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Abstract: Reliable data transfer and energy efficiency are the essential considerations for network perfor-
mance in resource-constrained underwater environments. One of the efficient approaches for data routing
in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred
from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or
multiple hops manners, which can possibly increase energy depletion of the CH as compared to other
nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure
efficient delivery of data packets, less attention has been given to massive data communication processes
with sink node. As such, failure in communicating nodes would lead to a significant network void-holes
problem. Considering the limited energy resources of nodes in UWSNs along with the heavy load of CHs in
the routing process, this paper proposes a void-holes aware and reliable data forwarding strategy (VHARD-
FS) in a proactive mode to control data packets delivery from CH nodes to the sink in UWSNs. In the
proposed strategy, each CH node is aware of its neighbor’s performance ranking index to conduct a reliable
packet transmission to the sink via the most energy-efficient route. Extensive simulation results indicate
that the VHARD-FS outperforms existing routing approaches while comparing energy efficiency and net-
work throughput. This study helps to effectively alleviate the resource limitations associated with UWSNs
by extending network life and increasing service availability even in a harsh underwater environment.

Keywords: underwater WSNs, void-hole, routing, energy efficiency, reliability

1 Introduction

The recent progress in underwater wireless sensor networks (UWSNs) has drawn a great attention because
of its extensive real-world applications, for instance marine data gathering, equipment monitoring, pollu-
tion monitoring, catastrophe monitoring and prevention, offshore exploration, underwater robotics, and
marine military activities [1–3]. Sensors in the UWSNs are spread in different depths to collect and forward
data to the sink node located on the water exterior. The sink node then further processes these data packets
or forward them to the data center [4,5]. In the data forwarding process, each node selects either a
candidate node or a set of candidate nodes to transfer data toward the sink node. Based on various priorities
and criteria, the candidate nodes are selected as the next-forwarding node. The criteria are the use of
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decided metrics for the selection of the forwarding nodes based on efficient energy or link quality. Then, the
data can be forwarded to the destination by the highest priority node [6–8].

The design and development of an underwater-based routing protocol are difficult tasks because of
many factors, as the underwater circumstances are characterized by energy limitations, low bandwidth,
large propagation delays, and high packet error rate [9–11]. Several routing protocols for UWSNs have been
proposed with the aim of improving data packet delivery with minimizing energy consumption. In UWSNs,
cluster-based routing algorithms are widely preferred because of their acceptable performance in terms of
energy conservation [12–14]. In a cluster-based routing procedure, a cluster is made by several adjacent
sensor nodes, and a sensor node is selected as the cluster head (CH) using the election algorithm. After the
collection of sensor readings in their own clusters, the CHs complete the task of data transmission success-
fully through multi-hop routing [15,16]. The data delivery from clusters to the sink node must be noted as
each of the CHs transfers a large amount of data through intermediate nodes, which act as bridges between
sink and clusters. However, a repeating data transfer gradually exhausts the energy of intermediate nodes,
and this process makes their lives shorter than other nodes and results in the loss of connection. The failure
of these bridges results in a disconnection between the CHs and sink, and this phenomenon is called the
void-hole problem in sensor networks. This problem results in the reduction in network lifetime consider-
ably. Therefore, several data forwarding approaches have been suggested for the data routing in UWSN for
the purpose to minimize such uneven consumption of energy and also to handle the network void problems
[17–19]. The most recent void-handling solutions are proposed for shallow waters with a limited number of
void areas. There are also some critical nodes outside the void-hole area, and these nodes serve as a bridge
between clusters and sink node through the nodes inside the void-hole area. The failure of such nodes
could disrupt the communication of data among the sink node and clusters. By avoiding the loss of bridge
node connection and thereby achieving greater throughput; an effective void-handling technique can
reduce the total transmission cost per packet. Therefore, when choosing the next forwarder node, the
selection of a routing path that is reliable with a high link quality should be taken into consideration [20,21].

