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Abstract: This article presents a Hybrid Artificial Bee Colony (HABC) for uncapacitated examination time
tabling. The ABC algorithm is a recent metaheuristic populationbased algorithm that belongs to the Swarm 
Intelligence technique. Examination timetabling is a hard combinatorial optimization problem of assigning 
examinations to timeslots based on the given hard and soft constraints. The proposed hybridization comes in 
two phases: the first phase hybridized a simple local search technique as a local refinement process within 
the employed bee operator of the original ABC, while the second phase involves the replacement of the scout 
bee operator with the random consideration concept of harmony search algorithm. The former is to empower 
the exploitation capability of ABC, whereas the latter is used to control the diversity of the solution search 
space. The HABC is evaluated using a benchmark dataset defined by Carter, including 12 problem instances. 
The results show that the HABC is better than exiting ABC techniques and competes well with other tech
niques from the literature.
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1  Introduction
Examination timetabling is a taxing and difficult administrative process for educational institutions. The 
university examination timetabling problem (UETP) can be defined as the assignment of given examinations 
to a limited number of time periods, subject to a set of hard and soft constraints [43]. The production of a 
highquality timetable that schedules all examinations and takes care of all constraints is one of the major 
concerns in the timetabling community. A hard constraint is a type of constraint that cannot be violated in 
the timetable solution, while the violation of soft constraints is tolerated. The main objective is to generate 
a highquality timetabling solution that satisfies the hard constraints (feasible timetable) and reduces the 
violations of soft constraints as much as possible. Examination timetabling problems can be classified into 
capacitated or uncapacitated problems [43]. The major difference between them is that room capacity is not 
considered in the uncapacitated examination timetabling problem, yet it is considered in the capacitated 
examination timetabling problem.

Creating effective techniques for tackling examination timetabling problems has been the subject of 
research in the domain of operational research and artificial intelligence for the past few decades. Generally, 
these problems are categorized as NPhard combinatorial problems [30] and considerable efforts have been 
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exerted by researchers to develop effective procedures to tackle the examination timetabling problems over 
the last three decades [43]. The complexity of producing nearoptimal solutions for the UETPs has led to the 
introduction of numerous heuristic and metaheuristic techniques: mathematical programming [12, 25], local
based search methods such as Great Deluge [20, 34], Simulated Annealing [46], Tabu Search [26, 33], Variable 
Neighborhood Search [2, 17], and populationbased methods such as Ant Colony [27, 28], Evolutionary Algo
rithms [24, 37], Particle Swarm Optimization [29], Harmony Search Algorithm [7], and memetic algorithms 
[8, 35]. More details on the review of techniques that have been used for examination timetabling problems 
are provided in Ref. [43].

In recent years, a number of hybrid techniques have been efficiently proposed for tackling wide varieties 
of optimization problems, including university examination timetabling. These hybridization techniques 
can be based mainly on the combination of heuristic techniques with metaheuristics, or hybridization of 
two or more metaheuristic techniques. Generally, the basic idea is to capitalize on the advantages of such 
hybridization in order to produce a method that is able to strike a right balance between the exploration of 
the problem search space and exploiting the accumulative search. For example, a complementary advan
tage is achieved by combining the evolutionary algorithm that explores the solution search space with 
gradientdescent techniques that exploit the small region of the search space to find the local optimum 
quickly. These kinds of hybrid techniques have been already proven to be efficient and robust methods 
for solving a wide range of combinatorial optimization problems, including timetabling and scheduling 
problems [21, 36].

One of the recent metaheuristic populationbased techniques is the Artificial Bee Colony (ABC). It was 
originally proposed in 2005 by Karaboga for numerical optimization problems. Owing to its simplicity and 
robustness [14], it has been successfully applied to different optimization problems such as the graph col
oring problem, flow job–shop scheduling problem, traveling salesman problem, vehicle routing problem, 
and quadratic assignment problem. It has been proven in the literature that ABC has a better or compara
ble performance over other wellknown populationbased algorithms such as Differential Evolution, Genetic 
Algorithm (GA), and Particle Swarm Optimization on constrained and unconstrained problems because of 
the following advantages:

 – Apart from the solution number (SN) and maximum cycle number (MCN), ABC uses only one control 
parameter when compared with many other search techniques. For example, the original GA comes with 
three control parameters (i.e., crossover rate, mutation rate, and generation gap).

