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Abstract: The original design of a software system is rarely prepared for every new requirement. Software 
systems should be updated frequently, which is usually accompanied by the decline in software modularity 
and quality. Although many approaches have been proposed to improve the quality of software, a major-
ity of them are guided by metrics defined on the local properties of software. In this article, we propose 
to use a global metric borrowed from the network science to detect the moving method refactoring. First, 
our approach uses a bipartite network to represent classes, features (i.e., methods and fields), and their 
dependencies. Second, a new metric is introduced to quantify the modularity of a software system as a whole. 
Finally, a crossover-only evolutionary algorithm that uses the metric as its fitness function is introduced to 
optimize the class structure of a software system and detect the methods that should be moved. Empirical 
results on the benchmark Java projects show that our approach can find meaningful methods that should be 
moved with a high stability. The advantages of our approach are illustrated in comparison with some other 
approaches, specifically one refactoring approach, namely search-based refactoring approach (SBRA), and 
two community detection algorithms, namely a graph theoretic clustering algorithm (MCODE) and a fast algo-
rithm for community detection (FG). Our approach provides a new way to do refactoring from the perspective 
of software structure.
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1  Introduction
An object-oriented (OO) software system is usually composed of a set of classes that is in turn an encapsula-
tion of related state (fields) and behavior (methods). To improve the quality of software systems, a fundamen-
tal approach is to modularize the design. In software engineering practice, modularization can be viewed 
as a reflection of the famous design principle low coupling and high cohesion. Thus, it is a good practice to 
keep the fields and methods within a class as compact as possible while the interactions between fields and 
methods that are from different classes as few as possible [5]. However, the original design of a software 
system is rarely prepared for every new requirement. Software systems should be updated frequently. Owing 
to the tight schedule, updates are usually performed by different people, which will break the software modu-
larization and low software quality [13]. In general, the coupling between classes increases while the cohe-
sion of a class declines.

To improve the quality of software, Fowler provided a concrete solution, termed as refactoring, which 
is defined as the process to improve the internal structure of the code yet does not alter its external 

*Corresponding author: Weifeng Pan, School of Computer Science and Information Engineering, Zhejiang Gongshang Univer-
sity, Hangzhou, Zhejiang 310018, P.R. China, e-mail: panweifeng1982@gmail.com
Muchou Wang: Wenzhou University Library, Wenzhou University, Wenzhou, Zhejiang, P.R. China
Bo Jiang and Chenxiang Yuan: School of Computer Science and Information Engineering, Zhejiang Gongshang University, 
Hangzhou, Zhejiang, P.R. China



86      M. Wang et al.: Class Level Software Refactoring Using Evolutionary Algorithms

behavior [8]. Until now, many refactoring strategies have been proposed. Among them, moving method 
is one of the effective refactoring strategies performed at the class level. It improves software quality by 
moving the method that is using or used by more features of another classes than the class where it is 
defined [8]. However, to perform moving method refactoring, we should identify the methods that should 
be moved and the target classes that they should be moved to. It is a challenging and time-consuming 
task.

The objective of this article is to use an evolutionary algorithm (EA) to help programmers identify the 
methods that should be moved to maximize cohesion of classes and minimize coupling between classes. 
Our approach, Class Level software refactoring using Evolutionary AlgoRithms (CLEAR), may require moving 
method between classes virtually. First, CLEAR adopts a bipartite software network to describe the topologi-
cal structure of a piece of software, where nodes denote features (i.e., fields and methods) and classes, and 
the dependency between every pair of nodes, if any, is an edge. Second, a new metric is introduced from 
network science to quantify the software modularity. A crossover-only evolutionary algorithm (COEA) will 
be devised to optimize the class structure with regard to the value of modularity. Finally, CLEAR identifies 
the methods and the corresponding target classes that these methods should be moved to by comparing the 
original class structure with the optimized class structure. Empirical results on the benchmark Java projects 
show that CLEAR can provide meaningful results with a high stability.

