer
to [DG14] for a short survey on methods to compute exp().

8.3.2 Polynomial Arithmetic

Besides discrete Gaussian sampling, polynomial arithmetic is one of the most time-consuming
parts of BLISS. In this section we concentrate on the costly multiplication and inversion in
Zq[x]/〈xn + 1〉.

Number Theoretic Transform

For polynomial multiplication we use the NTT and refer to Section 2.4.2 for the theoretical
background. We precompute all necessary twiddle factors required by the NTT and have un-
rolled the first two stages of the implemented radix-2 decimation-in-time algorithm (DIT) (see
Algorithm 1). The core of the algorithm is implemented in assembly and listed in Table 8.3. We
also use conditional execution and powerful DSP instructions, like multiply-subtract, to speeds
up our implementation.
Another useful feature of our target microcontroller is a bit-reversal instruction (RBIT). This is

necessary as the input to the transform has to be reordered such that coefficients are exchanged
with their bit-reversed counterpart (see Section 2.4.2). With the help of the RBIT instruction, we
can implement this step efficiently using inline assembly. Another option would have been the
usage of the optimizations discussed in Section 6.2 to render bit-reversal unnecessary altogether.

Polynomial Inversion

During the key generation algorithm BLISSgen, it is necessary to compute the multiplicative
inverse of f (Algorithm 17, step 5). For this task we use Fermat’s little theorem to compute
the multiplicative inverse as f−1 = f q−2 in Rq and an addition chain [Knu97] that requires 18
polynomial multiplications3. Processing the exponent 12289−2 = 12287 = 101111111111112 bit-
wise via the square-and-multiply algorithm [VOMV96] would need 25 polynomial multiplications
what makes the addition chain approach preferable. All operations during the inversion are
performed in the frequency domain and it suffices to compute the NTT transformation at the
beginning and the end of the exponentiation. This provides the possibility to apply an early

3See ACHAIN-ALL http://www-cs-faculty.stanford.edu/~uno/programs.html. We would like to thank
Léo Ducas for helpful discussions on this topic and for pointing us to the ACHAIN-ALL program.

123

http://www-cs-faculty.stanford.edu/~uno/programs.html


Chapter 8. Implementation of Lattice-Based Signatures in Software

Table 8.3: Implementation of the NTT butterfly operation of Algorithm 1 in C (on the left) and
assembly (on the right) on the ARM Cortex-M4F.

C Code Assembler

// omega[m] in LR ldr.W LR, [R6]
// out[b] in R9 ldr.W R9, [R0,R12,LSL #2]
r =(omega[m]*out[b])%q; mul LR, R9, LR
// q in R11 and R8 mov R11, R8
// out[a] in R9 ldr.W R9, [R0,R7,LSL #2]
// out[b] in R10 ldr.W R10, [R0,R12,LSL #2]

sdiv R11, LR, R11
// result mod q in R11 mls R11, R8, LR
out[b]=out[a]+(q-r)%q; subS.W R10, R9, R11

IT MI
addMI R10, R10, R8

out[a]=out[a]+r % q; add R9, R9, R11
cmp R9, R8
IT GE
subGE.W R9, R9, R8

// write back out[b] str.W R10, [R0,R12,LSL #2]
// write back out[a] str.W R9, [R0,R7,LSL #2]

test for invertibility of the input, because we can simply check whether there are coefficients
that are equal to 0 after transforming the input into the frequency domain. Another advantage
of the frequency domain is that polynomial multiplication is just coefficient-wise multiplication.
We can exploit this to minimize the memory consumption by computing the addition chain
iteratively for all coefficients. Thus we do not have to store whole polynomials as intermediate
results but just one coefficient.

Sparse Multiplication

In step 6 and step 7 of Algorithm 18, the computation of s1c and s2c is required. Since c is only
a sparse polynomial where κ coefficients are set to one, applying the NTT is not necessarily the
optimal solution. Moreover, we do not need to reduce modulo 2q as the polynomials s1, s2 have
only small coefficients. For efficiency reasons we therefore only store the index of the coefficients
of c that are one and need roughly κn additions in Zq. We further decreased the runtime of the
sparse schoolbook multiplication from 354,419 to 224,626 cycles by unrolling the inner loop at
the cost of a code size increased by 602 bytes.

8.3.3 Results

In this section, we present performance results for our implementation of BLISS-I on the Cortex-
M4F. The Cortex-M4F microcontroller operates at 168 MHz and our code is compiled using IAR
Embedded Workbench for ARM in version 6.60.1.5104. For precise benchmarks, we determined

124



8.3. Implementation of BLISS on the Cortex-M4F

average cycle counts of a subroutine with random inputs from 1,000 runs and used a data
watchpoint trigger to exactly evaluate the clock cycle counter.

Performance Results

Cycle counts for major building blocks of BLISS are given in Table 8.4. The results show that
computations required during key generation are expensive in terms of runtime and RAM con-
sumption. However, the polynomial inversion is even 1.08 times faster than a single NTT-based
polynomial multiplication since we preserve the NTT-transformed representation between dif-
ferent functions and use the addition chain to speed up the inversion. By using the sparse
multiplication, we only need 54.9% of the cycles of an NTT multiplication on the same values.
Referring to the results of Section 8.2, this shows that the advantage of using sparse multiplica-
tion over the NTT highly depends on the target architecture. We evaluated three instantiations
of the Ziggurat algorithm, one for a rather small precomputed table with a size of 2,560 bytes,
one as a time-memory trade-off with a precomputed table of 5,120 bytes, and one for a rather
large precomputed table with a size of 10,240 bytes for time-critical applications. The trade-off
sampler is 1.95 times faster than the size-optimized sampler whereas the speed-optimized sam-
pler is 3.19 times faster than the trade-off sampler. But even the speed-optimized variant of
the Ziggurat sampler is not able to outperform the Bernoulli sampler. The generation of the
signature component c, which also includes the KECCAK hash function [BDPA13], performs well
compared to other subroutines. The removal of lower bits of z2 is negligible with about 8,000
cycles.

Table 8.4: Performance measurement of the major building blocks of our BLISS-I implementation
on the Cortex-M4F.

Routine Cycles Application

NTT Trans. 122,619 g/s/v
NTT Multiplication 508,624 g/s/v
Polynomial Inversion 470,606 g
Computation of Nκ(S) 1,043,447 g
Generate c 220,022 s/v
Drop bits 8,225 s/v
Sparse Multiplication 224,626 s
Huffman Encoding 78,927 s
Huffman Decoding 115,943 v
Sampling Bernoulli 935,925 s
Sampling Knuth-Yao 1,231,326 s
Sampling Zigguratspeed 1,057,814 s
Sampling Ziggurataverage 1,729,098 s
Sampling Zigguratsize 3,378,909 s

Note that the NTT transformation is applied on polynomials with n = 512 coefficients. Gaussian
distributed values are sampled from DZn,σ for n = 512 and σ = 215. We denote by g/s/v if a routine is
used in key (g)eneration, (s)igning, or (v)erification.

125



Chapter 8. Implementation of Lattice-Based Signatures in Software

The number of clock cycles and memory consumption for key generation, signing and verifica-
tion are given in Table 8.6. Key generation is a rather slow process since it needs to be restarted
frequently and requires time-consuming computations (see Table 8.4). The performance of the
signing operation is directly determined by the chosen sampler. We observe that the RAM con-
sumption of the signing operation is independent from the sampling algorithm since all samplers
need a comparatively small amount of memory. The table used for the Bernoulli sampler is also
used for the computation of the hyperbolic cosine function. The total amount of flash memory
includes 900 bytes for the Bernoulli sampler. Additional flash memory is also consumed by code
that initializes peripherals of the Cortex-M4F and is responsible for debug and profiling output.
All in all our results show that the Bernoulli sampler is clearly the best choice compared to the

other evaluated samplers. It provides the lowest runtime and needs the smallest precomputed
table compared to the Ziggurat and Knuth-Yao samplers. It would certainly be possible to
speed up the Ziggurat with even larger tables but for most constrained devices this is not
an option. A major issue with the Ziggurat sampler is the requirement for multi-precision
arithmetic. Our implementation of the Knuth-Yao sampler is the least favorable choice with
respect to performance and memory consumption compared to the Bernoulli and the speed-
optimized Ziggurat sampler. A major drawback of this algorithm is the large table and the
high amount of memory accesses that slow down the implementation. These results are also
counter-intuitive, since we expected the algorithm with the largest table to outperform the
others. But instead, the Bernoulli sampler as the one with the smallest table is the preferable
solution according to our results.

Table 8.6: Results for our implementation of key generation, signing, and verification of BLISS-I
on the Cortex-M4F.

Operation Cycles RAM Flash

SigningBer 5,927,441 18,580 24,648
SigningKY 6,865,089 18,580 44,036
SigningZig-Speed 5,984,686 18,580 36,028
SigningZig-Average 8,335,711 18,580 30,908
SigningZig-Size 16,396,414 18,580 28,420
Verification 1,002,299 11,520 -
Key Generation 367,859,092 21,272 -

Note that the flash consumption for the signing algorithms already includes the code and tables for
verification and key generation.

Performance Comparison

In Table 8.8 we provide results obtained from the documentation of the STM32 Cryptographic
Library [STM] which is evaluated on a STM32F4xx family (Cortex-M4) microcontroller. There
are also other results for ARM-based microcontrollers in the literature, but many implemen-
tations run on outdated hardware (e.g., [AYK00] on ARM7TDMI) and do not allow a fair
comparison. A recent work evaluates ECC on a much less powerful Cortex-M0, with a spe-

126



8.4. Implementation of BLISS on the ATxmega

cial focus on energy consumption [dCUHV13]. A comparison with the CPU implementation
of BLISS given in [DDLL13a] is certainly not fair as well. Besides architectural differences the
biggest advantage of desktop CPUs is that much more memory is available so that Gaussian
sampling can be implemented using algorithms that do not optimize for storage efficiency.
In terms of security, the implemented signature scheme was designed to provide a level of

128 bits of equivalent symmetric security. It can be compared to RSA-2048 (or maybe even
RSA-4096) and ECC-256. In terms of speed our verification routine outperforms RSA and ECC
for all common security parameters. Moreover, our implementation is twice as fast compared
to ECC-256 regarding signature generation. It becomes also obvious that RSA gets impractical
for parameter sets larger than RSA-2048 on constrained devices, especially due to the very
slow signing. With regard to signature size we achieve the 5,600 bits stated in [DDLL13a] by
using the same approach to Huffman encoding as described in Section 7.3.3 for a hardware
implementation. The public key requires 1,024 bytes and the private key requires 384 bytes. For
n-RSA signatures the size of the signature is n

8 bytes and for n-ECC signatures (ECDSA) the
signature size is 2n8 bytes.

Table 8.8: Comparison of the most efficient instantiation of our implementation with the RSA
and ECC implementation of the STM32 Cryptographic Library (target device:
STM32F4xx family) [STM].

Cycles

Operation Key generation Sign Verify

BLISSBer 367,859,092 5,927,441 1,002,299

RSA-1024 - 30,627,432 1,573,079
RSA-2048 - 228,068,226 6,195,481
ECC-192 7,400,421 7,720,020 14,716,374
ECC-224 9,849,334 10,414,487 19,558,528
ECC-256 12,713,277 13,102,239 24,702,099

8.4 Implementation of BLISS on the ATxmega

In this section we discuss an implementation of BLISS on the ATxmega platform. Our results
show superior performance compared to related work and that BLISS is practical even on 8-bit
architectures.

8.4.1 Implementation of BLISS Using the NTT

For our implementation we do not introduce new techniques but rely on the most promis-
ing CDT-based discrete Gaussian sampler (see Section 2.5.4 and Section 7.3.1) using convolu-
tion and Kullback-Leibler divergence as well as the optimized NTT algorithms NTTCT,ψno→bo and
INTTGS,ψ

−1

bo→no (see Section 6.2) used to implement RLWEenc.

127



Chapter 8. Implementation of Lattice-Based Signatures in Software

Table 8.9: Cycle counts and flash memory consumption in bytes for the implementation of BLISS
on an 8-bit ATxmega128 microcontroller.

Operation (n=512, q=12289)
Cycle counts and stack usage

BLISSsign 10,537,981 (4,012 bytes)
BLISSverify 2,814,118 (1,103 bytes)
NTTCT,ψno→bo 521,872
INTTGS,ψ

−1

bo→no 497,815
SampleGauss 1,140,600
SparseMul 503,627
Hash 1,335,040
GenerateC 4,410
DropBits 11,826
cosh

(
〈z,Sc〉
σ2

)
75,601

M exp
(
−‖Sc‖

2

2σ2

)
37,389

Static memory consumption in bytes
Complete binary 18,674
RAM 2,411

The stack usage is divided into a fixed amount of memory necessary for message, signature, and addi-
tional components (like random number generation) and the dynamic consumption of the signing and
verification routine. We sign a message of n bits.

To realize the reduction mod 2q, we create a second reduction function by simply extending
the approach from Figure 6.3. The difference is that for the modulus 2q, v is loaded with the
initial value 12289 « 16 and therefore two additional steps REDUCE30 and REDUCE29 have to
be inserted. Finally, we exclude the last step that subtracts q to get a result in [0, 2q]. For
the instantiation of the random oracle (Hash) that is required during signing and verification
we have chosen the official AVR implementation of KECCAK [BDP+12]. From the output of
the hash function the sparse polynomial c with κ coefficients equal to one is generated by the
GenerateC (see [DDLL13b, Section 4.4]) routine. We store only κ indices where a coefficient of c
is one. This reduces the dynamic RAM consumption and allows a more efficient implementation
of the multiplication of c by s1 and s2 using the SparseMul routine. By using column-wise
multiplication and by ignoring all zero coefficients, the multiplication can be performed more
efficiently than with the NTT.

8.4.2 Results

In Table 8.9, we present detailed cycle counts for signing and verifying as well as for the most
expensive operations in BLISS-I. Due to the rejection sampling and the chosen parameter set,
1.6 signing attempts are required on average to create one signature. One attempt requires
6,381,428 cycles on average and only a small portion of the computation, i.e. the hashing of
the message, does not have to be repeated in case of a rejection. During a signing attempt

128



8.4. Implementation of BLISS on the ATxmega

Table 8.11: Comparison of our AVR implementation of BLISS with related work.

Scheme Device Operation Cycles OP/s

BLISS-I, our work AX128 Sign/Verify 10,537,981 2,814,118 3.04 11.37
BLISS-I (Bernoulli) [BSJ14] AT64 Sign+Verify 42,069,682∗ 0.19
BLISS-I (CDT) [BJ14] AX64 Sign+Verify 19,328,000∗ 1.65

Ed25519† [HS13] AT2560 Sign/Verify 23,211,611 32,619,197 0.67 0.49
RSA-1024 [GPW+04] AT128 Sign/Verify 3,440,000 87,920,000 2.33 0.09
RSA-1024† [LGK10] AT128 priv. key 75,680,000 0.11
ECC-ecp160r1 [GPW+04] AT128 Point mul. 6,480,000 1.23

Cycle counts marked with (∗) indicate the runtime of BLISS-I as authentication protocol instead of signa-
ture scheme. By AX128 we identify the ATxmega128A1 clocked with 32 MHz, by AX64 the ATxmega64A3
clocked with 32 MHz, by AT64 the ATmega64 clocked with 8 MHz, by AT128 the ATmega128 clocked
with 8 MHz, and by AT2560 the ATmega2560 clocked with 16 MHz.

the most expensive operation is the sampling of two Gaussian distributed polynomials which
takes 2 × 1,140,600 = 2,281,200 cycles (36% of the overall cycles). The calls to NTTCT,ψno→bo and
INTTGS,ψ

−1

bo→no account for 16% of the overall cycles of one attempt. In contrast to the RLWEenc
implementation we do not use a look-up table for the first stage of NTTCT,ψno→bo. Additionally,
we do not implement a separate modulo reduction after the subtraction in the GS butterfly
and reduce the result after the multiplication which explains the slightly better performance of
INTTGS,ψ

−1

bo→no . Hashing the compressed u and the message µ is time consuming and accounts
for roughly 21% of the overall cycles during one attempt. Savings would be definitely possible
by using a different hash function (see [BEE+12a] for an evaluation of different functions) but
KECCAK appears to be a conservative choice that matches the 128-bit security target very well.
The sparse multiplication takes only 503,627 cycles for one multiplication. This makes it a
favorable approach on the ATxmega and overall the sparse multiplication is 3.6 times faster than
an NTT multiplication approach that would require one NTTCT,ψno→bo, two INTTGS,ψ

−1

bo→no and two
PwMulFlash calls. The flash memory consumption includes 2n words which equals 4n = 2,048
bytes for the NTT twiddle factors and 3,374 bytes for look-up tables of the sampler.

8.4.3 Comparison

Our results for BLISS and results of related works are provided in Table 8.11. A comparison
between our implementation of BLISS-I and the implementations of [BSJ14] and [BJ14] is dif-
ficult since the authors implemented the signature as authentication protocol. Therefore, they
only provide the runtime of a complete protocol run that corresponds to one signing operation
and one verification in our results, but without the expensive hashing as the sparse polynomial
c is not obtained from a random oracle but randomly generated by the other protocol party.
However, our implementations of BLISSsign and BLISSverify still require less cycles than their im-
plementation. The biggest improvement stems from the usage of the CDT using convolutions
and Kullback-Leibler divergence (see Section 2.5.4) which is superior (1,140,600 cycles per poly-

129



Chapter 8. Implementation of Lattice-Based Signatures in Software

nomial) compared to the Bernoulli approach (13,151,929 cycles per polynomial [BSJ14]) and the
straight-forward CDT approach used in [BJ14]. As our implementation of BLISS-I needs 18,802
bytes of flash memory, it is also smaller than the implementation of [BJ14] that requires 66.5 kB
of flash memory and the implementation of [BSJ14] that needs 25.1 kB of flash memory. Our 128-
bit secure BLISS-I implementation is 2.2 times faster for signing and 11.6 faster for verification
compared to an implementation of the Ed25519 signature scheme for an ATmega2560 [HS13].

8.4.4 Conclusion and Future Work

In this work we have shown that it is possible to implement a post-quantum lattice-based
signature scheme on a Cortex-M4F and ATxmega microcontroller with a reasonable flash and
memory consumption as well as on an.
Necessary future work to facilitate practical adoption of BLISS and other lattice-based DSSs

would be the evaluation of the resistance against side-channel attacks and the implementation
of side-channel and fault analysis countermeasures on constrained devices. Additionally, the
implementation of the NTT can be further improved as shown in [dCRVV15] where the authors
present an implementation of RLWEenc public-key encryption. We also expect that an applica-
tion of the NTT techniques discussed in Section 6.2 and improvements to Gaussian sampling
discussed in Section 8.4 would lead to increased performance.

130



Chapter 9

Acceleration of Homomorphic Evaluation on
Reconfigurable Hardware

Homomorphic encryption allows computation on encrypted data and makes it possible
to securely outsource computational tasks to untrusted environments. However, the
necessary computations are complex and time consuming even on state of the art
microprocessors. To reduce the runtime of homomorphic evaluation operations we
propose a hardware accelerator for the YASHE somewhat homomorphic encryption
(SHE) scheme. For efficient utilization of the external memory we describe a double-
buffered memory access scheme and a polynomial multiplier based on the number
theoretic transform (NTT). This chapter is based on [PNPM15a,PNPM15b] and the
work was carried out while the author of this thesis was an intern in the Cryptography
Group at Microsoft Research Redmond.

Contents of this Chapter
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.3 High-Level Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.4 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.5 Configuration of our Core for YASHE . . . . . . . . . . . . . . . . . . . . . . . 144
9.6 Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.1 Introduction

A homomorphic encryption scheme enables a third party to perform meaningful computation
on encrypted data and a prime example for an application is the outsourcing of a computational
task into an untrusted cloud environment (see, e.g., [NLV11, BLN14, CKK15, CKL15]). Such
schemes come in different flavors, the most versatile being a fully homomorphic encryption
(FHE) scheme, which allows an unlimited number of operations. The first FHE scheme was
proposed by Gentry in 2009 [Gen09] and led to a large number of new schemes optimized for
better efficiency or security (e.g., [vDGHV10,CMNT11,GH11,BGV12,Bra12,LTV12,GSW13]).
FHE schemes usually consist of a so-called somewhat or leveled homomorphic scheme with

limited functionality together with a procedure to bootstrap its capabilities to an arbitrary

131



Chapter 9. Acceleration of Homomorphic Evaluation on Reconfigurable Hardware

number of operations. The SHE schemes are usually a lot more efficient than their corre-
sponding FHE counterparts because bootstrapping imposes a significant overhead. Examples of
SHE schemes are the Brakerski-Gentry-Vaikuntanathan (BGV) [BGV12] and López-Alt-Tromer-
Vaikuntanathan (LTV) [LTV12] schemes and the subsequent YASHE (yet another somewhat
homomorphic encryption) [BLLN13b] scheme which are relatively straightforward and concep-
tually simple as they mainly require polynomial multiplication and (bit-level) manipulation of
polynomial coefficients for evaluation of ciphertexts (i.e., multiplication and addition). But even
limited SHE schemes are still slow and especially for relatively complex computations, evaluation
operations can take several hours, even on high-end CPUs [GHS12,LN14]. A natural question
concerning FHE and SHE is whether reconfigurable hardware can be used to accelerate the
computation. However, as ciphertexts and keys are large and require several megabytes or even
gigabytes of storage for meaningful parameter sets, the internal memory of FPGAs is quickly
exhausted, and required data transfers between host and FPGA might degrade the achievable
performance.

These may be reasons that previous work has mainly focused on using graphics cards [WCH14,
DÖS15,WHC+15] and application specific integrated circuits (ASIC) [DÖS13,WHEW14], and
that FPGA implementations either work only with small parameters and on-chip memory
(see [CMV+14]) or explicitly do not take into account the complexity of transferring data be-
tween an FPGA and a host (see [CMO+14, RJV+15]). Also, for ASIC implementations, the
area costs for caches and on-chip storage are high due to large parameter sizes. As an exam-
ple, in [DÖS13] 99.25% of the 26.7 million gates are used to implement a 768 Kbyte cache.
As a consequence, for our implementation we use the Catapult data center acceleration plat-
form [PCC+14], which provides a Stratix V FPGA on a board with two 4 GB memory modules
inserted into the expansion slot of a cloud server. This fits nicely into the obvious scenario
in which homomorphic evaluation operations are carried out on encrypted data stored in the
cloud. Since future data centers might be equipped with such accelerators, it makes sense to con-
sider the Catapult architecture as a natural platform for evaluating functions with homomorphic
encryption.

Contribution. We provide a fully functional FPGA implementation of the homomorphic
evaluation operations of a RLWE based SHE scheme. Our main contribution is an efficient
architecture for performing number theoretic transforms, which is used to implement the SHE
scheme YASHE (see Section 3.7). Compared to previous FPGA implementations of integer-
based FHE schemes (e.g., [CMO+14]), we especially take into account the complexity of using
off-chip memory. Thus we propose and evaluate the usage of the cached-NTT [Baa99,Baa05]
for bandwidth-efficient computations of products of large polynomials in Zq[x]/〈xn + 1〉 and the
YASHE specific parts of the KeySwitch and Mult algorithms. The main computational burden
is handled by a large integer multiplier built out of DSP blocks and modular reduction using
Solinas primes. An implementation of the parameter set (n = 16384, dlog2 qe = 512) that can
handle computations on the encrypted data of multiplicative depth up to L = 9 levels (for
t = 1024) roughly matches the performance of a software implementation of the parameter
set (n = 4096, dlog2 qe = 128) supporting just one level [LN14]. With only 48.67 ms for a
homomorphic multiplication (instead of several seconds in software), we provide evidence that
hardware-accelerated SHE can be made practical for certain application scenarios.