 – Ease of implementation with basic mathematical, logical operations, and no derivative information is 
needed in the initial search.

However, owing to the combinatorial nature of optimization problems, the original ABC has been adopted or 
hybridized with other gradientdescent methods in order to strike a balance between exploration and exploi
tation of the problem search space. Admittedly, it has been proven that the structure of ABC tends to observe 
global exploration rather than local exploitation [49].

Studies from the literature have shown that the ABC algorithm has been adopted to tackle examination 
timetabling problems [4–6]. In these studies, a twostage solution approach was employed where the largest 
weighted degree was used to generate an initial feasible solution at the constructive stage. The ABC algorithm 
is integrated with large neighborhood structures at the improvement stage. The author compared three dif
ferent selection strategies of the onlooker operator in Ref. [5] and later hybridized simulated annealing with 
the onlooker operator in Ref. [6]. Another study [13] tested the performance of ABC with small neighborhood 
structures for the uncapacitated examination timetabling problem. However, the results obtained by these 
studies were not comparably better than the existing techniques from the literature. Research has also shown 
that hybridization between metaheuristic techniques often performs better than individual techniques, as 
they benefit from the advantages of both (or more) techniques. The motivation to improve the performance 
of the ABC algorithm for the uncapacitated examination timetabling problem leads to two major objectives of 
this article: (i) hybridizing a simple local search technique (SLST) with the employed bee operator of the ABC, 
and (ii) replacing the concept of the scout bee operator with random consideration strategy of the Harmony 
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Search Algorithm (HSA) process. The proposed technique is called the Hybrid ABC (HABC) algorithm. The 
hybrid technique is analyzed using a benchmark dataset proposed in Ref. [22]. This dataset includes 12 real
world problem instances. The proposed method is able to produce highquality results in comparison with 25 
comparative methods.

The rest of the article is organized as follows: Section 2 gives descriptions and formulations of the 
 uncapacitated examination timetabling problem, while Section 3 presents the fundamentals of ABC. 
Section 4 describes the HABC technique for examination timetabling, and experimental results are presented 
in Section 5. The last section is devoted to the conclusion and some future works.

2  Problem Descriptions and Formulations
Uncapacitated examination timetabling is a process of scheduling a set of examinations, each taken by a set 
of students, to a set of time periods (or timeslots) subject to satisfying hard and soft constraints. The main 
objective is to obtain a feasible timetable solution that satisfies the hard constraint (H1) with reduction in the 
violations of the soft constraint (S1). The hard and soft constraints are as follows:

 – H1: No student can be scheduled to sit for more than one examination at the same time.
 – S1: The examinations taken by the same student should be spread out evenly across a timetable.

A thorough description of the examination timetabling problem is surveyed in Ref. [43]. A timetabling solu
tion is represented by a vector, x  =  (x1, x2, …, xM), of examinations, where the value of xi is the timeslot for 
examination i. The proximity cost function defined in Ref. [7] is used to evaluate the solution. It computes 
the ratio of the penalty assigned to the total number of soft constraint violations and the total number of stu
dents. The formulation for the proximity cost function is given in eq. (1), while the notation of the variables 
used is shown in Table 1. Note that the notation is adopted from Ref. [7] with some modifications:
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Table 1. Symbols Used in the Description of U-UETP.

Symbols  Definition

M   Total number of examinations
N   Total number of students
P   Total number of time periods
E   Set of examinations
S   Set of students
T   Set of time periods
x   A timetable solution is given by (x1, x2, …, xM)
xi   Timeslot of examination i
ai, j   Proximity coefficient matrix element: whether the timetable x is penalized on the basis of the distance between 
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H1: No student can sit for two examinations simultaneously

,, 1.i j i j i jx x x x X c≠ ∀ ∈ ∧ ≥

Notably, the value of the proximity cost function f(x) is referred to as the fitness cost of a feasible timetable.
The Carter dataset [23] used in this study consists of 13 datasets that reflect the realworld examination 

timetabling problems. For the purpose of our study, 12 datasets that are circulated in the literature were used. 
The characteristics of Carter datasets, varying in size and complexity, are shown in Table 2. The conflict 
matrix in the last column illustrates density, which is the ratio between the number of elements of values 
ci, j  >  0 and the total number of elements in the conflict matrix [43].