The primary contributions of this article are as follows:
1.	 The introduction of the bipartite network to represent the structure of a software system.
2.	 The usage of a metric from network science to quantify the software modularity.
3.	 The perspective of identifying the refactoring candidates using an optimization technique.

The rest of the article is structured as follows. Section 2 provides an overview of the related work. Section 3 
describes our approach in detail, with focus on the definition of bipartite software networks and the intro-
duction of the EA. Section 4 presents empirical evaluations to investigate the effectiveness of the proposed 
approach. Section 5 concludes the article and gives future directions.

2  Related Work
Until now, several semiautomatic approaches have been proposed to detect those methods that should be 
moved. Some representative work is given as follows:

Tahvildari and Kontogiannis [18] investigate the usage of OO metrics as indicators to detect potential 
design flaws and suggest potentially useful transformations for correcting them. Trifu and Marinescu [19] 
propose to use detection strategies composed of various metrics and their threshold values to detect instances 
of a structural anomaly. O’Keeffe and O’Cinneide [11] formulate the software refactoring as a search problem 
guided by a quality evaluation function in the space of alternative designs. Seng et al. [16] design a methodol-
ogy to improve the class structure of a system with respect to the values of several metrics and the number 
of violations of OO design principles. Tsantalis and Chatzigeorgiou [20] propose a distance metric between 
features and classes, and based on which present a very simple method for the identification of methods that 
should be moved. Alkhalid et al. [1] propose a similarity metric to quantify the similarity between methods. 
Based on the similarity metric, they use clustering techniques to group the methods and detect the methods 
that should be moved.

As we can see, the existing approaches they proposed generally use OO metrics to guide refactoring activ-
ities. Indeed, the OO metrics they used mainly focus on the local properties of software such as a method, 
a class, and a package. But what about using the global properties to guide refactoring activities? In our 
primary work [13], we have proposed to represent software at package level by unipartite network and use the 
community detection technique in the complex network theory to refactor software packages by optimizing a 
metric modularity. In this article, we continue this research at the class level.
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3  The CLEAR Approach
Although this is not the first work on software refactoring at the class level, we will cover a different angle, 
i.e., from the perspective of software as a whole using EAs. Figure 1 gives a short overview of the workflow of 
the proposed approach. In the following sections, we will detail it.

3.1  Java Projects

In this article, we take the open-source Java projects as our research subjects. The rationale is threefold [13]:
1.	 There are many open-source Java projects with sufficient supplement materials on the web that can be 

easily accessed for our research objectives.
2.	 Java projects have a relatively clear internal structure, and the entities such as features, classes/inter-

faces, and packages are amenable to extraction and analysis.
3.	 The choice of Java programming language is limited by the tools developed to perform analysis and our 

interest in understanding software written in Java.

3.2  Software Entity Collection

We represent a piece of software as a bipartite network [7]. We should first determine the entities to be extracted. 
For software refactoring at the class level, features, classes, and the dependencies between them are chosen 

Figure 1. The Workflow of the Proposed CLEAR Approach.
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as entities. Here we do not differentiate methods and fields, using the term feature to designate them. We also 
do not differentiate classes and interfaces, treating them as classes. Only two kinds of dependencies are taken 
into consideration, i.e., field reference dependency and method call dependency. The dependency between 
every pair of class and feature, if it exists, is obtained from the two kinds of dependencies.

3.3  Software Network Definition

Network analysis has revealed as a powerful approach to understand complex systems [21]. Software systems 
can also be represented as complex networks, termed as software network, where software entities are nodes 
and the relationships between them are edges. Network analysis has just recently been adopted to acquire 
better comprehension of complex software networks. It provides a simple yet effective tool to help us under-
stand the structure and the forming mechanism of large software systems [12].

As we all know, Java software systems are composed of entities at different levels of granularity, varied 
from the feature level to the package level. The upper-level entities are built by the lower-level ones. Entities 
across different levels and their composition relationships form a topological structure that can be properly 
described by a new type of software network, the bipartite software network (or bipartite graph) [14]. Because 
the interest of the current work mainly focuses on the classes and features, the formal definition of the bipar-
tite software network is given as follows.