132



9.2. Background

9.2 Background

In this section we introduce the cached-NTT and the Catapult framework. Note that YASHE is
described in Section 3.7.

9.2.1 Cached-FFT

The cached-FFT algorithm has been proposed by Baas [Baa99,Baa05]. It is designed for systems
with hierarchical memory like modern processors that usually have several layers of fast caches
(e.g., L1, L2) and then relatively slow main memory, e.g., dynamic random access memory
(DRAM). It is assumed that the cache that contains C coefficients can be accessed faster and
with much less latency than the rest of the memory and that the cache is much smaller than
the total number of coefficients n. The high-level description of the steps of the cached-FFT or
cached-NTT (obtained from [Baa05], with small updates and adapted notation) is:

(1) n input coefficients are loaded into main memory.

(2) C of the n coefficients are loaded into the cache.

(3) As many butterflies as possible are computed using the data in the cache.

(4) Processed data in the cache is flushed to main memory.

(5) Steps 2–4 are repeated until all n words have been processed once.

(6) Steps 2–5 are repeated until the FFT has been completed.

The following definitions (also obtained from [Baa05] with small updates and adapted nota-
tion) are useful when describing the cached-FFT algorithm:

� An epoch (E) is the portion of the cached-FFT algorithm where all n coefficients are loaded
into the cache, processed, and written back to main memory once. Normally, E ≥ 2. Steps
2–5 in the listing above comprise the computations performed on one epoch.

� A group (G) is the portion of an epoch where a block of data is read from main memory
into the cache, processed, and written back to main memory. Steps 2–4 in the listing above
comprise the operations performed on a group. A group contains C coefficients.

� A pass (P ) is the portion of a group where each word in the cache is read, processed with
a butterfly, and written back to the cache once.

� A cached-FFT is balanced if there are an equal number of passes in the groups from all
epochs. Balanced cached-FFTs do not exist for all FFT lengths.

When describing an FFT or NTT we thus denote the number of epochs by E, the number
of groups by G, the number of coefficients in the cache by C, and the number of passes by
P . The required computation on a group is just a standard Cooley-Tukey, radix-2, in-place,
decimation-in-time FFT/NTT [CT65,CG00], denoted as CT-NTT and the number of stages or
passes (recursive divisions into sub-problems) of the CT-NTT is P = log2(n/G). Thus one CT-
NTT on a group requires Pn

2G multiplications in Zq. A dataflow diagram of a 64-point radix-2

133



Chapter 9. Acceleration of Homomorphic Evaluation on Reconfigurable Hardware

Figure 9.1: Dataflow diagram, based on [Baa05, Figure 3], of a 64-point cached-FFT split
into two epochs with eight coefficients in each group/cache parameterized as
(n=64, E=2, C=8, G=8, P=3).

134



9.2. Background

Table 9.1: Configuration options (n,E,C,G, P ) of the cached-FFT for various values of n usually
used in RLWE-based homomorphic cryptography.

Dimension Epochs Cache size Groups Passes per epoch
(n) (E) (C = n/G) (G = n/C) (P = log2(n)/E)
2048 1 2048 1 11
2048 11 2 1024 1
4096 1 4096 1 12
4096 2 64 64 6
4096 3 16 256 4
4096 4 8 512 3
4096 6 4 1024 2
4096 12 2 2048 1
8192 1 8192 1 13
8192 13 2 4096 1
16384 1 16384 1 14
16384 2 128 128 7
16384 7 4 4096 2
16384 14 2 8192 1
32768 1 32768 1 15
32768 3 32 1024 5
32768 5 8 4096 3
32768 15 2 16384 1
65536 1 65536 1 16
65536 2 256 256 8
65536 4 16 4096 4
65536 8 4 16384 2
65536 16 2 32768 1

DIT cached-FFT that splits the computation into two epochs, each consisting of eight groups, is
given in Figure 9.1. Different configuration options of the cached-FFT for dimensions n ≥ 2048
are given in Table 9.1 where C,G, P depend on the chosen number of epochs E for a given
dimension n. For the actual details of the implementation of address generation we refer to the
description in [Baa99,Baa05]. However, referring to the E = 2 case displayed in Figure 9.1, it is
easy to see that, with a hardware implementation in mind, it is necessary to read 2n coefficients
from the main memory and to write 2n coefficients back to the main memory to compute the
FFT. However, only two of these reads/writes are non-consecutive (i.e., the reordering) while
two read/writes are in order. Additionally, it is possible, e.g., after epoch zero, to choose whether
to write consecutive and then to read reordered or the other way round. Another interesting
observation for the E = 2 case is that the twiddle factors in epoch zero are the same for each
group. When the cached-FFT algorithm is used to implement the NTT algorithm (with built-in
reduction by xn+1) it is also possible to merge the multiplication by powers of ψ and the actual
NTT computation as proposed in [RVM+14, Section 3.2].

135



Chapter 9. Acceleration of Homomorphic Evaluation on Reconfigurable Hardware

A bit-reversal is necessary as the cached-FFT is not order preserving and expects bit-reversed
input and produces an ordered output. The functions to compute the bitreversal (BitrevAddr)
of an address is given in Algorithm 33 and the computation of the cached-NTT reordering of an
address (Reorder) is given in Algorithm 34. Note that both functions assume n to be a power of
two.

Algorithm 33 Bit-Reversal Operation
1: func BitrevAddr(x ∈ [0, 2n))
2: //x is an integer in binary form x =
xn−1 . . . x0

3: for i = 0 to n− 1 do
4: yi ← xn−1−i
5: end for
6: return y
7: end func

Algorithm 34 Cached-NTT Reordering
1: func Reorder(x ∈ [0, 2n))
2: //x is an integer in binary form x =
xn−1 . . . x0

3: yn/2−1,...,0 ← xn−1,...,n/2
4: yn−1,...,n/2 ← xn/2−1,...,0
5: return y
6: end func

9.2.2 Catapult Architecture/Target Hardware

Because a primary application of homomorphic encryption is use in untrusted clouds, we chose
to implement YASHE using a previously proposed FPGA-based datacenter accelerator infras-
tructure called Catapult [PCC+14]. Catapult augments a conventional server with an FPGA
card attached via PCI express (PCIe) that features a medium size Stratix V GS D5 (5GSMD5)
FPGA, two 4 GB DDR3-1333 SO-DIMM (small outline dual inline memory module) memory
modules, and a private inter-FPGA 2-D torus network. In the original work, Catapult was used
to accelerate parts of the Bing search engine, and a prototype consisting of 1,632 servers was de-
ployed. The two DRAM controllers on the board can be used either independently or combined
in a unified interface. When used independently the DIMM modules are clocked with 667 MHz.
The Catapult shell [PCC+14, Section 3.2.] provides a simple interface to access the DRAM and
to communicate with the host server. It uses roughly 23% of the available device resources,
depending on the used functionality like DRAM, PCIe, or 2-D torus network. Application logic
is implemented as a role. For our design, we restrict the accelerator to only a single FPGA card
per server. Spanning multiple FPGAs is a promising avenue for improving performance, but is
left for future work. Note also that none of the work presented here is exclusive to Catapult and
that any FPGA board with two DRAM channels, a sufficiently large FPGA, and fast connection
to a host server will suffice. However, Catapult is specifically designed for datacenter workloads,
so it presents realistic constraints on cost, area, and power for our accelerator.

9.3 High-Level Description

The goal of our implementation is to accelerate the (cloud) server-based evaluation operations
Mult and Add of YASHE (and polynomial multiplication in general) without interaction with the
host server using the Catapult infrastructure. Key generation, encryption, and decryption are

136



9.3. High-Level Description

assumed to be performed on a client and are not in the scope of this work. However, we would
like to note that except for a Gaussian sampler, most components required for key generation,
encryption, and decryption are already present in our design.
Our main building block is a scalable NTT-based polynomial multiplier that supports the

two moduli q and q′. The computation of the NTT is by far the most expensive operation and
necessary for the polynomial multiplications in RMult and KeySwitch, which are called during
a Mult operation. Other computations like polynomial addition or pointwise multiplication are
realized using the hardware building blocks from the NTT multiplier. The modulus q′ > nq2 is
used to compute

c1c2 = INTTq′(NTTq′(c1)◦NTTq′(c2))

in RMult exactly without modular reduction as each coefficient of c1 and c2 is smaller than q and
thus each coefficient of the result is guaranteed to be smaller than nq2. Reductions modulo q are
required for the computation of the scalar product cmult = [〈Decw,q(c̃mult), evk〉]q in KeySwitch
and the polynomial addition in Add. A naive implementation of KeySwitch would require `w,q
polynomial multiplications and `w,q−1 polynomial additions. By using the NTT and its linearity
we just compute

KeySwitch(c̃mult, evk) = INTTq

`w,q−1∑
i=0

NTTq ([(cmult)i]w) ◦ evki

 (9.1)

and store the evaluation keys evki in NTT form as evki = NTTq(evki) for i ∈ [0, `w,q−1] (similar
to [DÖS15, Algorithm 2]). To deal with the limited internal memory when computing the NTT
we use the aforementioned cached-FFT algorithm [Baa99,Baa05]. This enables us to exploit the
memory hierarchy on Catapult where we have access to fast but small FPGA-internal memory
(≈ 4.9 MiB) and large but slow external DRAM (two times 4 GB). We also incorporate some of
the optimizations to the NTT proposed in [RVM+14]. By merging the multiplication by powers
of ψ into the twiddle factors of the main NTT computation we not only save n multiplications
but also eliminate expensive read and write operations. To optimally utilize the burst read/write
capabilities of the DRAM1 we have designed our core in a way that we balance non-continuous
reorderings and continuous reads or writes. While we only implemented two main parameter
sets, our approach is scalable and could be extended to even larger parameter sets2 and is also
generally applicable as we basically implement polynomial multiplication, which is common in
most RLWE-based homomorphic encryption schemes.
The general architecture of our HomomorphicCore design is shown in Figure 9.2. We have

divided our implementation into a memory management unit (NTTMemMgr) and an NTT com-
putation unit (NttCore). The NTTMemMgr component performs the steps 2 and 4 of the listing
in Section 9.2.1 (load/store of groups) while NttCore is responsible for step 3 (butterfly com-
putations on the cache). Both components have access to the memories ConstDualBuf and

1The throughput of the DRAM is drastically increased if large continuous areas of the memory are read at
once using the so called burst mode.

2However, in this case the current tools for RTL-level simulation are clearly a limiting factor as verification
in the simulator becomes extremely time consuming. As a consequence, it appears that a generic architecture
supporting small parameter sets is almost mandatory to allow relatively efficient simulation and debugging and
thus less debug cycles when working on larger parameter sets.

137



Chapter 9. Acceleration of Homomorphic Evaluation on Reconfigurable Hardware

NttCoreNttMemMgr

NttButterfly

modIqG

ConstDualBuf

EVKSRAM0

TWIDSRAM0

EVKSRAM1

TWIDSRAM1

Dram
Interface1

DRAM0

DRAM1
DataMover1

DataMover0

DataDualBuf

DSBRAM0

DSBRAM1

Odd

Odd

Even

Even

Dram
Interface0

InFifo

OutFifo

AddrFifo

AddrGen

AddrGen

UserIo

InFifo

OutFifo

AddrFifo

InFifo

OutFifo

NttAddrGen

HomomorphicCore PerfMonitor

CatapultShell

modIq

4IGB

4IGB

Figure 9.2: Block diagram of our HomomorphicCore core used to implement YASHE.

DataDualBuf. The DataDualBuf buffer contains a configurable number of groups of a polyno-
mial and the ConstDualBuf buffer contains the constants (e.g., twiddle factors or evaluation
keys) that correspond to the groups in DataDualBuf. To the NttCore it does not matter which
subset of the cached-NTT has to be computed as this is only determined by the loaded data
and twiddle factors. This makes the design simpler and also easier to test. To support moduli q
and q′ we implemented two butterfly units that share one large integer multiplier. Both buffers
are double-buffered so that the NttCore component can compute on one subset of the data
while the NTTMemMgr component can load or store a new subset from or into the other buffer.
Ciphertexts, NTT constants, and keys are held in one of the two DRAMs (Dram0 or Dram1) and
are provided to the core from the outside over the UserIo and CatapultShell components. The
CatapultShell component implements a simple PCI Express (PCIe) interface that allows the
host server to issue commands (e.g., Add, or Mult) and to transfer data. Evaluated ciphertexts
are also stored in the DRAM and can be read by the host after a computation is finished.

9.4 Hardware Architecture

In this section we describe our hardware architecture with an emphasis on the memory
bandwidth-friendly cached-NTT polynomial multiplier.

138



9.4. Hardware Architecture

9.4.1 Implementation of the Cached-NTT and Memory Addressing

A crucial aspect when implementing the cached-NTT is efficient access to the main memory
(i.e., DRAM) and the use of burst transfers. In this section we describe how data is trans-
ferred between the main memory (Dram0 and Dram1) and the cache memory (DataDualBuf and
ConstDualBuf) and how these transfers are optimized.

General Idea

The cached-FFT has been designed for systems with a small cache that supports fast access to
coefficients during the computation of a CT-NTT on a group. For our core we do not have a
transparent cache, like on a CPU, but implement the fast directly addressable internal on-chip
memories DataDualBuf and ConstDualBuf using BRAMs. As we know exactly which values
are required at which time, we explicitly load a group into the internal memory before and
write it back after a CT-NTT computation. The necessary reordering (see Figure 9.1) is either
performed before or after a computation on a group and done when reading from or writing data
into the DRAM. As the DRAM is large enough, plenty of memory is available for temporary
storage, but one epoch has to be computed completely and the reordering has to be finished
before the next epoch can be computed. In general, it would be sufficient to just store one group
consisting of C = n/G coefficients in each buffer of DataDualBuf. However, we allow the storage
and computation on K groups/caches (configurable as generic during synthesis) in D-BRAM0 and
D-BRAM1 at the same time (when computing modulo q). One reason is that for relatively small
groups we can then avoid frequent waiting for the pipeline to clear after a CT-NTT has been
computed. Additionally, storing of multiple groups allows more efficient usage of burst reads
and writes.
For efficiency and simplicity we restrict our implementation to a cached-NTT with two epochs3

(see Table 9.1 for possible numbers of epochs and groups). While it is in general possible to
also support three or more epochs this would lead to more memory transfers. The reason is
that each epoch requires one to write the whole polynomial subsequently into the cache and
also to subsequently read the whole polynomial after the CT-NTT computations are finished.
Additionally, more than two epochs result in more complicated address generation. Thus, our
implementation supports only dimensions n = 2n

′ for even values of n′. For Set I we use
(n=4096, E=2, G=64, P=6) and for Set II (n=16384, E=2, G=128, P=7).

Supported Commands

To simplify the implementation of homomorphic evaluation algorithms (see Section 9.5) and to
abstract away implementation details we support a specific set of instructions to store or load
groups or constants and to compute the CT-NTT on such stored groups. A simplified set of
available commands is provided in Table 9.2. These commands could also be used to implement
other homomorphic schemes and they can be directly used to realize polynomial multiplication
in Zq[x]/〈xn + 1〉 and Zq′ [x]/(xn + 1).
Each command consists of a name, which is mapped to an opcode, and zero, one, or two

parameters that define the source or destination of data to be transferred or the buffer on
3With only one epoch the cached-NTT becomes the standard Cooley-Tukey NTT and the cache contains all

n coefficients.

139



Chapter 9. Acceleration of Homomorphic Evaluation on Reconfigurable Hardware

which a computation should be performed. A command either blocks Dram0, Dram1, or NttCore
and commands can be executed in parallel, in case no resource conflict happens. Memory
transfer and computation commands do not interfere due to the dual-buffering. Additionally,
commands can be configured for specific situations. For commands operating on Dram0 or Dram1
the configuration describes how a storage operation should be performed. Supported modes are
a continuous burst transfer ([burst]), or bit-reversal of coefficients ([bitrev]), and/or cached-
NTT reordering ([reorder]) during a write or read operation. The [q] and [q′] configuration
determines whether transfers operate on polynomials modulo q or polynomials modulo q′. When
a homomorphic operation has to be performed the top-level state machine also has to provide
the base address of the inputs and the base address of the result memory block. Each command
also supports a specific maximum burst transfer size, which is discussed in the next paragraph.
The commands themselves are described in Table 9.2. As an example, the load-group[burst](t,x)

command loads groups x to x+K−1 from the DRAM at base-address of t into a buffer using
the DRAM’s fast burst mode. The store-group[reorder, bitrev](t,x) command stores the groups
x to x+K−1 in the DRAM at base-address of t but performs the reordering of the cached-
NTT and also a bit-reversal. An example of a command used to load constants is the load-
twiddles[fwd,q](x, y) command that loads the twiddle factors required to compute groups x to
x+K−1 in epoch y using burst mode. While the previous commands can be used to imple-
ment general polynomial multiplication, we also provide the YASHE specific load-group-expand,
load-chunk, and store-chunk commands. The reason is that the KeySwitch algorithm requires the
expansion of one polynomial into `w,q polynomials (from now on also referred to as chunks). For
efficiency reasons, the computations are thus performed in parallel on all decomposed polyno-
mials and the larger amount of data to be transferred is handled by the previously mentioned
commands. The width of the data ports of DataDualBuf and ConstDualBuf is dlog2 q

′e
2 bits so

that we can either store one coefficient modulo q in one position or half of a coefficient modulo
q′. As a consequence, the minimal size of D-BRAM0 and D-BRAM1 is dlog2 q

′e·K·n·`w,q
2G bits.

Usage of Burst Transfers

A significant advantage of storing multiple groups is that this allows the usage of the DRAM’s
burst mode. In case memory is written or read continuously ([burst]) it is straightforward to
see that KC coefficients can be handled in one burst transfer. But also when performing the
cached-NTT reordering ([reorder]) the simultaneous reordering of multiple groups allows better
utilization of burst operations4. In Figure 9.3 the cache can hold K = 4 groups and it becomes
evident this allows to write K coefficients using burst mode. In this example coefficient 0 (group
0), coefficient 8 (group 1), coefficient 16 (group 2), and coefficient 24 (group 3) will be saved
in a continuous memory region after reordering (burst 0). Thus in general, by iterating over
the groups and then over the addresses we can write K coefficients using burst mode to reduce
memory transfer times significantly. Note that the non-continuous access to memory in D-BRAM0
does not introduce a performance bottleneck as the memory is implemented using BRAMs that
do not cause a performance penalty when being accessed non-continuously.

4In the following we only discuss the case of writing coefficients from the FPGA (BRAM) into the external
memory (DRAM) in reordered or reordered and bit-reversed fashion. However, the same ideas can also be applied
when loading from the DRAM and writing into the BRAM on the FPGA.

140



9.4. Hardware Architecture

Table 9.2: Commands that are used to implement YASHE with HomomorphicCore where depend-
ing on the configuration of each memory transfer command different burst widths can
be realized.

Command Param. p1 Param. p2 Resource Configuration Coefficients Max. burst coefficients
load-group-expand DRAM address group Dram0 [burst] Kn/G Kn/G

Loads groups p2 to p2 + K − 1 using p1 as base address, performs the decomposition Decw,q(c̃mult) =

([(c̃mult)i]w)
`w,q−1
i=0 into `w,q polynomials, and stores the decomposed polynomials in the DataDualBuf buffer.

store-chunks DRAM address group Dram0 [burst,q] `w,qKn/G `w,qKn/G
[burst,q′] 2Kn/G 2Kn/G

Saves groups p2 to p2+K−1 of all `w,q decomposed polynomials ([q]) or spitted coefficients modulo q′ ([q′])
stored in DataDualBuf at base address p1.

load-chunks DRAM address group Dram0 [burst,q′] 2Kn/G 2Kn/G
[reorder,q′] 2Kn/G 2K

[reorder,bitrev,q′] 2Kn/G 2n/G
[reorder,q] `w,qKn/G `w,qK

Equivalent to store-chunks.
store-group DRAM address group Dram0 [burst] Kn/G Kn/G

[reorder,bitrev] Kn/G n/G
[reorder] Kn/G K

Saves groups p2 to p2+K−1 of the polynomial stored in DataDualBuf at base address p1.
load-group DRAM address group Dram0 [burst] Kn/G Kn/G

[bitrev] Kn/G 1

Equivalent to store-group.
load-twiddles group G epoch E Dram1 [(fwd|inv),q] n/(2G) n/(2G)

[(fwd|inv),q′] n/G n/G

Loads the precomputed forward or inverse twiddle factors for modulus q or q′ for groups p1 to p1 + K and
epoch E = p2 into ConstDualBuf using burst read.

load-psis group G - Dram1 [q] n/G n/G
[q′] 2n/G 2n/G

Loads the powers of ψ−1 for groups p1 to p1 +K − 1 and moduli q or q′ from DRAM using burst read and
saves them in ConstDualBuf.

load-evks DRAM address group Dram1 - `w,qn/G `w,qn/G

Loads the `w,q different evaluation key parts for groups p2 to p2 + K − 1 stored at base address p1 into
ConstDualBuf using burst read. Evaluation keys are always modulo q.

ntt-on-buffer chunk - NttCore [(q|q′)] - -

Computes the CT-NTT on chunk p1 stored in DataDualBuf using either modulus q or modulus q′ and requiring
Pn
2G

multiply-accumulate (MAC) operations.

mul-psi chunk - NttCore [q] - -
[q′,round] - -

Multiplies chunk p1 stored in DataDualBuf by powers of ψ−1 stored in ConstDualBuf. If configured with [round]
the YASHE rounding operation is performed after the NTT.

mul-evk chunk - NttCore - - -

Multiplies chunk p1 in DataDualBuf by the evaluation keys stored in ConstDualBuf. Operates only on polyno-
mials modulo q.

accumulate chunk - NttCore - - -

Adds chunks p1 to chunk 0 stored in DataDualBuf. Operates only on polynomials modulo q.
mul-point-wise - - NttCore [(q|q′)] - -

Point-wise multiplication of two polynomials in ConstDualBuf.

141



Chapter 9. Acceleration of Homomorphic Evaluation on Reconfigurable Hardware

Figure 9.3: Usage of burst mode when performing the reordering when writing coefficients from
the internal buffer to the external DRAM for a cached-NTT with parameters (n = 64,
E = 2,G = 8) and K = 4.

Another improvement is visualized in Figure 9.4 which shows the combination of the bit-
reversal with the reordering procedure of the cached-NTT ([reorder,bitrev]). When computing
BitrevAddr(Reorder(addr)) it becomes evident that the content of each group can be transferred
continuously. It is thus possible to write a whole group (C = n/G coefficients) using burst mode.
In this case it is only necessary to read the coefficients in non-continuous order from the BRAM
and to compute an offset to store them using burst mode. From this analysis it can be seen that
it is even preferable to compute the reordering together with the bit-reversal instead of only the
reordering, as the size of the burst write is even larger in this case for relevant parameters (i.e.,
n/G instead of G).