3  Artificial Bee Colony Algorithm
The ABC algorithm is a relatively new family of Swarm Intelligence (SI) algorithms that can be employed 
to obtain “optimal” solutions to general optimization problems. It can be easily adopted to tackle different 
optimization problems and has proven to be efficient, effective, and fast when used for various optimization 
problems [31, 32]. This algorithm starts with a population of solution (i.e., food source) and is inspired by 
the intelligent foraging behavior of a honeybee swarm. In ABC, the colony consists of three groups of artifi
cial foragers: employed foragers, onlookers, and scouts. The first half of the colony consists of the artificial 
employed foragers, while the second half includes the onlookers. For every solution (i.e., food source), there 
is an associated artificial employed forager. In other words, the number of artificial employed foragers is 
equal to the number of food sources. The artificial employed forager whose food source is abandoned turns to 
a scout. The onlookers are the bees waiting in the hive to study the dance behavior of the artificial employed 
bees in order to select the desired food source. The “scouts” are those bees that are randomly searching for 
new food sources within the hive. Analogously in the optimization context, the number of food sources (i.e., 
the employed or onlooker foragers) in the ABC algorithm is equivalent to the number of individuals in the 
population. Furthermore, the position of a food source signifies the possible solution for the optimization 
problem. The nectar amount of a solution (i.e., food source) represents the quality of the food source by that 
solution [31].

In the ABC algorithm, the search cycle consists of three processes: (i) assigning the artificial employed 
foragers to the food sources and evaluating their nectar amounts; (ii) onlookers select the food sources 
after obtaining information from artificial employed foragers and calculating their nectar amount; and (iii) 

Table 2. Characteristics of Uncapacitated Examination Dataset.

Dataset   Time periods  Examinations  Student  Density

CAR-S-91-I  35  682  16,925  0.13
CAR-F-92-I   32  543  18,419  0.14
EAR-F-83-I   24  190  1125  0.27
HEC-S-92-I  18  81  2823  0.42
KFU-S-93   20  461  5349  0.06
LSE-F-91   18  381  2726  0.06
RYE-S-93   23  481  11,483  0.07
STA-F-83-I   13  139  611  0.14
TRE-S-92   23  261  4360  0.18
UTA-S-92-I   35  622  21,266  0.13
UTE-S-92   10  184  2750  0.08
YOR-F-83-I   21  181  941  0.29
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determining the scout bees and then sending them onto possible food sources. The positions of the food 
sources are randomly selected by the foragers at the initialization stage, and their nectar qualities are meas
ured. The employed foragers then share the nectar information of the sources with the onlookers waiting at 
the dance area within the hive. At the next stage after sharing information, every employed forager returns 
to the food source visited at the previous cycle, as the position of the food source exists in its memory and 
then selects a new food source using the visual information in the neighborhood of the present one. At the 
last stage, an onlooker uses the information obtained from the employed foragers at the dance area to select 
a food source. The probability with which the food source is selected increases with the increase in the nectar 
quality of a food source. Therefore, the employed forager with higher nectar quality information recruits 
the onlookers to that food source. It subsequently chooses a food source in the neighborhood of the one in 
her memory based on visual information (i.e., comparison of food source positions). A new food source is 
randomly generated by a scout forager to replace a food source that has nectar quality abandoned by the 
onlookers. The search process of the ABC algorithm is repeated until the MCN is reached. Note that the MCN 
is the number of iterations (i.e., cycles) that is predetermined at the initial stage of the search process. The 
ABC procedure could be represented in Algorithm 1.

Algorithm 1: Schematic Pseudocode of the ABC Procedure

1: Initialize the food sources and calculate the fitness (nectar amount) of food sources
2: Send the employed foragers to the current food sources
3: MCN  =  0;
4: repeat
5:  /*Employed Bees’ Phase*/
6:  for each employed bee do
7:   Generate a new food source in its neighborhood
8:   Evaluate the fitness of the new food source
9:   Apply greedy selection on the original food source and the new one
10:  end for
11:  Calculate the probability p for each food source
12:  /*Onlookers’ Phase*/
13:  Send onlooker bees on the food sources depending on their nectar qualities
14:  Generate a new food source in its neighborhood
15:  Evaluate the fitness of the new food source
16:  Apply greedy selection on the food source with a higher fitness value
17:  Abandon the exploitation process of the food sources, if the limit is exceeded
18:  Send the scout forager to generate a random food source
19:  Memorize the best food source
20:  MCN  =  MCN+1
21: until (termination criterions are met)

