DE GRUYTER Journal of Intelligent Systems 2022; 31: 1014-1023 a

Research Article

Tao Wang, Li Wang, Pengfei Yan, Renu Popli, Poonam Rani, and Rajeev Kumar*

Application of embedded Linux in the design
of Internet of Things gateway

https://doi.org/10.1515/jisys-2021-0208
received October 13, 2021; accepted June 30, 2022

Abstract: To study the development trend of embedded platforms in home appliances Internet of Things
(IoT), an application of embedded Linux in the design of IoT gateway is designed. ARM microprocessor
S3C2410, EM310 radio frequency (RF) module, and Ethernet DM900OOA module are used to realize the home
network information-processing platform. The platform utilizes existing network facilities, RF modules,
and network interface modules to realize the interconnection of the home perception network through
wireless or wired links. For experimental analysis, Ping the central server (gateway) from the IoT node B is
set to twice: The first time ttl = 255 time = 1.9 ms, the second time: ttl = 255 time = 2.4 ms. After application
verification, the system has the characteristics of low cost, small size, low power consumption, and vital
ease of use. It can not only integrate the home Internet and the IoT gateway but also directly run applica-
tion-layer communication protocols such as HTTP/MQTT between IoT nodes and Internet terminals. The
design supports multi-hop communication and significantly increases the deployment range of IoT nodes
without signal relay equipment, hence reducing the cost of IoT networking and the complexity of the
network architecture.

Keywords: internet of gateway, embedded linux, integrated gateway

1 Introduction

In the last decade, Internet of Things (IoT) technology officially promoted at a national strategic level and
becomes one of the key information industries to be researched and implemented. The agricultural IoT also
took the opportunity to open the road of development [1,2]. There are a large number of various sensors in
the agricultural IoT, and they are of different types. There are multiple heterogeneous networks, the
collected data need to be uploaded to the data center through the agricultural IoT gateway (hereinafter
referred to as the gateway), at the same time, the device control command is forwarded to the control device
in the agricultural IoT through the gateway [3]. The agricultural IoT gateway plays an important role in the

* Corresponding author: Rajeev Kumar, Chitkara University Institute of Engineering and Technology, Chitkara University,
Punjab, India, e-mail: rajeev.kumar@chitkara.edu.in, rajeev_chauhan364@yahoo.co.in

Tao Wang: Department of Mechanical and Electrical Engineering, Henan University of Technology, Luohe Institute of
Technology, Luohe, Henan 462000, China, e-mail: wangtao932@163.com

Li Wang: Department of Information Engineering, Luohe Food Vocational College, Luohe, Henan 462000, China,
e-mail: wangli8582@126.com

Pengfei Yan: Department of Information Engineering, Qinhuangdao Vocational and Technical College, Qinhuangdao,
Hebei 066000, China, e-mail: yanpengfei35@163.com

Renu Popli: Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India,

e-mail: renu.popli@chitkarauniversity.edu.in

Poonam Rani: University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra, India,
e-mail: prani2015@kuk.ac.in

a Open Access. © 2022 Tao Wang et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution
4.0 International License.

https://doi.org/10.1515/jisys-2021-0208
mailto:wangtao932@163.com
mailto:wangli8582@126.com
mailto:yanpengfei35@163.com
mailto:renu.popli@chitkarauniversity.edu.in
mailto:prani2015@kuk.ac.in
mailto:rajeev.kumar@chitkara.edu.in
mailto:rajeev_chauhan364@yahoo.co.in