In this context, this study proposes a void-holes aware and reliable data forwarding strategy (VHARD-
FS) for UWSNs, focusing on next-hop node selection by covering all of the CHs to deal with the multi-holes
environment under varying depth in UWSNs. Further to this, the present study also addresses network
stability by considering the node performance ranking index (Node-PRI)metrics, in which node status such
as residual energy, node depth, and void-indicator are considered to identify whether the current forwarder
is a void node or not. At this stage, CHs transmit data packets via the most reliable and energy-efficient
paths.

The remainder of this article is arranged as follows: Section 2 reviews and evaluates the current trends
of the related works, whereas Section 3 outlines the important aspects of underwater networks along with
assumptions and energy model applied in the proposed strategy. Section 4 provides a detailed description
of VHARD-FS, whereas Section 5 explains the outcomes of performance evaluation and simulation of the
proposed strategy. The conclusion of this paper and ideas for prospective research are presented in the last
section.

2 Related work

The routing protocols of void-handling techniques can be classified into two classes, namely depth-based
and location-based [22,23]. The void node in the location-based class is determined according to the
geographical advancement of the neighboring nodes. In other words, when a particular node is unable
to connect to its neighbor nodes within the shorter Euclidean distance, it is announced as a void node [24].
Conversely, the void node in the depth-based class is defined according to the depth advancement of the
neighboring nodes toward the water surface [25]. The vertical distance from water surface to each node is
referred to as depth information. When a node is unable to connect to any of neighboring nodes with lower
depth, it is known as a void node. These void nodes required various handling techniques because of the

Void-hole aware and reliable data forwarding strategy for UWSNs  565



variety of features in these classes. The provision of void-handling and scalable routing services in UWSNs
is a challenging task. Therefore, several routing protocols have been proposed to overcome these chal-
lenges; this section describes some existing protocols in UWSNs.

Yan et al. [26] proposed a protocol called depth-based routing (DBR) which is not in need of information
about the dimensional location of sensor nodes but only needs information about the local depth, and the
local depth can be obtained easily with an inexpensive sensor. The main benefit of the proposed protocol is its
efficient handling of the dynamics of networks without the need of a localized service. However, there is no
recovery mechanism in the DBR protocol. When the packet reaches the void node, it is dropped after a few
attempts. Therefore, it generates a local extreme issue in the sparse environment.

The most significant concern for UWSNs routing is energy efficiency; Liu Guangzhong et al. introduced
a routing protocol called depth-based multi-hop routing (DBMR) [27]. Multi-hop mode of each node was
used for sending packets and hence reduced the cost of communication. The DBMR can be described over
two phases called sending packets and route discovery. The multi-sinks of the DBMR help to minimize
energy consumption particularly for nodes which are located closer to the sink. While the use of residual
energy in weight calculation influences energy consumption balance, the DBMR experiences the lack of the
issue of communication void avoidance which is the main drawback of this protocol.

Li et al. [28] introduced an improved version of LEACH protocol called LEACH-L protocol which works
over two phases, comprising of the initial and the updated phases. The main difference is that all nodes are
updated round by round in the LEACH protocol, whereas in the improved version only a few nodes are
updated locally. In this protocol, the CH position changes gradually because the current CH estimates the
residual energy of the adjacent node and the node with the highest energy is selected as the subsequent CH.
For every iteration in the LEACH protocol, the relative distance between CH and its members can vary
significantly. Conversely, in the LEACH-L protocol, the relative distance remains about the same. This can
reduce energy consumption and thus the improvised version outperforms the original LEACH protocol,
which can be seen as more suitable for UWSN.

Wu et al. [29] suggested a two-tier clustering-based routing (TTCB) protocol for a two-dimensional
shallow underwater monitoring approach. The TTCB protocol consists of clustering and routing approaches
using a heterogeneous underwater architecture for nodes and base station. As the process is initiated, the
first-level CH node is selected. Two regulatory factors according to clustering intervals and nodes energy are
considered to ensure reasonable distribution of CHs. Then, the CH eligibility threshold is set based on the
initial energy of a node along with the residual energy. In addition, the energy consumption of the last
iteration can be considered by CH. When a node crosses energy consumption threshold, it self-elects as CH
and broadcasts strong acoustic signals. The TTCB protocol enhances the viability of the network and is
therefore claimed to be more appropriate for large numbers of nodes.