4  The Proposed Hybrid Algorithm
In this section, the HABC algorithm is proposed for the uncapacitated examination timetabling problem. The 
proposed method hybridizes the search capabilities of three powerful operators of metaheuristic techniques, 
i.e., ABC algorithm, SLST, and random consideration from harmony. It is noteworthy that hybridizing the 
ABC algorithm with an SLST has important advantages in enhancing the local exploitation capability of ABC, 
while replacing the concept of the scout bee operator with random consideration is to control the diversity 
and slow convergence of the proposed HABC. The next two subsections provide a brief review of the proposed 
SLST followed by a detailed description of the proposed HABC algorithm.
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4.1  An SLST

The local search technique is used to direct the search toward the local optimum. Its process often begins 
with a solution randomly generated and its fitness cost is calculated. Then, the solution undergoes random 
changes and its fitness is reevaluated. The new solution will replace the old one under the condition that it 
has a better or equal fitness. This process is repeated until a termination condition is achieved. In this article, 
three different neighborhood structures are used by the SLST to explore the timetabling solution to enhance 
its quality. The descriptions of these neighborhood structures are given below, while the pseudocode of SLST 
is stated in Algorithm 2.

 – NLMove: Moves a selected examination to a feasible period randomly, i.e., replace the time period ix′  of 
examination i by another feasible timeslot. For example, Figure 1 illustrates the NLMove neighborhood 
where an examination (e3) is moved from a timeslot (t6) to another timeslot (t4).

 – NLSwap: Swap two selected examinations at random, i.e., select examination i and examination j ran
domly, swap their time periods ( , ).i jx x′ ′  Here, Figure 2 shows the example of an NLSwap neighborhood 
where two examinations are selected randomly (i.e., e5 from timeslot t3 and e1 from timeslot t9) and then 
swap their timeslots.

 – NLKempeChain: First, select the timeslot ix′  of examination i and randomly select another q′ timeslot. 
Second, all examinations that have the same timeslot ix′  that are in conflict with one or more examina
tions timetabled in qi are entered to chain δ where ,{ | = 0 }.j i i qj x x t j Eδ ′= = ∧ ∧ ∀ ∈′ ′  Third, all examina
tions that have the same timeslot q′ that are conflicting with one or more examinations timetabled in ix′  
are entered to a chain δ′ where ,{ | = = 0 },

ik k xk x q t k Eδ ′= ∧ ∧ ∀ ∈′ ′ ′  and lastly, simply, assign the exami
nations in δ to q′ and the examinations in δ′ to .ix′  Figure 3 shows the example of the NLKempeChain 

Figure 1. NL-Move Example.

Figure 2. NL-Swap Example.

Figure 3. NL-Kempe Example.
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neighborhood that allows a subset of the examinations in one timeslot to be moved to another timeslot 
while the feasibility of the solution is preserved. For instance, Figure 3 consists of two timeslots t1 and t2, 
and each timeslot contains five examinations. Examination e5 cannot be moved from timeslot t1 to times
lot t2 because it clashes with examinations e7, e9, and e10 in t2. This means that examinations e7, e9, and e10 
need to be moved from timeslot t2 and then examination e1 will have to move across to timeslot t2 in order 
to maintain the feasibility of the timetabling solution. 

Algorithm 2: SLST Phase

1: INPUT (x) {x is the current solution}
2: x′ {x′ is the improved solution}
3: repeat
4:  i  =  RND(){RND: generate a random integer number between 1 and 3}
5:  if i  =   =  1 then
6:   x′  =  NL-Move (x)
7:  else
8:   if i  =   =  2 then
9:    x′  =  NL-Swap (x)
10:   else
11:    if i  =   =  3 then
12:     x′  =  NL-KempeChain (x)
13:    end if
14:   end if
15:  end if
16:  if f(x′) < f(x) then
17:   x  =  x′
18:  end if
19: until SLST cycle number (SCN) is reached
20: OUTPUT (x′)

4.2  The Proposed HABC Algorithm

The proposed HABC hybridizes an SLST within the employee forager operator of ABC to improve its search 
capability and replace the concept of the scout bee operator with the random consideration procedure of 
HSA. The HABC consists of two main search disciplines: a global one (i.e., ABC algorithm), which is responsi
ble for the global improvement, and a local one (i.e., SLST), which performs local refinement around poten
tial solutions. The framework of the proposed HABC is shown as a flow chart in Figure 4. The implementation 
of the proposed HABC for uncapacitated examination timetabling is given in the next subsections.