Definition 1: A class is a composition of features. We use the Class-Feature bipartite SOftware Network, 
CFSON  =  (Nc, Nf, D), to explicate the dependencies between classes and features. CFSON consists of two sets 
of nodes, Nc (classes) and Nf (features). Only edges between nodes of unlike set are allowed, that is, D  =  {(ci, 
fj)}, where ci ∈ Nc and fj ∈ Nf. The adjacency matrix ψij for the bipartite network encodes the dependencies 
between every pair of class and feature:

	

1 ( , )
,

0  otherwise
i j

ij

c f D
ψ

 ∈= 
 �

(1)

that is, a |Nc| × |Nf| binary matrix, where |Nc| is the number of classes and |Nf| is the number of features. Further, 
we also assign a weight wij to each edge to denote the dependency strength between every pair of class i 
and feature j if they are connected. Indeed, a small value of weight indicates the low-dependency strength 
between the corresponding class and feature. It is desirable to keep the weight as small as possible for a spe-
cific software system as far as software maintainability is concerned [13]. Figure 2 shows a simple example of 
CFSON, where the number on each edge denotes the dependency strength.

Introduction of weights brings a flexibility that allows us to consider the dependency strength between 
classes and features, but it also raises a new problem: determining the weights. In this article, we will use the 
dependencies between the features in each class to quantify the weight on the corresponding edge between 
each class and the features it enclosed.

In the following, we will detail the way to calculate the weight matrix W clearly. But before that, we intro-
duced an undirected feature dependency network (uFDN) defined in [13].

Definition 2: In uFDN, nodes denote the features of a specific Java projects. Edges between two nodes indi-
cate the use dependency between the corresponding features, i.e., if feature A uses feature B, there is an edge 

Figure 2. Illustration of CFSON.
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between the nodes denoting the two features. Here we only consider the presence of dependency and neglect 
the multiplicity of dependencies, such as, A depends three times on B and its direction. Therefore, uFDN can 
be described as

	
uFDN ( , ),f fN E=

� (2)

where Nf is the set of all nodes in uFDN and Ef is the set of edges. Figure 3 shows a simple code segment and 
its corresponding uFDN.

Once the uFDN is obtained, we can calculate the weight on each edge in CFSON. Denote getFeature(ci) as 
the set of all the features class ci contains and Rk(fj) as the set of all reachable nodes originated from node fj 
within a distance k. Then, the weight on the edge between class ci and feature fj if (ci, fj) ∈ D, namely w(ci, fj), 
is defined as

	 1( , ) | ( ) ( ) |,i j i jw c f getFeature c R f= ∩
� (3)

where |s| is used to count the elements in set s. We take the calculation of w(X, X.b()) as an example to show 
how to calculate the weight. Because getFeature(X)  =  {X.a, X.b(), X.c(), X.d()} and R1(X.b())  =  {X.c(), X.d()}, 
w(X, X.b())  =  |getFeature(X) ∩ R1(X.b())|  =  |{X.c(), X.d()}|  =  2. Figure 2 is the corresponding CFSON of the uFDN 
shown in Figure 3.

3.4  Crossover-Only Evolutionary Algorithm

EAs are of the most effective techniques to solve many real-world optimization problems [17]. They are not 
restricted to a specific problem and can be applied to a variety of domains [9]. Because refactoring is the 
process to improve the quality of software gradually, software refactoring is also an optimization problem 
that can also be solved by EAs.

In this article, we transform the class level software refactoring problem as an optimization problem 
and put it under the framework of EAs. We use a simple COEA to obtain the optimized class structures and 
further to find the methods that need to be moved from one class to another. In the following subsections, we 
will detail the design of COEA from individual encoding, population initialization, fitness function, genetic 
operators, and algorithm flow.

Figure 3. Illustration of uFDN.



