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Artificial Intelligence (AI) and Internet of Things (IoT) applications are rapidly growing in today’s world

where they are continuously connected to the internet and process, store and exchange information among

the devices and the environment. The cloud and edge platform is very crucial to these applications due to

their inherent compute-intensive and resource-constrained nature. One of the foremost challenges in cloud

and edge resource allocation is the efficient management of computation and communication resources to

meet the performance and latency guarantees of the applications. The heterogeneity of cloud resources (pro-

cessors, memory, storage, bandwidth), variable cost structure and unpredictable workload patterns make the

design of resource allocation techniques complex. Numerous research studies have been carried out to ad-

dress this intricate problem. In this paper, the current state-of-the-art resource allocation techniques for the

cloud continuum, in particular those that consider time-sensitive applications, are reviewed. Furthermore,

we present the key challenges in the resource allocation problem for the cloud continuum, a taxonomy to

classify the existing literature and the potential research gaps.
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1 INTRODUCTION

Artificial Intelligence (AI) and the Internet of Things (IoT) paradigm are transforming the field of

computing. AI-based applications are inherently compute-intensive and IoT introduces unprece-

dented decentralization making them communication-intensive as well. Cloud computing seems
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like a natural choice for these applications. The conventional cloud computing has evolved into to-

day’s edge (also known as cloudlets or fog) where computing occurs closer to the end devices that

are typically mobile. Such a generic multi-tier cloud architecture, what we call the cloud continuum,

is shown in Figure 1.

One of the foremost challenges in cloud resource allocation is the ability to satisfy the latency

or deadline guarantees of an application. With the advent of 5G ultra-reliable low latency commu-

nication (uRLLC), time-sensitive applications such as telehealth, digital twins, and connected and

autonomous cars, are expected to rely on the cloud continuum [19]. For this reason, we expect to

see an evolution of resource allocation techniques in the literature where the cloud continuum is

modeled to handle time-sensitive applications, and hence these studies are the focus of this survey.

Most works rely on a specific cloud model and define their own terminology. Therefore, we first

define a generic cloud model and terminologies that encompass the surveyed literature. Existing

works have majorly focused on three classes of problems: 1) The offloading decision problem of

whether to offload application computation from an end device to the edge and cloud or not. 2)

The resource provisioning problem of allocating the computation and/or communication resources

to the applications. 3) The resource scheduling problem of when to use the allocated computation

and communication resources. The aim is to classify these works based on the type of problem they

address, as well as the nature of the solution they propose (analytical or heuristic, centralized or

decentralized, etc.). For time-sensitivity, we group the literature based on two objectives: response

time minimization and satisfaction of hard deadlines.

There are quite some works in the literature that consider time-sensitive applications. However,

due to space limitations, it is not possible to cover all of them in this survey. We have therefore

chosen papers based on the publication date (2013-2019) and the reputation of the venue (IEEE

INFOCOMM, GLOBECOM, TPDS, TC, TCC, ICDCS).We suppose that studies earlier than 2013 are

superseded by the later ones. Additionally, we filtered papers based on the quality of the proposed

solution; those based on primitive heuristics or a simple application of optimization solvers are

ignored. To the best of our knowledge, we are the first to survey resource allocation studies in the

cloud continuum for time-sensitive applications.

Organization. The remainder of this article is organized as follows. Section 2 describes the brief

overview of the cloud model including the terminologies used in this paper. Section 3 reviews

the existing cloud literature based on our taxonomy. We summarize the survey and identify some

future research directions in Section 4.

2 MULTI-TIER CLOUD ARCHITECTURE

Existing literature models the cloud resources either as a collection of servers or as a set of servers

interconnected by a backhaul network in a tiered architecture. Some studies consider the appli-

cation workload as virtual machines (VM) with specific requirements (in terms of computation,

storage, etc.) or abstract it using fractional requirements such as cycles/second (computation) or

bits/second (communication). Hence, in order to classify this diverse literature there is a need to

define a baseline cloud architecture model and terminologies (Figure 1 and Table 1).

The cloud servers, denoted by NC , are the top-tier of the architecture with large amounts of

resources. Each cloud server n ∈ NC has CC
n,r amount of type-r resources. The cloud servers are

connected to the edge servers with lower resource capacity by a high-speed core network. The

amount of type-r resource at the edge server location n ∈ N E is given by CE
n,r . It is assumed that

each edge server may have an access point through which the devices are connected to it. Each

edge server has a bandwidth capacity for offloading workload tasks (generated by the devices).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Fig. 1. A multi-tier cloud architecture: both computation resources and access latency increase farther away

from devices.