The hydraulic pressure-based anycast (HydroCast) is another efficient and reliable pressure-based
routing protocol designed for UWSNs [30]. HydroCast has been derived in accordance with two modes,
namely greedy-routing and void-handling. The next forwarding node in the HydroCast can be selected
using greedy routing mode. For this purpose, each receiving node calculates a link quality metric, and then
nodes are sorted according to their depth information. In other words, the closer the node to the sink, the
higher priority over others followed by nodes with shorter holding time. Data packet with embedded ID
broadcasts via forwarder node to its neighbors’ nodes. When the extracted ID is not listed at the receiver
nodes, data packets will be discarded. Otherwise, data packets could be forwarded based on calculated
holding time. When data packets reach a void node, they can detour to a shallower node, which tackles the
communication void problem. The authors of the HydroCast protocol have not considered an energy metrics
when handling forwarding nodes, which results in a high network overhead. Further to this, the void-
handling approach in this protocol requires several iterations, which in turn increases energy demand and
network overhead. The principal advantage of the HydroCast protocol is that it can address the communi-
cation void problem.

Table 1 provides a head-to-head comparison of different routing protocols. In this table, we have
highlighted several parameters to be measured and compared to have an overall view of such protocols
and their main strength sides as well as drawbacks.
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3 Network assumption and definitions

In this section, we highlighted both the key network features and assumptions of the proposed routing
strategy as well as the important aspects of the adopted energy consumption model of the acoustic channel
and the attenuation effects present in this channel in an underwater environment.

3.1 Network structure and assumption

The structure of UWSN in the current form typically consists of underwater sensor nodes (CH or cluster
member), sinks, underwater acoustic, radio channels, and monitoring center. The sensor nodes are deployed
randomly with different depths to collect oceanographic data. We assume a multiple static sinks network
architecture to increase network reliability as well as network throughput. This architecture can also minimize
energy consumption with respect to sinks nearby nodes. The static sinks are equipped with unlimited radio
frequency and energy acoustic modems. Moreover, using acoustic links, the sink communicates with sensor
nodes and uses radio links for connection to the monitoring center. All underwater sensor nodes are outfitted
with an acoustic modem to communicate; sensor nodes can generate and relay data packets.

The cluster-based architecture for the UWSN is shown in Figure 1, in which CHs manage each of the
clusters. Other nodes operate as cluster members and report their sensing results to the CH, which can reach
the adjacent CHs in a single-hop manner to forward the collected data toward the sink nodes.

Because of reflection and refraction; shallow water can impact acoustic communication through
ambient noises, surface, and multi-path effect in addition to temperature gradients. Therefore, the cluster’s
size has an inverse relation with noise attenuation; the smaller is the attenuation of noise, the greater the
cluster’s size and vice versa [31]. For energy balance, we consider that the cluster’s size in deep water is
larger than the shallow water.

3.2 Energy consumption model

The underwater environment’s conditions for acoustic communications, including the working frequency
range and the signal attenuation, must be considered in establishing the underwater energy model to
calculate the specific energy consumption [32]. Equation (1) shows the attenuation of acoustic channel

Figure 1: Network structure in an underwater environment.
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over distance d, for the signal of frequency f.

( ) =A d f A d q, ,k d
0 (1)

where k expresses the signal’s spreading factor, and A0 is the normalized coefficient. The propagation
geometry is described using the spreading factor (1 ≤ k ≤ 2); for a practical scenario, k is given as (k = 1.5).
Moreover, based on equation (2) the q is defined as:

= ( )/q 10 ,α f 10 (2)

where the parameter α is related to the signal frequency f [33], each warrants a different calculation of the α,
as shown in equation (3):
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Supposed f (kHz) and d (km), by equation (4), the transmitting power consumption Pt can be obtained as:

=
( )

P P
A d f,

.t
0 (4)

The factual transmitting power illustrates in equation (4) ( )P A d f,t if the transmitting power is Pt.
Equations (5)–(7) show the transmitting, receiving, and fusion energy consumption, respectively. The
size of transmitted data is l, r is a constant depending on the receiver, and r0 is the energy consumption
that compresses every package. The total node energy consumption is expressed as in equation (8):