90      M. Wang et al.: Class Level Software Refactoring Using Evolutionary Algorithms

3.4.1  Individual Encoding

COEA uses integer-encoding individuals (or chromosomes) to encode the potential solutions to a problem. 
Each gene denotes the class identifier that the corresponding software entity belongs to. The number of genes 
(i.e., the dimension) in the individual equals the sum of the number of classes |Nc| and the number features 
|Nf| in a specific Java project. The first |Nc| genes with value starting from 1 to |Nc| sequentially encode the class 
identifiers that each class belongs to. Each class only uses one integer as its identifier. Then the following 
genes signify the class identifiers that each field belongs to (the number of genes equals to the number of 
fields #Fields in a system). The last #Methods (the number of methods) genes signify the target class identi-
fiers that each method should be moved to. Therefore, an individual in CLEAR encodes the potential class 
structure of a software system.

Thus, we can use {1,2,1,1,1,1,2,2} to encode the original real class structure of the code segment shown in 
Figure 3. The first gene denotes class X; the second gene, class Y; the third gene, field X.a; the fourth gene, 
method X.b(); the fifth gene, method X.c(); the sixth gene, method X.d(); the seventh gene, method Y.e(); and 
the eighth gene, method Y.f(). Because there are only two classes (X and Y), we use the first two genes (with 
identifiers being 1 and 2, respectively) to denote their class identifiers. Because there is only one field X.a 
defined in class X, we use the class identifier of class X (i.e., 1) to encode it. Because X.b(), X.c(), and X.d() 
are defined in class X, we use the class identifier of class X (i.e., 1) to encode them. Similarly, Y.e() and Y.f() 
are defined in class Y, so we use the class identifier of class Y (i.e., 2) to encode them. It is the original real 
class structure. If we have an individual {1,2,1,1,1,2,2,2} with the sixth gene changing from the original 1 to 
2, it means in such an individual encoding, the feature X.d() should be moved from its original class X with 
identifier 1 to the target class Y with identifier 2.

3.4.2  Population Initialization

COEA is a population-based EA. Therefore, how to initialize the population can greatly affect the perfor-
mance of the algorithm. When there is a lack of prior information, people usually use random initialization 
to generate all the individuals in the initial population. However, as for class level software refactoring, the 
situation is greatly different.

As we all know, classes are composed of a set of features. As a result of many design principles (e.g., 
low coupling and high cohesion), a majority of methods are defined in the right class, whereas only a small 
number of misplaced methods lower the quality of software systems and need to be moved. Thus, there is no 
need to start the COEA in a random way with every class and feature belonging to a random class. In light of 
this, COEA adopts a scheme that assigns each class and the fields defined in it with the same class identifier 
that is sequentially numbered and assigns a random class identifier chosen from the identifiers of classes to 
each method.

Thus, as for the CFSON shown in Figure 2, we can initialize the individual like {1,2,1,1,1,1,2,2}, {1,2,1,2,1,2,2,1}, 
or {1,2,1,1,2,1,1,2} (the entity that each gene denote is same as that we mentioned in Section 3.4.1). Because 
there are only two classes and one field, the identifiers for the classes and field are fixed to {1,2,1}. The identi-
fiers for methods are randomly chosen from {1,2}. Similarly, we can generate a specific number of individuals 
to comprise the population.

3.4.3  Fitness Function

Fitness function is a function that used to assign fitness value to each individual. Generally, the greater is the 
fitness value, the better the solution it contains. Designing a suitable fitness function is of great importance 
for it controls the method moving process.

In complex software network research, people find that software networks have a distinct community 
structure, i.e., the existence of distinct groups of nodes such that there are dense connections internally and 
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Figure 4. Illustration of One-Point Crossover.
See online version for color.

sparser connections between groups [13]. As for software network at the feature level, these nodes denote 
features of a specific Java project. Therefore, generally, classes are the natural communities of features and 
packages are the natural communities of classes. Such a community structure of Java projects reflects the 
modularization and the low coupling and high cohesion principle.