The servers are internally connected by a backhaul network. Generally, it is assumed that the core

and the backhaul network have infinite bandwidth for data transmission.

The set of resources (processors, memory, storage) available at the cloud/edge is given by R. The

set of virtual machines (VM’s) of specific configuration or services at the server location x is given

by Mx and the corresponding amount of type-r resource required to host them is given by Hr ,m ,

where r ∈ R,m ∈ Mx . Let µx denote the serving rate of the tasks at x ∈ {NC ∪ N E }.
The computation time (δP ) of a task depends on the computation capacity of the server/device

and any queuing delay. The computation capacity is computed either based on the computation

speed (cycles per unit time) or the serving rate (tasks per unit time) of the server/device. Certain

works assume servers have queues for storing tasks as their arrival rate may be higher than the

computation capacity. This waiting time experienced by a task due to other tasks pending ahead

of it is denoted as the queuing delay.

The task (or device) n ∈ N requests for a particular VM or service of type-m for a specified

duration (execution time) Tn,m . Each task is expected to be generated at a rate of λn . Each task

may need to transfer data of size Sn to the server and can have an offloading bandwidth of Bn . The

task may specify whether it needs to be served within a deadline constraint Dn . There is a delay

involved in sending the task data from the device to the servers or between servers. It is given by

dx,y , where {x ,y} ∈ {NC ∪ N E ∪ N }.
Communication time (δT ) is the time required to transmit the data (i.e., Sn/Bn) from one entity to

another including the communication delay (dx,y). Several factors such as allocated bandwidth, in-

terference, noise and distance play a role in determining this parameter. The elapsed time between

a task’s release and its completion is denoted as the response time. This includes the computation

time (δP ) and the communication time (δT ) for all entities on which the task executes. Some works

also consider makespan, which is the maximum response time among all the tasks.

3 LITERATURE REVIEW

In this section, we survey important resource allocation techniques that have been developed for

the cloud continuum for time-sensitive applications. To classify this literature, we use the following

taxonomy.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Symbol Description

Cloud Parameters

NC Set of cloud servers

CC
n,r Amount of type-r resource available (capacity) at cloud server n

Edge Parameters

N E Set of edge servers

CE
n,r Amount of type-r resource available (capacity) at edge server n

BEn Bandwidth capacity of an edge server n for task offloading

Parameters common to Cloud and Edge

Mx Set of VM’s of specific configurations or services in x , where x ∈ {NC ∪ N E }
R Set of resources (Storage, Memory, CPUs)

Hr ,m Amount of type-r resource required to host type-m VM or service, where r ∈ R,m ∈ Mx

µx Serving rate of tasks in x , where x ∈ {NC ∪ N E }
Device/Task Parameter

N Set of devices/tasks

Task Parameters

λn Arrival rate of task n

Nn,m Number of type-m VM’s or services requested by task n

Tn Duration of task n

Dn Deadline constraint of task n

Sn Data size of a task n

En Constraint on edge server serving task n

Bn Offloading bandwidth of task n

Delay Parameter

dx,y Communication delay between entities x and y where {x ,y} ∈ {NC ∪ N E ∪ N }
Table 1. Model parameters. Note, µx and Tn are mutually exclusive and either one of them can be used.

(1) Problem type.We consider two problem types; one based on the timing model and another

based on the contention model.

(a) Timing model. Studies that consider workload tasks with hard deadline requirements

are classified under deadline constrained and presented in Section 3.2. The remaining

works are categorized under response time minimization, including few studies that

consider the makespan minimization problem, and presented in Section 3.1.

(b) Contention model. Depending on the contention model for the communication and/or

the computation resources, the works are further classified as no contention (i.e., com-

putation and communication resources are not shared between the tasks), only commu-

nication contention (i.e., tasks contend ONLY for offloading bandwidth Bn and
∑

n Bn is

bounded by BEn ), only computation contention (i.e., tasks contend ONLY for computa-

tion resources and in general, it is bounded byCC
n,r ,C

E
n,r or µx ) and both communication

and computation contention.

(2) Solution type.We categorize the works based on the proposed solution type: centralized

or decentralized algorithms. We further classify this based on the nature of solution.