9.4.2 Computation of the CT-NTT on the Cache

The CT-NTT is computed on each group in the cache (see the black box in Figure 9.1) and
requires arithmetic operations that dominate the area costs of our implementation. Each CT-
NTT on a group requires Pn

2G multiplications in Zq (or Zq′) and the whole cached-NTT requires
EGPn

2G = n log2(n)
2 multiplications in Zq (or Zq′). The number of stages or passes of the CT-

NTT, which are the recursive divisions into sub-problems, is P = log2(n/G). The address
generation in NttCore, which implements the CT-NTT, is independent of the group or epoch
that is processed. This allows a simple data-path and also testability independently of the
memory transfer commands. To saturate the pipelined butterfly unit of the NTT, two reads
and two writes are required per cycle and we use the well-known fact that the buffer can be
split into two memories, one for even and one for odd addresses (see [Pea68]). While this

142



9.4. Hardware Architecture

Figure 9.4: Usage of burst transfers between the internal cache (BRAM) and the main memory
(DRAM) with cached-NTT parameters (n = 64, E = 2, G = 8) and a memory
transfer command using [reorder,bitrev].

approach might lead to wasted space in block memories if small polynomials do not fill a whole
block RAM, as in [PG12] and optimized in [APS13,RVM+14], it is not a concern for the large
parameter sets we are dealing with. The only input to the NTT, besides the actual polynomial
coefficients, that depend on the current group or epoch, are the constants like twiddle factors,
powers of ψ−1, or the evaluation key evk. We decided to store each constant in a continuous
memory region and load them into the TWID-RAM or EVK-RAM buffers depending on the current
group or epoch. While it would also be possible to compute the twiddle factors on-the-fly (as
in [RVM+14]) this approach would require an additional expensive q′×q′ multiplier and modulo
unit. Additionally, we do not exploit redundancies in twiddle factors or other tricks so that we
are able to load constants using the fast burst mode. The only important observation is that
when E = 2 the same twiddle factors are used for the computation of all groups of the first
epoch of the NTT.

Large Integer Multiplication

For best performance of the NTTq, our architecture requires a pipelined NTT butterfly that is
able to compute a log2 (q)× log2 (q) multiplication, modular reduction, and two accumulations
per cycle. For the butterfly of the NTTq′ , execution in one clock cycle is not necessary as the
maximum data width of the ConstDualBuf and DataDualBuf components is dlog2(q)e2 . Thus at
least two cycles are needed to load a coefficient from the buffer in which one coefficient modulo
q′ is split into chunk 0 and chunk 1. For the design of the log2 (q)× log2 (q) multiplier we tried
to be flexible enough for eventual changes of parameters and future extension and designed two
576×576-bit multipliers matching the range of the 576-bit DRAM interface so that we eventually
could support KeySwitch only with dlog2(q)e = 576. Currently, the largest required bit width
is 1040

2 ×
1040
2 -bits, when the multiplier is used in time-shared mode to implement a pipelined

q′ × q′-bit multiplication in four cycles.
To instantiate the multiplier we used a traditional RTL design (MULRTL) that uses four

pipelined 72× 72-bit multipliers generated using the Altera MegaWizard to instantiate a 144×
144-bit multiplier. The instantiation of four 144 × 144-bit multipliers yields a 288 × 288-bit
multiplier and finally a pipelined 576 × 576-bit multiplier. We also investigated whether the

143



Chapter 9. Acceleration of Homomorphic Evaluation on Reconfigurable Hardware

DSP Builder Advanced Blockset, which runs within the Simulink environment, could be used to
design a large integer multiplier. A standalone instantiation of a multiplication core (MULDSP)
using DSP Builder allowed higher clock rates than MULRTL but when we used MULDSP in our
core the synthesis and fitting time increased and final resource consumption was unchanged.

Solinas Reduction

For modular reduction common methods are Barrett reduction [Bar86], Montgomery reduc-
tion [Mon85], and reductions based on special prime numbers [VOMV96]. However, for very
large values, generic methods like Barrett or Montgomery modular reduction require a large
number of additions or even a large multiplier and are thus expensive, slow, and also hard to
write generically. As a consequence, we restrict the moduli q and q′ to Solinas primes [Sol99] of
the form 2y − 2z + 1 for y, z ∈ Z and y > z. A modular reduction circuit can then be configured
by providing the input bit width and the values y and z as generics. The implementation only
requires a few shifts and few additions/subtractions to perform a modular reduction. To achieve
timing a sufficient number of registers has been inserted between adders and shifters in the RTL
design.

9.5 Configuration of our Core for YASHE

For our prototype we have implemented YASHE’s homomorphic evaluation operations Add and
Mult using the architecture described in Section 9.4. For brevity, we only cover the RMult
and KeySwitch functions in detail, which are essential for the implementation of Mult. All
homomorphic evaluation operations use the hardware architecture described in Section 9.4 and
the commands provided in Table 9.2. The commands are executed by a large state machine
implemented in HomomorphicCore, which is also responsible for interaction with the Catapult
shell and host PC.

9.5.1 Implementation of RMult

For RMult, a standard integer polynomial multiplication in Zq′ [x]/(xn+1) is required after which
the result is rounded and reduced modulo q. Selecting q′ > nq2 guarantees that the product
c1c2 of two polynomials c1, c2 ∈ Zq[x]/〈xn + 1〉 is computed over the integers and not being
reduced before it is rounded. Instead of using a single routine for RMult, the host server can
make separate calls to a single forward transformation c̄i = RMultFwd(ci) so that polynomials
to be multiplied by multiple other polynomials have to be transformed only once into the NTT
domain. The c̃mult = RMultInv(c̄1, c̄2) routine then takes two transformed polynomials c̄1, c̄2 as
input and computes the product by performing point-wise multiplication, the inverse NTT, and
rounding of the result. While we give up some efficiency (e.g., merging of forward transformation
and point-wise multiplication) by this approach, it seems beneficial to provide this additional
flexibility when computing homomorphic circuits.
The (simplified) sequence of executed commands for RMultFwd is provided in Algorithm 35,

but for the actual implementation load/store operations and NTT computations are executed
in parallel to make use of the double-buffer capability of the DataDualBuf and ConstDualBuf
components. In step 5 of RMultFwd the input polynomial is expected to be saved in bit-reversed

144



9.5. Configuration of our Core for YASHE

order already. This is either ensured by the user when the polynomial is initially transferred
to the device or by our implementation in the last step of KeySwitch. The only execution of a
reordering load operation appears in step 11 and all other loads or stores use the burst mode.
Thus the second reordering is delayed till the pointwise multiplication in RMultInv which is
given in Algorithm 36. In RMultInv the first block of operations (step 3 to 7) is responsible
for the pointwise multiplication. Note that the Add operation of YASHE is basically this loop
but mul-point-wise is exchanged by a command for addition in Zq. The first NTT-related load
is performed in step 11 in which the final reordering of the forward transform together with
the bitreversal step is performed. The final rounding operation

[⌊
t
q t2

⌉]
q
is included into the

mul-psi[q′, round] command. After that the result c̃mult is in Zq[x]/〈xn + 1〉.

Algorithm 35 Forward Transformation in
RMult
1: func RMultFwd(ci)
2: //Epoch 0
3: load-twiddles[fwd,q′](0, 0)
4: forall groups x ∈ 0 . . . G/K − 1:
5: load-group[burst](ci, Kx)
6: ntt-on-buffer[q′](0)
7: store-chunks[burst,q′](t, Kx)
8: //Epoch 1
9: forall groups x ∈ 0 . . . G/K − 1:
10: load-twiddles[fwd,q′](Kx, 1)
11: load-chunks[reorder,q′](t, Kx)
12: ntt-on-buffer[q′](0)
13: store-chunks[burst,q′](c̄i, Kx)
14: return c̄i
15: end func

Algorithm 36 Pointwise Multiplication and In-
verse Transformation in RMult

1: func RMultInv(c̄1, c̄2)
2: //Pointwise multiplication
3: forall groups x ∈ 0 . . . G/K − 1:
4: load-chunks[burst,q′](c1, Kx)
5: load-chunks[burst,q′](c2, Kx)
6: mul-point-wise[q′]()
7: store-chunks[burst,q′](t1, Kx)
8: //Epoch 0
9: load-twiddles[inv,q′](0, 0)
10: forall groups x ∈ 0 . . . G/K − 1:
11: load-chunks[reorder,bitrev,q′](t1, Kx)
12: ntt-on-buffer[q′](0)
13: store-chunks[burst,q′](t2, Kx)
14: //Epoch 1
15: forall groups x ∈ 0 . . . G/K − 1:
16: load-twiddles[inv,q′](Kx, 1)
17: load-psis[q′](Kx)
18: load-chunks[reorder,q′](t2, Kx)
19: ntt-on-buffer[q′](0)
20: mul-psi[q′, round](0)
21: store-group[reorder,bitrev](c̃mult, Kx)
22: return c̃mult

23: end func

9.5.2 Implementation of KeySwitch

The control-flow used to implement KeySwitch based on the commands introduced in Sec-
tion 9.4 and Equation 9.1 is given in Algorithm 37. For the forward transformation (step 2
to step 19) the coefficients of the input polynomial c̃mult can be loaded using the burst mode

145



Chapter 9. Acceleration of Homomorphic Evaluation on Reconfigurable Hardware

as they have already been stored in bitreversed representation in RMultInv. The decomposition
Decw,q(c̃mult) = ([(c̃mult)i]w)

`w,q−1
i=0 is performed on-the-fly inside the FPGA using the load-group-

expand[burst] command. The NTT is then performed on all `w,q decomposed polynomials in the
buffer. As the twiddle factors are identical for each polynomial we only have to load and store
K sets of twiddle factors into the ConstDualBuf component (each set containing P · `w,q/2 coef-
ficients). During the NTT computation on all polynomials the results are accumulated (step 18)
and then stored (step 19). The relatively slow reordering operation load-chunks[reorder, q] is per-
formed at the beginning of the second epoch and not after the first epoch as the accumulation
and multiplication with the evaluation keys takes additional time so that we can balance the
time required for memory transfers and computation. As the forward transformed polynomials
are already stored in the correct order, we just have to perform a burst read at the beginning
of the inverse transformation in step 24. Additionally, the computation is much less involved
as we only have to compute one INTTq and not `w,q computations of NTTq caused by the
decomposition. It is not possible to merge the multiplication by powers of ψ−1 into the NTT
twiddle factors for the inverse transformation [RVM+14] as we use the Cooley-Tukey butterfly
(see Section 6.2). The multiplication by powers of ψ−1 is performed by the mul-psi command
and the constants are loaded into the memory space reserved for the evaluation key during the
forward transformation by load-psis. The multiplication by the scalar n−1 is merged into the
ψ−1 values.

Algorithm 37 Key Switching in YASHE
1: func KeySwitch(c̃mult, ¯evk)
2: //Fwd. transform and accumulation:
3: load-twiddles[fwd,q](0, 0)
4: //Epoch 0
5: forall groups x ∈ 0 . . . G/K − 1:
6: load-group-expand[burst](c̃mult,Kx)
7: forall chunks y ∈ 0 . . . `w,q − 1:
8: ntt-on-buffer[q](y)
9: store-chunks[burst,q](t1,Kx)

10: //Epoch 1
11: forall groups x ∈ 0 . . . G/K − 1:
12: load-twiddles[fwd,q](Kx, 1)
13: load-evk( ¯evk,Kx)
14: load-chunks[reorder, q](t1,Kx)
15: forall chunks y ∈ 0 . . . `w,q:
16: ntt-on-buffer[q](y)
17: mul-evk[q](y)
18: accumulate(y)
19: store-group[reorder, bitrev](t2,Kx)

20: //Inverse transform:
21: load-twiddles[inv,q](0, 0)
22: //Epoch 0
23: forall groups x ∈ 0 . . . G/K − 1:
24: load-group[burst](t2,Kx)
25: ntt-on-buffer[q](0)
26: store-group[reorder](t1,Kx)
27: //Epoch 1
28: forall groups x ∈ 0 . . . G/K − 1:
29: load-twiddles[inv,q](Kx, 1)
30: load-psis[q](Kx)
31: load-group[burst](t1,Kx)
32: ntt-on-buffer[q](0)
33: mul-psi[q](0)
34: store-group[reorder, bitrev](cmult,Kx)
35: return cmult

36: end func

146



9.6. Results and Comparison

9.6 Results and Comparison

In this section we provide post place-and-route (post-PAR) results and performance measure-
ments of our implementation on the Catapult board [PCC+14] equipped with an Altera Stratix
V (5GSND5H) FPGA and two 4 GB DRAMs.

9.6.1 Resource Consumption and Performance

The resource consumption of our implementation is reported in Table 9.3. Achieving a high
clock frequency for parameter Set II is challenging. One reason seems to be that, due to our
design choices, we have to deal with extremely large structures like several thousand bit wide
adders and a large integer multiplier. Such structures are tedious to manually optimize and it is
hard to determine an optimal pipeline length. Another reason is that the design is congested and
that placement and fitting have to satisfy strict constraints imposed by the PCIe and DRAM
controllers in the Catapult shell. Still, switching to larger devices to reduce congestion would
also increase costs. In our core the critical path is currently in the pipelined rounding circuit
required for RMult and we instantiated our design using the MULRTL multiplier which allows
faster simulation and synthesis compared to the MULDSP design provided by the DSP Builder.
However, higher clock frequencies in future work might be easier to achieve with automated
tools like the DSP Builder and the resulting MULDSP design.

Table 9.3: Resource consumption of our implementation of YASHE (including the communication
interface).

Implementation ALM FF DSP BRAM bits MHz

Set I (n=4096,K= 8) 69,058 (40 %) 144,747 144 (9 %) 8,031,568 (19 %) 100

Set II (n=16384,K=4) 141,090 (82 %) 391,773 577 (36 %) 17,626,400 (43 %) 66

Cycle counts for evaluation operations are given in Table 9.4 and are obtained using the
PerfMonitor component that logs cycle counts and transfers them to the host server over PCIe,
if requested. The usual approach of obtaining cycle counts from simulation is not possible as we
are using an external DRAM without a cycle accurate simulation model. Moreover, the runtime
does not simply scale for higher clock frequencies as the memory interface is running in its own
clock domain and thus the memory bandwidth is not significantly increased by higher clock
frequencies of the HomomorphicCore component.
A good indicator for the efficiency of our memory addressing is the saturation of the log(q)×

log(q) modular multiplier. One NTT requires n
2 log2(n) multiply-accumulate (MAC) operations

so that KeySwitch operating on G groups and two epochs takes at least CKS(`w,q, n) = (`w,q +
1)(n2 log2(n) + n) cycles assuming one clock cycle per MAC (`w,q forward and one inverse NTT,
see Equation 9.1). For parameter Set II we get CKS(8, 16384) = 1,179,648 as lower bound
on the number of cycles for KeySwitch which is close to the measured 1,372,519 cycles. For
RMult approx. CRM(n) = 3(4n2 log2 n) + 2(4n) cycles are required (three transformations, point-
wise and ψ−1 multiplication; four cycles per MAC) and the saturation of the MAC unit is
CRM(16384)
1,839,987 = 0.84.

147



Chapter 9. Acceleration of Homomorphic Evaluation on Reconfigurable Hardware

Table 9.4: Cycle counts and runtimes for the different evaluation algorithms of YASHE measured
on the Catapult board.

Implementation Mult Add KeySwitch RMult RMultFwd RMultInv

Set I (n=4096) cycles 675,326 19,057 478,911 196,415 160,693 157,525
100 MHz (K=8) time 6.75 ms 0.19 ms 4.79 ms 1.96 ms 1.61 ms 1.58 ms

Set II (n=16384) cycles 3,212,506 61,775 1,372,519 1,839,987 587,664 664,659
66 MHz (K=4) time 48.67 ms 0.94 ms 20.80 ms 27.88 ms 8.90 ms 10.07 ms

9.6.2 Comparison with Previous Work

Cao et al. [CMO+14] describe an implementation of the integer-based FHE scheme by Coron et
al. [CMNT11] on a Virtex-7 FPGA (XC7VX980T) but unlike our work they explicitly do not take
into account the bottleneck that may be caused by accessing off-chip memory. The integer mul-
tiplication is realized with the integer-FFT algorithm from [EW11] and a large Barrett reducer
that uses Virtex-7 DSPs. Their implementation achieves a speed-up factor of 11.25 compared to
a software implementation but for large parameter sets, which might promise even higher speed-
ups (e.g., 44), the design does not fit on current FPGAs anymore and only synthesis results are
given. An FPGA implementation of an integer multiplier for the Gentry-Halevi [GH11] FHE
scheme is proposed by Wang and Huang in [WH13]. The architecture requires about 462,983
ALUs, and 720 DSPs on a Stratix-V (55GSMD8N3F45I4) and allows 768K-bit multiplications
by using a 64k-point FFT. It is reported to be about two times faster than an implementation
on an NVIDA C2050 graphics processing unit (GPU) using a similar approach. Another 768K-
bit multiplication architecture was proposed by Wang et al. in [WHEW14] targeting ASICs
and FPGAs. An outline of an implementation of a homomorphic encryption scheme is given
in [CRPS12] using Matlab/Simulink and the Mathwork HDL coder. It uses the Chinese remain-
der theorem (CRT) and the NTT but the used tools limit the available basic multiplier width
to 128 bits and the design approach would require multiple FPGAs in order to deal with large
vector lengths up to n = 214.
An ASIC implementation of a million-bit multiplier for integer-based FHE schemes has been

presented by Doröz et al. in [DÖS13]. It uses the Schönhage-Strassen algorithm and the NTT,
which operates on an on-chip cache. The computation of the product of two 1,179,648-bit integers
takes 5.16 million clock cycles. Synthesis results for a chip using the TSMC 90 nm cell library
show a maximum clock frequency of 666 MHz and thus a runtime of 7.74 ms for this operation.
The whole chip requires 26.7 million gates where 26.5 million gates are attributed to the 768
Kbyte cache and the runtime is equivalent to a software implementation. This shows, similar
to our result, that the biggest challenges in the implementation of homomorphic cryptography
in hardware are the large ciphertexts that do not fit into block RAMs (our case) or caches
instantiated with the standard library (Doröz et al. [DÖS13]).
Wang et al. [WHC+12] presented the first GPU implementation of an FHE scheme and provide

results for the Gentry-Halevi [GH11] scheme on an NVIDIA C2050 GPU. The results were subse-
quently improved in [WHC+15] as all computations are carried out in the FFT-domain. A GPU
implementation of the leveled fully homomorphic BGV scheme [BGV12] is given in [WCH14].

148



9.6. Results and Comparison

In more recent work [DÖS15] Dai et al. provide an implementation of the Doröz-Hu-Sunar
(DHS) [DHS14] NTRU-based fully homomorphic scheme based on LTV [LTV12]. For the pa-
rameter set (n = 16384, log(q) = 575) that supports the evaluation of the 24 level deep decryp-
tion circuit of the Prince block cipher [BCG+12], they require 0.063 seconds for multiplication
and 0.89 seconds for relinearization (key switching) on a 2.5 GHz Xeon E5-2609 equipped with
an NVIDIA GeForce GTX 690. While the parameters for polynomial arithmetic and the DHS
scheme are similar to YASHE, in DHS one basically sets `w,q = dlog2(q)e (i.e., the evaluation
key consists of dlog2(q)e polynomials) and thus far more forward transformations are required
for key switching. However, their reported performance of RMult is almost the same as in our
implementation.

A software library that implements the BGV [BGV11,BGV12] scheme is described in [HS14]
and freely available. In [LN14], a software implementation of YASHE is reported which for the
parameter set (n = 4096, q = 2127 − 1, w = 232) executes Add in 0.7 ms, RMult in 18 ms,
and KeySwitch in 31 ms on an Intel Core i7-2600 running at 3.4 GHz. Thus our hardware
implementation can evaluate Mult on a parameter set supporting 9 levels in 48.67 ms while a
software implementation requires 49 ms for a parameter set supporting only 1 multiplicative
level.

In concurrent work Roy et al. [RJV+15] proposed an implementation of YASHE with param-
eter n = 215 and a modulus of log2(q) = 1228 bits. Because of the larger parameter set they
can support evaluation of the decryption circuit of the SIMON-64/128 block cipher. Moreover,
their implementation does not require to set f(x) = xn + 1 when operating in the polynomial
ring Zq[x]/〈f〉 so that single instruction multiple data (SIMD) operations on homomorphic ci-
phertexts are supported. On the other hand they also use a much larger next generation FPGA
(Virtex-7 XC7V1140T) from a different vendor so that a comparison is naturally hard - espe-
cially regarding the economic benefits of using FPGAs. We see the biggest contribution of the
work by Roy et al. in their efficient implementation of independent processors that use the CRT
to decompose polynomials. This approach avoids large integer multiplier and simplifies routing
and performance tuning. When we designed our core, the added complexity and the need to
lift polynomials from CRT to natural representations in hardware appeared to be too expensive.
However, the authors of [RJV+15] do not consider the costs of moving data between external
memory and the FPGA but just assume unlimited memory bandwidth. This naturally simplifies
the design and placement but does not appear to be a realistic assumption. Especially, when
taking into account that DRAM or PCIe cores will also require logic resources on the device,
occupy clock domains, and could cause timing problems. In our work a considerable amount of
time was spent to implement efficient memory transfers and to optimize the algorithms in this
regard. However, we see our work and the work of Roy et al. as a first step towards an efficient
accelerator.

All in all, currently not enough data points exist (also due to the vast amount of differ-
ent schemes) to decide whether GPUs, ASICs, or FPGAs are the most suitable platform for
FHE/SHE accelerators. However, huge area costs for caches and long design and manufacturing
times do not favor ASICs. FPGAs and GPUs (based on [DHS14]) appear to achieve similar
performance. Given that datacenters are a prime candidate for homomorphic encryption, the
advantages in scale and total cost of ownership described in [PCC+14] suggest that FPGAs
might not only be competitive with GPUs, but even preferable.

149



Chapter 9. Acceleration of Homomorphic Evaluation on Reconfigurable Hardware

9.6.3 Software Performance

Our software implementation of YASHE was mainly written to generate test vectors and to
prototype and test the optimized algorithms and in Table 9.5 we provide performance num-
bers. However, the implementation is not optimized for the CPU architecture but resembles
the execution flow of the hardware implementation. A direct comparison with our hardware
implementation does not seem fair but we still provide the results to give a rough estimate on
performance in software.
We also evaluated RMult realized with Nussbaumer’s method [Nus82, BCNS15] (denoted

RMultNb) and obtained better performance than with the NTT using q′. But as a fast soft-
ware implementation is not in the scope of this work we did not investigate the root cause for
the better performance but consider a detailed comparison of both algorithms as valuable future
work. In Table 9.7 we also report implementation results of an open-source implementation
by Lepoint and Naehrig [LN14]. Their implementation has received more optimization efforts,
performs better, but is also benchmarked on a faster CPU architecture.

Table 9.5: Software performance of our prototype implementation of the YASHE evaluation op-
erations as described in Section 9.5.

Parameter Set RMultNTT RMultNb KeySwitch Add RMultFwd RMultInv

Set I (n = 4096, `w,q = 2) 190 ms 83 ms 70 ms 0.24 ms 76 ms 75 ms

Set II (n = 16384, `w,q = 8) 6.21 s 1.73 s 5.04 s 0.0013 s 1.62 s 2.34 s

Experiments were executed on an Intel Core i7-2760 QM CPU running at 2.4 GHz with access to 8 GB
RAM.

Table 9.7: Software performance of an implementation of YASHE obtained from [LN14].

Parameter Set Gen Encrypt Decrypt Mult KeySwitch Add

(n = 4096, `w,q = 4) 3.4 s 16 ms 15 ms 18 ms 31 ms 0.7 ms

Experiments were performed using an Intel Core i7-2600 at 3.4 GHz with hyper-threading turned off and
over-clocking (‘turbo boost’) disabled.

