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Abstract: Causal loops are loops in cause-effect relations,
where, say for two events A, B, the event A is a cause
of B and, vice versa, B is a cause of A. Such loops are
traditionally ruled out due to potential logical problems,
e. g., where an effect suppresses its own cause. Motivated
by our current physical theories, we show that not only
causal loops exist that are logically consistent, but that
these loops are computationally tame and help to further
investigate on the theoretical foundations of time travel.
Causal loops do not necessarily pose problems from a
logics, computer-science, and physics point of view. This
opens their potential applicability in various fields from
philosophy of language to computer science and physics.

Keywords: causality, fixed points, closed time-like curves,
UP∩ coUP
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1 Introduction

This article reviews the main findings of the equally titled
dissertation [7] with the main message: Causal loops are
less problematic than initially thought. Causal structures
can be represented by directed graphs, where the nodes
represent events and the edges point from cause to ef-
fect [25]. For instance, a computational circuit can be writ-
ten in that way, where events are the intermediate states
of computation, and the edges point forward in compu-
tation. Traditionally, causal structures come with two as-
sumptions: 1) the underlying graph is acyclic, and 2) the
graph is fixed. The first assumption forbids causal loops.
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The reason to forbid causal loops is that theymight lead to
logical problems. In a causal structurewith loops, the state
of an event does not only depend on the past events, but
also on future events. The second assumption says that a
process, e. g., some computation, does not alter the graph;
the causal structure is not part of the computation, rather,
computation takes place on top of the causal structure.
Furthermore, both assumptions comply with our everyday
experience.

What are the logical problems associatedwith such an
endeavor? The most prominent one is called grandfather
antinomy, where a causal loop leads to a logical contra-
diction. Assume some person travels to the past to kill his
or her grandfather before this very same person has been
born. By doing so, this person will not be born, and hence
will not travel to the past, and hence will not kill his or her
grandfather, andhencewill be born, andhence,…–a logi-
cal contradiction. This problemhas another face: the infor-
mation antinomy. Suppose you wake up one morning and
find, next to your bed, a novel you and no one else has ever
seen before. A couple of years later you invent a time ma-
chine to travel to the past and place that book next to the
bed of your younger self. What is the content of the book?
Whowrote the book? This situation lacks any causal expla-
nation for the information that becomes present at some
time.1 A theory suffering from the information antinomy
fails in certain cases to provide predictions. Both logical
problems are schematically presented in Figure 1.

1.1 Motivations, results, and outline

The results stem from the interplay between computer sci-
ence and physics: physics guides information processing,
and limits on information processing restrict physics. We
start by borrowing motivations from physics to relax the
assumptions made on causality. General relativity theory
is consistent with closed time-like curves [22, 20, 23]. This
means, there exist solutions to the equations of general rel-
ativity where particles bump into their younger selves; the
causal structure is cyclic.

1 Deutsch [16] calls this creationism.
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Figure 1: For a circuit C : (x, y) Ü→ (x, y ⊕ 1) the grandfather anti-
nomy arises: No consistent “time-travelling” system y exists. For a
circuit C : (x, y) Ü→ (x ⊕ y, y) the information antinomy arises: All y
are consistent, yet the output x� is not well defined: Which y should
we select in order to compute the output x ⊕ y? Note that the “loop”
in this figure and as discussed throughout the article is not to be
confused with a feedback loop where the overall system evolves in
time; instead, the loop represents a causal loop. One way to think
about this is to consider the loop as a loop “in time.”

In quantum theory, physical properties are allowed to
be in superposition: The state of a quantum-mechanical
system can be in a superposition of being located at one
and another point in space, which leads to a situation
where the position of that system is not well defined. This
superposition principle can be extended beyond the posi-
tion degree of freedom to the temporal degree of freedom:
We obtain a superposition of different causal structures,
andby this, the causal structure is notwell defined.Hence,
the second assumption that a causal structure must be
fixed is not satisfied. This phenomenon is illustrated in the
following thought experiment, where quantum as well as
relativistic effects take place [21]. Take a large mass, e. g.,
a planet, and place it in superposition of being in two dif-
ferent locations.Due to general relativity, this planet trans-
forms the space-time structure, resulting in a superposi-
tion of different space-times.