( ) = ( )E l d P d f lt, , ,tl t (5)

( ) =E l rlt,rl (6)

( ) =E l r lt,fl 0 (7)

= + +E E E E .total tl rl fl (8)

4 Proposed VHARD-FS strategy

VHARD-FS deploys the sensor nodes in a cluster-based underwater environment; thus, the sensor nodes in
the monitoring area are organized to configure clusters and assign a CH to carry out the routing process. The
proposed VHARD-FS strategy comprises two main phases. The first phase involves the discovery of poten-
tial neighboring CHs; in this phase each CH node produces a control packet (Hello_Msg) to detect its
potential neighboring CHs. Figure 2 shows the structure of Hello_Msg, which is a set of information that
includes a unique ID for source node, residual energy, type of node, node depth, and void-indicator to
identify the number of nodes that reside in its transmission range. On the contrary, the second phase
commences once a CH node received data from its cluster node members. The second phase includes
transmission route discovery based on developed Node-PRI.

4.1 Discovery of potential neighboring CHs

The sensor nodes in the VHARD-FS strategy possess a neighbors table to save energy consumption resulting
from the over control messages exchanging among network nodes. Therefore, an algorithm for discovering
the potential neighboring CHs is required to find the most appropriate neighbor CH as the next forwarder
node. Therefore, VHARD-FS could ensure data transferring with high reliability from CHs in the intensive
load zone toward the sink node. The procedure for discovering the potential neighboring CHs begins by
broadcasting a Hello_Msg from sink node with depth set to 0.
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For each CH receiving a Hello_Msg, if the value ofMsg_broadcasting is false, the receiver node updates
its neighbors table with all neighbors whose packets are received. The neighbors table comprises four
particular elements (Node ID, residual energy, node depth, and void-indicator) for each neighbor nodes.
This node also updates the Hello_Msg with its own parameter and finally propagates to other neighbors’
nodes within its communication range. Otherwise, that is, the Hello_Msg has already been sent by the node,
then the node will only update the neighbors table. The previous steps will be repeated until all CHs in the
network are covered. Then, the node performance ranking index (Node-PRI) is calculated for each node in
the neighbors table depending on three metrics, namely residual energy (Er), node depth (dth), and void-
indicator (Vind). The node performance metric represents the nodes’ status in terms of their energy resource,
presence of communication void, and its depth to the sink node. Formula (9) for estimating the Node-PRI
value for node i depends on three involved node-related metrics.

- ( ) =
( )

( )
+

( ) − ( )
+

( )
+ + =i α E i

E i
β d c d i

R
γ V i

N
α β γNode PRI , 1,r

ini

th th

c

ind (9)

where Er(i) is the residual energy of node i at an instant, and Eini(i) is the node’s initial battery energy level.
The node performance ranking index based on (Er) has indicated that the node with highly remaining
energy corresponds to top Node-PRI (Er), which reduces the energy exhaustion probability. The dth(c) is the
depth of current node, whereas dth(i) indicates the potential neighbor node’s depth i. In addition, Rc is the
each node’s transmission range. The node with a low depth toward the sink node corresponds to high Node-
PRI (dth), which leads to low energy consumption. The Vind(i) is an indicator of the number of nodes within
the communication range of node i at an instant, and N is the total number of nodes. The node that has a
high number of neighbor nodes corresponds to top Node-PRI (Vind), which leads to void-hole problem
handling and minimal packet loss. α, β, and γ are the values used to satisfy the normalizing criteria of
importance that range from 0 to 1. The node with the highest performance ranking index is the most
suitable candidate as a next forwarder node among all the potential neighboring nodes. The procedure
of discovering the potential neighbor CHs within the node radio range is shown in Algorithm 1.

Algorithm 1. Discovery of potential neighboring cluster heads (Phase I)

Figure 2: Hello message structure for VHARD-FS.
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In this phase, each CH is well aware of all its neighboring cluster heads and can use the information in
the neighbors' table to send data packets to the sink node.