There are many different metrics that can be used to quantify the modularity of a particular community 
division [2]. Because we use a bipartite network to represent a piece of software, the modularity of bipartite 
networks should be defined. Here we use the Q proposed in [2] as the modularity metric. However, the origi-
nal Q is proposed for unweighted bipartite networks. Because CFSON is a weighted bipartite network, we use 
the weighted version of Q, which is given by

	

1 ( ) ( , ),ij ij
i j

Q w q c i j
m

= −∑∑
�

(4)

where Q is the bipartite modularity of a particular individual (a class structure), wij is the weight on the edge 

between class node i and feature node j, ,ij
i j

m w= ∑∑  and 1 ,ij ij ij
j i

q m w w−= ∑ ∑  and c(i, j) is 1 if class node i 

and feature node j have the same class identifier and is 0 otherwise.

3.4.4  Genetic Operators

There are several kinds of genetic operators that can be used in EAs, such as selection operator, crossover 
operator, and mutation operator. COEA only uses selection operator and crossover operator.
1.	 Selection operator: Selection means to extract a subset of individuals from an existing population accord-

ing to the fitness of an individual. It is usually the first operator applied on population to select parent 
individuals for crossover and mutation and further to produce child individuals. In COEA, we use roulette 
wheel selection [9] to select the potentially useful individuals for crossover.

2.	 Crossover operator: COEA uses one-point crossover operator [9], which selects one crossover point and 
then interchanges the parent individuals after the point to produce two child individuals. Figure 4 shows 
the crossover operation taking place at the sixth gene of two parent individuals {1,2,1,2,1,2,2,1} and 
{1,2,1,1,2,1,1,2}. The two individuals have been mentioned in Section 3.4.2. However, it should be noted 
that the crossover point is not randomly selected from any gene in the individual. Because the current 
work is talking about the detection of methods that should be moved, our crossover operator will only be 
applied on genes that denote methods. Those genes denoting classes and fields will be ignored. Thus, the 
crossover points will be chosen from (|Nc| + #Fields) to (|Nc| + |Nf|). As for the two individuals in Figure 4, 
the crossover point is chosen from 4 to 8.

Indeed, crossover operation corresponds to the method moving operations between classes, e.g., in Figure 4, 
the parent individual {1,2,1,2,1,2,2,1} produces one child individual {1,2,1,2,1,2,1,2}, which is equivalent to two 
method moving operations, i.e., move the seventh method from the class with identifier 2 to the class with 
identifier 1 and move the eighth method from the class with identifier 1 to the class with identifier 2.
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3.4.5  COEA Flow

The framework of COEA is shown in Algorithm 1, where P is the current population, Pi  =  {pi1, pi2, …, piD} is the 
ith individual in P, D is the dimension size, Np is the population size, pc ∈ [0,1] is the predefined crossover prob-
ability, rand(a,b) is a random number within (a,b], fabs(x) returns the absolute value of x, FEs is the number 
of fitness evaluations, and mFEs is the maximum number of evaluations. The ith individual Pi stores the class 
identifiers for all nodes the individual signifies, e.g., node j belongs to the class with identifier pij in Pi.

Algorithm 1 The COEA flow

Input:
 CFSON, |Nc|, #Methods, #Fields
Output:
 A list of methods with their target classes where they should be moved to
1: Initialize the parameters of COEA, including pc, Np, and mFEs
2: Generate the initial population with Np individuals P = {P1, P2, …, PNp}
3: �Calculate all the fitness values of the individuals in P according to Formula (4) and find the best individual Pbest and the worst 

individual Pworst with their fitness being Qbest and Qworst, respectively
4: FEs  =  Np

5: While FEs  ≤  mFEs && fabs(Qbest – Qworst)   ≥   10–20 do
6:   Select two different individuals Pa and Pb using roulette wheel selection from P
7:   if rand(0,1)   ≤   pc, then
8:    Generate one random numbers k  =  rand(|Nc| + #Fields, |Nc| + |Nf|)
9:    Perform one-point crossover operation at point k to produce two child individuals, ′aP  and ′bP
10:     Calculate the Q of ′aP  and ′,bP  respectively
11:     FEs  =  FEs + 2
12:   end if
13:    = ∪ ′ ′{ , }a bP P P P
14:   Rank the individuals in P in a descending order by their fitness values
15:   Select Np best individuals from P to form the new generation P
16:   Update Pbest and Pworst and their fitness values Qbest and Qworst