9.7 Conclusion and Future Work

In this work we have shown the potential of FPGAs to accelerate somewhat homomorphic
encryption despite the large size of ciphertexts and keys. We provided a generically applicable
polynomial multiplier and an implementation of the evaluation steps of the YASHE scheme. Our
evaluation shows a speedup of roughly 100 times over the software implementation provided
in [LN14] or in other words we can support a n = 16384 parameter set (roughly 9 levels) in

150



9.7. Conclusion and Future Work

hardware with a running time equivalent to a n = 4096 parameter set in software (supporting
only one level).
While implementing the scheme we encountered several challenges that might also be a good

opportunity for future work. A big issue was verification and simulation time due to the large
problem sizes. While parameter Set I can be verified in several minutes it takes more than half
an hour to verify Mult and Add for parameter Set II on a standard desktop computer using
Questasim 10.4. As a consequence, it is extremely important to develop an implementation
using generic structures so that verification and debugging can be performed on small and fast
to simulate parameter sets. Additionally, we were not able to build a fully pipelined 1040x1040
multiplier that fits onto the target device. While the amount of DSPs would theoretically
be sufficient to construct such a multiplier, we ran out of ALUs for internal adders in our
experiments. In general the large parameter sizes in Set II were also challenging, as the design
of pipelined arithmetic was time consuming due to long synthesis cycles.
Possible future work is further design space exploration and implementation of even larger

parameter sets. Moreover, it might make sense to investigate the applicability of the CRT
in combination with the cached-NTT. Another interesting future direction for better FPGA
utilization and removal of bottlenecks caused by external memory might be the design of a
custom board with one or more suitable FPGAs connected to a maximum amount of external
memory units. A huge performance boost for SHE/FHE schemes would also be possible if the
costly rounding and non-modulo q multiplication could be removed or if all operations could be
carried out directly in the frequency/NTT domain.

151





Chapter 10

Conclusion and Future Work

In this chapter we provide a short conclusion and summarize the results of this thesis.
Moreover, we cover possible areas of further research on lattice-based cryptography.
Especially, work dealing with the protection against physical attacks appears to be
necessary before lattice-based cryptography can be adopted in practice. Additionally,
improved implementations of polynomial multiplication or Gaussian sampling would
be beneficial for a wide range of schemes. Another field of further research is the
implementation of advanced schemes like identity-based encryption (IBE), attribute-
based encryption (ABE), and homomorphic encryption.

Contents of this Chapter
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.2 Directions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10.1 Conclusion

In this thesis we have predominately discussed promising ideal lattice-based public-key en-
cryption and digital signature schemes but also covered an advanced homomorphic encryption
scheme. Our results show that schemes like RLWEenc, GLP, and BLISS are remarkably fast on
reconfigurable hardware, constrained devices, and also general purpose microprocessors. Ad-
ditionally, we have examined a wide range of algorithms for polynomial multiplication (NTT,
Karatsuba, schoolbook) and Gaussian sampling (Knuth-Yao, CDT, Ziggurat, or Bernoulli). By
exploring the specific advantages of these algorithms we provide guidelines to designers and
engineers how to choose an algorithm under specific implementation constraints (e.g., area or
performance). Moreover, our implementations of the microcode engine, RLWEenc, and BLISS
are freely available for external verification of our results and we see the published source code
as an additional contribution of this thesis. Our work also shows that lattice-based public-key
encryption can be optimized for high-performance or low-area and that it could be an inter-
esting alternative to RSA or ECC, especially in cost-sensitive application scenarios. A specific
advantage of lattice-based cryptography over other post-quantum cryptoschemes is the possibil-
ity to realize public-key encryption and signature schemes using very similar base arithmetic and
building blocks. Additionally, the performance impact of high-security parameter sets appears
to be much less severe for RLWEenc and BLISS than for RSA or ECC. All in all, in this thesis we
were able to show that ideal lattice-based public-key encryption and digital signature schemes
are efficient and fast on a wide range of devices.

153



Chapter 10. Conclusion and Future Work

10.2 Directions for Future Research

Specific suggestions for future work related to individual parts of the contribution of this thesis
can be found in the corresponding chapters. However, there are also some main lines of research
that appear to be worth further efforts.

Cryptanalysis and Protection against Physical Attacks

Currently, there are presumably two main issues that prevent the wide adoption of lattice-based
cryptography. One is certainly lack of trust into the underlying assumptions and the security
of current parameter sets. We hope that further cryptanalysis, which is certainly required, will
clear up this picture. To provide a true post-quantum alternative it will also be necessary to
consider the impact of quantum computers on the cryptanalysis of lattice-based cryptography.
While quantum computers might not completely break lattice-based cryptography, they could
probably be used to accelerate sub-routines of cryptanalytic algorithms. This does not appear
to be taken into account when parameters were selected for current schemes. If lattice-based
cryptography passes its mandatory test of time, we are confident that standardization efforts will
follow. It might also turn out that only standard lattice-based schemes remain secure while their
ideal lattice-based counterparts get broken. Thus, future work should also focus more on the
efficiency of standard lattices as fallback. Additionally, for applications that require long term
security and that are not constrained by large key sizes, standard lattices currently appear to
be a safer way to proceed. New techniques and approaches to deal with large public keys might
also help to increase the efficiency of standard lattice constructions on constrained devices.
The second obstacle is the lack of research on physical protection and side-channel countermea-

sures tailored to lattice-based cryptosystems. In most practical applications at least protection
against timing side-channel attacks is mandatory. So far there has been very little research con-
ducted on the vulnerabilities of lattice-based cryptographic implementations to physical attacks
(a first work is [RRVV14]). It is anticipated that there may be particular vulnerabilities with
respect to algorithms with variable runtime; for instance Gaussian and rejection sampling, which
are major components of many lattice-based cryptosystems.

Improved Polynomial Arithmetic and Gaussian Sampling

Polynomial arithmetic and Gaussian sampling are key components used in almost all prac-
tical ideal lattice-based cryptoschemes (e.g., BLISS, RLWEenc, or BG). Although polynomial
multiplication for ideal lattice-based cryptography has been researched quite well in works
like [APS13,RVM+14], it might still be possible to optimize implementations for certain appli-
cation scenarios. Moreover, the work presented in Chapter 6 shows that usage of better suited
NTT algorithms over the standard Cooley-Tukey decimation-in-time algorithm yields certain
improvement. For future work it seems beneficial to review previous work on the implementa-
tion of the fast Fourier transform (FFT) which could also be used in the NTT case. Moreover,
the Fermat [BS06] and Mersenne variants of the NTT [Nus82] could lead to better performance
for certain parameter sets. Another field of further research could be the examination and com-
parison of the NTT to multiplication algorithms like Nussbaumer multiplication [Nus80,Nus82],
which was applied in [BCNS15]. With regard to Gaussian sampling, many algorithms have been

154



10.2. Directions for Future Research

examined in this thesis. However, a Gaussian sampler is still an expensive part in most imple-
mentations, so that further optimizations or research on different algorithms seem worthwhile.

Investigation of Alternative Schemes

Currently, the performance of RLWEenc, GLP, and BLISS is quite well understood. How-
ever, different schemes might turn out to be more efficient, more secure, or simpler to im-
plement. Examples of signature schemes that might perform well on embedded systems are
BG [BG14], PASSSign [HPS+14], the modified NTRU signature scheme [MBDG14], or the sig-
nature scheme from [DLP14]. Another interesting application of ideal lattice-based cryptog-
raphy is (authenticated) key exchange. Key exchange protocols can either be realized using
public-key encryption and signatures (like RLWEenc and BLISS) or with specialized protocols
like [FSXY12, BCNS15, ZZD+15] and it is not yet clear which approach is more efficient and
secure. It would also be an interesting area of future research to apply some recent results for
ideal lattice-based schemes to NTRU (as in [MBDG14]) and to revisit previous works regarding
the implementation of NTRU. Whether NTRU-based or ideal lattice-based schemes will lead to
better post-quantum cryptosystems does not seem to be finally settled, yet.

Implementation of Advanced Schemes

Due to the flexibility of lattice-assumptions more complex or advanced schemes than just public-
key encryption or signature schemes can be constructed. One example are IBE schemes, which
promise simpler key management [Sha84]. Judged by the required computations and proposed
parameter sets it seems that relatively simple lattice-based IBE schemes like the one presented
in [DLP14] could also be realized efficiently on constrained devices. Another interesting field
could be research on ABE [Boy13]. Regarding homomorphic encryption only few works looked
at techniques for acceleration in hardware and by tweaking the schemes or implementations it
should be possible to significantly improve on the current results. Additionally, the implemen-
tation of FPGA-based accelerators for schemes like LTV [LTV12] or BGV [BGV12] instead of
YASHE appears to be possible future work.

155





Bibliography

[AB74] Ramesh C. Agarwal and Charles Sidney Burrus. Fast convolution using Fermat
number transforms with applications to digital filtering. Acoustics, Speech and
Signal Processing, IEEE Transactions on, 22(2):87 – 97, April 1974. [Cited on
page 48.]

[ABF+08] Ali Can Atici, Lejla Batina, Junfeng Fan, Ingrid Verbauwhede, and Siddika Berna
Örs. Low-cost implementations of NTRU for pervasive security. In 19th IEEE Inter-
national Conference on Application-Specific Systems, Architectures and Processors,
ASAP 2008, July 2-4, 2008, Leuven, Belgium, pages 79–84. IEEE Computer Soci-
ety, 2008. [Cited on pages 28, 63, and 78.]

[ACF+15] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and
Ludovic Perret. On the complexity of the BKW algorithm on LWE. Des. Codes
Cryptography, 74(2):325–354, 2015. [Cited on page 31.]

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, Advances in Cryptology - CRYPTO 2009, 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings,
volume 5677 of Lecture Notes in Computer Science, pages 595–618. Springer, 2009.
[Cited on page 13.]

[AFG13] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy of
solving LWE by reduction to unique-SVP. In Hyang-Sook Lee and Dong-Guk Han,
editors, Information Security and Cryptology - ICISC 2013 - 16th International
Conference, Seoul, Korea, November 27-29, 2013, Revised Selected Papers, volume
8565 of Lecture Notes in Computer Science, pages 293–310. Springer, 2013. [Cited
on page 31.]

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In
Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, Automata, Languages and
Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland,
July 4-8, 2011, Proceedings, Part I, volume 6755 of Lecture Notes in Computer
Science, pages 403–415. Springer, 2011. [Cited on page 34.]

[AH08] Bijan Ansari and M. Anwar Hasan. High-performance architecture of elliptic curve
scalar multiplication. IEEE Trans. Computers, 57(11):1443–1453, 2008. [Cited on
page 116.]

[AHMN13] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and María Naya-Plasencia.
Quark: A lightweight hash. J. Cryptology, 26(2):313–339, 2013. [Cited on pages 97
and 98.]



Bibliography

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of things: A
survey. Computer Networks, 54(15):2787–2805, 2010. [Cited on page 117.]

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996,
pages 99–108. ACM, 1996. [Cited on page 12.]

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP -hard for randomized re-
ductions (extended abstract). In Jeffrey Scott Vitter, editor, Proceedings of the
Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas,
USA, May 23-26, 1998, pages 10–19. ACM, 1998. [Cited on page 11.]

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the short-
est lattice vector problem. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis
Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 601–610. ACM, 2001.
[Cited on page 11.]

[APS13] Aydin Aysu, Cameron Patterson, and Patrick Schaumont. Low-cost and area-
efficient FPGA implementations of lattice-based cryptography. In 2013 IEEE In-
ternational Symposium on Hardware-Oriented Security and Trust, HOST 2013,
Austin, TX, USA, June 2-3, 2013, pages 81–86. IEEE Computer Society, 2013.
[Cited on pages 4, 46, 47, 58, 59, 60, 61, 82, 143, 154, and 195.]

[AS15] Aydin Aysu and Patrick Schaumont. Precomputation methods for faster and greener
post-quantum cryptography on emerging embedded platforms. IACR Cryptology
ePrint Archive, 2015:288, 2015. [Cited on page 4.]

[AYK00] Murat Aydos, Tugrul Yanik, and Çetin Kaya Koç. An high-speed ECC-based wire-
less authentication protocol on an ARM microprocessor. In 16th Annual Computer
Security Applications Conference (ACSAC 2000), 11-15 December 2000, New Or-
leans, Louisiana, USA, pages 401–410. IEEE Computer Society, 2000. [Cited on
page 126.]

[Baa99] Bevan M. Baas. An Approach to Low-Power, High Performance, Fast Fourier
Transform Processor Design. PhD thesis, Stanford University, Stanford, CA, USA,
1999. [Cited on pages 19, 132, 133, 135, and 137.]

[Baa05] Bevan M. Baas. A generalized cached-FFT algorithm. In 2005 IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP ’05, Philadelphia,
Pennsylvania, USA, March 18-23, 2005, pages 89–92. IEEE, 2005. [Cited on pages
19, 132, 133, 134, 135, 137, and 193.]

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, 1986. [Cited on page 31.]

158



Bibliography

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In Andrew M. Odlyzko, edi-
tor, CRYPTO, volume 263 of Lecture Notes in Computer Science, pages 311–323.
Springer, 1986. [Cited on pages 49, 50, 87, and 144.]

[BB13] Rachid El Bansarkhani and Johannes A. Buchmann. Improvement and efficient
implementation of a lattice-based signature scheme. In Tanja Lange, Kristin E.
Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography - SAC 2013 -
20th International Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised
Selected Papers, volume 8282 of Lecture Notes in Computer Science, pages 48–67.
Springer, 2013. [Cited on pages 96, 121, and 122.]

[BBD08] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post Quantum Cryp-
tography. Springer-Verlag Berlin Heidelberg, 1st edition, 2008. [Cited on pages 2,
7, 29, and 30.]

[BBD+14] Christian H. Bischof, Johannes A. Buchmann, Özgür Dagdelen, Robert Fitzpatrick,
Florian Göpfert, and Artur Mariano. Nearest planes in practice. In Berna Ors and
Bart Preneel, editors, Cryptography and Information Security in the Balkans - First
International Conference, BalkanCryptSec 2014, Istanbul, Turkey, October 16-17,
2014, Revised Selected Papers, volume 9024 of Lecture Notes in Computer Science,
pages 203–215. Springer, 2014. [Cited on page 31.]

[BBL+14] Abhishek Banerjee, Hai Brenner, Gaëtan Leurent, Chris Peikert, and Alon Rosen.
SPRING: fast pseudorandom functions from rounded ring products. In Carlos Cid
and Christian Rechberger, editors, Fast Software Encryption - 21st International
Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers, vol-
ume 8540 of Lecture Notes in Computer Science, pages 38–57. Springer, 2014. [Cited
on page 58.]

[BCE+01] Daniel V. Bailey, Daniel Coffin, Adam J. Elbirt, Joseph H. Silverman, and Adam D.
Woodbury. NTRU in constrained devices. In Çetin Kaya Koç, David Naccache,
and Christof Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2001, Third International Workshop, Paris, France, May 14-16, 2001, Proceedings,
volume 2162 of Lecture Notes in Computer Science, pages 262–272. Springer, 2001.
[Cited on page 78.]

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A
low-latency block cipher for pervasive computing applications - extended abstract.
In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application of Cryptology
and Information Security, Beijing, China, December 2-6, 2012. Proceedings, volume
7658 of Lecture Notes in Computer Science, pages 208–225. Springer, 2012. [Cited
on page 149.]

159



Bibliography

[BCG+13] Johannes Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas Hülsing, and
Patrick Weiden. Discrete Ziggurat: A time-memory trade-off for sampling from
a Gaussian distribution over the integers. In Tanja Lange, Kristin E. Lauter, and
Petr Lisonek, editors, Selected Areas in Cryptography, volume 8282 of Lecture Notes
in Computer Science, pages 402–417. Springer, 2013. [Cited on pages 21, 96, 97,
111, and 122.]

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum
key exchange for the TLS protocol from the ring learning with errors problem. In
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, pages 553–570. IEEE Computer Society, 2015. [Cited on pages
33, 64, 80, 97, 150, 154, and 155.]

[BDH11] Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - A practical
forward secure signature scheme based on minimal security assumptions. In Bo-Yin
Yang, editor, Post-Quantum Cryptography - 4th International Workshop, PQCrypto
2011, Taipei, Taiwan, November 29 - December 2, 2011. Proceedings, volume 7071
of Lecture Notes in Computer Science, pages 117–129. Springer, 2011. [Cited on
pages 115 and 122.]

[BDP+12] Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche, and Ronny Van
Keer. Keccak implementation overview, 2012. Version 3.2, see http://keccak.
noekeon.org/Keccak-implementation-3.2.pdf. [Cited on page 128.]

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EU-
ROCRYPT 2013, 32nd Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 313–314. Springer, 2013.
[Cited on pages 97 and 125.]

[BEE+12a] Josep Balasch, Baris Ege, Thomas Eisenbarth, Benoît Gérard, Zheng Gong, Tim
Güneysu, Stefan Heyse, Stéphanie Kerckhof, François Koeune, Thomas Plos,
Thomas Pöppelmann, Francesco Regazzoni, François-Xavier Standaert, Gilles Van
Assche, Ronny Van Keer, Loïc van Oldeneel tot Oldenzeel, and Ingo von Maurich.
Compact implementation and performance evaluation of hash functions in ATtiny
devices. In Stefan Mangard, editor, Smart Card Research and Advanced Appli-
cations - 11th International Conference, CARDIS 2012, Graz, Austria, November
28-30, 2012, Revised Selected Papers, volume 7771 of Lecture Notes in Computer
Science, pages 158–172. Springer, 2012. [Cited on pages 3, 129, and 202.]

[BEE+12b] Josep Balasch, Baris Ege, Thomas Eisenbarth, Benoît Gérard, Zheng Gong, Tim
Güneysu, Stefan Heyse, Stéphanie Kerckhof, François Koeune, Thomas Plos,
Thomas Pöppelmann, Francesco Regazzoni, François-Xavier Standaert, Gilles Van
Assche, Ronny Van Keer, Loïc van Oldeneel tot Oldenzeel, and Ingo von Maurich.
Compact implementation and performance evaluation of hash functions in ATtiny
devices. IACR Cryptology ePrint Archive, 2012:507, 2012. [Cited on page 203.]

160

http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf


Bibliography

[Ber69] G. Bergland. Fast Fourier transform hardware implementations–an overview. Audio
and Electroacoustics, IEEE Transactions on, 17(2):104 – 108, June 1969. [Cited on
pages 46, 47, and 61.]

[Ber14] Daniel J. Bernstein. A subfield-logarithm attack against ideal lattices, 2014. See
http://blog.cr.yp.to/20140213-ideal.html (accessed 2015-06-04). [Cited on
page 31.]

[BERW08] Andrey Bogdanov, Thomas Eisenbarth, Andy Rupp, and Christopher Wolf. Time-
area optimized public-key engines: MQ-cryptosystems as replacement for elliptic
curves? In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware
and Embedded Systems - CHES 2008, 10th International Workshop, Washington,
D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of Lecture Notes in
Computer Science, pages 45–61. Springer, 2008. [Cited on page 115.]

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Crypto-
graphic primitives based on hard learning problems. In Douglas R. Stinson, editor,
Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume
773 of Lecture Notes in Computer Science, pages 278–291. Springer, 1993. [Cited
on page 12.]

[BG09] Céline Blondeau and Benoît Gérard. On the data complexity of statistical attacks
against block ciphers (full version). IACR Cryptology ePrint Archive, 2009:64, 2009.
[Cited on page 23.]

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures
based on learning with errors. In Josh Benaloh, editor, Topics in Cryptology - CT-
RSA 2014 - The Cryptographer’s Track at the RSA Conference 2014, San Francisco,
CA, USA, February 25-28, 2014. Proceedings, volume 8366 of Lecture Notes in
Computer Science, pages 28–47. Springer, 2014. [Cited on pages 96, 118, and 155.]

[BGJT14] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A
heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small
characteristic. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages
1–16. Springer, 2014. [Cited on pages 1 and 29.]

[BGL+14] Hai Brenner, Lubos Gaspar, Gaëtan Leurent, Alon Rosen, and François-Xavier
Standaert. FPGA implementations of SPRING - and their countermeasures against
side-channel attacks. In Lejla Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems - CHES 2014 - 16th International Workshop,
Busan, South Korea, September 23-26, 2014. Proceedings, volume 8731 of Lecture
Notes in Computer Science, pages 414–432. Springer, 2014. [Cited on page 58.]

161

http://blog.cr.yp.to/20140213-ideal.html


Bibliography

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic en-
cryption without bootstrapping. IACR Cryptology ePrint Archive, 2011:277, 2011.
[Cited on page 149.]

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, Innova-
tions in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10,
2012, pages 309–325. ACM, 2012. [Cited on pages 43, 131, 132, 148, 149, and 155.]

[BJ14] Ahmad Boorghany and Rasool Jalili. Implementation and comparison of lattice-
based identification protocols on smart cards and microcontrollers. IACR Cryptol-
ogy ePrint Archive, 2014:78, 2014. [Cited on pages 81, 82, 88, 93, 94, 96, 118, 129,
and 130.]

[BKPS07] Selçuk Baktir, Sandeep Kumar, Christof Paar, and Berk Sunar. A state-of-the-art
elliptic curve cryptographic processor operating in the frequency domain. Mob.
Netw. Appl., 12(4):259–270, August 2007. [Cited on page 47.]

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM, 50(4):506–519, 2003. [Cited on
page 31.]

[BL] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking of cryp-
tographic systems. http://bench.cr.yp.to (accessed 2013-05-10). [Cited on
page 78.]

[Bla10] Richard E. Blahut. Fast Algorithms for Signal Processing. Cambridge University
Press, 2010. [Cited on pages 8, 15, and 48.]

[BLLN13a] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security
for a ring-based fully homomorphic encryption scheme. IACR Cryptology ePrint
Archive, 2013:75, 2013. [Cited on page 67.]

[BLLN13b] Joppe W. Bos, Kristin E. Lauter, Jake Loftus, and Michael Naehrig. Improved
security for a ring-based fully homomorphic encryption scheme. In Martijn Stam,
editor, Cryptography and Coding - 14th IMA International Conference, IMACC
2013, Oxford, UK, December 17-19, 2013. Proceedings, volume 8308 of Lecture
Notes in Computer Science, pages 45–64. Springer, 2013. [Cited on pages 9, 40, 42,
43, and 132.]

[BLN14] Joppe W. Bos, Kristin E. Lauter, and Michael Naehrig. Private predictive analysis
on encrypted medical data. Journal of Biomedical Informatics, 50:234–243, 2014.
[Cited on page 131.]

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden,
and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 575–584. ACM, 2013. [Cited
on pages 13, 30, 64, 65, 72, 73, 77, and 91.]

162

http://bench.cr.yp.to


Bibliography

[BMV06] Johannes Buchmann, Alexander May, and Ulrich Vollmer. Perspectives for crypto-
graphic long-term security. Commun. ACM, 49(9):50–55, 2006. [Cited on page 29.]

[BNP+11] Sven Bugiel, Stefan Nürnberger, Thomas Pöppelmann, Ahmad-Reza Sadeghi, and
Thomas Schneider. Amazonia: When elasticity snaps back. In Yan Chen, George
Danezis, and Vitaly Shmatikov, editors, Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA,
October 17-21, 2011, pages 389–400. ACM, 2011. [Cited on pages 4 and 203.]

[Boy13] Xavier Boyen. Attribute-based functional encryption on lattices. In Amit Sahai,
editor, Theory of Cryptography - 10th Theory of Cryptography Conference, TCC
2013, Tokyo, Japan, March 3-6, 2013. Proceedings, volume 7785 of Lecture Notes
in Computer Science, pages 122–142. Springer, 2013. [Cited on page 155.]

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical gapsvp. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in
Computer Science, pages 868–886. Springer, 2012. [Cited on pages 67 and 131.]

[BS06] Selçuk Baktir and Berk Sunar. Achieving efficient polynomial multiplication in Fer-
mat fields using the fast Fourier transform. In Ronaldo Menezes, editor, Proceedings
of the 44st Annual Southeast Regional Conference, 2006, Melbourne, Florida, USA,
March 10-12, 2006, pages 549–554. ACM, 2006. [Cited on pages 46, 48, and 154.]

[BSJ14] Ahmad Boorghany, Siavash Bayat Sarmadi, and Rasool Jalili. On constrained
implementation of lattice-based cryptographic primitives and schemes on smart
cards. IACR Cryptology ePrint Archive, 2014:514, 2014. [Cited on pages 81, 82,
83, 84, 86, 87, 88, 93, 94, 96, 118, 129, and 130.]