4.2 Transmission route discovery based on developed Node-PRI

In this process, a group of CHs is considered as the input and the routing path that would transfer the
sensed data to be the output of this process. Thus, the proposed VHARD-FS strategy uses the metrics of
Node-PRI in the neighbors table, which was created during the first phase for routing path formation. Each
CH alerts its neighbors for possible forwarder nodes within its radio range. This condition implies that all
nodes can use the neighbors’ information to send data packets to the sink. In this phase, the data from the
cluster member nodes are collected by the CH. Then, the data are aggregated and forwarded to its potential
next node. The node with the highest performance ranking index (Node-PRI) value will be selected as the
most reliable next forwarder node by the current node. However, to even energy dissipation and to handle
void-holes problem caused by node failure, VHARD-FS monitors the developed performance ranking index
of nodes in routing path. When values are lower than set limits, then new routing path formation is
admitted. The routes are created by picking the most desirable neighbor in every step. The proposed
procedure for this phase is described in Algorithm 2.

Algorithm 2. Transmission route discovery based on developed Node-PRI (Phase II)

1. The set of CHs initiates a transmission route discovery 

2. For each node i ∈ CHs  

3.    If node i can’t communicate directly with the sink node 

4.       Node i calculate Node-PRI value for each neighbor CHs in its neighbors table 

5.       Setup its next forwarder node to the node ID with highest performance ranking index value  

6.       Start data packet transmission 

7.    End if  

8.    Else 

9.       Start data packet transmission directly toward sink node 

10. End for 

11. End 

For route discovery or creation in the proposed strategy, each node needs to be aware of its neighbor
nodes only. Consequently, the information of the whole route between the source and the sink node is not
needed. Therefore, it needs less memory as the routing table at each node contains only the information
about the nodes within its communication range. Implementing the HARD-FS strategy is a straightforward
process as the algorithm does not require complex calculation or requirements. Figure 3 shows the visual
representation of the proposed VHARD-FS.

5 Performance evaluation

In this section, the experimental setup, simulation results, and discussion of the results of the performance
evaluation of VHARD-FS are presented. Several performance metrics were used to assess the efficiency of
the proposed strategy. The performance of VHARD-FS strategy is evaluated by comparing its experimental
results with DBR [26] and DBMR [27], which were also performed in a simulation platform to guarantee that
all approaches were operated on the same platform and under the same circumstances and simulation
parameters. Furthermore, VHARD-FS was tested and validated to prove its effectiveness on energy effi-
ciency, void-holes problem handling, and reliable data forwarding.
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5.1 Simulation setup

The performance evaluation has been done using the data from the MATLAB simulator with a multiple-sink
model of conventional methods. There are three sinks deployed on the water’s surface, and 400 sensor
nodes were deployed randomly in a three-dimensional space of 500m × 500m × 500m for 1,000 s of
simulation. The simulated work is performed five times and uses the average of the readings to produce
graphical results. The main simulation parameters and their values are abstracted in Table 2.

Figure 3: Flowchart of VHARD-FS.
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5.2 Experimental results and discussion

In this work, the performance of VHARD-FS, DBR, and DBMR is evaluated in terms of total energy con-
sumption of the network, dead nodes (stability period), throughput, control packets overhead, data
delivery delay, and average packet loss. Figure 4 shows the simulation results regarding the network’s
total energy consumption per node among VHARD-FS, DBR, and DBMR approach. The total network energy
consumption is given by accumulating the energy consumed by each node during the network lifetime.
Figure 4 clearly shows that the DBR approach records a higher energy consumption than the proposed
VHARD-FS. The highest energy consumption in DBR has resulted from the transmission of more redundant
packets. The energy consumption of the proposed VHARD-FS strategy is approximated to DBR and DBMR at
the first 200 s because of the need for further energy to the initial phase represented by discovering and
establishing a link with a potential neighbor. However, the proposed routing strategy (VHARD-FS) con-
sumes less energy over network simulation time, and such superiority is attributed to considering the node
performance ranking index (Node-PRI) including residual energy, node depth, and void-indicator selecting
the energy-efficient and reliable paths.

