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Molecular communication is a novel approach for data transmission between
miniaturised devices, especially in contexts where electrical signals are to be
avoided. The communication is based on sending molecules (or other particles) at
nanoscale through a typically fluid channel instead of the “classical” approach of
sending electrons over a wire.
Molecular communication devices have a large potential in future medical appli-

cations as they offer an alternative to antenna-based transmission systems that may
not be applicable due to size, temperature, or radiation constraints. The communi-
cation is achieved by transforming a digital signal into concentrations of molecules
that represent the signal. These molecules are then detected at the other end of
the communication channel and transformed back into a digital signal. Accurately
modeling the transmission channel is often not possible which may be due to a lack
of data or time-varying parameters of the channel (e. g., the movements of a person
wearing a medical device). This makes the process of demodulating the signal (i. e.,
signal classification) very difficult.
Many approaches for demodulation have been discussed in the literature with one

particular approach having tremendous success – artificial neural networks. These
artificial networks imitate the decision process in the human brain and are capable
of reliably classifying even rather noisy input data. Training such a network relies
on a large set of training data. As molecular communication as a technology is
still in its early development phase, this data is not always readily available. In
this paper, we discuss neural network-based demodulation approaches relying on
synthetic simulation data based on theoretical channel models as well as works that
base their network on actual measurements produced by a prototype test bed.
In this work, we give a general overview over the field molecular communication,

discuss the challenges in the demodulations process of transmitted signals, and
present approaches to these challenges that are based on artificial neural networks.

Keywords: Molecular Communication, Demodulation, Convolutional
Neural Network
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1 Introduction

Molecular communication (MolCom) is a concept that has been discussed in the literature for
quite some time ([21], see also [22, 23, 24]). The first physical implementation of the concept
was presented in [9]. Since then, multiple technical implementations using very different means
of sending data, ranging from biological setups using bacteria [10] to fluorescent jets in air [7],
have been proposed (e.g., air-based or fluid-based setups). These implementations vary in
their application domain and technical details such as transmission speed and quality (see,
e.g., [18, 19] for an overview).

The general setup of a MolCom transmission channel is depicted in Fig. 1. The main idea
is to take a given input signal S and modulate it in such a way that it can be represented by
molecules (or possibly other small particles), i. e., information particles, to be sent through a
transmission channel filled with some transport medium like air or a fluid1. Within the field of
MolCom, the smallest amount of information that can be sent (i. e., an individual element of the
modulation alphabet) is referred to as symbol. Nevertheless, in order to allow for comparability
between different MolCom implementations as well as to conventional communication, based
on electromagnetic waves, the transmission speed is often given in bits per second (bit/s).

In the following, we will shortly present two different MolCom implementations, one based on
air as the transport medium and one using fluids before discussing the problem, demodulation,
that will be solved using artificial intelligence.

1.1 Air-based MolCom Setups

One of the first proof-of-concepts for MolCom was presented in [9]. The authors used air as
the transport medium and alcohol molecules to encode the signal to be sent. Their transmitter
is shown in Fig. 2. The setup only allows for a transmission speed of 0.33 bit/s. This proof-
of-concept was intended to serve as a starting point for further research. Multiple papers
have been published on air-based MolCom since. The setup of [20], for example, reaches a
transmission speed of up to 2 bit/s. An even higher speed of up to 40 bit/s has been reported
in [7]. It should be noted, though, that in order to reach that speed, the authors restricted the
air movement by spraying particles in a tube of fixed size and well-defined light settings. This
makes it rather difficult to apply this kind of communication to specific applications.

1While molecular communication is technically possible using solid bodies as the transmission channel, it
doesn’t have any practical applications so far and, hence, is not covered in this article.

Transmitter"message"

S

Receiver "message"

S′
channel molecule

transport medium (e.g., air or fluid)

Figure 1: General molecular communication setup: A transmitter converts an incoming signal
S into a stream of molecules (or other particles) in the nanoscale. The molecules are
then transported through a channel (filled with, e.g., air or fluid, see Sec. 1.1 and 1.2,
respectively) to a receiver that tries to recover the initial signal S in its output signal
S′. See Sec. 2 for details on the recovery process.
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Figure 2: Air-based MolCom transmitter setup: An Arduino microcontroller is used to control
alcohol emissions from a prepared plastic spray can. (Image taken from [9, Fig. 2])

In general, not having a fixed channel to directly send the molecules through (after an initial
acceleration, the molecules float in the air) reduces the applicability of air-based MolCom. One
domain of interest might be the modeling of spreading of infections [12].