4.2.1  Initialization of the ABC and Uncapacitated UETP Parameters

The parameters of uncapacitated UETP (UUETP) are normally extracted from the problem instances. These 
parameters include the set of examinations, set of timeslots, set of rooms, etc. (see Table 1). The main deci
sion variable of UUETP is the examinations. Each examination can be assigned to a feasible timeslot in the 
timetable solution. A set of all feasible timeslots can be considered as the available range of such examina
tions. In fact, the feasible timeslot of each examination changes during the search of HABC. The proximity 
cost function described in eq. (1) is used to evaluate each solution.

At this stage, the parameters of the HABC used for UUETP are initialized, i.e., the SN, which is similar 
to the population size in genetic algorithms; MCN, which is similar to the number of iterations; Limit, which 
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functions as a mutation rate in GA; and Local Search Rate (LSR), which decides the rate of using the simple 
local search in employee bee. These parameters will be explained in more detail in the next steps.

4.2.2  Initialize the Food Source Memory

The Food Source Memory (FSM) is an augmented matrix of size SN comprising a vector in each row repre
senting a timetable solution as in eq. (2). Note that the vectors in FSM are generated using a method that 
combines the saturation degree (SD) [15], and it was previously used by other techniques for UUETP. The SD 
begins with an empty timetable, and the examination with the least number of valid timeslots is assigned 
first without consideration for the soft constraints violations and the process is repeated until all examina
tions are feasibly assigned to the timeslots. Once the feasibility of the timetabling solution is achieved, the 
process stops; otherwise, the whole process will be repeated until the hard constraints are satisfied. The SD 
is used to generate the initial set of feasible solutions because of its efficiency in terms of computational time 
[1]. In addition, these solutions are sorted in ascending order according to their fitness cost values (i.e., f(x1)   ≤   
f(x2)  <  …  <  f(xSN)).

Start

Initialize the food
source memory (FSM)

itr=0

itr<MCN

i=0

No

No

Yes

Yes

Yes

i≤SN

U(0,1)<LSR

i++

itr++

=LST(x
i
)x’

i

No

Yes

Stop

Employed bee

Onlooker bee

Scount bee phase

Random
consideration

Figure 4. Flowchart of the HABC Framework.
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The HABC initially begins with the population of provisional solutions at the initialized stage and keeps them 
in FSM. The richness (i.e., fitness) cost of each solution (food source) in FSM is evaluated using the proximity 
cost function f(x) in eq. (1), and the best food is memorized (i.e., f(x1)).

4.2.3  Send the Employed Foragers to the Food Sources

This is the core idea of this research. The employed forager operator selects a timetabling solution from the 
FSM one by one and triggers the SLST to exploit the current solution (i.e., xi where i ∈ {1, 2, …, SN}) with the 
probability of LSR. The fitness of each new solution (i.e., x′i) is evaluated; if it is better than that of current 
solution, then the new one replaces the current in FSM. The SLST is triggered by the employed forager of ABC, 
as shown in Algorithm 3.

Algorithm 3: Employed Forager-Triggered LST Procedure

1: for i  =  1, …, SN do
2:  if (U(0, 1)  <  LSR) then
3:   x′i  =  SLST(xi)
4:  end if
5: end for

Remarkably, the use of the LSR parameter is to examine the utilization of SLST. In other words, the higher 
the LSR, the higher the calling of SLST will be, and consequently the higher the exploitation provided. When 
the SLST is called, the current solution will be improved until the SLST cycle number (i.e., LSTCN) is reached. 
Thus, the output of the SLST is the refined solution of the current one.

4.2.4  Send the Onlooker Bees

The onlooker bee operates on the refined solutions in FSM. Initially, it selects the fittest solutions in FSM using 
the proportional selection method [31]. The process of selection in the onlooker phase thus works as follows:

 – The proportional selection assigns the selection probability for each solution (food source) in FSM using 
eq. (3):
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 – Then, the fittest solutions are selected on the basis of their selection probabilities. The solution with 
a higher selection probability has a higher chance to be selected in the new population. The selected 
food source is then refined further, as shown in Algorithm 4. It is important here to note that the same 
neighborhood structures are used in the employed bee phase. However, the onlooker bees implement the 
neighborhood structure search for the fittest solution in FSM and it should be noted that the refinement 
process takes just one neighborhood at a time, as shown in Algorithm 4. The fitness of the new solution 
is calculated and, if it is better, then it replaces the current one. 
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4.2.5  Send the Scout Bee to Search for Possible New Food Sources