Figure 5 shows the stability period of VHARD-FS, which effectively increases the network stability
period by reducing the number of dead nodes and outperforms both DBR and DBMR during every time
step in a simulation. The stability period in both DBR and DBMR is influenced by considering the depth
metric only, which leads to the premature death of the low depth nodes because of the high data forwarding
rate on these nodes. The superiority of the VHARD-FS strategy in terms of the network stability period has

Table 2: Simulation parameters with their settings for VHARD-FS

Parameters Type/value

Monitoring region 500 × 500 × 500m
Topology Static cluster-based
Number of sinks Three with fixed position
Number of sensor nodes 400
Bit rate 10 kbps
Initial node energy 3 J
Communication radius 100m
Simulation time for each run 1,000 s
Data packet size 256 bytes
Hello packet size 32 bytes
α, β, γ 0.4, 0.4, 0.2

Figure 4: Comparison of total network energy consumption per node.
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attributed to its consideration of the node performance ranking index. Therefore, it balances energy con-
sumption and lowers the number of dead nodes in the network.

Figure 6 shows the network throughput, which is computed as the total number of packets received
successfully at the sink node in a specific period. It is seen that a high throughput was produced by the DBR
and DBMR during the first 400 s. This result is because of producing a large number of redundant data by these
approaches. On the contrary, the VHARD-FS strategy reduces the number of data packets because of adopting
the clustering mechanism, which results in a high aggregate rate by CH nodes. However, with network simula-
tion time passing, the results have proved that the throughput of VHARD-FS is showing stable throughput
which is clearly better than DBR and DBMR which are declining with increase in time. However, with network
simulation time progression, the results show that throughput of VHARD-FS shows clearly better stable
throughput than DBR and DBMR which suffer from failure of some of its nodes and void-holes in the network.

Figure 7 shows the number of control packets required to establish and keep the routing structure
between the source nodes and sinks. As shown, the experimental results on the first 200 s showed that the
numbers of control packets required in DBR, DBMR, and VHARD-FS were relatively similar. As the simula-
tion time progresses, the VHARD-FS requires fewer control packages, the control packets required by

Figure 5: Comparison of total number of dead nodes.

Figure 6: Comparison of network throughput.
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Figure 7: Comparison of control packets overhead.

Figure 8: Comparison of data delivery delay.

Figure 9: Comparison of average packet loss.
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VHARD-FS to send the data from the source nodes toward the sinks were 35.22 and 23.51% less of the control
packets used by DBR and DBMR, respectively.

Figure 8 shows that the VHARD-FS has obtained a relatively low end-to-end data delivery delay across
the simulation time. The calculation of delay covers the duration from the production of the packet at a
sensing node until the packet is delivered successfully at any of the sinks. The void area in the routing path
of DBR and DBMR approaches can dramatically increase the end-to-end delay in the network duty. The
improved performance of VHARD-FS in terms of end-to-end data delivery delay is mainly attributed to the
void-handling metric on next-hop selection, which covers all bridge nodes between the CHs and the sinks.

The average number of packets lost because of collisions and void-holes occurrence during packets trans-
missions has been also analyzed to compare VHARD-FS, DBR, and DBMR. In Figure 9, the VHARD-FS generated
the minimum average packet loss rates during the network lifetime, which ranged from 0.02% to 0.18%. By
contrast, the other approaches have generated 0.09–0.38% average packet loss rates as VHARD-FS avoids the
void-holes by continuously tracking the existing path starting from source and ending to the destination.

6 Conclusion

Although most of the existing cluster-based routing approaches developed for UWSNs could reduce the
total network energy consumption, these approaches have not considered the network isolation caused by
the void-holes problem, which is defined as the isolation of the sink caused by the power exhaustion of the
bridge nodes leading to the sink node. This study has presented a novel VHARD-FS between the CHs and
the sink node, with the aim of reducing network energy consumption as well as preventing node failures by
addressing the void-holes issue. The VHARD-FS strategy is specifically designed to address the energy holes
problem through the delivery of data packets from CHs to the sink node using a forwarder node perfor-
mance ranking index. According to our simulation analysis and results, we can claim that the VHARD-FS
strategy is a promising solution for the void-holes issue while also extending the network stability. Further
investigation to define the optimum values of selection parameters using optimization techniques can also
improve the use of performance ranking index based on various objectives.