DE GRUYTER Application of embedded Linux in the design of Internet of Things gateway =—— 1015

agricultural IoT system, the quality of the gateway design will affect the stability and accuracy of data
collection and device control [4]. IoT technology has always been regarded as an application extension of
the Internet. It uses radio frequency identification, infrared sensors, global positioning system, information
sensing devices such as laser scanners are connected to the Internet for information exchange, realize
intelligent identification, positioning, tracking, monitoring, and management. The concept of the IoT was
proposed in 1999, the IoT gateway is a new term, and it will play a very important role in the future IoT era,
it will become the link between the perception network and the traditional communication network [5].
With the integration of home IoT, edge computing, artificial intelligence, and other new technologies,
the IoT lead to a new era of large-scale development and cross-industry integration. It is even more
necessary to lower the barriers for interaction between IoT data and the Internet. It also supports running
various application layer protocols such as hypertext terminal protocol/Message queuing telemetry trans-
port (HTTP/MQTT) on the IoT [6]. To solve this kind of problem, a design of IoT integrated gateway based on
6LoWPAN and B.A.T.M.A.N. adv protocol is proposed. The process begins with the home gateway server, it
can avoid the cumbersome process of data protocol conversion through the IoT gateway. It significantly
improves the deployment range of IoT nodes without signal relay equipment, thus, reducing the net-
working cost of the home IoT and the complexity of the network architecture. Yi and Choi [7] improved
the cycle time performance of the EtherCAT network by developing a Linux Ethernet driver. The authors
have removed the participation of the Linux network stack and the new application program interface of the
standard Ethernet driver is developed. The Ethernet driver is used to establish a direct interface between the
main module of the embedded system and the Ethernet controller. Therefore, the time-consuming memory
copy operation is reduced and the EtherCAT frame process is accelerated. To demonstrate the effect of
developing the Ethernet driver, an EtherCAT network composed of an embedded Linux-based master device
and a commercial off-the-shelf slave was set up. The experimental results confirm that the cycle time
performance is significantly improved.
The main contributions of this article are listed as follows:
i. To propose the important role of the IoT gateway in the informatization and intelligence of the home
system.
ii. To utilize several existing facilities such as radio frequency (RF) modules and network interfaces to
analyze the performance of home perception network through wireless or wired links.
iii. To realize the design of the IoT gateway and its application in the home network using the embedded
system, adopt ARM9 microprocessor S3C2410, EM310 RF module, DM9000A network module, and
embedded Linux system software and hardware platform.

In the remainder of this article, the most recent work done in the field is discussed in Section 2. Section 3
summarizes the system framework and functional modules. Section 4 summarizes the simulation and
test-bed experiment results. Finally, Section 5 concludes this article.

2 Related work

There is as of now little academic and research work on the design and standardization of the IoT Gateway
framework [8]. Different operators of international and domestic telecom sectors have launched the con-
nected business in applications joining wireless sensor network (WSN) and telecommunication networks
[9]. These organizations are conducting various active explorations as per the requirement of industrial
users. Some of such standard organizations like 3GPP and ETSI M2M TC have established relevant standards
[10]. The principal objective of ETSI M2M TC is to do exploration of machine-to-machine (M2M) standardi-
zation. The work has already advanced after the achievements of ETSI and 3GPP. Currently, the focus of
ETSI M2M TC is on the definition of M2M and its application examples [11]. On this basis, the business
requirements and standardization is targeted, however, tended to no particular technology yet. A research
group is set up by 3GPP, and the basic idea is to analyze the requests, their achievability, and their

1016 —— Tao Wang et al. DE GRUYTER

applications [12]. With the advancement in sensor technology and the design of various security mechan-
isms, IoT is widely implemented in the majority of applications. Zheng et al. [13] proposed a system for
water level detection by using an optical fiber sensor and fuzzy logic control. In one another study Zeng
et al. [14] have proposed a secure smart water management system by designing a blockchain-based model
for agricultural applications. The experimental results show the effectiveness of the model as the design
achieves high accuracy and better security. In one study, Singh and Sharma [15] proposed wireless sensor
network and unmanned aerial vehicle-based IoT framework for agriculture application. Their proposed
model achieves better accuracy in the agricultural domain when compared with other existing approaches.