As a last motivation to mention, quantum theory
comes with conceptual difficulties that might be overcome
if we relax the assumptionsmade on causality. Most works
that deal with such difficulties assume (often implicitly) a
traditional notion of causality (see, e. g., References [15, 10]
for approaches that donotmake suchanassumption). One
such conceptual difficulty is the causal understanding of
non-local correlations [11]. These correlations violate Re-
ichenbach’s principle [26] that asks for correlations to be
explained by a direct cause or a common cause.

Thefindings in thedissertationon causal loopsmainly
target the first assumption made on causal structures and
are based on the “process matrix” formalism by Oreshkov,
Costa, and Brukner [24]. The authors show, by gener-
alizing quantum theory, that the requirement for well-
defined probabilities (without any assumption on causal-

ity) does not imply that the causal structure must be fixed
and acyclic: Correlations arise that cannot be obtained
from any fixed acyclic causal structure. We find that the
samequalitative result also holdswithout having to invoke
quantum theory, i. e., in classical theories (this is reported
in the next section). Taking this as a starting point, we
characterize these classical non-causal correlations, dis-
cuss time travel (see Section 3), and show that classical
computational devices not limited to fixed acyclic causal
structures cannot solve NP-hard problems efficiently2 (see
Section 4).

2 Correlations
The fact that logical consistency does not imply a fixed
acyclic causal structure is shown via studying correlations
among “parties.”

Definition 1 (Party, causal, and non-causal correlations).
A party Sj = (Aj,Xj, Lj) is a tuple consisting of two random
variables Aj,Xj and a local operation Lj. The random vari-
able Aj is the setting and the random variable Xj the out-
come.

For k parties, the correlations PX1 ,X2 ,...,Xk |A1 ,A2 ,...,Ak
are

called causal if and only if they can be simulated by ar-
ranging the parties on a fixed acyclic causal structure; oth-
erwise, they are called non-causal.

Causal two-party correlations PX1 ,X2|A1 ,A2
can hence be

decomposed as

pPX1|A1
PX2|A1 ,A2 ,X1 + (1 − p)PX2|A2

PX1|A1 ,A2 ,X2 ,
where p is some probability: With probability p party S1
acts before S2. Note that convex mixtures of fixed acyclic
causal structures remain fixed and acyclic: The probabil-
ity pmight arise due to some “ignorance.”

Now, we describe how the correlations are obtained
based on the local operations Lj. Following Oreshkov,
Costa, and Brukner [24], we do not assume an underly-
ing fixed acyclic causal structure of the parties. Instead,
we assume that the parties are isolated (A1), every party
acts once (A2), the correlations are linear in the choice of
local operations (A3), and logical consistency (A4). Condi-
tion (A1) means that the local operation Lj of any party Sj
can be described independently of the other parties’ lo-
cal operations. Then again, (A2) says that every local op-
eration is applied once; this could be generalized, but as

2 Unless the polynomial hierarchy collapses.
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it stands, makes calculations easier and is sufficient for
our claims. The requirement (A3) of linearity is natural: It
translates to the requirement that convex combinations of
local operations transform to convex combinations of cor-
relations. Last but not least, (A4) is the core assumption in
order to have a consistent theory.

Since we are interested in the case where the under-
lying theory is classical probability theory (as opposed
to quantum theory), the most general form of the local
operation Lj is POj ,Xj|Ij ,Aj

for some random variables Oj, Ij:
a stochastic channel that depends on the setting Aj and
produces an outcome Xj. Hence, up to the logical con-
sistency assumption that we formulate shortly, the most
general correlationsPX1 ,X2 ,...,Xk |A1 ,A2 ,...,Ak

–without assuming
an underlying fixed acyclic causal structure – are given
by

f (L1, L2, . . . , Lk) ,

for some multi-linear function f . Note that f can be in-
terpreted as a “supermap:” It maps operations to an
operation PX1 ,X2 ,...,Xk |A1 ,A2 ,...,Ak

. Logical consistency, finally,
asks that for any choice of local operations, the distribu-
tion PX1 ,X2 ,...,Xk |A1 ,A2 ,...,Ak

is well defined. This means that the
parties are unrestricted in what local operation they want
to perform.