This is known to be the colony explorer. It works once a solution is abandoned, i.e., if a solution in the FSM has 
not improved for a certain number of iterations as decided by the Limit. Here, the scout operator is replaced 
with random consideration idea of HSA, which is used to direct the search away from the local optimum 
toward new regions of the solution space. This is done by diversifying the timetabling solution (food source) 
through the alteration of the variable’s information. The variable in the timetabling solution is considered 
one by one, and the value of the variable is altered at the rate that is determined by the random consideration 
rate (RCR), as shown in Algorithm 5. It is worthy of mention that the random consideration operator takes 
the abandoned food source (timetable solution) from FSM and works by selecting the number of examina
tions that meet certain probability as defined by the RCR at random. The selected examinations are removed 
from their present timeslots and then reassigned to the new ones (i.e., timeslots). For example, examination 
i that meets the RCR criteria is removed from the timeslot xi and then the random consideration reassigned 
to another timeslot ix′  within the possible range of timeslot as given by the set ,{ | 1 1, , }.i i bb t b P= = ∧ ∈ …X  
The function of random consideration is similar to the uniform mutation operator in GA, which is a good 
source of exploration in timetabling.1 

Algorithm 4: Onlooker Bee Phase

1: for j  =  1, …, SN do
2:  xi  =  roulette wheel (FSM) where i∈{1, …, SN}
3:  i  =  RND(){RND generate a random integer number between 1 and 3}
4:  if (i  =   =  1) then
5:   x′i  =  NL-Move (xi)
6:  else
7:   if (i  =   =  2) then
8:    x′i  =  NL-Swap(xi)
9:   else
10:    if (i  =   =  3) then
11:     x′i  =  NL-KempeChain(xi)
12:    end if
13:   end if
14:  end if
15:  if f(x′i)   ≤   f(xi) then
16:   xi  =  x′i

17:  end if
18:  next i
19: end for

1 Uniform mutation is one of the example conventional mutation operators that simply replaces variables of the solution with a 
randomly selected real number within a specified range.

Algorithm 5: Pseudocode of the Random Consideration

1: let xj be a timetabling solution
2: for i  =  1 to N do
3:  if (U(0, 1)  <  RCR) then
4:   diversify ( )j

ix
5:  end if
6: end for

where U(0, 1) generates a random number between 0 and 1 and the diversify function ( )j
ix  explores the solu

tion search space by removing and reassigning the decision variables from the abandoned solution.



A. L. Bolaji et al.: HABC for Uncapacitated Examination Timetabling Problems      47

4.2.6  Stopping Condition

Steps 3–5 are repeated until the MCN is reached.

5  Experimental Results and Analysis
In this section, the performance of the proposed HABC for uncapacitated examination timetabling is evalu
ated. It is coded in Microsoft Visual C++ 6.0 on Windows 7 platform on Intel 2 GHz Core 2 Quad processor 
with 2 GB of RAM. The proposed method required a maximum of 7 h to obtain the recorded result, although 
the computational time is not provided in the literature. Burke et al. [20] stated that the time taken is quite 
reasonable for examination timetabling (because, normally, examination timetables are produced months 
before they are required; thus, they do not require realtime algorithms to tackle them). Furthermore, it is 
unacceptable to reduce the computational time at the expense of the quality of solution. The proposed tech
nique is tested using the Carter dataset established in Ref. [22] and published at a website.2 The characteris
tics of this dataset are provided in Section 2.

5.1  Experimental Design

This section presents the experimental designs showing the performance of the proposed HABC where the 
influence of using the SLST is studied. It is important to stress here that the SLST is used in the fine tuning of the 
solution search space toward the global optimum by improving the proposed HABC’s local exploitation capabil
ity. Table 3 lists the parameter settings of HABC for the UUETP, which were chosen on the basis of our prelimi
nary experiments. These parameters provide a good balance between the quality of solution and the running 

Table 3. Settings of Important HABC Parameters.

Case   Solution 
number (SN)

  Limit  Random consideration 
rate (RCR)

  Simple local 
search rate (SLSR)

  Maximum cycle 
number (MCN)

Case 1  10  100  10%  10%  10,000
Case 2  10  100  10%  25%  10,000
Case 3  10  100  10%  50%  10,000

2 http://www.cs.nott.ac.uk/ rxq/data.htm.