Acknowledgement: The authors would like to thank the anonymous referees, Managing Editor, and Editor
in Chief for their valuable suggestions.

Conflict of interest: Authors state no conflict of interest.

References

[1] Khan A, Ali I, Ghani A, Khan N, Alsaqer M, Rahman AU, et al. Routing protocols for underwater wireless sensor networks:
taxonomy, research challenges, routing strategies and future directions. Sensors. 2018;18:1619.

[2] Sahana S, Singh K, Kumar R, Das S. A review of underwater wireless sensor network routing protocols and challenges.
Next-generation networks. Singapore: Springer; 2018. p. 505–12.

[3] Khalid M, Ullah Z, Ahmad N, Arshad M, Jan B, Cao Y, et al. A survey of routing issues and associated protocols in
underwater wireless sensor networks. J Sens. 2017;2017:7539751.

[4] Javaid N, Ilyas N, Ahmad A, Alrajeh N, Qasim U, Khan ZA, et al. An efficient data-gathering routing protocol for underwater
wireless sensor networks. Sensors. 2015;15:29149–81.

[5] Wahid A, Lee S, Kim D. A reliable and energy‐efficient routing protocol for underwater wireless sensor networks.
Int J Commun Syst. 2014;27:2048–62.

[6] Adil Mahdi O, Abdul Wahab AW, Idris MYI, Abu Znaid A, Al-Mayouf YRB, Khan S. WDARS: a weighted data aggregation
routing strategy with minimum link cost in event-driven WSNs. J Sens. 2016;2016:3428730.

[7] Khan A, Ali I, Rahman AU, Imran M, Mahmood H. Co-EEORS: cooperative energy efficient optimal relay selection protocol
for underwater wireless sensor networks. IEEE Access. 2018;6:28777–89.

576  Omar Adil Mahdi et al.



[8] Khasawneh A, Latiff MSBA, Kaiwartya O, Chizari H. Next forwarding node selection in underwater wireless sensor net-
works (UWSNs): techniques and challenges. Information. 2017;8:3.

[9] Coutinho RW, Boukerche A, Vieira LF, Loureiro AA. Underwater wireless sensor networks: a new challenge for topology
control–based systems. ACM Comput Surv (CSUR). 2018;51:1–36.

[10] Coutinho RW, Vieira LF, Loureiro AA. DCR: depth-controlled routing protocol for underwater sensor networks. 2013 IEEE
symposium on computers and communications (ISCC); 2013. p. 000453–8.

[11] Mahdi OA, Al-Mayouf YRB, Ghazi AB, Wahab AWA, Idris M. An energy-aware and load-balancing routing scheme for
wireless sensor networks. Ind J Electr Eng Comput Sci. 2018;12:1312–9.

[12] Ayaz M, Baig I, Abdullah A, Faye I. A survey on routing techniques in underwater wireless sensor networks. J Netw Comput
Appl. 2011;34:1908–27.

[13] Khan H, Hassan SA, Jung H. On underwater wireless sensor networks routing protocols: A review. IEEE Sens J.
2020;20(18):10371–86.

[14] Wan Z, Liu S, Ni W, Xu Z. An energy-efficient multi-level adaptive clustering routing algorithm for underwater wireless
sensor networks. Clust Comput. 2019;22:14651–60.

[15] Mahdi OA, Abdul Wahab AW, Idna Idris MY, Abuznaid AM, Khan S, Al‐Mayouf YRB, et al. A comparison study on node
clustering techniques used in target tracking WSNs for efficient data aggregation. Wirel Commun Mob Comput.
2016;16:2663–76.

[16] Mahdi OA, Wahab AWA, Idris MYI, Znaid AA, Khan S, Al-Mayouf YRB. ESAM: endocrine inspired sensor activation mechanism
for multi-target tracking in WSNs. Fourth international conference on wireless and optical communications; 2016. p. 99020B.