17: end while
18: return A list of methods with their target classes where they should be moved to

As we can see from Algorithm 1, the most dominant steps of COEA are steps 6 to 16 within the loop. 
Because the computational complexity of Equation (4) is O(|Nc|2|Nf|2), the computational complexity of COEA 
is O(|Nc|3|Nf|3).

4  Experiments and Data Analysis
To investigate the effectiveness of the proposed CLEAR approach, we designed and conducted the controlled 
experiments. Our experiments were carried out on a PC at 2.3 GHz with 2 GB of RAM. The following subsec-
tions will describe in detail the subjects, process, and results of these experiments.

4.1  Subject

We tested the CLEAR approach on two Java projects LAN-simulation and JHotDraw. LAN-simulation is a 
benchmark refactoring example tjat has been widely used to evaluate the performance of the refactoring 
approaches [6]. We generate the version before applying the moving method refactoring. JHotDraw is a Java 
GUI framework for technical and structured graphics developed by Gamma and Eggenschwiler as a design 
exercise for using design patterns [16]. Table 1 reports the size of the two subject projects in terms of LOC 
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Figure 5. uFDN (Left) and CFSON (Right) for LAN-Simulation.
In CFSON, the red nodes denote the features and the yellow nodes denote the classes. See online version for colors.

(lines of codes), |Nc|, #Fields, and #Methods. We should point out that |Nc| includes the number of inner 
classes and interfaces, and LOC is the practical lines of code, excluding the comment lines and blank lines.

4.2  Case Study and Results

In this section, we will show the process of our experiments on the subject projects and the results obtained. 
For Algorithm 1, the parameters pc and Np are fixed to 0.5 and 60, respectively, and the maximum number of 
fitness evaluation mFEs is 50,000. But how do we determine if the practical classes, methods, and fields that 
should be processed by our approach is still a problem?

Methods do not play the same role in a specific software system. As for methods that belong to design 
patterns, they always have special functions. Even such methods deliberately violate the design guideline 
like high cohesiveness and low coupling, they also cannot be moved and will be treated as special methods. 
JHotDraw is a design exercise for using design patterns. There might be many special methods. We use the 
approach proposed in [16] to detect those special methods. Thus, methods that belong to the type of pattern 
methods, getter and setter methods, state methods, factory methods, and delegation methods will be treated 
as special methods and will not be processed by our approach. In LAN-simulation, we do not find any special 
method, whereas in JHotDraw, we finally detect 1,050 special methods. Thus, for LAN-simulation, |Nc|  =  3, 
#Methods  =  25, and #Fields  =  13, and for JHotDraw, |Nc|  =  172, #Methods  =  227, and #Fields  =  443. In CLEAR, 
the special methods will not be encoded in individuals but will take part in the Q calculation.

We have developed a software analysis tool SNAT. It can parse the bytecode (files with.class and.jar 
extension), extract features, and their dependencies and further build CFSON. Figures 5 and 6 show the uFND 
and CFSON for the two subject projects. In uFDN, the notation on each node is the name of the feature the 
node denotes. In CFSON, the nodes denote the features or the classes. The notations on the nodes are their 
names. The positions of the nodes in uFDN are automatically calculated using a circular layout algorithm 

Table 1. Basic Data of the Subject Projects.

Subject projects   LOC   |Nc|   #Fields   #Methods

LAN-simulation   342   3   13   25
JHotDraw   8419   172   443   1277



94      M. Wang et al.: Class Level Software Refactoring Using Evolutionary Algorithms

and that of CFSON are calculated using a spring-embedded algorithm [4]. Enlarging the networks can give 
you more information. Because the software network of JHotDraw is so large, the notations of nodes and the 
dependencies between nodes cannot be clearly shown. For the clear version of the figures, please refer to  
http://wfpan.3vfree.us/figs.rar.