In the short term, the household endeavors also accomplished equipment purpose work as per the
regulations [16]. The Telecom industry of China reported the MDMP agreement for WSN station manage-
ment and ensured demonstrating applications in agricultural and home applications for practical under-
standing [17]. Concerning plan and execution, a research institute of telecom proposed a household plan of
IoT, which showed that passage was the central component of data assembling and control [18]. Chen et al.
[19] summed up that the vital elements of the entry framework were settlement change, state control, data
gathering, terminal tending to, and its authentication. In the IoT work proposed in ref. [20], through the
intelligent entrance, the genuine articles can be changed into soothing assets to be coordinated into the
current frameworks, to be straightforwardly gotten to by outside HTTP. The intense passage cooperates with
sensor hubs using Bluetooth, which designates the URL for sensor hubs and advances the gathered discern-
ment information to the Web server through HTTP parcels including the JSON information portion. Along
these lines, sensor organization and conventional media communications networks are connected [21]. The
current framework related to the Internet of things is essentially an element that performs information
transmission and transmission [22]. In any case, the administration and control issues are of less attention.

3 Research methods

3.1 Overview of the system framework and functional modules

At present, the IoT has a wide range of uses and various access methods. The IoT gateway needs to integrate
a variety of access methods, not only to meet the short-distance communication requirements in local
areas, but also to realize the connection with the public network, and to complete the processing, for-
warding, and control of data packets. Therefore, the IoT gateway as the core device of the IoT should have
the following functions. The embedded home IoT gateway system can be divided into an application
management layer, network protocol layer, and perception access layer, to realize the functional require-
ments that the IoT is applied to the home network system that can be fully perceived, reliably transmitted,
and intelligently processed. The system framework is shown in Table 1. The functions of each layer are as
follows:

Table 1: System frame structure

System shaft Web browser terminal device (PC)
Layer-by-layer network Full-featured network servers such as DHCP and Web

A complete network protocol clusters such as IPv4 and IPvé
Aware access layer Safe and reliable network interface module and RF module

i. The application management layer realizes the monitoring and management of the entire system
through the most familiar Web browser.

DE GRUYTER Application of embedded Linux in the design of Internet of Things gateway = 1017

ii. A complete network protocol cluster such as IPv4 and IPv6 is embedded in the network protocol layer,
and based on it, built a dynamic host configuration protocol (DHCP) server, Web server, and other full-
featured servers.

iii. The perception access layer uses the network interface module and RF module in the system to facilitate
the access of the wide-area network (WAN) and the interconnection and intercommunication of the
perception network within the home through wired or wireless means.

The functional modules of the embedded home IoT gateway system can be divided into wireless
communication modules, wireless communication module interface, network interface module, informa-
tion processing module, and interface management module. The basic working process of the system is that
when the embedded home IoT gateway system is started, the information-processing module is automa-
tically started. It controls the process and starts the wireless communication module (RF module) through
the wireless communication module interface to access the WAN network and home wireless communica-
tion equipment. Then it waits for the interface management module to set the system configuration para-
meters or use the system default configuration parameters to bridge the interconnection of the home
perception network devices or route to the WAN [23].

In the embedded home IoT gateway system, the wireless communication module is connected to the
WAN network wirelessly. At the same time, it accepts the family’s internal perception network device data
forwarded by the information-processing module. In addition, the module is also a connection interface for
wireless devices in the home perception network. The information-processing module is the brain of the
embedded home IoT gateway system. It starts automatically after power-on and controls the safe start of
surrounding modules. The information-processing module is the core of the entire system. At the same
time, it accepts data from external network information and internal network equipment. It completes the
most core functions such as routing and forwarding data from the internal network to the external network
and from the external network to the internal network. The interface management module allows users to
configure certain device configurations (network interface module IP, gateway, subnet mask, the built
server parameters, wireless communication module connection status, etc.) that are modified and managed
to adapt to the user’s habits.