(a) Nature of solution. Techniques that solve the problem or a relaxed variant of the

problem either optimally or with an approximation bound are grouped under analytical

solutions. The approximation bound could either be a constant or depend on the task and

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Table 2. Classification based on the problem type and the nature of solution proposed

Solution Type

Decentralized CentralizedTiming Model Contention Model

Analytical Heuristic Analytical Heuristic

NO contention [34]§ [16]§

Communication and computation [6, 32]∗ [18]†, [45]∗ [22]†, [20]∗, [24]⋄ [29]§, [10, 48]∗
Response Time

Minimization ONLY computation [61]†, [52]⋄ [1, 31]†
[5, 15, 31, 62, 71]†, [44, 46]∗

[8, 49, 55, 70]⋄
[53, 68]‡, [64]∗,

[49, 55, 70]⋄, [28, 63]◦

ONLY communication [12]∗ [35]§ [38]∗

NO contention [69]† [9]†, [26, 33, 42]⋄

Communication and computation [41]†, [57]∗ [13]†, [56]∗, [40, 72]⋄
Deadline

Constrained ONLY computation [7]§, [73]⋄
[7]§, [11, 25, 36, 39]†,
[66]‡, [14, 17]∗, [65]⋄

[37, 59]†, [30, 60]‡

[2–4, 21, 47, 51, 58]⋄

ONLY commmunication [27]§, [50]†, [54]‡, [43, 67]∗, [23]◦ [43]∗, [54]‡

§ ← Offloading; † ← Provisioning; ‡ ← Scheduling; ∗ ← Offloading and provisioning; ⋄ ← Provisioning

and scheduling; ◦ ← Offloading, provisioning and scheduling.

server parameters (denoted as parameterized approximation bound). The remaining works

that propose heuristic techniques including meta-heuristic approaches are grouped under

heuristic solutions.

Table 2 shows the classification of literature based on the above taxonomy. We also identify

the problem class (offloading, provisioning and scheduling) for each study in the same table. The

literature review discussed in the subsequent sub-sections is based on the classification presented

in this table.

3.1 Response Time Minimization

Many studies aim to minimize the latency experienced by tasks under various constraints. The

most common timing-related objective found in these studies is that of task response time min-

imization. These include minimizing the average task response times (i.e., min
∑

N (δP + δT )) or

minimizing the overall makespan (i.e., minmax∀N (δP + δT )). In this section, we review the litera-

ture that consider these two problems and categorize them based on their respective contention

model.

3.1.1 No contention. Works in this categorymainly focus on the task offloading problem on single-

tier architectures with optimization objectives such as minimizing task response times [34] and

device energy [16].

Kao and Krishnamachari [34] model the workload as a Directed Acyclic Graph (DAG) where

vertices represent tasks and edges represent data dependencies among them. Using dynamic pro-

gramming the DAG is split into multiple trees and the response-time of each tree is optimized

using time quantization, as in [33]. They present a Fully Polynomial Time Approximation Scheme

(FPTAS)with an approximation factor of (1+ϵ), where ϵ ∈ [0, 1] is chosen by users to reach a trade-
off between optimality and algorithm runtime. Ding et al. [16] formulate the problem as a Mixed

Integer Non-Linear Problem (MINLP) with a fixed offloading bandwidth for tasks. They reduced it

to a Quadratically Constrained Quadratic Programming (QCQP) problem and apply semi-definite

relaxation (SDR) to obtain optimal offloading decisions using optimization solvers.

3.1.2 Communication and computation contention. Studies in this category mainly focus on the

task offloading and server provisioning problems with optimization objectives such as minimizing

task response times [6, 20, 22, 29, 32], makespan [18, 24, 45], device energy [20, 48], server usage

costs and communication overhead [10, 18].
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Heydari et al. [29] consider the task offloading problem on a single-tier architecture. They for-

mulate the problem as a Markov Decision Process and propose an actor-critic based reinforcement

learning heuristic to learn the offloading decisions.

Some studies consider the server provisioning problem on single-tier [18] and multi-tier ar-

chitectures [22]. Gao et al. [22] formulate it as a Pure Integer Non-Linear Programming (PINLP)

problem as well as a sub-divided Integer Non-Linear Programming (INLP) problem. They propose

a lazy switch algorithm to control the task migration frequency between servers and use a solver

for the INLP iteratively, providing a parameterized performance approximation bound. Duan et

al. [18] model tasks as a DAG and propose a decentralized online algorithm based on cooperative

sequential games for the problem of allocating processors across servers to each DAG node, where

the allocated bandwidth capacity is also proportional to the number of allocated processors.