[17] Coutinho RW, Boukerche A, Vieira LF, Loureiro AA. Performance modeling and analysis of void-handling methodologies in
underwater wireless sensor networks. Comput Netw. 2017;126:1–14.

[18] Ghoreyshi SM, Shahrabi A, Boutaleb T. Void-handling techniques for routing protocols in underwater sensor networks:
Survey and challenges. IEEE Commun Surv Tutor. 2017;19:800–27.

[19] Nguyen N-T, Le TT, Nguyen H-H, Voznak M. Energy-efficient clustering multi-hop routing protocol in a UWSN. Sensors.
2021;21:627.

[20] Azad S, Hasan KT, Nandi D, Pathan A-SK. A high-throughput routing metric for multi-hop underwater acoustic networks.
Comput Electr Eng. 2015;44:24–33.

[21] Nazareth P, Chandavarkar B. Void-aware routing protocols for underwater communication networks: A survey.
Evolut Comput Mob Sustain Netw. 2021;53:747–60.

[22] Khasawneh AM, Abualigah L, Al Shinwan M. Void aware routing protocols in underwater wireless sensor networks:
variants and challenges. J Phys Conf Ser. 2020;1550:032145.

[23] Menon VG, Prathap P. A review on efficient opportunistic forwarding techniques used to handle communication voids in
underwater wireless sensor networks. Adv Wirel Mob Commun. 2017;10:1059–66.

[24] John S, Menon VG, Nayyar A. Simulation-based performance analysis of location-based opportunistic routing protocols in
underwater sensor networks having communication voids. Data management, analytics and innovation. Singapore:
Springer; 2020. p. 697–711.

[25] Yong-dong P. Depth-based suppressing void routing optimal algorithm in UWSNs. Transd Microsyst Technol.
2017;36:139–42.

[26] Yan H, Shi ZJ, Cui J-H. DBR: depth-based routing for underwater sensor networks. International conference on research in
networking; 2008. p. 72–86.

[27] Guangzhong L, Zhibin L. Depth-based multi-hop routing protocol for underwater sensor network. 2010 The 2nd inter-
national conference on industrial mechatronics and automation; 2010. p. 268–70.

[28] Li X, Fang S-l, Zhang Y-c. The study on clustering algorithm of the underwater acoustic sensor networks. 2007 14th
International conference on mechatronics and machine vision in practice; 2007. p. 78–81.

[29] Wu D, Han G, Hu G, Jiang J. A two-tier routing protocol for cluster-based underwater heterogeneous sensor networks.
9th International conference on communications and networking in China; 2014. p. 13–17.

[30] Lee U, Wang P, Noh Y, Vieira LF, Gerla M, Cui J-H. Pressure routing for underwater sensor networks. 2010 Proceedings IEEE
INFOCOM; 2010. p. 1–9.

[31] Khalid M, Cao Y, Ahmad N, Khalid W, Dhawankar P. Radius-based multipath courier node routing protocol for acoustic
communications. IET Wirel Sens Syst. 2018;8:83–189.

[32] Poncela J, Aguayo M, Otero P. Wireless underwater communications. Wirel Pers Commun. 2012;64:547–60.
[33] Stojanovic M. On the relationship between capacity and distance in an underwater acoustic communication channel. ACM

SIGMOBILE Mob Comput Commun Rev. 2007;11:34–43.

Void-hole aware and reliable data forwarding strategy for UWSNs  577


	1 Introduction
	2 Related work
	3 Network assumption and definitions
	3.1 Network structure and assumption
	3.2 Energy consumption model

	4 Proposed VHARD-FS strategy
	4.1 Discovery of potential neighboring CHs
	4.2 Transmission route discovery based on developed Node-PRI

	5 Performance evaluation
	5.1 Simulation setup
	5.2 Experimental results and discussion

	6 Conclusion
	Acknowledgement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU <FEFF0056006500720073006900740061002000410064006f00620065002000440069007300740069006c006c00650072002000530065007400740069006e0067007300200066006f0072002000410064006f006200650020004100630072006f006200610074002000760036>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