3.2 System design and implementation

The embedded home IoT gateway system is a hardware platform with an S3C2410 microprocessor,
DM9000A Ethernet module, and EM310 RF module as the core hardware platforms. Among them,
S3C2410 is a memory management unit and ARM9 microprocessor supports real-time control. It is a CPU
designed for the entire system, responsible for the control of the surrounding circuit modules and it carries
the entire embedded minimal system. DM90OOA can connect to all home telephone line network equipment
or other transceivers that provide support for media-independent interface functions. Its automatic coor-
dination function will automatically complete the configuration to best suit other line bandwidths. It also
supports IEEE802.3 full-duplex flow control and simple implementation of features such as plug and play.
It is also able to process and encapsulate Ethernet frames, transmit them through network interfaces, and
twisted pair cables in real-time for the effective realization of wired connection of the home perception
network. The EM310 RF module can be easily connected to the GPRS network to realize the wide area of
network access of the gateway system. Additionally, it has functions such as voice messages to facilitate
access to the mobile phone network and realize the wireless networking of the home perception network.
The system hardware structure diagram is shown in Figure 1.

The microprocessor S3C2410 is the core of the entire hardware system, it controls the startup of
surrounding circuits in real-time when it is powered on, shut down, reset, etc., with real-time monitoring
of the working status of surrounding circuit modules. The whole hardware system is controlled by the
microprocessor S3C2410 to connect the EM310 RF module to the WAN and mobile cellular network. This

1018 —— Tao Wangetal. DE GRUYTER

Flash SDRAM

Ethernet Ethernet ARM920T RS232 Level EM310
L2 i Interface [| Controller [| (S3C2410A) [| Converter [| CaEL = RF Module
JTAG Interface

Figure 1: System hardware structure diagram.

network is designed to realize the access of the gateway system to the external network. The wireless
networking of the home perception network is controlled by the Ethernet controller DM9000A to read,
write, and reset with real-time wired access to the home perception network [24]. In addition, the entire
hardware system has also designed a RESET module that is a hardware watchdog module by which the
stability of the system can be monitored in real-time scenarios to safeguard that the whole system is reset
and restarted when the software reset system fails to work. The 64M SDRAM and 64M NANDFlash fully meet
the storage needs of embedded systems and the needs of program operation.

3.3 Software design

The software platform reference model of the embedded home IoT gateway system is shown in Figure 2. The
whole system is based on the hardware platform with an embedded Linux operating system as the core
which realizes the writing of the network interface module driver and wireless communication module
interface driver. The network realizes IPv4/IPv6 protocol cluster, routing, and forwarding whereas firewall
transplantation to access the writing and transplantation of upper-level applications (PPP dialer, DHCP
server, Web server, and Web page).

Application Layer Program A

\ v v

[Pv4/IPv6 Protocol Embedded Operating [Pv4/1Pv6 Protocol Stack

(| J
v v

Wireless Communication
Module Interface Drive

|)
v

Embedded IoT Gateway

Hardware Platform Stack v

Network Interface Module Drive

Figure 2: Software platform reference model.

DE GRUYTER Application of embedded Linux in the design of Internet of Things gateway =— 1019

The underlying hardware initialization program, embedded operating system and file system, applica-
tion layer software, and user layer software, design each module from bottom to top. These modules do not
exist in isolation and are based on lower-level software layer programs.

3.3.1 BootLoader porting

The BootLoader of the embedded home IoT gateway system adopts a lightweight vivi specially developed by
the mini-company for an arm. Two working modes of startup loading and downloading can be realized and
the setting information in the /Vivi/Makefile file can be modified, delete the “*.0” and “*.0.flag” files before
compilation to ensure that the compilation is valid. The Vivi executable file generated by the final compila-
tion can be programmed to NANDFlash to realize the booting of the system.

3.3.2 Embedded Linux kernel porting

Linux2.4.18 kernel can run on ARM920T processor at high speed. Its file system supports file formats or
functions such as cramfs, yaffs, ext2, and NFS. The kernel transplantation needs to be carried out by kernel
tailoring and kernel compilation. It generates the image file by compiling the kernel file, which is the kernel
image file. The BootLoader can start the embedded Linux operating system after loading the board.