Some studies consider the combined task offloading and server provisioning problem on single-

tier [6, 32, 45, 48] and multi-tier architectures [10, 20]. Modeling task response times generically

using server-specific utility functions, [6] presents a decentralized max-consensus based greedy

algorithm for the problemwith a constant approximation bound of (1−1/e) and shows polynomial-

time convergence under some conditions on the utility function. On the other hand, Jošilo et al. [32]

model the problem in a decentralized game-theoretic framework, and derive a policy with guaran-

teed convergence to a Nash equilibrium using Stackelberg games with a constant approximation

bound of (3 +
√
5)/2. Pang et al. [45] propose a heuristic using dynamic programming where the

servers provision resources in proportion to the amount of resources requested in a decentralized

manner by exchanging information on the tasks. Saleem et al. [48] formulate an MINLP optimiza-

tion problem with energy constraints and propose a greedy heuristic to allocate communication

resources based on tasks’ offloading bandwidth. Eshraghi and Liang [20] formulate a non-convex

mixed-integer problem which is further reduced to a convex form with binary relaxation. They

provide an optimal solution using a geometric programming that is iteratively applied on each

processor of a multi-processor server. Chen et al. [10] formulate it as a QCQP problem and pro-

pose a heuristic combining SDR, alternating optimization and sequential tuning, and provide a

lower bound on server usage cost.

Giroire et al. [24] consider the joint server provisioning and task scheduling problem on single-

tier architectures. Theymodel tasks as a DAG and propose a greedy list scheduling algorithm based

on communication overhead that is optimal for tasks with constant response times and bounded

bandwidth capacity. Further, they extend the solution with parameterized approximation algo-

rithms using k-balanced (k-servers) partitioning for tasks with unbounded bandwidth capacity.

3.1.3 Only computation contention. In this category, studies mainly focus on the server provi-

sioning and task scheduling problems with optimization objectives such as minimizing task re-

sponse times [1, 5, 8, 15, 46, 49, 52, 55, 61–63, 70], makespan [68], device energy [64], server en-

ergy [31, 53, 71], server usage costs [28, 44] and communication overhead [28].

Some studies focus on VM and server provisioning problems on single-tier [1, 5, 15, 31, 62, 71]

and multi-tier [61] architectures. Abouaomar et al. [1] propose a matching game-based heuristic

solution to identify servers for offloading using a decentralized deferred acceptance algorithm.

Cao et al. [5] model the response time using an M/M/m queuing model where m is the number

of servers, and solve the optimization problem using Lagrange multipliers and bisection meth-

ods for optimal server speed and workload arrival. Di and Wang [15] model the response time as

a ratio of the task workload over its allocated resources, both abstracted with input parameters.

The optimal resource allocation for each task is then determined using the Karush-Kuhn-Tucker

(KKT) conditions in polynomial time. Modeling the response time as a function of the queuing
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delay on servers, [71] proposes a centralized online algorithm with a parameterized approxima-

tion bound, using integer relaxation to a linear programming (LP) problem and first-fit strategy

to subsequently satisfy the integrality constraints. On the other hand, [31] models the response

time as a function of the number of co-allocated VMs, and proposes a centralized online greedy

algorithm with a parameterized approximation bound by sorting the VMs based on their arrival

order. It also proposes a decentralized heuristic extension to this algorithm where each server per-

forms a cost-benefit analysis comparing the cost of provisioning a VM alone to the incremental

cost of provisioning that VM given the current provisions. Considering a single-tier architecture

made up of interconnected access points, [62] proposes a graph representation method to solve the

problem using capacitated k-median problem and derives parameterized approximation bounds.

While considering multi-tier architectures, Xiao and Krunz [61] propose a decentralized strategy

using Lagrange decomposition to transform the global provisioning problem into server-specific

convex optimization problems. They also show that the proposed strategy converges to the global

optimum at a rate inversely proportional to the number of iterations.

A few studies focus on the task scheduling problem on single-tier [53] and multi-tier [68] archi-

tectures. Tarplee et al. [53] formulate the problem as an ILP and solve using a relaxation method,

where they assume tasks can be decomposed in chunks of arbitrary size to be run in parallel. They

propose a heuristic solution based on the Convex Fill algorithm.Whereas, [68] uses anM/M/1 queu-

ing model and formulates the problem as an MINLP. It decomposes the problem into sub-problems

and proposes a heuristic solution to solve each sub-problem sequentially using LP relaxation.

Some studies consider the joint task offloading and server provisioning problem on single-

tier [46, 64] and multi-tier [44] architectures. Ren et al. [46] formulate response-time minimization

as a piece-wise convex function to determine the optimal proportion of each task to be executed

on the device and the server with a fixed offloading bandwidth per task. For the special case of

limited device computation capacity, the optimal length of Time Division Multiple Access (TDMA)

slots is also computed for each device. Yaqub and Sorour [64] present a priority-based heuristic and

bisection method for offloading decisions on neighboring devices and servers, respectively. They

propose a heuristic solution for the provisioning problem using the Lagrangianmethod. Ouyang et

al. [44] propose an offline solution using the shortest path algorithm for DAG tasks. It also presents

an online learning algorithm for provisioning using multi-arm bandit with a parameterized regret

bound.