[BSTV04] Jean-Luc Beuchat, Nicolas Sendrier, Arnaud Tisserand, and Gilles Villard. FPGA
implementation of a recently published signature scheme. [Research Report]
RR-5158, INRIA., 2004. <inria-00077045>, See https://hal.inria.fr/inria-
00077045/document. [Cited on page 115.]

[CA74] Hui-Chuan Chen and Yoshinori Asau. On generating random variates from an
empirical distribution. AIIE Transactions, 6(2):163–166, 1974. [Cited on page 23.]

[Can06] Christophe De Cannière. Trivium: A stream cipher construction inspired by block
cipher design principles. In Sokratis K. Katsikas, Javier Lopez, Michael Backes,
Stefanos Gritzalis, and Bart Preneel, editors, Information Security, 9th Interna-
tional Conference, ISC 2006, Samos Island, Greece, August 30 - September 2, 2006,
Proceedings, volume 4176 of Lecture Notes in Computer Science, pages 171–186.
Springer, 2006. [Cited on pages 97, 101, and 104.]

[CCC+09] Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou Cheng, Jintai
Ding, Eric Li-Hsiang Kuo, Frost Yu-Shuang Lee, and Bo-Yin Yang. SSE implemen-
tation of multivariate PKCs on modern x86 CPUs. In Christophe Clavier and Kris

163

https://hal.inria.fr/inria-00077045/document
https://hal.inria.fr/inria-00077045/document


Bibliography

Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009, 11th
International Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings,
volume 5747 of Lecture Notes in Computer Science, pages 33–48. Springer, 2009.
[Cited on page 122.]

[CFA06] Henri Cohen, Gerhard Frey, and Roberto M. Avanzi. Handbook of elliptic and
hyperelliptic curve cryptography. Chapman & Hall/CRC, 2006. [Cited on page 50.]

[CG00] Eleanor Chu and Alan George. Inside the FFT Black Box Serial and Parallel Fast
Fourier Transform Algorithms. CRC Press, Boca Raton, FL, USA, 2000. [Cited on
pages 19, 82, 83, 84, and 133.]

[Cha12] Kenneth Chang. I.B.M. researchers inch toward quantum computer. New York
Times Article, February 28, 2012. See http://www.nytimes.com/2012/02/28/
technology/ibm-inch-closer-on-quantum-computer.html?_r=1&hpw. [Cited on
pages 1 and 29.]

[CKK15] Jung Hee Cheon, Miran Kim, and Myungsun Kim. Search-and-compute on en-
crypted data. In Michael Brenner, Nicolas Christin, Benjamin Johnson, and Kurt
Rohloff, editors, Financial Cryptography and Data Security - FC 2015 International
Workshops, BITCOIN, WAHC, and Wearable, San Juan, Puerto Rico, January 30,
2015, Revised Selected Papers, volume 8976 of Lecture Notes in Computer Science,
pages 142–159. Springer, 2015. [Cited on page 131.]

[CKL15] Jung Hee Cheon, Miran Kim, and Kristin E. Lauter. Homomorphic computation of
edit distance. In Michael Brenner, Nicolas Christin, Benjamin Johnson, and Kurt
Rohloff, editors, Financial Cryptography and Data Security - FC 2015 International
Workshops, BITCOIN, WAHC, and Wearable, San Juan, Puerto Rico, January 30,
2015, Revised Selected Papers, volume 8976 of Lecture Notes in Computer Science,
pages 194–212. Springer, 2015. [Cited on page 131.]

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, third edition edition, 7 2009. [Cited
on pages 18 and 197.]

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi.
Fully homomorphic encryption over the integers with shorter public keys. In Phillip
Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume
6841 of Lecture Notes in Computer Science, pages 487–504. Springer, 2011. [Cited
on pages 131 and 148.]

[CMO+13] Xiaolin Cao, Ciara Moore, Máire O’Neill, Elizabeth O’Sullivan, and Neil Hanley.
Accelerating fully homomorphic encryption over the integers with super-size hard-
ware multiplier and modular reduction. IACR Cryptology ePrint Archive, 2013:616,
2013. conference version of [CMO+14]. [Cited on page 165.]

[CMO+14] Xiaolin Cao, Ciara Moore, Máire O’Neill, Neil Hanley, and Elizabeth O’Sullivan.
High-speed fully homomorphic encryption over the integers. In Rainer Böhme,

164

http://www.nytimes.com/2012/02/28/technology/ibm-inch-closer-on-quantum-computer.html?_r=1&hpw
http://www.nytimes.com/2012/02/28/technology/ibm-inch-closer-on-quantum-computer.html?_r=1&hpw


Bibliography

Michael Brenner, Tyler Moore, and Matthew Smith, editors, Financial Cryptogra-
phy and Data Security - FC 2014 Workshops, BITCOIN and WAHC 2014, Christ
Church, Barbados, March 7, 2014, Revised Selected Papers, volume 8438 of Lec-
ture Notes in Computer Science, pages 169–180. Springer, 2014. extended ver-
sion: [CMO+13]. [Cited on pages 132, 148, and 164.]

[CMV+14] Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy, Ray
C. C. Cheung, Derek Pao, and Ingrid Verbauwhede. High-speed polynomial mul-
tiplication architecture for Ring-LWE and SHE cryptosystems. IACR Cryptology
ePrint Archive, 2014:646, 2014. [Cited on pages 4, 46, 47, 58, 59, 60, 61, 132,
and 195.]

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In
Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings,
volume 7073 of Lecture Notes in Computer Science, pages 1–20. Springer, 2011.
[Cited on pages 31 and 38.]

[Com90] Paul G. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems
Journal, 29(4):526–538, 1990. [Cited on page 15.]

[CP01] Richard Crandall and Carl Pomerance. Prime Numbers: A Computational Per-
spective. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK /
etc., 2001. [Cited on pages 19 and 82.]

[CRPS12] David Cousins, Kurt Rohloff, Chris Peikert, and Richard E. Schantz. An update
on SIPHER (scalable implementation of primitives for homomorphic encryption) -
FPGA implementation using simulink. In IEEE Conference on High Performance
Extreme Computing, HPEC 2012, Waltham, MA, USA, September 10-12, 2012,
pages 1–5. IEEE, 2012. [Cited on page 148.]

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Mathematics of Computation, 19:297–301, 1965. [Cited
on pages 17, 83, and 133.]

[CT91] Thomas M. Cover and Joy Thomas. Elements of Information Theory. Wiley, 1991.
[Cited on page 23.]

[CWB14] Daniel Cabarcas, Patrick Weiden, and Johannes Buchmann. On the efficiency of
provably secure NTRU. In Michele Mosca, editor, Post-Quantum Cryptography -
6th International Workshop, PQCrypto 2014, Waterloo, ON, Canada, October 1-3,
2014. Proceedings, volume 8772 of Lecture Notes in Computer Science, pages 22–39.
Springer, 2014. [Cited on page 63.]

[DB13] Léo Ducas-Binda. Signatures Fondées sur les Réseaux Euclidiens: Attaques,
Analyses et Optimisations. PhD thesis, École Normale Supérieure Paris, 2013.
http://www.di.ens.fr/~ducas/Thesis/thesis.pdf. [Cited on pages 8, 12, 13,
14, and 20.]

165

http://www.di.ens.fr/~ducas/Thesis/thesis.pdf


Bibliography

[DBG+14] Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu, Tobias
Oder, Thomas Pöppelmann, Ana Helena Sánchez, and Peter Schwabe. High-speed
signatures from standard lattices. In Diego F. Aranha and Alfred Menezes, editors,
Progress in Cryptology - LATINCRYPT 2014 - Third International Conference
on Cryptology and Information Security in Latin America, Florianópolis, Brazil,
September 17-19, 2014, Revised Selected Papers, volume 8895 of Lecture Notes in
Computer Science, pages 84–103. Springer, 2014. [Cited on pages 3, 96, 117, 118,
119, 122, and 201.]

[dCRVV15] Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
Efficient software implementation of ring-LWE encryption. In Wolfgang Nebel and
David Atienza, editors, Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2015, Grenoble, France, March 9-13, 2015,
pages 339–344. ACM, 2015. [Cited on pages 4, 82, 83, 84, 88, 93, 118, and 130.]

[dCUHV13] Ruan de Clercq, Leif Uhsadel, Anthony Van Herrewege, and Ingrid Verbauwhede.
Ultra low-power implementation of ECC on the ARM cortex-M0+. IACR Cryptol-
ogy ePrint Archive, 2013:609, 2013. [Cited on page 127.]

[DDLL13a] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal Gaussians. In Ran Canetti and Juan A. Garay, editors,
CRYPTO (1), volume 8042 of Lecture Notes in Computer Science, pages 40–56.
Springer, 2013. Full version available at http://eprint.iacr.org/2013/383.pdf.
[Cited on pages 20, 21, 22, 38, 40, 41, 45, 73, 75, 95, 96, 97, 103, 105, 111, 118, 122,
127, 166, and 195.]

[DDLL13b] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal Gaussians. IACR Cryptology ePrint Archive, 2013:383,
2013. Full version of [DDLL13a]. [Cited on pages 40, 65, 69, and 128.]

[Dev86] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986. See
http://luc.devroye.org/rnbookindex.html. [Cited on pages 23, 69, 88, and 97.]

[DG07] Markus Dichtl and Jovan Dj. Golic. High-speed true random number generation
with logic gates only. In Pascal Paillier and Ingrid Verbauwhede, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2007, 9th International Work-
shop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture
Notes in Computer Science, pages 45–62. Springer, 2007. [Cited on page 97.]

[DG14] Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from discrete Gaus-
sians for lattice-based cryptography on a constrained device. Appl. Algebra Eng.
Commun. Comput., 25(3):159–180, 2014. [Cited on pages 8, 19, 20, 21, 33, 64, 69,
71, 88, 96, 97, 111, 115, 122, and 123.]

[DGK+12] Benedikt Driessen, Tim Güneysu, Elif Bilge Kavun, Oliver Mischke, Christof Paar,
and Thomas Pöppelmann. IPSecco: A lightweight and reconfigurable IPSec core.
In 2012 International Conference on Reconfigurable Computing and FPGAs, Re-
ConFig 2012, Cancun, Mexico, December 5-7, 2012, pages 1–7. IEEE, 2012. [Cited
on pages 3 and 202.]

166

http://eprint.iacr.org/2013/383.pdf
http://luc.devroye.org/rnbookindex.html


Bibliography

[DHH+15] Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter, Christof Paar,
Ana Helena Sánchez, and Peter Schwabe. High-speed curve25519 on 8-bit, 16-
bit, and 32-bit microcontrollers. Des. Codes Cryptography, 77(2-3):493–514, 2015.
[Cited on page 94.]

[DHS14] Yarkin Doröz, Yin Hu, and Berk Sunar. Homomorphic AES evaluation using
NTRU. IACR Cryptology ePrint Archive, 2014:39, 2014. [Cited on page 149.]

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based en-
cryption over NTRU lattices. In Palash Sarkar and Tetsu Iwata, editors, Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the The-
ory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, volume 8874 of Lecture Notes
in Computer Science, pages 22–41. Springer, 2014. [Cited on pages 64, 88, 96,
and 155.]

[DMH+11] Michael Dreschmann, Joachim Meyer, Michael Hübner, Rene Schmogrow, David
Hillerkuss, Jürgen Becker, Juerg Leuthold, and Wolfgang Freude. Implementation
of an ultra-high speed 256-point FFT for Xilinx Virtex-6 devices. In Industrial
Informatics (INDIN), 2011 9th IEEE International Conference on, pages 829 –834,
july 2011. [Cited on page 47.]

[DN12] Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Cryptanalysis of
NTRUSign countermeasures. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory
and Application of Cryptology and Information Security, Beijing, China, December
2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Science, pages
433–450. Springer, 2012. [Cited on pages 28 and 95.]

[DÖS13] Yarkin Doröz, Erdinç Öztürk, and Berk Sunar. Evaluating the hardware perfor-
mance of a million-bit multiplier. In 2013 Euromicro Conference on Digital System
Design, DSD 2013, Los Alamitos, CA, USA, September 4-6, 2013, pages 955–962.
IEEE, 2013. [Cited on pages 132 and 148.]

[DÖS15] Yarkin Doröz, Erdinç Öztürk, and Berk Sunar. Accelerating fully homomorphic
encryption in hardware. IEEE Trans. Computers, 64(6):1509–1521, 2015. [Cited
on pages 132, 137, and 149.]

[DS07] J.P. Deschamps and G. Sutter. Comparison of FPGA implementation of the mod M
reduction. Latin American applied research, 37(1):93–97, 2007. [Cited on page 49.]

[Duc14] Léo Ducas. Accelerating Bliss: the geometry of ternary polynomials. IACR Cryp-
tology ePrint Archive, 2014:874, 2014. [Cited on page 115.]

[EDW+14] Maik Ender, Gerd Düppmann, Alexander Wild, Thomas Pöppelmann, and Tim
Güneysu. A hardware-assisted proof-of-concept for secure VoIP clients on untrusted
operating systems. In International Conference on ReConFigurable Computing and
FPGAs, ReConFig14, Cancun, Mexico, December 8-10, 2014, pages 1–6. IEEE,
2014. [Cited on pages 3 and 201.]

167



Bibliography

[EGHP09] Thomas Eisenbarth, Tim Güneysu, Stefan Heyse, and Christof Paar. MicroEliece:
McEliece for embedded devices. In Christophe Clavier and Kris Gaj, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2009, 11th International Work-
shop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lec-
ture Notes in Computer Science, pages 49–64. Springer, 2009. [Cited on page 115.]

[EHL14] Kirsten Eisenträger, Sean Hallgren, and Kristin E. Lauter. Weak instances of
PLWE. In Antoine Joux and Amr M. Youssef, editors, Selected Areas in Cryptog-
raphy - SAC 2014 - 21st International Conference, Montreal, QC, Canada, August
14-15, 2014, Revised Selected Papers, volume 8781 of Lecture Notes in Computer
Science, pages 183–194. Springer, 2014. [Cited on page 73.]

[EHvM+10] Thomas Eisenbarth, Stefan Heyse, Ingo von Maurich, Thomas Poeppel-
mann, Johannes Rave, Cornel Reuber, and Alexander Wild. Evaluation
of SHA-3 candidates for 8-bit embedded processors. The Second SHA-3
Candidate Conference, Santa Barbara, California, USA, 2010, 2010. See
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/
papers/HEYSE_EvaluationSHA-3Candidatesfor8-bitProcessors.pdf. [Cited on
page 4.]

[ELOS15] Yara Elias, Kristin E. Lauter, Ekin Ozman, and Katherine E. Stange. Provably
weak instances of Ring-LWE. IACR Cryptology ePrint Archive, 2015:106, 2015.
[Cited on pages 31 and 73.]

[Eme09] Pavel Emeliyanenko. Efficient multiplication of polynomials on graphics hardware.
In Yong Dou, Ralf Gruber, and Josef M. Joller, editors, Advanced Parallel Process-
ing Technologies, 8th International Symposium, APPT 2009, Rapperswil, Switzer-
land, August 24-25, 2009, Proceedings, volume 5737 of Lecture Notes in Computer
Science, pages 134–149. Springer, 2009. [Cited on page 47.]

[EW11] Niall Emmart and Charles C. Weems. High precision integer multiplication with
a GPU using Strassen’s algorithm with multiple FFT sizes. Parallel Processing
Letters, 21(3):359–375, 2011. [Cited on page 148.]

[Fit14] Robert Fitzpatrick. Some Algorithms for Learning with Errors. PhD thesis, Royal
Holloway and Bedford New College, University of London, August 2014. See https:
//pure.royalholloway.ac.uk/portal/files/22811572/Thesis.pdf. [Cited on
page 31.]

[Fol14] Janos Follath. Gaussian sampling in lattice based cryptography. Tatra Mountains
Mathematical Publications, 60(3):1–23, 2014. [Cited on pages 8 and 20.]

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings,
volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer, 1986.
[Cited on pages 38 and 96.]

168

http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/HEYSE_EvaluationSHA-3Candidatesfor8-bitProcessors.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/HEYSE_EvaluationSHA-3Candidatesfor8-bitProcessors.pdf
https://pure.royalholloway.ac.uk/portal/files/22811572/Thesis.pdf
https://pure.royalholloway.ac.uk/portal/files/22811572/Thesis.pdf


Bibliography

[FSXY12] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Strongly
secure authenticated key exchange from factoring, codes, and lattices. In Marc Fis-
chlin, Johannes A. Buchmann, and Mark Manulis, editors, Public Key Cryptography
- PKC 2012 - 15th International Conference on Practice and Theory in Public Key
Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings, volume 7293
of Lecture Notes in Computer Science, pages 467–484. Springer, 2012. [Cited on
page 155.]

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive, 2012:144, 2012. [Cited on page 43.]

[Gal12] Steven D. Galbraith. Mathematics of public key cryptography. Cambridge University
Press, Cambridge, New York, 2012. [Cited on page 28.]

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (IoT): A vision, architectural elements, and fu-
ture directions. Future Generation Comp. Syst., 29(7):1645–1660, 2013. [Cited on
page 117.]

[GCB13] Tamas Györfi, Octavian Cret, and Zalan Borsos. Implementing modular FFTs in
FPGAs - A basic block for lattice-based cryptography. In 2013 Euromicro Con-
ference on Digital System Design, DSD 2013, Los Alamitos, CA, USA, September
4-6, 2013, pages 305–308. IEEE, 2013. [Cited on page 58.]

[GCHB12] Tamas Györfi, Octavian Cret, Guillaume Hanrot, and Nicolas Brisebarre. High-
throughput hardware architecture for the SWIFFT / SWIFFTX hash functions.
IACR Cryptology ePrint Archive, 2012:343, 2012. [Cited on pages 46 and 58.]

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009. [Cited on page 131.]

[GFS+12] Norman Göttert, Thomas Feller, Michael Schneider, Johannes A. Buchmann, and
Sorin A. Huss. On the design of hardware building blocks for modern lattice-
based encryption schemes. In Emmanuel Prouff and Patrick Schaumont, editors,
Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th International
Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume 7428 of
Lecture Notes in Computer Science, pages 512–529. Springer, 2012. [Cited on pages
2, 33, 34, 46, 57, 58, 60, 61, 64, 65, 66, 67, 69, 77, 78, and 79.]

[GG03] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, New York, NY, USA, 2 edition, 2003. [Cited on pages 8
and 15.]

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. In Burton S. Kaliski Jr., editor, Advances in Cryptology
- CRYPTO ’97, 17th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 1997, Proceedings, volume 1294 of Lecture Notes
in Computer Science, pages 112–131. Springer, 1997. [Cited on pages 2 and 95.]

169



Bibliography

[GH11] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-homomorphic encryp-
tion scheme. In Kenneth G. Paterson, editor, Advances in Cryptology - EURO-
CRYPT 2011 - 30th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 129–148. Springer, 2011.
[Cited on pages 131 and 148.]

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES
circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptol-
ogy - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer
Science, pages 850–867. Springer, 2012. [Cited on page 132.]

[GKA+10] Kris Gaj, Jens-Peter Kaps, Venkata Amirineni, Marcin Rogawski, Ekawat Hom-
sirikamol, and Benjamin Y. Brewster. ATHENa - Automated Tool for Hardware
EvaluatioN: Toward fair and comprehensive benchmarking of cryptographic hard-
ware using FPGAs. In International Conference on Field Programmable Logic and
Applications, FPL 2010, August 31 2010 - September 2, 2010, Milano, Italy, pages
414–421. IEEE, 2010. [Cited on page 55.]

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-
based cryptography: A signature scheme for embedded systems. In Emmanuel
Prouff and Patrick Schaumont, editors, Cryptographic Hardware and Embedded
Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium, September
9-12, 2012. Proceedings, volume 7428 of Lecture Notes in Computer Science, pages
530–547. Springer, 2012. [Cited on pages 2, 3, 34, 36, 38, 45, 46, 59, 95, 96, 97, 106,
113, 114, 116, 118, 195, and 202.]

[GLP15] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Lattice-based sig-
natures: Optimization and implementation on reconfigurable hardware. IEEE
Trans. Computers, 64(7):1954–1967, 2015. [Cited on pages 3, 7, 27, 34, 36, 38,
45, 61, 95, 195, and 201.]

[GN08a] Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within Mordell’s
inequality. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Sym-
posium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20,
2008, pages 207–216. ACM, 2008. [Cited on page 11.]

[GN08b] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P.
Smart, editor, Advances in Cryptology - EUROCRYPT 2008, 27th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in
Computer Science, pages 31–51. Springer, 2008. [Cited on page 38.]

[GØJ+11] Danilo Gligoroski, Rune Steinsmo Ødegård, Rune Erlend Jensen, Ludovic Perret,
Jean-Charles Faugère, Svein Johan Knapskog, and Smile Markovski. MQQ-SIG
- an ultra-fast and provably CMA resistant digital signature scheme. In Liqun

170



Bibliography

Chen, Moti Yung, and Liehuang Zhu, editors, Trusted Systems - Third Interna-
tional Conference, INTRUST 2011, Beijing, China, November 27-29, 2011, Revised
Selected Papers, volume 7222 of Lecture Notes in Computer Science, pages 184–203.
Springer, 2011. [Cited on page 122.]

[Gol06] Jovan Dj. Golic. New methods for digital generation and postprocessing of random
data. IEEE Trans. Computers, 55(10):1217–1229, 2006. [Cited on page 97.]

[GOPS13] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Soft-
ware speed records for lattice-based signatures. In Philippe Gaborit, editor, Post-
Quantum Cryptography - 5th International Workshop, PQCrypto 2013, Limoges,
France, June 4-7, 2013. Proceedings, volume 7932 of Lecture Notes in Computer
Science, pages 67–82. Springer, 2013. [Cited on pages 3, 82, 96, 101, 117, 118, 119,
121, 122, and 202.]

[GP08] Tim Güneysu and Christof Paar. Ultra high performance ECC over NIST primes
on commercial FPGAs. In Elisabeth Oswald and Pankaj Rohatgi, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2008, 10th International Work-
shop, Washington, D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of
Lecture Notes in Computer Science, pages 62–78. Springer, 2008. [Cited on pages
47, 78, 79, 114, and 116.]

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In Cynthia Dwork, editor, Proceedings
of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 197–206. ACM, 2008. [Cited on pages
12, 19, 69, 96, 97, and 121.]

[GPW+04] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheueling Chang
Shantz. Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In Marc
Joye and Jean-Jacques Quisquater, editors, Cryptographic Hardware and Embedded
Systems - CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings, volume 3156 of Lecture Notes in Computer Science, pages
119–132. Springer, 2004. [Cited on pages 15, 81, 90, 93, 94, and 129.]

[GRH11] Vinay Gautam, Kailash Chandra Ray, and Pauline Haddow. Hardware efficient
design of variable length FFT processor. In Rolf Kraemer, Adam Pawlak, Andreas
Steininger, Mario Schölzel, Jaan Raik, and Heinrich Theodor Vierhaus, editors, 14th
IEEE International Symposium on Design and Diagnostics of Electronic Circuits
& Systems, DDECS 2011, Cottbus, Germany, April 13-15, 2011, pages 309–312.
IEEE, 2011. [Cited on pages 46 and 47.]

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996,
pages 212–219. ACM, 1996. [Cited on pages 29 and 38.]

171



Bibliography

[GS66] W. Morven Gentleman and G. Sande. Fast Fourier transforms: for fun and profit. In
American Federation of Information Processing Societies: Proceedings of the AFIPS
’66 Fall Joint Computer Conference, November 7-10, 1966, San Francisco, Califor-
nia, USA, volume 29 of AFIPS Conference Proceedings, pages 563–578. AFIPS /
ACM / Spartan Books, Washington D.C., 1966. [Cited on page 83.]