1.2 Fluid-based MolCom Setups

In contrast to air-based MolCom, fluid-based setups make use of a dedicated physical channel
that hosts the transport medium (e.g., water) and moves the molecules from the transmitter
to the receiver along a well-defined path. Figure 3 shows an exemplary fluid-based MolCom
setup. A peristaltic pump provides a constant background flow of the transport medium along
a tube. A micropump is used to inject superparamagnetic iron-oxide nanoparticles (SPIONs)
into the tube. At the end of the tube, the concentration of SPIONs is measured using a sensor
coil.

Fluid-based MolCom can be applied in situations where an existing physical channel can be
used and additional electrical wires are not feasible, e.g., due to high installation cost or safety
concerns. Specifically promising use-cases for fluid-based MolCom can be found in the medical
field, with applications within the (human) body.
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Figure 3: Fluid-based molecular communication setup: A peristaltic pump provides the back-
ground flow of the transport fluid. A micropump ejects SPIONs that are then de-
tected by a sensor coil. (Image adapted from [2, Fig. 8])

1.3 Challenge for MolCom: Demodulation

Fig. 1 visualizes the transmitter and receiver as black boxes without showing any internals. To
perform their operations, both devices actually have to conduct multiple steps, including the
step of interest in this paper: demodulation. Hence, we will shortly review how a receiver for
MolCom works and then discuss the problems of demodulation.

While the following discussion uses fluid-based MolCom to illustrate the challenge at hand,
the general issue also holds for other types of MolCom, e.g., air-based MolCom as discussed in
Sec. 1.1.

The first step of the receiver is to measure the amount of received information particles
at a given time. In the next step, the demodulation takes place: the sensor data has to be
interpreted and converted into a digital signal; a stream of (often binary) symbol values. This
digital signal might then be further processed, e.g., to decode the symbol values into a message
string (the authors of [9], for example, used their setup to send the message string "o canada").
See Figure 4 for an overview of the whole process.

Although simple demodulation approaches, such as threshold-based classifiers, have been
used for molecular communication receivers (see [16] for an overview), it turns out that the
demodulation actually is a very difficult task. This is due to various sources of disturbances
in the input data of the demodulation step. First of all, the physical channel (i.e., the tube)
is subject to influences such as changes in flow velocity, saturation of information particles, or
inaccuracies in the particle dispensing process. Also, when sending many signals in a short
time, inter-symbol interference may occur, as a slow decay of information particles increases the
general baseline for following measurements. Then, the measuring device can only guarantee a
certain accuracy and is also influenced by the environment such as a patient wearing a medical
device that uses molecular communication. The receiver from [6], for example, is susceptible
to interference from magnetic fields.
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Figure 4: The three steps of the receiver: First the incoming information particles are mea-
sured (left), then the signal is demodulated (center) before being post-processed in
a decoding step (right).

Fig. 5 shows a signal example for a transmission with amplitude values ranging from zero
to five at two different symbol rates. One can see that the shapes of the peaks that encode
the transmitted signal vary, especially in height; even after a normalization pre-processing
step. Peaks of similar height might encode different symbols at different times within the
transmission (see, for example, the peak for the first number five and the next peak for the
four in Fig. 5(a)). In Fig. 5(b) inter-symbol interference becomes even more pronounced with
the increased symbol rate.

This problem is well known in the MolCom literature. In [5], for example, the authors try
to minimize the impact of errors in the demodulation step by introducing a Gray code-based
encoding. This encoding aims to minimize the distances in the binary encoding between neigh-
bouring symbols, as error syndromes with small symbol value offsets occur more frequently
than others. The demodulation step then consisted of a feature extraction step that was
followed by a linear discriminant analysis (LDA). The presented method allowed for a trans-
mission speed of 4.5 bit/s. While this approach worked well, it relied on finding Gray codes
suitable for the size of the used symbol alphabet.