Some studies focus on both server provisioning and task scheduling problems on single-tier [8,

49, 70] and multi-tier [52, 55] architectures. Considering max-min fairness, which maximizes the

minimum resource allocation across tasks sharing servers, Chen et al. [8] reduce the optimization

problem to an LP for a single task case and find the optimal solution. For multiple tasks, they

iterate the procedure to ensure max-min fairness. Considering DAG tasks, Shu et al. [49] propose

an FPTAS for the makespanminimization problem through a reduction to the constrained shortest

path problem for single-resource VMs. For the more general case of multi-resource VMs, they

propose a greedy heuristic based on critical paths and binary search. Zhang et al. [70] present

a priority-based weighted algorithm for provisioning with a constant approximation bound of 2

in terms of the number of servers and a heuristic scheduling algorithm based on the Karmarkar-

Karp differencing algorithm. Tong et al. [55] consider fractional resource allocations with a fixed

offloading bandwidth per task. For the special case of one server per tier of the architecture, they

present optimal centralized solutions using convex optimization and branch-and-bound methods,

whereas, for the more general problem, they present a solution based on simulated annealing.

Tan et al. [52] propose a decentralized solution by selecting the server with the least increase

in response time and schedule using the shortest remaining computation time first policy. They
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prove this to be O(1/ϵ)-competitive (in terms of response time) with a corresponding constant

approximation bound of 1 + ϵ on the speed of servers.

A few studies consider the joint problem of task offloading, server provisioning and task sched-

uling on single-tier [28, 63] architectures. Considering DAG tasks, Han et al. [28] present a priority-

based heuristic solution where tasks are sorted based on total average computation and communi-

cation time. Considering sequential tasks with a constraint on the number of tasks allocated per

server, Yang et al. [63] propose a greedy heuristic in which tasks are first offloaded to the server

without any resource constraint and later to meet the constraint some tasks are moved back based

on a reward function.

3.1.4 Only communication contention. In this category, works focus on task offloading and band-

width provisioning problem with optimization objectives such as minimizing device energy [12,

35, 38] and server energy [12, 35].

Chen et al. [12] model the bandwidth as a function of the interference among tasks in the wire-

less network. They model the problem in a decentralized game-theoretic framework to minimize

both task response time and makespan on single-tier architectures. They derive a policy using

potential games with finite improvement property with guaranteed convergence to a Nash equi-

librium and a parameterized approximation bound. Mao et al. [38] formulate it as a stochastic

optimization problem for multi-tier architectures. They propose a Lyapunov optimization-based

algorithm and use the Lagrangian method and KKT conditions to determine the optimal device

power and offloading bandwidth. On the other hand, Liu et al. [35] consider only the task offload-

ing problem on a single-tier architecture. They derive a heuristic policy using population games,

where player strategies are modeled using a Markov evolutionary process.

3.2 Deadline Constrained

Most time-critical tasks request for resources with a notion of a deadline. In this section, we assume

that the deadline defines a requirement on the task’s response time which includes both compu-

tation and communication times, unless specified otherwise. We present all studies that consider

workload tasks with such deadlines, irrespective of the optimization objective they address.

3.2.1 No contention. In this category, works mainly focus on the server provisioning and/or task

scheduling problems with optimization objectives such as minimizing task response times [9, 42],

device energy [26, 33] and task deadline misses [69].

A few studies only consider the server provisioning [9, 69] problem on single-tier [9] and multi-

tier architectures [69]. Chen et al. [9] additionally consider a greedy task replication strategy for

fault tolerance and propose a multi-arm bandit learning algorithm with a parameterized approx-

imation bound for sub-modular marginal reward functions (reward is based on a probabilistic

prediction of task completion times). Zhang et al. [69] use a singleton weighted congestion game

based heuristic to arrive at a consensus on task allocation at the lower tier. They also use a sto-

chastic Lyapunov optimization-based greedy heuristic to estimate task response times and decide

whether to admit the task or to provision it on another server at the higher tier.