[GSS+11] Benjamin Glas, Oliver Sander, Vitali Stuckert, Klaus D. Müller-Glaser, and Jür-
gen Becker. Prime field ECDSA signature processing for reconfigurable embedded
systems. Int. J. Reconfig. Comp., 2011:836460:1–836460:12, 2011. [Cited on pages
114 and 116.]

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In
Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science, pages
75–92. Springer, 2013. [Cited on page 131.]

[GTV12] Roberto Gutierrez, V. Torres, and Javier Valls. Hardware architecture of a Gaus-
sian noise generator based on the inversion method. IEEE Trans. on Circuits and
Systems, 59-II(8):501–505, 2012. [Cited on pages 96 and 97.]

[Har14] David Harvey. Faster arithmetic for number-theoretic transforms. J. Symb. Com-
put., 60:113–119, 2014. [Cited on page 82.]

[HG12] Stefan Heyse and Tim Güneysu. Towards one cycle per bit asymmetric encryp-
tion: Code-based cryptography on reconfigurable hardware. In Emmanuel Prouff
and Patrick Schaumont, editors, Cryptographic Hardware and Embedded Systems
- CHES 2012 - 14th International Workshop, Leuven, Belgium, September 9-12,
2012. Proceedings, volume 7428 of Lecture Notes in Computer Science, pages 340–
355. Springer, 2012. [Cited on pages 78 and 79.]

[HHHW09] Philip S. Hirschhorn, Jeffrey Hoffstein, Nick Howgrave-Graham, and William
Whyte. Choosing NTRUEncrypt parameters in light of combined lattice reduc-
tion and MITM approaches. In Michel Abdalla, David Pointcheval, Pierre-Alain
Fouque, and Damien Vergnaud, editors, Applied Cryptography and Network Secu-
rity, 7th International Conference, ACNS 2009, Paris-Rocquencourt, France, June
2-5, 2009. Proceedings, volume 5536 of Lecture Notes in Computer Science, pages
437–455, 2009. [Cited on pages 63, 78, and 93.]

[HHP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and
William Whyte. NTRUSIGN: digital signatures using the NTRU lattice. In Marc
Joye, editor, Topics in Cryptology - CT-RSA 2003, The Cryptographers’ Track at
the RSA Conference 2003, San Francisco, CA, USA, April 13-17, 2003, Proceed-
ings, volume 2612 of Lecture Notes in Computer Science, pages 122–140. Springer,
2003. [Cited on pages 28, 95, and 115.]

172



Bibliography

[HPO+15] James Howe, Thomas Pöppelmann, Máire O’Neill, Elizabeth O’Sullivan, and Tim
Güneysu. Practical lattice-based digital signature schemes. ACM Trans. Embedded
Comput. Syst., 14(3):41, 2015. [Cited on pages 3, 7, 27, 96, 117, and 201.]

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based pub-
lic key cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, Third
International Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998,
Proceedings, volume 1423 of Lecture Notes in Computer Science, pages 267–288.
Springer, 1998. [Cited on pages 2, 28, 40, and 63.]

[HPS08] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An introduction to mathe-
matical cryptography. Springer Verlag, 2008. [Cited on pages 11 and 28.]

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the short-
est and closest lattice vector problems. In Yeow Meng Chee, Zhenbo Guo, San
Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing, edi-
tors, Coding and Cryptology - Third International Workshop, IWCC 2011, Qingdao,
China, May 30-June 3, 2011. Proceedings, volume 6639 of Lecture Notes in Com-
puter Science, pages 159–190. Springer, 2011. [Cited on pages 11 and 13.]

[HPS+14] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and William
Whyte. Practical signatures from the partial Fourier recovery problem. In Ioana
Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, Applied Cryptogra-
phy and Network Security - 12th International Conference, ACNS 2014, Lausanne,
Switzerland, June 10-13, 2014. Proceedings, volume 8479 of Lecture Notes in Com-
puter Science, pages 476–493. Springer, 2014. [Cited on pages 96, 115, 118, 122,
and 155.]

[HS13] Michael Hutter and Peter Schwabe. NaCl on 8-bit AVR microcontrollers. In
Amr Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien, editors, Progress
in Cryptology - AFRICACRYPT 2013, 6th International Conference on Cryptology
in Africa, Cairo, Egypt, June 22-24, 2013. Proceedings, volume 7918 of Lecture
Notes in Computer Science, pages 156–172. Springer, 2013. [Cited on pages 81,
129, and 130.]

[HS14] Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I,
volume 8616 of Lecture Notes in Computer Science, pages 554–571. Springer, 2014.
Source code and documentation: https://shaih.github.io/HElib/. [Cited on
page 149.]

[HS15] Michael Hutter and Peter Schwabe. Multiprecision multiplication on AVR revisited.
J. Cryptographic Engineering, 5(3):201–214, 2015. [Cited on page 15.]

[HvMG13] Stefan Heyse, Ingo von Maurich, and Tim Güneysu. Smaller keys for code-based
cryptography: QC-MDPC McEliece implementations on embedded devices. In
Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware and

173

https://shaih.github.io/HElib/


Bibliography

Embedded Systems - CHES 2013 - 15th International Workshop, Santa Barbara,
CA, USA, August 20-23, 2013. Proceedings, volume 8086 of Lecture Notes in Com-
puter Science, pages 273–292. Springer, 2013. [Cited on pages 93 and 94.]

[HVP10] Jens Hermans, Frederik Vercauteren, and Bart Preneel. Speed records for NTRU.
In Josef Pieprzyk, editor, Topics in Cryptology - CT-RSA 2010, The Cryptogra-
phers’ Track at the RSA Conference 2010, San Francisco, CA, USA, March 1-5,
2010. Proceedings, volume 5985 of Lecture Notes in Computer Science, pages 73–88.
Springer, 2010. [Cited on pages 28, 63, and 78.]

[HW11] Michael Hutter and Erich Wenger. Fast multi-precision multiplication for public-
key cryptography on embedded microprocessors. In Bart Preneel and Tsuyoshi
Takagi, editors, Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th
International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings,
volume 6917 of Lecture Notes in Computer Science, pages 459–474. Springer, 2011.
[Cited on page 90.]

[JA11] Bernhard Jungk and Jürgen Apfelbeck. Area-efficient FPGA implementations of
the SHA-3 finalists. In Peter M. Athanas, Jürgen Becker, and René Cumplido,
editors, 2011 International Conference on Reconfigurable Computing and FPGAs,
ReConFig 2011, Cancun, Mexico, November 30 - December 2, 2011, pages 235–241.
IEEE Computer Society, 2011. [Cited on page 107.]

[JF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryp-
tography - 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November
29 - December 2, 2011. Proceedings, volume 7071 of Lecture Notes in Computer
Science, pages 19–34. Springer, 2011. [Cited on page 29.]

[Jou13] Antoine Joux. A new index calculus algorithm with complexity l(1/4+o(1)) in small
characteristic. In Tanja Lange, Kristin E. Lauter, and Petr Lisonek, editors, Selected
Areas in Cryptography - SAC 2013 - 20th International Conference, Burnaby, BC,
Canada, August 14-16, 2013, Revised Selected Papers, volume 8282 of Lecture Notes
in Computer Science, pages 355–379. Springer, 2013. [Cited on pages 1 and 29.]

[JS07] Team Member Kimmo Järvinen and Jorma Skyttä. Final project report: Crypto-
processor for elliptic curve digital signature algorithm (ECDSA), 2007. See http://
www.altera.com/literature/dc/2007/in_2007_dig_signature.pdf. [Cited on
pages 114 and 116.]

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related lattice
problems. In David S. Johnson, Ronald Fagin, Michael L. Fredman, David Harel,
Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest,
Walter L. Ruzzo, and Joel I. Seiferas, editors, Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts,
USA, pages 193–206. ACM, 1983. [Cited on page 11.]

[KL51] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist.,
22(1):79–86, 1951. [Cited on page 23.]

174

http://www.altera.com/literature/dc/2007/in_2007_dig_signature.pdf
http://www.altera.com/literature/dc/2007/in_2007_dig_signature.pdf


Bibliography

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chap-
man & Hall/Crc Cryptography and Network Security Series). Chapman & Hal-
l/CRC, 2007. [Cited on pages 28 and 29.]

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1997. [Cited on page 123.]

[KO63] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.
In Soviet physics doklady, volume 7, page 595, 1963. [Cited on page 91.]

[Koe13] John Koetsier. An inside look at the world’s newest quantum computing and nan-
otechnology center, 2013. See http://venturebeat.com/2013/05/15/an-inside-
look-at-the-worlds-newest-quantum-computing-and-nanotechnology-
center/. [Cited on pages 1 and 29.]

[KY09] A.A. Kamal and A.M. Youssef. An FPGA implementation of the NTRUEncrypt
cryptosystem. In Microelectronics (ICM), 2009 International Conference on, Mar-
rakech, Morocco, December 19-22, 2009, pages 209–212. IEEE, 2009. [Cited on
pages 28, 63, 78, and 79.]

[Lan14] Adeline Langlois. Lattice-Based Cryptography: Security Foundations and Con-
structions. PhD thesis, ENS de Lyon, October 2014. https://tel.archives-
ouvertes.fr/tel-01126931. [Cited on page 8.]

[Lep14] Tancrède Lepoint. Design and Implementation of Lattice-Based Cryptography. PhD
thesis, École Normale Supérieure and University of Luxembourg, June 2014. See
https://tel.archives-ouvertes.fr/tel-01069864. [Cited on pages 8 and 20.]

[LGK10] Zhe Liu, Johann Großschädl, and Ilya Kizhvatov. Efficient and side-channel resis-
tant RSA implementation for 8-bit AVR microcontrollers. In Proceedings of the 1st
International Workshop on the Security of the Internet of Things (SECIOT 2010),
Tokyo, Japan, November 29, 2010. IEEE Computer Society Press, 2010. [Cited on
pages 93, 94, and 129.]

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982. [Cited on pages 11
and 30.]

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are
collision resistant. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo
Wegener, editors, Automata, Languages and Programming, 33rd International Col-
loquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, volume
4052 of Lecture Notes in Computer Science, pages 144–155. Springer, 2006. [Cited
on page 95.]

[LM09] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding,
unique shortest vectors, and the minimum distance problem. In Shai Halevi, editor,
Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology

175

http://venturebeat.com/2013/05/15/an-inside-look-at-the-worlds-newest-quantum-computing-and-nanotechnology-center/
http://venturebeat.com/2013/05/15/an-inside-look-at-the-worlds-newest-quantum-computing-and-nanotechnology-center/
http://venturebeat.com/2013/05/15/an-inside-look-at-the-worlds-newest-quantum-computing-and-nanotechnology-center/
https://tel.archives-ouvertes.fr/tel-01126931
https://tel.archives-ouvertes.fr/tel-01126931
https://tel.archives-ouvertes.fr/tel-01069864


Bibliography

Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume
5677 of Lecture Notes in Computer Science, pages 577–594. Springer, 2009. [Cited
on page 13.]

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen.
SWIFFT: A modest proposal for FFT hashing. In Kaisa Nyberg, editor, Fast
Software Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzer-
land, February 10-13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes
in Computer Science, pages 54–72. Springer, 2008. [Cited on pages 17, 50, 58,
and 95.]

[LN13] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An update. In
Ed Dawson, editor, Topics in Cryptology - CT-RSA 2013 - The Cryptographers’
Track at the RSA Conference 2013, San Francisco,CA, USA, February 25-March
1, 2013. Proceedings, volume 7779 of Lecture Notes in Computer Science, pages
293–309. Springer, 2013. [Cited on pages 31, 33, and 64.]

[LN14] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic encryp-
tion schemes FV and YASHE. In David Pointcheval and Damien Vergnaud, editors,
Progress in Cryptology - AFRICACRYPT 2014 - 7th International Conference on
Cryptology in Africa, Marrakesh, Morocco, May 28-30, 2014. Proceedings, volume
8469 of Lecture Notes in Computer Science, pages 318–335. Springer, 2014. [Cited
on pages 42, 43, 132, 149, 150, and 196.]

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Aggelos Kiayias, editor, Topics in Cryptology - CT-RSA 2011 -
The Cryptographers’ Track at the RSA Conference 2011, San Francisco, CA, USA,
February 14-18, 2011. Proceedings, volume 6558 of Lecture Notes in Computer Sci-
ence, pages 319–339. Springer, 2011. [Cited on pages 19, 27, 31, 32, 33, 34, 45, 64,
67, and 82.]

[LPR+10a] Hans Löhr, Thomas Pöppelmann, Johannes Rave, Martin Steegmanns, and Marcel
Winandy. Trusted virtual domains on OpenSolaris: Usable secure desktop environ-
ments. In Proceedings of the Fifth ACM Workshop on Scalable Trusted Computing,
STC 2010, Chicago, IL, USA, October 4, 2010, pages 91–96. ACM, 2010. [Cited
on pages 4 and 203.]

[LPR10b] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, Advances in Cryptol-
ogy - EUROCRYPT 2010, 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, French Riviera, May 30 - June 3,
2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 1–
23. Springer, 2010. Presentation slides: http://crypto.rd.francetelecom.com/
events/eurocrypt2010/talks/slides-ideal-lwe.pdf. [Cited on pages 2, 14, 27,
31, 40, 45, 46, 56, 64, 82, 95, 176, and 177.]

[LPR10c] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings, 2010. Presentation of [LPR10b] given by Chris Peikert at

176

http://crypto.rd.francetelecom.com/events/eurocrypt2010/talks/slides-ideal-lwe.pdf
http://crypto.rd.francetelecom.com/events/eurocrypt2010/talks/slides-ideal-lwe.pdf


Bibliography

Eurocrypt’10. See http://www.cc.gatech.edu/~cpeikert/pubs/slides-ideal-
lwe.pdf. [Cited on pages 31, 64, and 82.]

[LPR12] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. IACR Cryptology ePrint Archive, 2012:230, 2012. Full version
of [LPR10b]. [Cited on page 31.]

[LS12] Gregory Landais and Nicolas Sendrier. Implementing CFS. In Steven D. Galbraith
and Mridul Nandi, editors, Progress in Cryptology - INDOCRYPT 2012, 13th Inter-
national Conference on Cryptology in India, Kolkata, India, December 9-12, 2012.
Proceedings, volume 7668 of Lecture Notes in Computer Science, pages 474–488.
Springer, 2012. [Cited on page 122.]

[LSR+15] Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Großschädl, Howon Kim, and
Ingrid Verbauwhede. Efficient Ring-LWE encryption on 8-bit AVR processors. In
Tim Güneysu and Helena Handschuh, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France,
September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in Computer
Science, pages 663–682. Springer, 2015. [Cited on pages 87 and 94.]

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium
on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 -
22, 2012, pages 1219–1234. ACM, 2012. [Cited on pages 40, 131, 132, 149, and 155.]

[Lyu08a] Vadim Lyubashevsky. Lattice-based identification schemes secure under active at-
tacks. In Ronald Cramer, editor, Public Key Cryptography - PKC 2008, 11th Inter-
national Workshop on Practice and Theory in Public-Key Cryptography, Barcelona,
Spain, March 9-12, 2008. Proceedings, volume 4939 of Lecture Notes in Computer
Science, pages 162–179. Springer, 2008. [Cited on page 96.]

[Lyu08b] Vadim Lyubashevsky. Towards Practical Lattice-Based Cryptography. PhD the-
sis, University of California, San Diego, 2008. http://www.di.ens.fr/~lyubash/
papers/dissertation_singlespaced.pdf. [Cited on pages 8 and 9.]

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In Mitsuru Matsui, editor, Advances in Cryptology
- ASIACRYPT 2009, 15th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009.
Proceedings, volume 5912 of Lecture Notes in Computer Science, pages 598–616.
Springer, 2009. [Cited on pages 34, 95, and 96.]

[Lyu11] Vadim Lyubashevsky. Lattice signatures without trapdoors. IACR Cryptology
ePrint Archive, 2011:537, 2011. [Cited on page 20.]

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT 2012 -

177

http://www.cc.gatech.edu/~cpeikert/pubs/slides-ideal-lwe.pdf
http://www.cc.gatech.edu/~cpeikert/pubs/slides-ideal-lwe.pdf
http://www.di.ens.fr/~lyubash/papers/dissertation_singlespaced.pdf
http://www.di.ens.fr/~lyubash/papers/dissertation_singlespaced.pdf


Bibliography

31st Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237
of Lecture Notes in Computer Science, pages 738–755. Springer, 2012. [Cited on
pages 34, 46, 70, 96, and 121.]

[MBDG14] Carlos Aguilar Melchor, Xavier Boyen, Jean-Christophe Deneuville, and Philippe
Gaborit. Sealing the leak on classical NTRU signatures. In Michele Mosca, editor,
Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014, Wa-
terloo, ON, Canada, October 1-3, 2014. Proceedings, volume 8772 of Lecture Notes
in Computer Science, pages 1–21. Springer, 2014. [Cited on pages 96, 115, 121,
and 155.]

[MBFK14] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killi-
jian. XPIRe: Private information retrieval for everyone. IACR Cryptology ePrint
Archive, 2014:1025, 2014. [Cited on pages 4, 82, and 118.]

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a crypto-
graphic perspective, volume 671 of The Kluwer International Series in Engineering
and Computer Science. Kluwer Academic Publishers, 2002. [Cited on pages 7
and 11.]

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions. Computational Complexity, 16(4):365–411, 2007. [Cited on
page 95.]

[Mic11] Daniele Micciancio. The geometry of lattice cryptography. In Alessandro Aldini
and Roberto Gorrieri, editors, Foundations of Security Analysis and Design VI
- FOSAD Tutorial Lectures, volume 6858 of Lecture Notes in Computer Science,
pages 185–210. Springer, 2011. [Cited on pages 10 and 11.]

[Mic14] Daniele Micciancio. CSE206A: Lattices algorithms and applications (spring 2014),
2014. Lecture notes of a course given in UCSD. See http://cseweb.ucsd.edu/
classes/sp14/cse206A-a/. [Cited on pages 8 and 11.]

[MLPJ13] Yuan Ma, Zongbin Liu, Wuqiong Pan, and Jiwu Jing. A high-speed elliptic curve
cryptographic processor for generic curves over GF(p). In Tanja Lange, Kristin E.
Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography - SAC 2013 -
20th International Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised
Selected Papers, volume 8282 of Lecture Notes in Computer Science, pages 421–437.
Springer, 2013. [Cited on page 116.]

[Mon85] Peter L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 1985. [Cited on pages 49 and 144.]

[Mon08] Mariano Monteverde. NTRU software implementation for constrained devices. Mas-
ter’s thesis, Katholieke Universiteit Leuven, 2008. See https://www.cosic.esat.
kuleuven.be/publications/thesis-161.pdf. [Cited on page 93.]

178

http://cseweb.ucsd.edu/classes/sp14/cse206A-a/
http://cseweb.ucsd.edu/classes/sp14/cse206A-a/
https://www.cosic.esat.kuleuven.be/publications/thesis-161.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-161.pdf


Bibliography

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards (Advances in Information Security). Springer,
2007. [Cited on page 72.]

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-
19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer Science, pages
700–718. Springer, 2012. [Cited on pages 96 and 121.]

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small pa-
rameters. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer
Science, pages 21–39. Springer, 2013. [Cited on pages 13, 25, and 34.]

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on Gaussian measures. In 45th Symposium on Foundations of Computer Science
(FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 372–381. IEEE
Computer Society, 2004. [Cited on pages 12 and 179.]

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on Gaussian measures. SIAM J. Comput., 37(1):267–302, 2007. Full version
of [MR04]. [Cited on page 12.]

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Daniel J. Bern-
stein, Johannes Buchmann, and Erik Dahmen, editors, Chapter in Post-quantum
Cryptography, pages 147–191. Springer, 2009. [Cited on pages 7, 10, 11, and 12.]

[MS06] Florence MacWilliams and Neil Sloane. The theory of error-correcting codes. North-
Holland, 2006. [Cited on page 68.]

[NLV11] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? In Christian Cachin and Thomas Ristenpart, editors,
Proceedings of the 3rd ACM Cloud Computing Security Workshop, CCSW 2011,
Chicago, IL, USA, October 21, 2011, pages 113–124. ACM, 2011. [Cited on pages
46, 56, 57, 59, and 131.]

[NR09] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of
GGH and NTRU signatures. J. Cryptology, 22(2):139–160, 2009. [Cited on pages
28, 95, and 115.]

[Nus80] Henri J. Nussbaumer. Fast polynomial transform algorithms for digital convolution.
Acoustics, Speech and Signal Processing, IEEE Transactions on, 28(2):205–215, Apr
1980. [Cited on pages 94 and 154.]

[Nus82] Henri J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms, vol-
ume 2 of Springer Series in Information Sciences. Springer, Berlin, DE, 1982.
[Cited on pages 8, 15, 16, 19, 94, 150, and 154.]

179



Bibliography

[NV09] Phong Q. Nguyen and Brigitte Valle. The LLL Algorithm: Survey and Applications.
Springer-Verlag Berlin Heidelberg, 1st edition, 2009. [Cited on page 11.]

[Ode13] Tobias Oder. Efficient microcontroller implementation of the bimodal lattice signa-
ture scheme, November 2013. Bachelor’s thesis, Hardware Security Group, Ruhr-
University Bochum. Supervised by Prof. Dr.-Ing. Tim Güneysu and Dipl.-Ing.
Thomas Pöppelmann. [Cited on page 117.]

[OPG14] Tobias Oder, Thomas Pöppelmann, and Tim Güneysu. Beyond ECDSA and RSA:
lattice-based digital signatures on constrained devices. In The 51st Annual Design
Automation Conference 2014, DAC ’14, San Francisco, CA, USA, June 1-5, 2014,
pages 1–6. ACM, 2014. [Cited on pages 3, 7, 27, 96, 117, and 202.]

[PCC+14] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James R. Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric
for accelerating large-scale datacenter services. In ACM/IEEE 41st International
Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA, June
14-18, 2014, pages 13–24. IEEE Computer Society, 2014. [Cited on pages 132, 136,
147, and 149.]

[PDG14a] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based signa-
tures on reconfigurable hardware. In Lejla Batina and Matthew Robshaw, editors,
Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, volume 8731
of Lecture Notes in Computer Science, pages 353–370. Springer, 2014. [Cited on
pages 3, 7, 27, 61, 82, 83, 84, 95, 103, 104, 106, 116, and 202.]

[PDG14b] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based sig-
natures on reconfigurable hardware. IACR Cryptology ePrint Archive, 2014:254,
2014. [Cited on pages 3, 7, 22, 24, 27, 95, and 203.]

[Pea68] Marshall C. Pease. An adaptation of the fast Fourier transform for parallel pro-
cessing. J. ACM, 15(2):252–264, 1968. [Cited on pages 46, 47, 52, 59, 61, and 142.]

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In Michael Mitzenmacher, editor, Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, pages 333–342. ACM, 2009. [Cited on pages 12, 13,
and 30.]

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Tal Rabin,
editor, Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of
Lecture Notes in Computer Science, pages 80–97. Springer, 2010. [Cited on pages
21, 22, and 25.]

180



Bibliography

[Pei14] Chris Peikert. Lattice cryptography for the Internet. In Michele Mosca, editor, Post-
Quantum Cryptography - 6th International Workshop, PQCrypto 2014, Waterloo,
ON, Canada, October 1-3, 2014. Proceedings, volume 8772 of Lecture Notes in
Computer Science, pages 197–219. Springer, 2014. [Cited on page 64.]

[Per03] Colin Percival. Rapid multiplication modulo the sum and difference of highly com-
posite numbers. Math. Comput., 72(241):387–395, 2003. [Cited on page 48.]