Definition 2 (Logical consistency). A supermap f is
called logically consistent if and only if ∀L1, L2, . . . , Lk :
f (L1, L2, . . . , Lk) is a probability distribution of the form
PX1 ,X2 ,...,Xk |A1 ,A2 ,...,Ak

.

Given a supermap f � that is not logically consistent, a
set of local operations of the parties exists such that the
result is not a probability distribution (the “probabilities”
are not normalized or negative).

Note that causal correlations satisfy all the assump-
tions (A1–A4). The questionwe are interested in now is: Do
the four assumptions (A1–A4) imply causal correlations? If
the underlying theory is quantum theory, then Oreshkov,
Costa, and Brukner [24] answered this question negatively.
In the samework the authors showed that if theunderlying
theory is classical, then for two parties the question is an-
swered positively. This suggested that fixed acyclic causal
structures might be the result from quantum-to-classical
transitions (the quantumworldmay be causally exotic, yet
the classical is not – supporting our everyday view on na-
ture). In the dissertationwe show that the latter is not true;
classical theories allow for non-causal correlations if more
than two parties are involved. Before we illustrate this re-
sult with an example, we present two theorems that help
to understand logically consistent supermaps f .

Theorem 1 (Logically consistent supermaps (informal) [4]).
Logically consistent supermaps represent (stochastic)
channels E from the {Oj}J variables to the {Ij}J variables
(see Figure 2).

Following this theorem, the resulting distribution is
calculated according to probability theory by taking the
product over all local operations and the channel E, and
bymarginalizing over the {Oj, Ij}J variables. Note that some
channels E do not lead to a logically consistent supermap,
e. g., if we would plug in the identity channel, then a set
of local operations exists such that the result is not a valid
probability distribution as required.

Figure 2: A box Lj represents the local operation Lj of party Sj which
can be understood as a channel. Likewise, logically consistent su-
permaps can be understood as stochastic channels. The average
number of deterministic fixed points of E ∘ (L1, L2, L3, . . . ) is 1.
Theorem 2 (Fixed-point characterization (informal) [5]).
A supermap f is logically consistent if and only if the av-
erage number of fixed points of PI1 ,I2 ,⋅⋅⋅|O1 ,O2 ,... concatenated
with any choice of deterministic local operations is 1 (see
Figure 2).

A corollary of the latter theorem is that a determin-
istic supermap is logically consistent if and only if for
any choice of deterministic local operations, a unique
fixed point exists. This result is tantamount to avoiding
the grandfather as well as the information antinomy dis-
cussed in the introduction.

Example. Let S1, S2, S3 be partieswith local operations Lj =
POj ,Xj|Ij ,Aj

, where all randomvariables are binary andwhere
the settings {A1,A2,A3} are uniformly distributed. To de-
cide whether correlations are non-causal, we make use
of causal inequalities [24, 13]. If for a given distribu-
tion PX1 ,X2 ,X3|A1 ,A2 ,A3

the inequality

Pr ((X1 = ¬A2 ∧ A3) ∧ (X2 = ¬A3 ∧ A1)∧
(X3 = ¬A1 ∧ A2)) ≤ 3/4

is violated, then this distribution must be non-causal. The
reason for this is that for causal correlations (the parties
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are positioned on a fixed acyclic causal structure), at least
one party Sj has no other parties in her past and therefore
no access to the settings {A1,A2,A3} \ {Aj} of the other par-
ties; hence, Xj takes the correct value with probability at
most 3/4.

Yet, in the framework presented, the supermap con-
structed from

E(i1, i2, i3, o1, o2, o3) =

{{{{{{
{{{{{{
{

1 (i1 = ¬o2 ∧ o3)∧
(i2 = ¬o3 ∧ o1)∧
(i3 = ¬o1 ∧ o2)

0 otherwise,

along with the local operations

Lj(oj, xj, ij, aj) = {
1 oj = aj ∧ ij = xj
0 otherwise,

allow to violate the above inequality maximally: It is im-
possible to arrange the parties on a fixed acyclic causal
structure in order to obtain the same correlations. By con-
sulting the second theoremabove, the reader can convince
herself/himself that E indeed leads to a logically consistent
supermap. The underlying causal structure is cyclic (see
Figure 3).

Figure 3: The value of the variable Oj is determined by the lo-
cal operation Lj and Ij . The value of Ij , then again, is a function
of {O1,O2,O3} \ {Oj}. For simplicity this figure is blind of the Xj ,Aj
variables.