Some studies consider the server provisioning and task scheduling problems on single-tier [26,

33] and multi-tier [42] architectures. Considering a set of task flows allocated on a resource graph

where each flow is a sequence of sub-tasks with an end-to-end deadline, Millnert et al. [42] present

a centralized analytical technique for dynamic adjustments to the response times experienced by

tasks. They propose protocols that use an upper bound on the rate of change of response times

which would ensure the satisfaction of all end-to-end deadlines. They present protocols for dy-

namically changing task flows as well as resource graphs. On the other hand, considering tasks

modeled as a collection of trees with end-to-end deadlines and fixed offloading bandwidth, [33]
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presents a centralized dynamic programming based polynomial-time solution using time quanti-

zation, and an exponential-time extension for tasks with probabilistic computation times. Guo et

al. [26] formulate the convex optimization problem as a three-stage flow-shop scheduling prob-

lem by separately considering the offloading, constant execution and downloading duration of

each task. They solve the problem optimally when the minimum offloading duration is larger than

the maximum execution duration of all tasks using KKT conditions and bisection search method.

3.2.2 Communication and computation contention. Studies in this categorymainly focus on server

provisioning and task scheduling problems with optimization objectives such as minimizing VM

delays [13, 41], task deadline misses [40], device energy [56, 57] and maximizing task utility [72].

Some studies consider the problem of server provisioning for single-tier [13] and multi-tier [41]

architectures with re-provisioning for changes in the device coverage area. Cziva et al. [13] model

the resources of the servers with bounded bandwidth capacity and communication delay, and

propose a technique using Optimal Stopping theory. Millnert et al. [41] consider task flows pre-

allocated on a resource graph with end-to-end deadlines as in [42], and present a decentralized

heuristic solution through deadline decomposition based on control theoretic and optimization

frameworks to reduce VM creation delays.

A few studies consider the task offloading and server provisioning problem on multi-tier [56,

57] architectures. Vu et al. [56] formulate the problem as an MINLP, and use integer relaxation

and branch and bound algorithm to find an optimal solution and prune the search space. They

extend this in [57] with additional parameters such as offloading and downloading bandwidth.

They propose a decentralized heuristic algorithm through decomposition using the bender’s cuts.

A few works focus on the task provisioning and scheduling problems on single-tier [72] and

multi-tier architectures [40]. Zheng and Shroff [72] propose an online algorithm for stochastic

tasks in the continuous and discrete-time domain with a competitive ratio of 2 and 1.8, respec-

tively. On the other hand, [40] proposes an online heuristic based on the largest computation time

to reduce the number of deadline misses and derives a parameterized competitive ratio on the

makespan.

Table 3. Literature classification based on timing related model parameters

Cloud

Architecture

Server Parameters Task Parameters Delay Parameters

Computation

capacity

Bandwidth

capacity

Serving

rate

Arrival

rate

Duration /

Execution time

Deadline

constraint

Offloading

bandwidth
Device-Server Server-Server

Single-tier

[1–3, 6, 8, 11, 13–

15, 18, 24, 25, 28–

32, 35, 36, 45–

49, 53, 58–60, 62–

66, 70–73]

[3, 6, 8, 12–

14, 16, 18, 24,

27, 29, 32, 33,

35, 38, 45, 48,

50, 54, 67, 72]

[5, 7, 39, 50,

59, 66, 70,

71]

[5, 7, 25, 39,

50, 59, 66,

70, 71]

[1–9, 11, 12, 14–

16, 18, 24, 26–

36, 38, 45, 46, 48,

49, 53, 60, 62–

66, 73]

[2–4, 7, 9, 11,

13, 14, 25–

27, 30, 33, 36,

39, 47, 50, 54,

58–60, 65–

67, 72, 73]

[1, 3, 6, 7, 9, 12–

14, 16, 18, 24,

26–29, 32, 33,

35, 36, 38, 45,

46, 48, 50, 54,

60, 64, 67]

[8, 9, 13, 16, 26, 27,

29, 32, 34, 36, 45,

46, 48, 50, 54, 63]

[6, 9, 11, 15, 34,

59, 62, 67]

Multi-tier

[10, 17, 20–

22, 40, 41, 44, 51,

52, 55–57]

[10, 17, 20–

23, 40, 41, 43,

55–57]

[22, 37, 41,

61, 68]

[22, 37, 41,

61, 68]

[10, 17, 20, 21, 40,

43, 44, 51, 52, 55–

57, 69]

[17, 21, 23, 37,

40–43, 51, 56,

57, 69]

[10, 17, 20, 22,

23, 40, 43, 55–

57]

[10, 17, 20–

22, 37, 40, 43, 44,

51, 52, 56, 61, 68]

[10, 21, 40, 44, 51,

56, 61, 68]

3.2.3 Only computation contention. In this category, studies mainly focus on the server provi-

sioning and task scheduling problems with optimization objectives such as minimizing the task

response times [14, 17, 36, 58], device energy [7, 17], server energy [11, 25, 66], server usage

costs [3, 4, 21, 37, 39, 47, 51, 60, 65], peak resource utilization on servers [30, 59], task deadline

misses [2, 39, 73] and communication overhead [51].