[PG12] Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic for lattice-
based cryptography on reconfigurable hardware. In Alejandro Hevia and Gregory
Neven, editors, Progress in Cryptology - LATINCRYPT 2012 - 2nd International
Conference on Cryptology and Information Security in Latin America, Santiago,
Chile, October 7-10, 2012. Proceedings, volume 7533 of Lecture Notes in Computer
Science, pages 139–158. Springer, 2012. [Cited on pages 3, 7, 45, 46, 58, 59, 143,
and 202.]

[PG13] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key
encryption on reconfigurable hardware. In Tanja Lange, Kristin E. Lauter, and Petr
Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th International
Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers,
volume 8282 of Lecture Notes in Computer Science, pages 68–85. Springer, 2013.
[Cited on pages 3, 27, 45, 58, 61, 63, 66, 77, 78, 79, and 202.]

[PG14] Thomas Pöppelmann and Tim Güneysu. Area optimization of lightweight lattice-
based encryption on reconfigurable hardware. In IEEE International Symposium
on Circuits and Systemss, ISCAS 2014, Melbourne, Victoria, Australia, June 1-5,
2014, pages 2796–2799. IEEE, 2014. [Cited on pages 3, 63, 91, 92, 111, and 202.]

[PNPM15a] Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrián Macías. Ac-
celerating homomorphic evaluation on reconfigurable hardware. In Tim Güneysu
and Helena Handschuh, editors, Cryptographic Hardware and Embedded Systems
- CHES 2015 - 17th International Workshop, Saint-Malo, France, September 13-
16, 2015, Proceedings, volume 9293 of Lecture Notes in Computer Science, pages
143–163. Springer, 2015. [Cited on pages 3, 27, 131, and 201.]

[PNPM15b] Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrián Macías. Ac-
celerating homomorphic evaluation on reconfigurable hardware. IACR Cryptology
ePrint Archive, 2015:631, 2015. [Cited on pages 3, 131, and 203.]

[POG15a] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-performance ideal
lattice-based cryptography on 8-bit ATxmega microcontrollers. In Kristin E. Lauter
and Francisco Rodríguez-Henríquez, editors, Progress in Cryptology - LATIN-
CRYPT 2015 - 4th International Conference on Cryptology and Information Se-
curity in Latin America, Guadalajara, Mexico, August 23-26, 2015, Proceedings,
volume 9230 of Lecture Notes in Computer Science, pages 346–365. Springer, 2015.
[Cited on pages 3, 27, 63, 81, 96, 117, and 201.]

181



Bibliography

[POG15b] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. Speed records for ideal
lattice-based cryptography on AVR. IACR Cryptology ePrint Archive, 2015:382,
2015. [Cited on pages 3, 81, and 203.]

[Pol71] J. M. Pollard. The fast Fourier transform in a finite field. Mathematics of Compu-
tation, 25(114):365–374, 1971. [Cited on page 15.]

[Pöp11] Thomas Pöppelmann. Efficient implementation of a digital signature scheme
based on low-density compact knapsacks on reconfigurable hardware, November
2011. Diploma thesis (equiv. to Master’s thesis), Hardware Security Group, Ruhr-
University Bochum. Supervised by Prof. Dr.-Ing. Tim Güneysu. [Cited on page 95.]

[PP09] Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for Students
and Practitioners. Springer-Verlag Berlin Heidelberg, 1st edition, 2009. [Cited on
page 28.]

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-
case assumptions on cyclic lattices. In Shai Halevi and Tal Rabin, editors, Theory
of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York,
NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in Computer
Science, pages 145–166. Springer, 2006. [Cited on page 95.]

[PTBW11] Albrecht Petzoldt, Enrico Thomae, Stanislav Bulygin, and Christopher Wolf. Small
public keys and fast verification forMultivariate Quadratic public key systems. In
Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28 -
October 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer Science,
pages 475–490. Springer, 2011. [Cited on page 115.]

[Rad72] C.M. Rader. Discrete convolutions via Mersenne transforms. IEEE Transactions
on Computers, 100(12):1269–1273, 1972. [Cited on page 48.]

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May
22-24, 2005, pages 84–93. ACM, 2005. [Cited on pages 2, 12, 13, and 64.]

[Reg09] Oded Regev. Lattices in computer science, 2009. Lecture notes of a course given in
Tel Aviv University. See http://www.cims.nyu.edu/~regev/teaching/lattices_
fall_2009/. [Cited on pages 8, 10, and 11.]

[Reg10] Oded Regev. The learning with errors problem (invited survey). In Proceedings of
the 25th Annual IEEE Conference on Computational Complexity, CCC 2010, Cam-
bridge, Massachusetts, June 9-12, 2010, pages 191–204. IEEE Computer Society,
2010. [Cited on page 12.]

[RG13] Steven Rich and Barton Gellman. NSA seeks quantum computer that could crack
most codes. The Washington Post, 2013. See http://wapo.st/19DycJT. [Cited on
pages 1 and 29.]

182

http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2009/
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2009/
http://wapo.st/19DycJT


Bibliography

[RJV+15] Sujoy Sinha Roy, Kimmo Järvinen, Frederik Vercauteren, Vassil S. Dimitrov, and
Ingrid Verbauwhede. Modular hardware architecture for somewhat homomorphic
function evaluation. In Tim Güneysu and Helena Handschuh, editors, Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International Workshop,
Saint-Malo, France, September 13-16, 2015, Proceedings, volume 9293 of Lecture
Notes in Computer Science, pages 164–184. Springer, 2015. [Cited on pages 132
and 149.]

[RRM12] Chester Rebeiro, Sujoy Sinha Roy, and Debdeep Mukhopadhyay. Pushing the limits
of high-speed GF(2m) elliptic curve. In Emmanuel Prouff and Patrick Schaumont,
editors, Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th Inter-
national Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume
7428 of Lecture Notes in Computer Science, pages 494–511. Springer, 2012. [Cited
on pages 78 and 79.]

[RRVV14] Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Verbauwhede.
Compact and side channel secure discrete Gaussian sampling. IACR Cryptology
ePrint Archive, 2014:591, 2014. [Cited on pages 97 and 154.]

[RS10] Markus Rückert and Michael Schneider. Estimating the security of lattice-based
cryptosystems. IACR Cryptology ePrint Archive, 2010:137, 2010. [Cited on page 59.]

[RVM+14] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,
and Ingrid Verbauwhede. Compact Ring-LWE cryptoprocessor. In Lejla Batina
and Matthew Robshaw, editors, Cryptographic Hardware and Embedded Systems -
CHES 2014 - 16th International Workshop, Busan, South Korea, September 23-26,
2014. Proceedings, volume 8731 of Lecture Notes in Computer Science, pages 371–
391. Springer, 2014. [Cited on pages 4, 18, 46, 47, 58, 59, 60, 61, 64, 66, 67, 77, 78,
79, 82, 83, 84, 107, 135, 137, 143, 146, 154, and 195.]

[RVV13] Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. High precision
discrete Gaussian sampling on FPGAs. In Tanja Lange, Kristin E. Lauter, and Petr
Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th International
Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers,
volume 8282 of Lecture Notes in Computer Science, pages 383–401. Springer, 2013.
[Cited on pages 21, 64, 65, 75, 96, 97, 111, 115, 122, and 123.]

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theor. Comput. Sci., 53:201–224, 1987. [Cited on page 11.]

[Sch11] Michael Schneider. Computing Shortest Lattice Vectors on Special Hardware. PhD
thesis, TU Darmstadt, November 2011. See http://tuprints.ulb.tu-darmstadt.
de/2829/. [Cited on page 8.]

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Math. Program., 66:181–199, 1994.
[Cited on page 11.]

183

http://tuprints.ulb.tu-darmstadt.de/2829/
http://tuprints.ulb.tu-darmstadt.de/2829/


Bibliography

[SG14] Pascal Sasdrich and Tim Güneysu. Efficient elliptic-curve cryptography using
Curve25519 on reconfigurable devices. In Diana Goehringer, Marco Domenico San-
tambrogio, João M. P. Cardoso, and Koen Bertels, editors, ARC, volume 8405
of Lecture Notes in Computer Science, pages 25–36. Springer, 2014. [Cited on
page 116.]

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blak-
ley and David Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO
’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings, volume 196
of Lecture Notes in Computer Science, pages 47–53. Springer, 1984. [Cited on
page 155.]

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, New Mexico, USA, 20-22 November 1994, pages 124–134. IEEE Computer
Society, 1994. [Cited on pages 1 and 29.]

[SM11] Daisuke Suzuki and Tsutomu Matsumoto. How to maximize the potential of FPGA-
based DSPs for modular exponentiation. IEICE Transactions, 94-A(1):211–222,
2011. [Cited on pages 114 and 116.]

[Soc06] IEEE Vehicular Technology Society. IEEE trial-use standard for wireless access in
vehicular environments - security services for applications and management mes-
sages. IEEE Std 1609.2-2006, pages 0–105, 2006. [Cited on page 1.]

[Sol99] Jerome A. Solinas. Generalized Mersenne numbers, 1999. CACR Technical Report
CORR 99-39, Faculty of Mathematics, University of Waterloo. Available from http:
//cacr.uwaterloo.ca/techreports/1999/corr99-39.pdf. [Cited on pages 51,
59, and 144.]

[SS71] Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer Zahlen.
Computing, 7(3-4):281–292, 1971. [Cited on page 15.]

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case prob-
lems over ideal lattices. In Kenneth G. Paterson, editor, Advances in Cryptology
- EUROCRYPT 2011 - 30th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Pro-
ceedings, volume 6632 of Lecture Notes in Computer Science, pages 27–47. Springer,
2011. [Cited on pages 40, 63, and 78.]

[SSHA08] A. Suleiman, H. Saleh, A. Hussein, and D. Akopian. A family of scalable FFT ar-
chitectures and an implementation of 1024-point radix-2 FFT for real-time commu-
nications. In Computer Design, 2008. ICCD 2008. IEEE International Conference
on, pages 321 –327, oct. 2008. [Cited on page 47.]

[SSRG11] Rabia Shahid, Malik Umar Sharif, Marcin Rogawski, and Kris Gaj. Use of embed-
ded FPGA resources in implementations of 14 round 2 SHA-3 candidates. In Russell
Tessier, editor, 2011 International Conference on Field-Programmable Technology,

184

http://cacr.uwaterloo.ca/techreports/1999/corr99-39.pdf
http://cacr.uwaterloo.ca/techreports/1999/corr99-39.pdf


Bibliography

FPT 2011, New Delhi, India, December 12-14, 2011, pages 1–9. IEEE, 2011. [Cited
on page 107.]

[Ste] Richard Stern. Hardware implementations of ECRYPT stream ciphers. VHDL
code available from http://eeweb.poly.edu/faculty/karri/stream_ciphers/
trivium.html, accessed July 25, 2013. [Cited on page 101.]

[STM] STMicroelectronics. UM0586 STM32 Cryptographic Library. http:
//www.st.com/st-web-ui/static/active/en/resource/technical/document/
user_manual/CD00208802.pdf. [Cited on pages 126, 127, and 196.]

[Suz07] Daisuke Suzuki. How to maximize the potential of FPGA resources for modular
exponentiation. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, 9th International Workshop, Vi-
enna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in
Computer Science, pages 272–288. Springer, 2007. [Cited on pages 78, 79, and 97.]

[SWM+10] Abdulhadi Shoufan, Thorsten Wink, H. Gregor Molter, Sorin A. Huss, and Eike
Kohnert. A novel cryptoprocessor architecture for the McEliece public-key cryp-
tosystem. IEEE Trans. Computers, 59(11):1533–1546, 2010. [Cited on page 115.]

[TLLV07] David B. Thomas, Wayne Luk, Philip Heng Wai Leong, and John D. Villasenor.
Gaussian random number generators. ACM Comput. Surv., 39(4), 2007. [Cited on
pages 96 and 97.]

[Var08] Michal Varchola. FPGA Based True Random Number Generators for Embedded
Cryptographic Applications. PhD thesis, Technical University of Kosice, 2008. [Cited
on page 70.]

[Vau03] Serge Vaudenay. Decorrelation: A theory for block cipher security. J. Cryptology,
16(4):249–286, 2003. [Cited on page 23.]

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
homomorphic encryption over the integers. In Henri Gilbert, editor, Advances in
Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, French Riviera, May 30 -
June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science,
pages 24–43. Springer, 2010. [Cited on page 131.]

[vEB81] Peter van Emde Boas. Another NP-complete partition problem and the complexity
of computing short vectors in a lattice. Technical Report 81-04, Universiteit van
Amsterdam. Mathematisch Instituut, 1981. [Cited on page 11.]

[vMG14] Ingo von Maurich and Tim Güneysu. Lightweight code-based cryptography: QC-
MDPC McEliece encryption on reconfigurable devices. In Design, Automation &
Test in Europe Conference & Exhibition, DATE 2014, Dresden, Germany, March
24-28, 2014, pages 1–6. IEEE, 2014. [Cited on page 79.]

[VOMV96] P.C. Van Oorschot, A.J. Menezes, and S.A. Vanstone. Handbook of applied cryp-
tography. CRC press, 1996. [Cited on pages 49, 123, and 144.]

185

http://eeweb.poly.edu/faculty/karri/stream_ciphers/trivium.html
http://eeweb.poly.edu/faculty/karri/stream_ciphers/trivium.html
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/CD00208802.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/CD00208802.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/CD00208802.pdf


Bibliography

[vzGS05] Joachim von zur Gathen and Jamshid Shokrollahi. Efficient FPGA-based Karat-
suba multipliers for polynomials over F2. In Bart Preneel and Stafford E. Tavares,
editors, Selected Areas in Cryptography, 12th International Workshop, SAC 2005,
Kingston, ON, Canada, August 11-12, 2005, Revised Selected Papers, volume 3897
of Lecture Notes in Computer Science, pages 359–369. Springer, 2005. [Cited on
page 46.]

[WCH14] Wei Wang, Zhilu Chen, and Xinming Huang. Accelerating leveled fully homo-
morphic encryption using GPU. In IEEE International Symposium on Circuits
and Systemss, ISCAS 2014, Melbourne, Victoria, Australia, June 1-5, 2014, pages
2800–2803. IEEE, 2014. [Cited on pages 132 and 148.]

[WH13] Wei Wang and Xinming Huang. FPGA implementation of a large-number multiplier
for fully homomorphic encryption. In 2013 IEEE International Symposium on
Circuits and Systems (ISCAS2013), Beijing, China, May 19-23, 2013, pages 2589–
2592. IEEE, 2013. [Cited on page 148.]

[WHC+12] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar. Accelerating
fully homomorphic encryption using GPU. In IEEE Conference on High Perfor-
mance Extreme Computing, HPEC 2012, Waltham, MA, USA, September 10-12,
2012, pages 1–5. IEEE, 2012. [Cited on page 148.]

[WHC+15] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar. Exploring the feasibility of
fully homomorphic encryption. Computers, IEEE Transactions on, 64(3):698–706,
March 2015. [Cited on pages 132 and 148.]

[WHCB13] Patrick Weiden, Andreas Hülsing, Daniel Cabarcas, and Johannes Buchmann. In-
stantiating treeless signature schemes. IACR Cryptology ePrint Archive, 2013:65,
2013. [Cited on pages 121 and 122.]

[WHEW14] Wei Wang, Xinming Huang, Niall Emmart, and Charles C. Weems. VLSI design
of a large-number multiplier for fully homomorphic encryption. IEEE Trans. VLSI
Syst., 22(9):1879–1887, 2014. [Cited on pages 132 and 148.]

[Win96] FranzWinkler. Polynomial Algorithms in Computer Algebra (Texts and Monographs
in Symbolic Computation). Springer, 1 edition, 8 1996. [Cited on pages 8, 15, 16,
and 17.]

[WLT07] Chin-Long Wey, Shin-Yo Lin, and Wei-Chien Tang. Efficient memory-based FFT
processors for OFDM applications. In IEEE International Conference on Elec-
tro/Information Technology, 2007, pages 345 –350, May 2007. [Cited on pages 46
and 47.]

[Xag10] Keita Xagawa. Cryptography with Lattices. PhD thesis, Department of Math-
ematical and Computing Sciences, Tokyo Institute of Technology, 2010. http:
//xagawa.net/pdf/2010Thesis.pdf. [Cited on pages 8 and 11.]

[Xil09a] Xilinx. Spartan-6 FPGA DSP48A1 slice user guide. See http://www.xilinx.com/
support/documentation/user_guides/ug389.pdf, 2009. [Cited on page 74.]

186

http://xagawa.net/pdf/2010Thesis.pdf
http://xagawa.net/pdf/2010Thesis.pdf
http://www.xilinx.com/support/documentation/user_guides/ug389.pdf
http://www.xilinx.com/support/documentation/user_guides/ug389.pdf


Bibliography

[Xil09b] Xilinx. XST user guide. See http://www.xilinx.com/support/documentation/
sw_manuals/xilinx12_2/xst.pdf, 2009. [Cited on page 52.]

[Xil14] Xilinx. Vivado design suite user guide - high-level synthesis. See
http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-
intro-fpga-design-hls.pdf, 2014. [Cited on page 50.]

[ZZD+15] Jiang Zhang, Zhenfeng Zhang, Jintai Ding, Michael Snook, and Özgür Dagdelen.
Authenticated key exchange from ideal lattices. In Elisabeth Oswald and Marc Fis-
chlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture
Notes in Computer Science, pages 719–751. Springer, 2015. [Cited on pages 80
and 155.]

187

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/xst.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/xst.pdf
http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf




List of Abbreviations

ABE attribute-based encryption

AES advanced encryption standard

AKE authenticated key exchange

ASIC application specific integrated circuit

AVX advanced vector extensions

BG Bai-Galbraith

BGV Brakerski-Gentry-Vaikuntanathan

BKW Blum-Kalai-Wasserman

BLISS bimodal lattice-based signature schemes

CCA chosen ciphertext attack

CDT cumulative distribution table

CPA chosen plaintext attack

CRT Chinese remainder theorem

CT Cooley-Tukey

CVP closest vector problem

DCK decisional compact knapsack

DIT decimation-in-time

DIF decimation-in-frequency

DLP discrete logarithm problem

DRAM dynamic random access memory

DSA digital signature algorithm

DSP digital signal processor



Abbreviations

DSPR decisional small polynomial ratio

DSS digital signature scheme

ECC elliptic curve cryptography

ECDSA elliptic curve digital signature algorithm

FF flip-flop

FFT fast Fourier transform

FHE fully homomorphic encryption

FPGA field-programmable gate array

FPU floating point unit

FSM finite-state machine

GLP Güneysu-Lyubashevsky-Pöppelmann

GPU graphics processing unit

GS Gentleman-Sande

HLS high-level synthesis

IBE identity-based encryption

INTT inverse number theoretic transform

IOT Internet of things

KL Kullback-Leibler

LFSR linear feedback shift register

LLL Lenstra-Lenstra-Lovász

LPN learning parity with noise

LTV López-Alt-Tromer-Vaikuntanathan

LWE learning with errors

MAC multiply-accumulate

NAF non-adjacent form

NTRU N-th degree truncated polynomial ring

NTT number theoretic transform

PAR place-and-route

190



Abbreviations

PCIe peripheral component interconnect express

PE processing element

PKE public-key encryption

PPT probabilistic polynomial time

PQC post-quantum cryptography

PRNG pseudo-random number generator

RLWE ring learning with errors

RNG random number generator

ROM read-only memory

RSA Rivest-Shamir-Adleman

RSIS ring short integer solution

SHE somewhat homomorphic encryption

SIMD single instruction multiple data

SIS short integer solution

SIVP shortest independent vectors problem

SMAS2 shifting-addition-multiplication-subtraction-subtraction

SVP shortest vector problem

TLS transport layer security

TRNG true random number generator

YASHE yet another somewhat homomorphic encryption

191





List of Figures

4.1 Block structure of the processing element (PE). . . . . . . . . . . . . . . . . . . . 49
4.2 Barret reduction modulo 7681 implemented in Vivado HLS. . . . . . . . . . . . . 51
4.3 Pipelined reduction modulo q = 8383489 where multiplication by the constant

5119 is realized with shift-and-adds. . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Architecture of our implementation of the microcode engine showing a particular

instance of our generic lattice processor with three additional registers R4-6. . . . 54

5.1 Gaussian sampler using the cumulative distribution table (CDT) method and an
array of comparators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Architecture of our RLWEenc core using our microcode engine with three addi-
tional registers R4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Block diagram of our log2 (q)×log2 (q)-bit multiplier, log2 (q) adder, and reduction
modulo q for q = 4093 and q = 4096. . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Block diagram of the lightweight RLWEenc encryption circuit where the public
key a,p is stored in BRAM1 and the ciphertext c1, c2 in BRAM2. . . . . . . . . . . . 75

6.1 Signal flow graph for a multiplication of a polynomial x by a pre-transformed
polynomial ã = NTTCT,ψno→bo(a), using the NTTCT,ψno→bo and INTTGS,ψ

−1

bo→no algorithms. 85
6.2 Comparison of our NTT implementation using NTTCT,ψno→bo and INTTGS,ψ

−1

bo→no with
a naive implementation of polynomial multiplication using the straightforward
NTT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Modular multiplication for q = 12289. . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1 Simplified block diagram of our GLP signing engine showing the main blocks
Lattice Processor, Hash, and Sparse Multiplication. . . . . . . . . . . . . . 98

7.2 Detailed architecture of our GLP signing engine. . . . . . . . . . . . . . . . . . . . 99
7.3 Block diagram of our CDT sampler that generates two samples x′1, x′2 of standard

deviation σ′ ≈ 19.53 which are combined to a sample x = x′1+11x′2 with standard
deviation σ = 215.73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4 Block diagram of the Bernoulli sampler using two instantiations of Trivium as
PRNG and two Bexp(-x/f) components (only one is shown in more detail). . . . . 105

7.5 Block diagram our BLISS-I signing engine. . . . . . . . . . . . . . . . . . . . . . . 108

9.1 Dataflow diagram, based on [Baa05, Figure 3], of a 64-point cached-FFT split
into two epochs with eight coefficients in each group/cache parameterized as
(n=64, E=2, C=8, G=8, P=3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.2 Block diagram of our HomomorphicCore core used to implement YASHE. . . . . . 138



List of Figures

9.3 Usage of burst mode when performing the reordering when writing coefficients
from the internal buffer to the external DRAM for a cached-NTT with parameters
(n = 64, E = 2,G = 8) and K = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.4 Usage of burst transfers between the internal cache (BRAM) and the main mem-
ory (DRAM) with cached-NTT parameters (n = 64, E = 2, G = 8) and a memory
transfer command using [reorder,bitrev]. . . . . . . . . . . . . . . . . . . . . . . . 143

194



List of Tables

3.1 Security levels, ciphertext sizes, public key sizes, and secret key sizes of previously
proposed RLWEenc parameter sets. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 GLP signature parameters [GLP12,GLP15]. . . . . . . . . . . . . . . . . . . . . . 38
3.3 BLISS signature parameters [DDLL13a]. . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 YASHE parameter sets and supported number of multiplicative levels for different

plaintext moduli t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Basic instruction set of the proposed ideal lattice microcode engine. . . . . . . . . 53
4.3 Resource consumption and performance results for different instantiations of the

PE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Resource consumption and performance results for our NTT-based polynomial

multiplier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Resource consumption and performance results for our schoolbook algorithm-

based polynomial multiplier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Comparison of the polynomial multiplier designs of Aysu et al. [APS13] (APS),

Chen et al. [CMV+14] (CMVRCPV), and Roy et al. [RVM+14] (RVMCV). . . . . . . . 60

5.1 Operation counts for RLWEenc when using the NTT. . . . . . . . . . . . . . . . . 67
5.2 Bit-error rate for the encryption and decryption of 160,000,000 bytes of plaintext

when removing a certain number x of least significant bits of every coefficient of
c2 in RLWEenc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Performance, resource consumption, and precision of the core part (shaded gray
in Figure 5.1) of our Gaussian sampler on a Virtex-6 LX75T (post-PAR). . . . . 72