Table 4. Average Runtime of the HABC on Each Problem Instance of the U-UETP.

Problem instance  Case 1  Case 2  Case 3

CAR-S-91-I   13,351  18,928  24,098
CAR-F-92-I   5183  9431  11,029
EAR-F-83-I   543  797  1045
HEC-S-92-I   346  531  681
KFU-S-93   2213  6141  9172
LSE-F-91   3049  5618  7739
RYE-S-93   5491  8801  10,111
STA-F-83-I   559  719  1097
TRE-S-92   397  7179  11,901
UTA-S-92-I   15,811  19,007  23,938
UTE-S-92   688  861  1011
YOR-F-83-I   5583  8231  10,326

http://www.cs.nott.ac.uk/
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Table 5. Experimental Results of HABC on U-UETP.

Dataset  Case 1  Case 2  Case 3

CAR-S-91-I
 Best   5.00  5.05  5.06
 Mean   5.05  5.16  5.20
 Worst  5.09  5.24  5.28
 Stdv   0.03  0.07  0.06
CAR-F-92-I
 Best   4.22  4.25  4.22
 Mean   4.29  4.30  4.25
 Worst  4.33  4.33  4.27
 Stdv   0.03  0.03  0.02
EAR-F-83-I
 Best   34.52  34.55  34.07
 Mean   34.86  35.22  34.70
 Worst  35.11  35.66  35.06
 Stdv   0.20  0.37  0.28
HEC-S-92-I
 Best   10.68  10.50  10.36
 Mean   10.78  10.74  10.64
 Worst  10.87  11.22  10.83
 Stdv   0.06  0.23  0.17
KFU-S-93
 Best   14.02  14.01  14.07
 Mean   14.17  14.11  14.23
 Worst  14.27  14.32  14.39
 Stdv   0.08  0.09  0.09
LSE-F-91
 Best   11.04  11.08  11.01
 Mean   11.18  11.40  11.17
 Worst  11.26  11.65  11.33
 Stdv   0.09  0.19  0.11
RYE-S-93
 Best   9.28  9.30  9.31
 Mean   9.49  9.40  9.41
 Worst  9.64  9.57  9.70
 Stdv   0.12  0.11  0.16
STA-F-83-I
 Best   157.04  157.07  157.06
 Mean   157.13  157.18  157.12
 Worst  157.17  157.22  157.15
 Stdv   0.04  0.05  0.03
TRE-S-92
 Best   8.38  8.42  8.51
 Mean   8.47  8.50  8.64
 Worst  8.55  8.55  8.72
 Stdv   0.06  0.04  0.07
UTA-S-92-I
 Best   3.40  3.44  3.45
 Mean   3.45  3.48  3.48
 Worst  3.49  3.51  3.51
 Stdv   0.03  0.02  0.02
UTE-S-92
 Best   25.80  25.87  25.91
 Mean   26.17  26.12  26.17
 Worst  26.35  26.3  26.35
 Stdv   0.19  0.15  0.15
YOR-F-83-I
 Best   37.53  37.27  36.95
 Mean   37.69  37.75  37.51
 Worst  37.84  38.18  37.97
 Stdv   0.09  0.25  0.36
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time needed to achieve good solutions quality. The preliminary experiments show that increase in SN has no 
impact on the performance of the proposed technique, but the runtime is increased. It was found that the most 
sensitive parameter is the simple local search rate (SLSR), which determines the usage of an SLST. Note that 
when the value of SLSR increased, the exploitation rate of the HABC is increased and thus the runtime required 
by the proposed technique equally increases. The investigation of the effect of varying the SLSR parameter is 
conducted. The average runtime taken for each case on each problem instance is recorded in Table 4.

5.2  Experimental Results

Table 5 shows the experimental results of the proposed HABC with varying LSR values by showing the best, 
mean, worst, and standard deviation over 10 runs. The best solution for each Carter dataset is highlighted in 
bold, while Figure 5 shows the boxplots that illustrate the distribution of solution quality for all the datasets. 
The results show that the LSR with a lower value generally improves the solutions obtained. As shown in 
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Figure 5. Boxplot Demonstrating the Effect of Varying HCR on HABC.
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Figure 5, it can be seen that the gaps between the best, average, and worst solution qualities are very close, 
which demonstrates that the proposed HABC is a robust technique.