To address the various demodulation challenges, researchers started to investigate classifica-
tion methods based on artificial intelligence as will be discussed in the next section.

2 Artificial Intelligence for Molecular Communication

Many different artificial intelligence approaches have been successfully applied in the field of
signal processing, e.g., in speech recognition [8] or image recognition [15]. In the domain of
MolCom, the main technique used is Convolutional Neural Networks (CNNs, see, e.g., [28] for
an introductory paper).

The published papers on the demodulation process using CNNs is divided into two different
approaches. One approach, the model-based approach, is to define a mathematical model of
the transmission channel. Using the model, synthetic test data is generated and the demod-
ulator/CNN is then trained on these models. The quality of such approaches highly depends
on the quality of the model. An obvious shortcoming of this approach is that it is difficult
or impossible to validate the results. The second approach, the data-driven approach, skips
the modeling step and generates real-world data by measuring in an actual test bed. We will
investigate both approaches but will focus on the data-driven approach as we consider it to
produce results that are directly applicable.
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(a): 2Hz symbol rate
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(b): 4Hz symbol rate

Figure 5: Normalized sensor signal for a sample transmission with different amplitude values
(shown in gray) using SPIONs. The peak level indicates the transmitted value (here:
numbers from zero to five). The ground truth is annotated at the peaks. As one
can see, the peak heights for the numbers vary and are subject to inter-symbol
interference, making demodulation difficult.
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2.1 Model-based Approaches

Early works making use of CNNs for MolCom can be found in [30] and [17]. Due to the lack
of an existing test bed, the authors model a diffusion-based channel.

The authors of [30] use assumptions on the physical attributes of the channel and the
molecule used in the communication to derive a model of the channel. Simulation data is
generated based on the model and then, in turn, used to train a convolutional neural network.
The formula for the fraction of molecules arriving at the receiver at time t is modeled as

F (t) =
r

d+ r
· erfc

(
d√

4D · t

)
,

where r is the radius of the spherical receiver, d the distance between the transmitter and
receiver, erfc is the complementary error function defined as

erfc(z) =
2√
π

∫ z

0
e−t2dt

(see, e.g. [1, chapter 3.2] for a thorough discussion), and D the diffusion coefficient describing
the movement of the molecules.

The authors then introduce three variables to fit the model simulation data

F (t, b1, b2, b3) = bi ·
r

d+ r
erfc

(
d√

(4D)b2 · tb3

)
.

In order to fit the parameters to simulation data, the following minimization problem is solved

argmin
b1,b2,b3

N∑
k=1

(F (tk, b1, b2, b3)− S(tk))
2

where S(t) denotes simulated mean molecule arrival amounts at N time instances t. The data
set generated from this process is then used to train a CNN.
The authors of this paper only considered a single transmitter and a single receiver. This is

extended in [17] to support multiple transmitters and receivers. These works are of theoretical
nature as no physical experiments have been conducted to validate the approach.
A similar, model-based approach is pursued in [25]. This paper focuses even more on the

mathematical model, using the more complex formula

F (t) =
r · (d− r)

d ·
√
4πD · t3

· e
(d−r)2

4D·t .

Again, no physical testbed is used to validate the learned neural network.
Unfortunately, the papers discussed in this section only present classification results visually

in form of graphs, making it difficult to compare the classification rates directly.

2.2 Data-driven Approach

The research discussed in this section does not try to come up with a physical model of the
channel but relies on measurements of MolCom in physical test beds.
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Figure 6: The three steps of the demodulation as presented in [4]. Of particular interest is the
last step: Application of a CNN to demodulate the signal.

One recent work using measured data is [14]. The authors use experimental data from an
existing test bed that is intended for application inside a human blood vessel. They analyze
a stream of single bits, with a maximal transmission rate of 2 bit/s using neural networks.
Their setup is limited to the detection of binary symbols (i. e. absence/presence of information
particles). The presented values for the bit error rate of their approach using CNNs exhibit
rather high error rates. Even for a transmission rate of only 0.33Hz, the error rate is still
at 19%. Due to these results, we will not further consider this publication in this section.
A more complex, i.e., larger, symbol alphabet was successfully investigated using concen-

tration shift keying and up to 8 amplitude levels [4, 3]. These works can make use of real
measurement data obtained from the concept presented in [29]. The physical testbed theoreti-
cally allows for a data rate of up to 12 bit/s. A high-level overview over their approach is shown
in Fig. 6. As the works [3, 4], to the best of our knowledge, are of the few publications that
consider real-world data and are not restricted to binary values, we will discuss their approach
in more detail.