Some studies focus on both server provisioning and task scheduling problems on single-tier [2,

58, 65, 73] or multi-tier [21, 51] architectures. Considering a variety of different objectives, they

propose heuristic solutions using techniques such as prioritization based on task parameters with

best-fit provisioning [2], agent-based decentralized bidding between tasks and server VMs based
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on task parameters [73], as early as possible scheduling with load balancing [58], ant colony op-

timization with a response time dependent utility function [21], and a discretization strategy that

combines the provisioning results of a convex optimization solver with greedy deadline-driven

scheduling [51]. Wang et al. [58] also consider fault tolerance using backup tasks that are exe-

cuted as late as possible with their allocations being reclaimed when not required. Yin et al. [65]

formulate it as an LP relaxation and solve using dual decomposition with an online algorithm that

has a parameterized competitive ratio in terms of resource capacity augmentation when compared

to an optimal offline algorithm.

Some studies only focus on the server provisioning problem on single-tier [11, 25, 36, 39, 59] and

multi-tier architectures [37]. Again considering a variety of different objectives, they either present

analytical [11, 25, 36, 39] or heuristic [37, 59] solutions. Chen et al. [11] consider a demand-response

setting that enforces a maximum peak power for each server. They present an online solution with

a parameterized approximation bound using Vickrey-Clark-Groves (VCG) auctions and also con-

sider the trade-off between switching costs and energy loss for server activations and deactivations.

Gu et al. [25] and Liu et al. [36] formulate MINLP problems and optimally solve relaxed duals using

either block coordinate descent method [36] or Lagrangian with a dynamic voltage and frequency

scaling strategy [25]. Considering a M/M/m queuing model, Mei et al. [39] optimally solve the

problem using bisection method assuming the number of serversm and the speed of each server

are continuous variables. Then, they recover integer values for these variables with the least server

usage costs. Considering a bound on VM allocation delay, Wei et al. [59] propose an online greedy

heuristic strategy based on balancing the remaining resource capacities across servers with future

workload predictions modeled as a Markov chain that uses moving averages [59]. Ma et al. [37]

model the costs separately for on-demand and reserved resource provisioning on servers, and

present heuristics based on gradient descent, bisection method and piece-wise convex optimiza-

tion to provision reserved, on-demand and both the resources, respectively.

A few studies consider either the task offloading problem [7], the joint task offloading and server

provisioning problem [14, 17] or the task scheduling problem [66] on single-tier [7, 14, 66] and

multi-tier [17] architectures. Chang et al. [7] use queuing theory and show that the presented

centralized solution is guaranteed to converge to the optimal value because the objective function

is quasi-convex. They also propose a decentralized heuristic that uses Lagrange decomposition

and transforms the global problem into device-specific relaxed convex optimization problems. Dai

et al. [14] consider fixed offloading bandwidth for tasks and iteratively solve the joint problem as

an MINLP, where the offloading problem is relaxed to a real-valued NLP and solved using bipartite

graph-based rounding method with a parameterized approximation bound, and the provisioning

problem is solved optimally using Lagrangian multipliers with a gradient descent method. Du et

al. [17] minimize the weighted sum of task response time and device energywith a fixed offloading

bandwidth for tasks. They formulate it as a QCQP and reduce it to a convex problem using SDR and

use the bisection method to determine the offloading decisions. They present a sub-optimal power

and offloading bandwidth allocation algorithm using Lagrange multipliers. Finally, Yu et al. [66]

model energy costs as battery losses. They transform the problem into a queue stability problem

using the framework of Lyapunov optimization and present an algorithm for task and battery

scheduling with a parameterized approximation bound, where admission control is performed

based on the available server capacity.

Some studies model theworkloadwith a DAG and end-to-end deadline constraint on the DAG [3,

4, 30, 47, 60], where the nodes are tasks and the edges are precedence constraints among tasks. Fo-

cusing on both server provisioning and DAG scheduling problems on single-tier architectures,

studies present heuristic solutions using particle swarm optimization [47] and greedy deadline

decomposition and scheduling strategies based on slowest-cheapest VMs and earliest ready tasks
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with fixed offloading bandwidth [3]. Extensions to handle variations in the computation and com-

munication times using task replication and critical path detection have also been proposed [4].