We apply COEA to the CFSON of the two subject projects. The algorithm returns the methods that should 
be moved. These methods are shown in Tables 2 and 3, where the first column is the names of the methods, 
the second column is the original classes where they are defined, and the third column shows the suggested 
target classes that they should be moved to.

4.3  Analysis

COEA offers a list of methods with the target classes that they should be moved to. As a first goal, we wish to 
know whether these methods make sense to the developers. We manually checked all the detected methods 
one by one by referring to the source code. We find that all detected methods can be justified.

Figure 6. uFDN (Left) and CFSON (Right) for JhotDraw.
See online version for colors.

Table 2. Methods Should Be Moved for LAN-Simulation.

Method name   Original class   Target class

lanSimulation.Network.getAuthor   Network   Packet
lanSimulation.Network.getTitle   Network   Packet
lanSimulation.Network.isPostscript   Network   Packet

Table 3. Methods Should Be Moved for JHotDraw.

Method name   Original class   Target class

PertFigure.writeTasks   PertFigure   StorableOutput
PolygonFigure.chop   PolygonFigure   Geom
PertFigure.readTasks   PertFigure   StorableInput
TextTool.fieldBounds   TextTool   standard.TextHolder
TextTool.beginEdit   TextTool   standard.TextHolder
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In LAN-simulation, methods getAuthor, getTitle, and isPostscript are suggested to be moved from the 
original class Network to the target class Packet, for all these methods are heavily used by (or use) methods 
in class Packet than that in class Network. As we can see from the source code, getAuthor heavily uses the 
field message_ with Packet type, calling its methods startsWith, indexOf, length, and substring many times, 
but getAuthor is only used by printDocument in class Network only one time. Method getTitle also heavily 
uses the field message_ with Packet type, calling its methods startsWith, indexOf, length, and substring, but 
getTitle is only used by printDocument in class Network only one time. isPostscript uses the field message_ 
with Packet type, calling its methods startsWith, but it is only called by printDocument once. Therefore, 
moving these three methods from their original class Network to the target Packet can reduce the coupling 
and improve the modularity. These methods are the right methods that should be moved, as suggested by 
Demeyer et al. [6].

Further, all detected methods in JHotDraw can also be justified. Method PertFigure.writeTasks is sug-
gested to be moved from class PertFigure to StorableOutput. By referring to the source code, we find that 
PertFigure.writeTasks writes many Storable elements but does not directly use any fields or methods defined 
in class PertFigure. StorableOutput is a class to manage the storage of storable objects. Thus, from our per-
spective, PertFigure.writeTasks should be moved from PertFigure to StorableOutput. Method PolygonFigure.
chop is suggested to be moved from class PolygonFigure to Geom. We can observe from the source code that 
chop makes heavy use of the methods length2 and intersect defined in Geom but does not use any field or 
method in the class PolygonFigure where it is defined. Therefore, we think the best place for chop would be 
class Geom. Methods PertFigure.readTasks, TextTool.fieldBounds, and TextTool.beginEdit can be similarly 
justified.

As a second goal, we want to check that if we modified the subject projects by randomly selecting 5 
methods and misplacing them, whether CLEAR has the ability to move them back to the classes where they 
are defined. We apply CLEAR to the modified version of LAN-simulation and JHotDraw 20 independent runs. 
Tables 4 and 5 show the results. The first column shows the methods that are selected to be misplaced. In 
the 20 runs, the five methods are selected only once and kept the same in the remaining 19 runs. The second 
column shows the class that the corresponding method is suggested to be moved to. The last column is the 
number of runs that the corresponding method is rightly moved back to the class where it is defined.

As we can see from Tables 4 and 5, four of the five methods in LAN-simulation have been successfully 
moved back to their original classes in all runs, and all methods in JHotDraw have been successfully moved 
back, but the method getAuthor in LAN-simulation has never been moved back because it is a method (as we 

Table 5. Manually Misplaced Methods for JHotDraw.