3 Time travel
Scientific studies on time travel – even though contro-
versial – obtained great interest after the development
of general relativity. Already Einstein [17] was suspecting
that his theory might allow for such a behavior, and ap-
proached [18] Carathéodory to resolve this issue – with-
out any answer. To our knowledge, the first solution to the

Einstein equations with closed time-like curves was dis-
covered a decade later by Lanczos [22]. We briefly discuss
the more intuitive approach by Morris, Thorne, and Yurt-
sever [23] to time travel in general relativity. Their solution
is based on wormholes. A wormhole has two mouths, and
the proper times of both mouths are identified with each
other, i. e., if a particle is dropped into onemouth at time τ,
then it exists the othermouth at time τ. As the authors sug-
gest, if we take one mouth, accelerate it to some high ve-
locity and bring it back, we introduce some time dilation,
which allows for time travel (see Figure 4).

Figure 4: Time goes from bottom to top. The arrows represent the
world lines of the two mouths of a wormhole, and the numbers the
proper times associated to the mouths. In the future of S closed
time-like curves exist, e. g., a particle can travel, without exceeding
the speed of light, trough ordinary space-time from 3 on the left to 3
on the right, where it enters the wormhole and exists on the left at
point 3.

In a series of texts, Thorne and coauthors [19, 30] study
the dynamics of time-travelling billiard balls.Motivated by
the potential logical problems of time travel, they ask the
following question: Are there some initial conditions of a
billiard ball at a time before a closed time-like curve exists
(e. g., at P in Figure 4), such that the billiard ball travels
to the past and collides with its younger self in such a way
that it will not travel to the past? – Do some initial condi-
tions lead to a logical contradiction à la grandfather anti-
nomy? If yes, this would have rather strong consequences:
It would mean that these initial conditions could not have
been chosen even though at the time when we would have
chosen them no time travel is possible – we would be re-
stricted in todays actions if time travel were possible in the
future. They answer: For any choice of initial conditions,
consistent trajectories exist, even for time-travelling bil-
liard balls! Yet, their result is surprisingly more extreme,
and has been called the billiard-ball crisis [30]: Not only
consistent trajectories exist, but an infinity of such trajec-
tories exist (information antinomy).
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By abstracting away the general-relativistic settings,
others [16, 12] studied time travel on the basis of quan-
tum theory; more concretely, on the basis of quantum cir-
cuits. The reason to avoid classical circuits is that classi-
cal circuits are prone to the grandfather antinomy (see Fig-
ure 1). If such a circuit is replaced by a quantum circuit,
a self-consistent quantum state can always be found [16].
These approaches, however, modify quantum theory in a
way that it becomes non-linear, and hence unsatisfactory
from a physical point of view.

The causal loopswe study avoid and resolve the above
raised issues. First, the logical consistency condition asks
for consistent trajectories for all initial conditions and all
intermediate transformations of the billiard ball. The sec-
ond theorem above then states that the “trajectory” is
uniquely defined – the billiard-ball crisis is avoided. Fur-
thermore, we do not have to pursue a quantum-theoretic
setup: Certain classical circuits avoid the mentioned log-
ical problems and do not alter the underlying theory
(whether it is classical or quantum) to a non-linear one.
Moreover, we show that time travel in this fashion is re-
versible [8].

4 Computation
Since we cannot rule out causal loops on logical nor on
physical grounds, what objections (apart from appeal-
ing to our everyday experiences where no exotic causal
structures seem to pop up) against causal loops are left?
Aaronson [2] suggests the NP-hardness assumption: “NP-
complete problems are intractable in the physical world.”
This assumption says that if we build a computer based
on some theory T and we find that this device can
solve NP-hard problems efficiently, then we would sus-
pect that T is not physical. This assumption might be de-
batable; yet, and what gives some weight to this assump-
tion is that, all approaches to solve NP-hard problems ef-
ficiently by the use of exotic computational models im-
plemented (e. g., with soap bubbles [2]), failed. Interest-
ingly, the abovementioned circuit-basedmodels [16, 12] of
time travel are ruled out by this assumption –NP-complete
problems become solvable in polynomial time [1].