Note, in these studies, although the scheduling problem uses a contention model for computation

time, the provisioning problem is modeled without contention by allowing for an arbitrary num-

ber of VM instantiations. Other studies only consider the DAG scheduling problem on single-tier

architectures, and propose deadline decomposition-based heuristic solutions [30, 60]. Hu et al. [30]

use LP by converting the DAG to a set of independent task groups with deadlines decomposed in

proportion to the number and computation time of tasks in each group. Whereas, Wu et al. [60]

use probabilistic list scheduling with tasks ordered using ant colony optimization and deadlines

decomposed based on critical paths.

3.2.4 Only communication contention. Studies in this categorymainly focus on task offloading and

server/bandwidth provisioning problems with optimization objectives such as minimizing server

energy [50], device energy [43], server usage costs and communication overhead [23, 27, 67].

Some studies consider the task offloading problem [27], bandwidth provisioning problem [50]

and joint task offloading and server provisioning problem [67] on single-tier architectures. Guo et

al. [27] model the tasks as DAGs and formulate the problem as a non-convex problem. They re-

lax it and optimally solve its dual problem using Lagrangian multipliers and sub-gradient method.

Considering a bound on queuing delay, Sun et al. [50] derive a probability function for deadline

misses and use interior point method to find the optimal solution. Yu et al. [67] formulate the

problem as a multi-commodity max-flow problem and propose an FPTAS assuming tasks can be

arbitrarily parallelized. They also propose a randomized algorithm with a parameterized approx-

imation bound for tasks that are not parallelizable. Considering multi-tier architectures, Nguyen

et al. [43] formulate the joint problem as a min-max INLP and use the bisection search method

to compute the optimal device frequency and wireless channel assignment. They also present a

low-complexity heuristic solution using decoupled ILP based optimization.

Tong and Gao [54] only consider the wireless network scheduling problem on single-tier archi-

tectures. They propose a dynamic programming solution, for a burst of transmissions, by comput-

ing the optimal delay in task communications. Gao et al. [23] focus on the joint task offloading,

server provisioning and task scheduling problem on amulti-tier architecture with a bound on com-

munication delay. They propose a greedy offline algorithm based on a task-specific utility function

and an opportunistic online algorithm in which tasks offload in the first convenient slot they find,

both with an approximation bound of 2.

4 SUMMARY AND FUTURE RESEARCH DIRECTIONS

We consolidated the literature based on our proposed taxonomy in Table 2. As seen, with respect

to the timing model, there are sufficient studies for both response time minimization and dead-

line constrained problems. However, there are limited works that minimize makespan. This is

reasonable as makespan minimization is, in general, a harder problem to solve as the complexity

is higher due to the inherent min-max optimization. In terms of contention, most contributions are

on only computation contention and relatively fewer contributions consider both computation and

communication contention. Note that, the literature on no contention forms an interesting body

of work since they mainly consider multi-objective optimization such as energy-delay trade-offs.

From the perspective of problem classes, we find that there are very few studies that investigate all

three problem classes combined: offloading, provisioning and scheduling. The existing literature

primarily focuses on centralized solutions and there is little focus on decentralization. Further,

among the decentralized solutions, very few works considered the deadline constrained timing

model.
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An overview of how time-related model parameters (see Section 2) are used in the literature

is presented in Table 3. As seen, there are fewer contributions towards multi-tier architectures.

Only a few papers model queues on servers by considering serving rate and arrival rate of tasks.

Lack of queuing models make it harder to address the multi-tier architecture problems. Most ex-

isting works assume the computation time of tasks on servers is known apriori, which may not be

realistic. Finally, it can also be seen that compared to computation resource modeling, communi-

cation resources are relatively less explored in the literature. Observe that only those papers that

model bandwidth capacity have communication contention and those that bound the computation

resources either in the form of computation capacity or serving rate have computation contention.

Comparing across Tables 2 and 3, we see works in both computation and communication con-

tention category are majorly on single-tier architectures. Many multi-tier architecture works ig-

nore the delay between servers. All contributions based on queuing theory consider only compu-

tation contention and provide only heuristic solutions. Interestingly, no surveyed work modeled

queues and provided a decentralized solution.

From the literature, we observed that certain assumptions on problem classes and solution types

leave some open problems. As discussed before, decentralized solutions with deadline constrained

model are generally lacking. With the growth of decentralization in IoT applications, this is one

potential research problem that needs to be addressed in the near future. Another important aspect

to note is that most studies assume zero latency for the downlink data transfer (transmission of

results from the cloud/edge servers to the devices). However, this assumption is unrealistic as

certain AI applications (such as image/video search) have large data to be sent back to the devices.

Although 5G technology offers higher downloading bandwidth, multiple tasks could contend for

this bandwidth increasing the task response times.
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