2.2.1 Data Preprocessing

For the data to be usable in a CNN, some preprocessing steps are necessary.
First of all, as the sensors used for measuring the amount of information particles have small

variations in the sample rate, a linear interpolation of the data is computed. This allows to
compensate for the variations.
Next, to reduce background noise, a smoothing operation using a moving average filter of

width 10 is applied.
The last preprocessing step is to split the incoming signal into sections (or intervals) that are

expected to contain exactly one symbol. For this, a slope analysis is performed. As the length
of a modulated symbol is approximately known due to the constant flow rate of the transport
medium and the well-defined amount of particles injected for each symbol, this information is
used as additional guidance in the analysis process.

2.2.2 CNN Topology and Training

The authors of [4] make use of a one-dimensional CNN with nine layers and the PyTorch2

module for Python.
Different weights for the neural network were trained for each of the six combinations of

symbol rates and amplitude levels, i.e., symbol rates of 1Hz, 2Hz, and 4Hz and symbol

2https://pytorch.org
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Table 1: Architecture of CNN used in [4], consisting of three convolutional layers (CONV),
three max-pooling layers (MAX) and three fully-connected (FC) layers. The column
DO denotes whether dropout with p = 0.5 is used. The value C denotes the symbol
alphabet size (6 or 8).

Lay. Type Input Output Kernel Stride DO

1 CONV 128× 1 128× 64 7 1 ✗

2 MAX 128× 64 64× 64 2 2 ✗

3 CONV 64× 64 64× 128 5 1 ✗

4 MAX 64× 128 32× 128 2 2 ✗

5 CONV 32× 128 32× 256 3 1 ✗

6 MAX 32× 256 16× 256 2 2 ✗

7 FC 16× 256 1× 4096 - - ✓

8 FC 1× 4096 1× 4096 - - ✓

9 FC 1× 4096 1× C - - ✗

alphabets of size 6 and 8. Furthermore, the symbol sections of slightly varying length are
interpolated to a fixed length of 128 samples.

The neural network consists of three convolutional layers, each of which is followed by a max-
pooling layer for dimensionality reduction. The last three layers are fully-connected layers and
perform the final classification. The chosen number of layers is a trade-off between sufficient
complexity for capturing the shapes of modulated symbols on the one hand and time necessary
to train the network on the other hand. The convolutional layers use a typical kernel size, i.e.
a filter size, of 7, 5 and 3, respectively, and stride, i.e. step size, 1. Zero padding is used to
maintain the dimensions during the convolution. For the max-pooling layers, a kernel size of
2 is used in combination with a stride of 2.

Dropout is a regularization method that randomly sets input values to 0 with a probability
p during training. In [4], dropout is used with a probability of p = 0.5 in the first two
fully-connected layers. For non-linearity, a rectified linear unit activation function after each
convolutional and fully-connected layer is employed. The details on the architecture, i.e. the
individual layers, are listed in Tab. 1.

As the loss function, CrossEntropyLoss, a combination of the softmax function and the
cross entropy function, is used. Optimization is achieved with Adaptive Moment Estimation
[13] at default initial values (initial learning rate: 10−3, β1 = 0.9, β2 = 0.999).

For the training, a batch size of 64 is used. The learning rate is decreased by a factor of 10
when the validation set loss has not decreased for ten subsequent epochs. Once the validation
loss has not decreased for 20 subsequent epochs, training is stopped. As the used network is
rather small, a training epoch only takes about one second on a Nvidia GeForce RTX 2080
graphics card. The epoch count for the training lies in the range of 40–100, hence, the training
is typically finished in less than two minutes.

2.2.3 Experimental Results

The classification performance of the CNN can be visualized using a confusion matrix, com-
paring the demodulated symbol value to the actually transmitted symbol value. Figure 7
shows the confusion matrix for the most complex scenario of sending 8 different symbols with

9



a symbol rate of 4Hz. The shown values are probabilities for the occurrence of a specific
classification outcome, dependant on the actually transmitted symbol.