Motivated by Aaronson’s thesis, and out of general
computer-science interest, we study the computational
power of causal loops. Clearly, a computational model
where causal loops are possible can efficiently solve all
problems efficiently solvable without loops; but maybe
more.

Before we discuss the results on this track, we intro-
duce the computationalmodel. The second theoremabove

states that a deterministic supermap is logically consis-
tent if and only if for any choice of deterministic local op-
erations, a unique fixed point exists. In a computational
model, we usually do not think in terms of “parties,” but
rather in terms of gates. So, the assumption that parties
are unrestricted in their choice of local operations becomes
obsolete. Instead, we say that a circuit with causal loops is
logically consistent if and only if a unique fixed point on
the looping wires exists. This is formulated in the follow-
ing definition:

Definition 3 (Non-causal circuit [6]). A circuit C : {0, 1}k →
{0, 1}k together with an integer 1 ≤ ℓ ≤ k is a non-causal
circuit if and only if

∀y ∈ {0, 1}k−ℓ,∃!z ∈ {0, 1}ℓ : C(z, y) = (z, y�) ,
where ∃! is the uniqueness quantifier, and y� is some bit-
string of length k − ℓ.

The “power” of such circuits with polynomial size
equals an already known complexity class:

Theorem 3 (Polynomial-time logically consistent circuits
(informal) [9]). The set of languages PNCCirc decidable in
polynomial timewith a non-causal circuit equalsUP∩ coUP.

Only few problems are known that are in UP∩ coUP
and conjectured to be outside of P: Factoring numbers,
discrete logarithms, simple stochastic games, …. The
computational-complexity class UP∩ coUP is conjectured
to be strictly contained in NP as otherwise, the polyno-
mial hierarchy would collapse. For the first two examples
mentioned, efficient quantum algorithms exist that can
solve them [28]. This leaves open the question for sim-
ple stochastic games (or parity games, which are believed
to be easier [14] than simple stochastic games). Unfortu-
nately, this open question has remained unresolved. The
above theorem states that allowing computers tomake use
of logically consistent causal loopsmay alter the computa-
tional power, but just not strong enough in order to violate
the NP-hardness assumption.

Example. We sketch an efficient non-causal circuit for
factoring some number N into its prime factors. The
circuit takes as input a bit b, n = ⌈logN⌉ pairs
(a1, e1), (a2, e2), . . . , (an, en), with 1 ≤ ai ≤ N and 1 ≤ ei ≤ N,
where all wires are looped (ℓ = 1 + 2n2). The circuit per-
forms multiple tests. If at least one test fails, then the cir-
cuit outputs (b ⊕ 1, (a1, e1), . . . , (an, en)), otherwise, the cir-
cuit outputs (0, (a1, e1), . . . , (an, en)). The tests are:
– all ai ̸= 1 are distinct,
– all ai ̸= 1 are prime (this can be done efficiently [3]),
– the ai are ordered decreasingly,
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– the implication ai = 1 â⇒ ei = 1 holds,
– and finally, N = ae11 a

e2
2 . . . a

en
n .

This circuit has a unique fixed point which corresponds to
a 0 on the first wire and the prime factorization on the re-
maining wires. To read out the fixed point one can simply
double the number ofwires and copy the information from
the loop. Note that this circuit is “programmed” in a sim-
ilar fashion as in “anthropic computing” [2]: In the unde-
sired event that the input to the circuit is not the prime fac-
torization, a logical contradiction is introduced.

5 Conclusions
Causal loops have been ruled out mainly based on logical
grounds. Themost commonobjection against causal loops
is the grandfather antinomy; with the liar paradox “All
Cretans are liars,” as has been attributed to Epimenides
from Crete [27], as a prime example. This motivated, e. g.,
Tarski [29] to rule out self-referential statements in lan-
guage. In the dissertation, however, we show that such a
restriction might be too strong: Some causal loops com-
ply with the requirements of logics, computer science as
well as physics. The motivations to study causal loops at
all stem from taking our current physical theories (quan-
tum theory andgeneral relativity) seriously. Themainmes-
sage is that not only time travel now appears less implau-
sible – which is anyways a controversial topic –, but that
causal loops might be considered as theoretical building
blocks for approaching problems in physics, computer sci-
ence and possibly other fields.
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