5.5 Resource consumption and performance of our RLWEenc core on a Virtex-6 LX75T
(post-PAR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Resource consumption and performance of our area optimized FPGA implemen-
tation of RLWEenc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Performance comparison of our implementations with other implementations of
80-bit to 128-bit secure PKEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Cycle counts and flash memory consumption in bytes of our implementation of
RLWEenc on an 8-bit ATxmega128 microcontroller using the NTT. . . . . . . . . 90

6.3 Cycle counts and flash memory consumption (in bytes) of our implementation of
RLWEenc on an 8-bit ATxmega128 microcontroller using the schoolbook algorithm. 91

6.4 Cycle counts and flash memory consumption (in bytes) of our implementation of
RLWEenc on an 8-bit ATxmega128 microcontroller using the Karatsuba algorithm. 92



List of Tables

6.5 Cycle counts and flash memory consumption (in bytes) of our implementation of
RLWEenc on an 8-bit ATxmega128 microcontroller using the Karatsuba algorithm
with a modified parameter q=4096. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.6 Comparison of our AVR implementation of the NTT and RLWEenc with related
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 Detailed performance evaluation of the main components of our GLP implemen-
tation for a short message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3 Performance and resource consumption of all three variants of our GLP imple-
mentation targeting a Xilinx Spartan-6 LX25 (speed-grade -3). . . . . . . . . . . 103

7.4 Performance and resource consumption of all three variants of our GLP imple-
mentation targeting a Xilinx Virtex-6 LX75T (speed-grade -3). . . . . . . . . . . 103

7.5 Huffman table for signature compression (BLISS-I parameter set). . . . . . . . . . 109
7.7 Performance and resource consumption of our implementation of various BLISS

parameter sets on reconfigurable hardware. . . . . . . . . . . . . . . . . . . . . . 112
7.9 Signing and verification performance of our FPGA implementation of GLP and

BLISS in comparison with implementations of other signature schemes. . . . . . . 116

8.1 Comparison of performance and signature size of selected post-quantum signature
software implementations on microprocessors. . . . . . . . . . . . . . . . . . . . . 122

8.3 Implementation of the NTT butterfly operation of Algorithm 1 in C (on the left)
and assembly (on the right) on the ARM Cortex-M4F. . . . . . . . . . . . . . . . 124

8.4 Performance measurement of the major building blocks of our BLISS-I implemen-
tation on the Cortex-M4F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.6 Results for our implementation of key generation, signing, and verification of
BLISS-I on the Cortex-M4F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.8 Comparison of the most efficient instantiation of our implementation with the
RSA and ECC implementation of the STM32 Cryptographic Library (target de-
vice: STM32F4xx family) [STM]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.9 Cycle counts and flash memory consumption in bytes for the implementation of
BLISS on an 8-bit ATxmega128 microcontroller. . . . . . . . . . . . . . . . . . . . 128

8.11 Comparison of our AVR implementation of BLISS with related work. . . . . . . . 129

9.1 Configuration options (n,E,C,G, P ) of the cached-FFT for various values of n
usually used in RLWE-based homomorphic cryptography. . . . . . . . . . . . . . 135

9.2 Commands that are used to implement YASHE with HomomorphicCore where
depending on the configuration of each memory transfer command different burst
widths can be realized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.3 Resource consumption of our implementation of YASHE (including the communi-
cation interface). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.4 Cycle counts and runtimes for the different evaluation algorithms of YASHE mea-
sured on the Catapult board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.5 Software performance of our prototype implementation of the YASHE evaluation
operations as described in Section 9.5. . . . . . . . . . . . . . . . . . . . . . . . . 150

9.7 Software performance of an implementation of YASHE obtained from [LN14]. . . 150

196



List of Algorithms

1 Fast Iterative Decimation-in-Time Number Theoretic Transform [CLRS09] . . . . 18
2 Bit-Reversal of an Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Sampling Bexp(−x/f) for x ∈ [0, 2`) . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Sampling DZ+,σbin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Sampling DZ+,kσbin for k ∈ Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 Sampling DZ,kσbin for k ∈ Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7 Sampling Ba � Bb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8 RLWEenc Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9 RLWEenc Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
10 RLWEenc Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11 GLP Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
12 GLP Signing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
13 GLP Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
14 GLP Higher-Order Transformation y(1) . . . . . . . . . . . . . . . . . . . . . . . . 36
15 GLP Signature Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
16 GLP Random Oracle Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . 37
17 BLISS Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
18 BLISS Signing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
19 BLISS Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
20 Generic Reduction of x mod q . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
21 Reduction x mod 12289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
22 Reduction x mod 8383489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
23 RLWEenc Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
24 RLWEenc Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
25 RLWEenc Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
26 Additive Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
27 Additive Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
28 RLWEenc Encryption Using the Schoolbook Algorithm . . . . . . . . . . . . . . . 74
29 Bernoulli Sampling: Bexp(−x/f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
30 Rejection Sampling Using Algorithm 29 . . . . . . . . . . . . . . . . . . . . . . . 76
31 CT Forward NTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
32 GS Inverse NTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
33 Bit-Reversal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
34 Cached-NTT Reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
35 Forward Transformation in RMult . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
36 Pointwise Multiplication and Inverse Transformation in RMult . . . . . . . . . . . 145
37 Key Switching in YASHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146





About the Author

Author information as of June 2015.

Personal Data

Name Thomas Pöppelmann

Address Hardware Security Group, ID 2/647, Uni-
versitätsstr. 150, 44801 Bochum, Germany

Email thomas.poeppelmann@rub.de

Date of birth August 13, 1986

Place of birth Oelde, Germany

Education
Ruhr University Bochum January 2012 - July 2015
PhD candidate in the Hardware Security Group supervised by Prof. Dr.-Ing. Tim Güneysu
and external member of the Research Training Group UbiCrypt. Research with focus on
lattice-based cryptography, reconfigurable computing, and embedded systems.

University of Strathclyde, Glasgow September 2010 - January 2011
Semester abroad in the Department of Electronic & Electrical Engineering.

Ruhr University Bochum September 2006 - November 2011
Study of "Security in Information Technology" finished with a diploma (equiv. to a Master’s
degree). Department of Electrical Engineering and Information Technology.

Professional Experience

Hardware Security Group, Ruhr University Bochum Bochum, Germany
Research Assistant January 2012 - June 2015

Involved in German Research Foundation and EU funded projects on post-quantum
cryptography. Teaching assistant for bachelor course "Embedded Processors" in 2012 to 2014.
Supervision of seminar, bachelor, and master theses. Participation in industry projects.

Microsoft Research Redmond, USA
Research Intern September 2014 - December 2014

Hardware implementation of a homomorphic encryption scheme targeting an FPGA-based
cloud computing accelerator.



List of Algorithms

Fraunhofer Institute for Secure Information Technology Darmstadt, Germany
Research Intern February 2011 - April 2011

Analysis of vulnerabilities in the usage of the Amazon Web Services (AWS) compute cloud.

LMF, Ruhr University Bochum Bochum, Germany
Student Assistant August 2008 - June 2010

Programming of the model test track (scale of 1:2) vehicle control software for a system for
fast, reliable, and on-time transportation of goods through underground pipelines in densely
populated urban areas (Cargo Cap).

200



Publications and Academic Activities

In the following, all formal and informal publications of the author of this thesis are listed
(information as of June 2015). Additionally, we list invited talks, academic awards, and
selected attended conferences, workshops, and summer schools.

Peer-Reviewed Journal Papers

� James Howe, Thomas Pöppelmann, Máire O’Neill, Elizabeth O’Sullivan, and Tim
Güneysu. Practical lattice-based digital signature schemes. ACM Trans. Embedded
Comput. Syst., 14(3):41, 2015

� Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Lattice-based
signatures: Optimization and implementation on reconfigurable hardware. IEEE Trans.
Computers, 64(7):1954–1967, 2015

Peer-Reviewed Conference Proceeding

� Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrián Macías.
Accelerating homomorphic evaluation on reconfigurable hardware. In Tim Güneysu and
Helena Handschuh, editors, Cryptographic Hardware and Embedded Systems - CHES 2015
- 17th International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings,
volume 9293 of Lecture Notes in Computer Science, pages 143–163. Springer, 2015

� Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-performance ideal
lattice-based cryptography on 8-bit ATxmega microcontrollers. In Kristin E. Lauter and
Francisco Rodríguez-Henríquez, editors, Progress in Cryptology - LATINCRYPT 2015 -
4th International Conference on Cryptology and Information Security in Latin America,
Guadalajara, Mexico, August 23-26, 2015, Proceedings, volume 9230 of Lecture Notes in
Computer Science, pages 346–365. Springer, 2015

� Maik Ender, Gerd Düppmann, Alexander Wild, Thomas Pöppelmann, and Tim
Güneysu. A hardware-assisted proof-of-concept for secure VoIP clients on untrusted
operating systems. In International Conference on ReConFigurable Computing and
FPGAs, ReConFig14, Cancun, Mexico, December 8-10, 2014, pages 1–6. IEEE, 2014

� Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu, Tobias Oder,
Thomas Pöppelmann, Ana Helena Sánchez, and Peter Schwabe. High-speed signatures
from standard lattices. In Diego F. Aranha and Alfred Menezes, editors, Progress in
Cryptology - LATINCRYPT 2014 - Third International Conference on Cryptology and
Information Security in Latin America, Florianópolis, Brazil, September 17-19, 2014,
Revised Selected Papers, volume 8895 of Lecture Notes in Computer Science, pages
84–103. Springer, 2014



List of Algorithms

� Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based signatures
on reconfigurable hardware. In Lejla Batina and Matthew Robshaw, editors,
Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, volume 8731 of
Lecture Notes in Computer Science, pages 353–370. Springer, 2014

� Tobias Oder, Thomas Pöppelmann, and Tim Güneysu. Beyond ECDSA and RSA:
lattice-based digital signatures on constrained devices. In The 51st Annual Design
Automation Conference 2014, DAC ’14, San Francisco, CA, USA, June 1-5, 2014, pages
1–6. ACM, 2014

� Thomas Pöppelmann and Tim Güneysu. Area optimization of lightweight lattice-based
encryption on reconfigurable hardware. In IEEE International Symposium on Circuits
and Systemss, ISCAS 2014, Melbourne, Victoria, Australia, June 1-5, 2014, pages
2796–2799. IEEE, 2014

� Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key
encryption on reconfigurable hardware. In Tanja Lange, Kristin E. Lauter, and Petr
Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th International
Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume
8282 of Lecture Notes in Computer Science, pages 68–85. Springer, 2013

� Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Software speed
records for lattice-based signatures. In Philippe Gaborit, editor, Post-Quantum
Cryptography - 5th International Workshop, PQCrypto 2013, Limoges, France, June 4-7,
2013. Proceedings, volume 7932 of Lecture Notes in Computer Science, pages 67–82.
Springer, 2013

� Josep Balasch, Baris Ege, Thomas Eisenbarth, Benoît Gérard, Zheng Gong, Tim
Güneysu, Stefan Heyse, Stéphanie Kerckhof, François Koeune, Thomas Plos, Thomas
Pöppelmann, Francesco Regazzoni, François-Xavier Standaert, Gilles Van Assche,
Ronny Van Keer, Loïc van Oldeneel tot Oldenzeel, and Ingo von Maurich. Compact
implementation and performance evaluation of hash functions in ATtiny devices. In
Stefan Mangard, editor, Smart Card Research and Advanced Applications - 11th
International Conference, CARDIS 2012, Graz, Austria, November 28-30, 2012, Revised
Selected Papers, volume 7771 of Lecture Notes in Computer Science, pages 158–172.
Springer, 2012

� Benedikt Driessen, Tim Güneysu, Elif Bilge Kavun, Oliver Mischke, Christof Paar, and
Thomas Pöppelmann. IPSecco: A lightweight and reconfigurable IPSec core. In 2012
International Conference on Reconfigurable Computing and FPGAs, ReConFig 2012,
Cancun, Mexico, December 5-7, 2012, pages 1–7. IEEE, 2012

� Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic for lattice-based
cryptography on reconfigurable hardware. In Alejandro Hevia and Gregory Neven,
editors, Progress in Cryptology - LATINCRYPT 2012 - 2nd International Conference on
Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10,
2012. Proceedings, volume 7533 of Lecture Notes in Computer Science, pages 139–158.
Springer, 2012

202



List of Algorithms

� Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based
cryptography: A signature scheme for embedded systems. In Emmanuel Prouff and
Patrick Schaumont, editors, Cryptographic Hardware and Embedded Systems - CHES
2012 - 14th International Workshop, Leuven, Belgium, September 9-12, 2012.
Proceedings, volume 7428 of Lecture Notes in Computer Science, pages 530–547. Springer,
2012

� Sven Bugiel, Stefan Nürnberger, Thomas Pöppelmann, Ahmad-Reza Sadeghi, and
Thomas Schneider. Amazonia: When elasticity snaps back. In Yan Chen, George
Danezis, and Vitaly Shmatikov, editors, Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS 2011, Chicago, Illinois, USA, October
17-21, 2011, pages 389–400. ACM, 2011

� Hans Löhr, Thomas Pöppelmann, Johannes Rave, Martin Steegmanns, and Marcel
Winandy. Trusted virtual domains on OpenSolaris: Usable secure desktop environments.
In Proceedings of the Fifth ACM Workshop on Scalable Trusted Computing, STC 2010,
Chicago, IL, USA, October 4, 2010, pages 91–96. ACM, 2010

Workshops without Proceedings

� Thomas Eisenbarth, Stefan Heyse, Ingo von Maurich, Thomas Poeppelmann, Johannes
Rave, Cornel Reuber, and Alexander Wild. Evaluation of SHA-3 candidates for 8-bit
embedded processors. The Second SHA-3 Candidate Conference, Santa Barbara,
California, USA, 2010.

Technical Reports

� Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. Speed records for ideal
lattice-based cryptography on AVR. IACR Cryptology ePrint Archive, 2015:382, 2015

� Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrián Macías.
Accelerating homomorphic evaluation on reconfigurable hardware. IACR Cryptology
ePrint Archive, 2015:631, 2015

� Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based signatures
on reconfigurable hardware. IACR Cryptology ePrint Archive, 2014:254, 2014

� Josep Balasch, Baris Ege, Thomas Eisenbarth, Benoît Gérard, Zheng Gong, Tim
Güneysu, Stefan Heyse, Stéphanie Kerckhof, François Koeune, Thomas Plos, Thomas
Pöppelmann, Francesco Regazzoni, François-Xavier Standaert, Gilles Van Assche,
Ronny Van Keer, Loïc van Oldeneel tot Oldenzeel, and Ingo von Maurich. Compact
implementation and performance evaluation of hash functions in ATtiny devices. IACR
Cryptology ePrint Archive, 2012:507, 2012

Invited Talks

� Implementing Lattice-Based Cryptography on Embedded Devices. Summer school on
real-world crypto and privacy 2015, Sibenik, Croatia, June 2015

203



List of Algorithms

� Efficient Implementation of Ideal Lattice-Based Cryptography. HGI-Kolloquium, Ruhr
University Bochum, July 2014

� Practical Lattice-Based Cryptography. ClSIT Seminar, Monash University, Melbourne,
Australia, June 2014

� Practical Lattice-Based Signatures. Aric Seminar, ENS Lyon, France, January 2014
� Software Speed Records for Lattice-Based Signatures. CDC Oberseminar, TU

Darmstadt, Germany, June 2013
� Implementation of a Practical Lattice-Based Signature Scheme on Reconfigurable

Hardware. CDC Oberseminar, TU Darmstadt, Germany, June 2012

Awards and Stipends

� CAST-Förderpreis IT-Sicherheit 2012, first price in category master/diploma thesis
� European Trusted Infrastructure Summer School 2011 (ETISS’11), Darmstadt, Germany,

full stipend

Participation in Selected Conferences, Workshops, and Summer
Schools

� Summer School on Real-World Crypto and Privacy 2015 (Sibenik, Croatia)
� Real World Crypto Workshop 2015 (London, UK)
� ISCAS 2014 (Melbourne, Australia)
� CryptArchi 2014 (Annecy, France)
� CHES 2013 (Santa Barbara, USA)
� Selected Areas in Cryptography 2013 (Burnaby, Canada)
� CryptArchi 2013 (Fréjus, France)
� PQCrypto 2013 (Limoges, France)
� Keccak & SHA-3 Day 2013 (Brussels, Belgium)
� Crypto for 2020, 2013 (Tenerife, Spain)
� 29th Chaos Communication Congress 2012 (Hamburg, Germany)
� Post-Quantum Cryptography and Quantum Algorithms Workshop 2012 (Leiden, The

Netherlands)
� Workshop on Cryptography for the Internet of Things 2012 (Antwerp, Belgium)
� Latincrypt 2012 (Santiago, Chile)
� CHES 2012 (Leuven, Belgium)
� Code-based Cryptography Workshop 2012 (Lyngby, Denmark)
� 2nd Bar-Ilan Winter School on Cryptography: Lattice-Based Cryptography and

Applications 2012 (Tel Aviv, Israel)
� European Trusted Infrastructure Summer School 2011 (Darmstadt, Germany)

204



List of Algorithms

� Workshop on Cryptography and Security in Clouds 2011 (Zurich, Switzerland)
� Trust 2010 (Berlin, Germany)
� Eurocrypt 2009 (Cologne, Germany)

205


	Imprint
	Abstract
	Kurzfassung
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Structure of this Thesis
	1.3 Summary of Research Contributions

	2 Background on Lattices, Polynomial Multiplication, and Gaussian Sampling
	2.1 Introduction
	2.2 Notation
	2.3 Lattices and Ideal Lattices
	2.3.1 Computational Problems on Lattices
	2.3.2 Average-Case Problems on Standard Lattices
	2.3.3 Ring Variant of LWE

	2.4 Polynomial Arithmetic
	2.4.1 Schoolbook Multiplication
	2.4.2 The Number Theoretic Transform
	2.4.3 Efficient Computation of the NTT

	2.5 Discrete Gaussian Sampling over the Integers
	2.5.1 Definitions
	2.5.2 Review of Algorithms for Discrete Gaussian Sampling
	2.5.3 A Sampler Based on Bernoulli Trials
	2.5.4 A Sampler Based on a CDT and Gaussian Convolutions


	3 Introduction to Practical Ideal Lattice-Based Cryptography
	3.1 Introduction
	3.2 Post-Quantum Cryptography
	3.2.1 Public-Key Cryptography
	3.2.2 Quantum Computing and Post-Quantum Cryptography

	3.3 Security Evaluation of Lattice-Based Cryptography
	3.4 A RLWE-Based Public-Key Encryption Scheme (RLWEenc)
	3.4.1 Definition
	3.4.2 Parameter Selection

	3.5 The GLP Signature Scheme
	3.5.1 Definition
	3.5.2 Parameters and Security

	3.6 The Bimodal Lattice-Based Signature Schemes (BLISS)
	3.7 The Somewhat Homomorphic Encryption Scheme YASHE

	4 Polynomial Multiplication on Reconfigurable Hardware
	4.1 Introduction
	4.1.1 Related Work
	4.1.2 Contribution

	4.2 Design Decisions
	4.2.1 Previous Work Unrelated to Lattice-Based Cryptography
	4.2.2 Design Decisions for Lattice-Based Cryptography

	4.3 Design of an Efficient NTT-Based Polynomial Multiplier
	4.3.1 Processing Element
	4.3.2 Modular Reduction
	4.3.3 The NTT and Memory Access Restrictions

	4.4 A Microcode Engine for Ideal Lattice-Based Cryptography
	4.5 Implementation of Schoolbook Multiplication
	4.6 Results and Comparison
	4.6.1 Processing Element
	4.6.2 Polynomial Multipliers
	4.6.3 Comparison with Related Work

	4.7 Conclusion and Future Work

	5 Implementation of Ring-LWE Encryption on Reconfigurable Hardware
	5.1 Introduction
	5.1.1 Related Work
	5.1.2 Contribution

	5.2 Optimization of RLWEenc for Efficiency and Correctness
	5.2.1 Application of the NTT
	5.2.2 Ciphertext Expansion and Decryption Errors

	5.3 High-Performance Implementation
	5.3.1 High-Speed Gaussian Sampling Based on the CDT
	5.3.2 Design of the Encryption and Decryption Core
	5.3.3 Results

	5.4 Low-Area Implementation
	5.4.1 Row-Wise Polynomial Multiplication
	5.4.2 Area Efficient Rejection Sampling
	5.4.3 Results

	5.5 Comparison with Related Work
	5.6 Conclusion and Future Work

	6 Implementation of Ring-LWE Encryption on an 8-bit Microcontroller
	6.1 Introduction
	6.1.1 Related Work
	6.1.2 Contribution

	6.2 Faster NTTs for Lattice-Based Cryptography
	6.2.1 Merging the Inverse NTT and Multiplication by Powers of -1
	6.2.2 Removing Bit-Reversal
	6.2.3 Combination of Optimization Techniques

	6.3 Implementation of RLWEenc Using the NTT
	6.3.1 Implementation of the NTT
	6.3.2 Gaussian Sampling Based on the CDT-Approach
	6.3.3 Results

	6.4 Implementation of RLWEenc Using the Schoolbook Algorithm
	6.4.1 Implementation
	6.4.2 Results

	6.5 Implementation of RLWEenc Using Karatsuba's Algorithm
	6.5.1 Implementation
	6.5.2 Results
	6.5.3 Comparison with Related Work

	6.6 Conclusion and Future Work

	7 Lattice-Based Signatures on Reconfigurable Hardware
	7.1 Introduction
	7.1.1 Related Work
	7.1.2 Contribution

	7.2 Implementation of GLP
	7.2.1 Pipelined Message Signing
	7.2.2 Signature Verification
	7.2.3 Implementation Aspects
	7.2.4 Results

	7.3 Implementation of BLISS
	7.3.1 Gaussian Sampling Using Convolutions and a CDT
	7.3.2 Design of a Signing and of a Verification Core
	7.3.3 Huffman Encoding for Short Signatures
	7.3.4 Results

	7.4 Comparison of our Implementations with Related Work
	7.5 Conclusion and Future Work

	8 Implementation of Lattice-Based Signatures in Software
	8.1 Introduction
	8.1.1 Related Work
	8.1.2 Contribution

	8.2 Improved Implementation of GLP on Intel/AMD CPUs
	8.2.1 Faster Uniform Sampling and Better Exploitation of the NTT
	8.2.2 Notes on Vectorized Sparse Multiplication for GLP
	8.2.3 Evaluation and Future Work

	8.3 Implementation of BLISS on the Cortex-M4F
	8.3.1 Implementation of Different Discrete Gaussian Samplers
	8.3.2 Polynomial Arithmetic
	8.3.3 Results

	8.4 Implementation of BLISS on the ATxmega
	8.4.1 Implementation of BLISS Using the NTT
	8.4.2 Results
	8.4.3 Comparison
	8.4.4 Conclusion and Future Work


	9 Acceleration of Homomorphic Evaluation on Reconfigurable Hardware
	9.1 Introduction
	9.2 Background
	9.2.1 Cached-FFT
	9.2.2 Catapult Architecture/Target Hardware

	9.3 High-Level Description
	9.4 Hardware Architecture
	9.4.1 Implementation of the Cached-NTT and Memory Addressing
	9.4.2 Computation of the CT-NTT on the Cache

	9.5 Configuration of our Core for YASHE
	9.5.1 Implementation of RMult
	9.5.2 Implementation of KeySwitch

	9.6 Results and Comparison
	9.6.1 Resource Consumption and Performance
	9.6.2 Comparison with Previous Work
	9.6.3 Software Performance

	9.7 Conclusion and Future Work

	10 Conclusion and Future Work
	10.1 Conclusion
	10.2 Directions for Future Research

	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	About the Author
	Publications and Academic Activities