While the classification results for this difficult case still are in a reasonable range, it is worth
discussing the observed problems in this scenario. At a symbol rate of 4Hz the classification
accuracy deteriorates due to strongly increased inter-symbol interference and an increased
significance of timing errors. However, for the scenario with a symbol alphabet size of 6 an
average of 65% correctly classified symbols is still achieved at a symbol rate of 4Hz. Tab. 2 lists
classification offset for each combination of symbol alphabet size and symbol rate. As one can
see, using a symbol rate of 2Hz is already sufficient for a very reliable demodulation for both,
alphabets with 6 and 8 symbols. The results for a symbol rate of 1Hz are, counter-intuitively,
slightly worse than for 2Hz. This is due to time-dependant variations of the injection behaviour
at the transmitter causing a lower accuracy for longer delays between symbols (a detailled
discussion of these effects can be found in [2]).

The noisy-channel coding theorem [27] provides an upper boundary for the information
rate of a transmission channel, given a tolerable remaining bit error rate pb. The maximally
achievable net data rate, given a gross data rate Rg and a binary channel with noise level (i. e.,
bit error rate) f , is

R = Rg
1−H2 (f)

1−H2 (pb)

with the binary entropy function

H2 (x) = x log2

(
1

x

)
+ (1− x) log2

(
1

1− x

)
.

With a bit error rate of pb = 1% the achievable effective data rate is more than 5.5 bit/s for
the combination of 8 symbol values and a symbol rate of 2Hz.

Table 2: Comparison between the demodulation for different symbol alphabets and at different
symbol frequencies. The shown values are probabilities for the occurrence of a specific
demodulation offset (i. e., mis-classification) from the transmitted value.

6 Symbols 8 Symbols

Offset 1Hz 2Hz 4Hz 1Hz 2Hz 4Hz

0 0.93 0.99 0.65 0.95 0.98 0.49
1 0.06 0.01 0.15 0.04 0.02 0.20
2 0.00 0.00 0.09 0.00 0.00 0.09
3 0.00 0.00 0.05 0.00 0.00 0.08
4 0.00 0.00 0.03 0.00 0.00 0.05
5 0.00 0.00 0.04 0.00 0.00 0.03
6 n/a n/a n/a 0.00 0.00 0.04
7 n/a n/a n/a 0.00 0.00 0.02

So far, none of the published research papers adequately deal with the dynamic time-varying
nature (e.g., memory in the transmission channel). A potential solution for this issue might
be to use neural network implementations that are capable of keeping track of previous states.
For this, Recurrent Neural Networks (RNNs, [26]), more precisely Long Short-Term Memory
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Figure 7: Classification performance of the CNN using an alphabet of 8 symbol values and
a symbol rate ot 4Hz. The classification rate is at 49%. One can see that most
misclassifications do not introduce large changes in the symbol, e.g., there are very
few cases of a transmitted symbol 6 being classified as 4.

(LSTM) networks [11] are promising candidates to address the issue. To the best of our
knowledge, no research into this direction using experimental data has been conducted so far.

3 Conclusion

The paper gave a brief introduction into the field of molecular communication. Setups using
either air or fluid as a transmission medium have been presented and their advantages and
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drawbacks have been discussed, e.g., with respect to the possible field of application.
Afterwards, the most difficult task in MolCom, at least from a computer science perspective,

has been identified: the demodulation of the measured molecules/signal. We showed that
artificial intelligence, more precisely, convolutional neural networks, are an efficient technique
for demodulation that is already successfully employed. However, it should be noted that
many of the publications do not work on measured data but on theoretical models. The results
presented in this paper have been obtained using actual measurements on a self-developed and
self-built testbed.

Experimental research for time-varying signals in MolCom is scarce, especially regarding the
use of artificial intelligence. An approach to tackle this issue could be to perform the training
and inference steps concurrently in an online fashion. Such a system could then accommodate
for fluctuations in the channel properties. Depending on the application scenario, however, such
an online approach might have power requirements that are prohibitively high. Demodulation
of time-varying MolCom signals is still an open research question and is left for future work.
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