The experimental results obtained by HABC are compared with those exiting techniques that are available 
to the authors. These are 24 hybrid SIrelated techniques, heuristics, and other hyperheuristics techniques that 
worked on Carter problem instances. The abbreviations of the comparative techniques are given in Table 6.

Table 7 shows that the proposed HABC obtained very competitive results when compared with 24 other 
techniques (i.e., SI, heuristic, and hyperheuristicbased techniques). The HABC outperformed these tech
niques in three problem instances (i.e., EARF83, HECS92, and STAF83), came second in four instances (i.e., 
RYES93, UTAS92I, UTAS92, and YORF83I), and achieved third best on KFUS93 and TRES92. Finally, it 
came fourth and fifth on the rest of the remaining problem instances. As shown in Table 7, the best proximity 
values (lowest is best) are highlighted in bold, while “” indicates that the technique could not find a feasible 
timetable. Similarly, it can be seen that none of these techniques comprehensively outperformed the others.

It can be concluded that the HABC is generally able to produce highquality results when compared 
against hyperheuristic, other heuristic, and SIbased techniques. This indicates that using ABC as a global 
improvement method hybridized with SLST as a local improvement method is a powerful technique for the 
uncapacitated examination timetabling problem where it is able to strike a right tradeoff between global 
wide rage exploration of the timetabling problem search space and local nearby exploitation of the promising 
regions on the timetabling problem search space.

6  Conclusion
This article presents an HABC that hybridizes an SLST within the employee bee operator of the ABC algorithm 
for tackling the UUETP. In HABC, the SLST is hybridized within the employed bee operator of the original 

Table 6. Key to Hyperheuristic and Other Heuristic Comparative Techniques.

No.  Key   Technique   References

1  HABC   Hybrid Artificial Bee Colony Algorithm   Proposed technique
2  MLNS-LS   A multistart large NS approach with LS methods   [1]
3  HPSO   Hybrid Particle Swarm Optimization   [3]
4  DABC   Disruptive Artificial Bee Colony   [6]
5  FLE   Fuzzy logic expert   [10]
6  NFA   Novel fuzzy approach   [11]
7  FHOM   Fuzzy heuristic ordering model   [9]
8  GBHH-ETP   Graph-based hyperheuristic for ETPs   [18]
9  ETS-LSM   Enhancing timetable solutions with local search methods   [16]

10  ASH-GRASP  Adaptive selection of heuristics within GRASP   [19]
11  LCA   Largest cliques as the initialization for graph heuristics with backtracking  [23]
12  TSA   Tabu Search algorithm   [26]
13  HMOEA   Hybrid Multiobjective Evolutionary   [24]
14  ANTCOL   Ant Colony   [28]
15  MMAC   Max–Min Ant Colony   [28]
16  HA   Hybrid algorithm   [35]
17  NGD   Evolving hyperheuristics   [38]
18  GPHH   Genetic programming hyperheuristic   [39]
19  SHCA   Study of heuristic combination approach   [40]
20  VNHH   Variable neighborhood hyperheuristic   [41]
21  GCHHF   Graph coloring hyperheuristic framework   [42]
22  AAT   Adaptive automated technique   [44]
23  GCCHH   Graph coloring constructive hyperheuristics   [45]
24  AIHA   An integrated hybrid approach   [47]
25  TSLTM   Tabu Search with longer-term memory   [48]
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ABC in order to improve the local exploitation capability of ABC in tackling the problems. The method is 
evaluated using a dataset produced by Carter. Three experimental cases have been designed to show the 
effect of using SLST within the employee bee operator. Their results show that using SLST with a lower rate is 
better than that with the higher rate.

Comparative evaluation with 25 comparative methods has been conducted. It shows that the proposed 
HABC is a powerful technique that is able to generate new results for some problem instances. Finally, the 
experimental results show that the HABC is competitive and works well across all tested Toronto instances in 
comparison with other approaches that have been studied in the literature.

As HABCbased UUETP has been proved to be very robust and efficient, we believe future work can 
further improve the proposed HABC by

 – Hybridizing crossover operator to diversify the solution search space;
 – Further investigating the performance of HABC on other formulations of the university timetabling;
 – Investigating other efficient local searchbased techniques such as Great Deluge and Tabu Search;
 – Combining different selection schemes in the onlooker bee phase, such as linear rank, exponential rank, 

tournament selection, and many others.
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