Methods   Misplaced to class   #

PertFigure.layout   Quadtree   20
CompositeFigure.bringToFront   Quadtree   20
PolygonFigure.findSegment   FigureAttributes   20
Geom.ovalAngelToPoint   ChopEllipseConnector   20
MDIDesktopManager.resizeDesktop   MDIDesktopPane   20

Table 4. Manually Misplaced Methods for LAN-Simulation.

Methods   Misplaced to class   #

lanSimulation.internals.Node.Node(byte, java.lang.String)   Network   20
lanSimulation.Network.hasWorkstation(java.lang.String)   Node   20
requestWorkstationPrintsDocument(java.lang.String, java.lang.String, java.lang.String, java.io.Writer)  Node   20
lanSimulation.Network.consistentNetwork()   Node   20
lanSimulation.Network.getAuthor(lanSimulation.internals.Packet)   Packet   0
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talked above) that should be moved to the target class Packet. It proves that CLEAR can successfully move 
back the misplaced methods with a high stability.

As a third goal, we want to compare the effectiveness of our approach with one refactoring approach 
at the class level and other two community detection algorithms, specifically the search-based refactoring 
approach (SBRA) [16], a graph theoretic clustering algorithm (MCODE) [3], and a fast algorithm for commu-
nity detection (FG) [10]. As the focus of the current work is not on the introduction of these approaches, the 
detailed description of MCODE and FG is omitted. It should also be noted that since [16] only reports the 
results obtained on JHotDraw, here we also compare the effectiveness of these approaches only on JHotDraw.

Compared with SBRA, we find that the methods that should be moved by CLEAR are very similar to that 
reported in [16], but the time cost is less. The time for CLEAR is <20 s, whereas the time for SBRA is more than 
30 min. We apply MCODE and FG to the uFDN of JHotDraw and compare the communities detected with the 
real class structures by computing the Rand index [15]. The Rand index is a measure of the similarity between 
two data clusterings. The results are shown in Table 6.

From Table 6, we can see that MCODE detects 34 communities in the uFDN of JHotDraw, whereas FG 
detects 32 communities. The number of communities detected by the two approaches is much smaller than 
the number of classes in JHotDraw. Thus, the identified communities would hardly be mapped to the real 
classes, preventing us from the comprehension of the results. The Rand index further indicates that the com-
munities detected by the two approaches only weakly related to the real classes. The two approaches prove 
useless when applied to software networks. Such a disparity between communities and real classes may 
come from the initial setting of their approaches, i.e., the two algorithms start with random communities. 
However, CLEAR starts with the communities that represent original software classes. Therefore, CLEAR can 
obtain meaningful results better than the MCODE and FG.

5  Conclusions and Future Work
In this article, we have proposed an approach for identifying the methods that should be moved between 
classes. Our approach is performed from the perspective of software topological structure and uses a bipar-
tite network across class and feature level to characterize the structure. Nodes denote classes and features. 
Edges between every pair of class and feature denote their composition relationships, and the weight on each 
edge denotes the dependency strength. Based on the bipartite network, we introduced a bipartite modularity 
metric to quantify the cohesion and coupling of the software as a whole. Further, a COEA that takes the bipar-
tite modularity metric as its fitness function is proposed to find the optimized class structures. By comparing 
the optimized class structures with the real class structure, we can detect the methods that should be moved 
and their target classes.

We conducted two case studies to assess the proposed approach. Our manual checking of the suggested 
methods indicated that the proposed approach is capable of extracting sound suggestions.

Although our approach shows some feasibility, the broad validity of our approach demands further dem-
onstration. Thus, the future work include (1) evaluating the approach using other large-scale open-source 
Java projects, (2) implementing more refactorings such as extracting classes and splitting classes, and (3) 
developing a refactoring tool that can refactor software systems at different levels of granularity.
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Table 6. Results Obtained by Applying MCODE and FG to the uFDN of JHotDraw.

Approach   #Community   Rand index

MCODE   34   0.456
FG   32   0.414
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