3.3.3 Root file system migration

Embedded Linux systems support a variety of file systems, and most of them include ext2, NFS, and other
file systems when the kernel is made. Here the yaffs file system is uploaded on the embedded Linux system
that is a readable and writable file system and convenient for making subsequent applications. Use the file
system authoring tool of busybox1.0 version which is known as the Swiss Army Knife of Embedded File
System and is convenient and very suitable for the production of the embedded file system. The steps of
making a file system are: Configure Makefile, tailor the file system, build the root file system directory, and
compile. The root_china.yaffs image file can be generated by compiling and then loaded into the board,
start the hardware system and you can see the shell interactive interface on the terminal, which is con-
venient for subsequent application development.

3.3.4 Iptables transplantation (Network address translation (NAT) implementation)

Iptables is an IP packet filtering system integrated with the latest 2.4.x version of the Linux kernel. If the
Linux system is connected to the Internet or LAN, a server or a proxy server that connects the LAN and
the Internet, the system is conducive to better control the IP packet filtering and firewall configuration on
the Linux system. Netfilter/Iptables provides a series of tables in the Linux 2.4 kernel. Each table is
composed of several chains, and each chain can be composed of one or several rules [25]. The kernel
module can register a new rule Table and requires data packets to flow through the specified rule Table,
used to implement data packet filtering (Filter Table), network address translation (NAT table), and data
packet processing (Mangle Table). The NAT Table contains PREROUTING chain, POSTROUTING chain,
and OUTPUT chain. Netfilter monitors hook function NF_IP_PRE_ROUTING, NF_IP_POST_ROUTING, and
NF_IP_LOCAL_OUT, and according to the rules in the NAT Table performs address translation processing
on the data packet. NAT only queries the NAT table for the first packet of a new connection, then the data
packets of the same connection will undergo the same conversion process according to the result of the first
data packet. Iptables consist of kernel modules and user interface applications. The Iptables kernel module
can filter and manage the input and output IP packets, it is an integral part of the Netfilter framework in the

1020 — Tao Wang etal. DE GRUYTER

Linux 2.4 kernel; the Iptables user interface program can add, insert, or delete rules in the kernel Table, use
the Iptables tool, and use the option “-that” to create and modify the NAT Table.

3.3.5 DHCP service software

DHCP is mainly used to complete the dynamic allocation of the IP address of the terminal equipment in the
local area network, wherein at the same time the client subnet mask is set by directly accessing the network
without manually setting the subnet mask and IP address. DHCP service software not only realizes the
dynamic allocation of IP addresses but also the protocol helps in managing several users in the network
such as stopping the allocation of IP addresses for users whose leases have expired.

3.3.6 Point-to-point protocol dial-up service

PPP is a link-layer protocol that carries network-layer data packets on point-to-point links. The PPP dial-up
service is used to control the EM310 RF module to access the wireless network, and the physical layer uses
standard RS232 to communicate with the Micro-Control Unit [26]. The Network Control Protocol is respon-
sible for sending the data to be processed to the network layer, Link Control Protocol (LCP) is used to
exchange configuration information packets in the link establishment phase when the configuration is
completed, the LCP is turned on and the authentication phase is entered [27]. Authentication is optional,
users who pass the authentication will get an IP address dynamically allocated by PPPD through the IP
Control Protocol, and finally realize access to the Internet [28].

3.3.7 Web service software

A user-level interactive web service software installs the Web server in the embedded Linux system. It is a
small, simple, and comprehensive Boa embedded Web server that writes the corresponding Common
Gateway Interface (CGI) program to realize the interaction between the user Web interface data and the
Web server, to realize the user’s control of the system. The realization of the Web page adopts the C
language variant based on the build engine-C Language Service Page (CSP), similar to other CGIs (ASP,
JSP). The CSP inserts the C language into the HTML template. The “*.cgi” file is finally generated through
compilation, and the user can intuitively realize the monitoring and management of the system with the
help of the IE browser when loaded into the board [29].

4 Result analysis

4.1 Data exchange patency test between nodes

The data exchange patency is checked by sending Ping packets between devices. The specific Ping scheme
is as follows and is as shown in Figure 3. To implement this process, you can directly use the Ping command
on the server-side and an IoT node.

The hub server (gateway) (94:A7:8E:32:2D:7B) sends Ping packets to the other two IoT nodes, IoT node
A (C4:8E:3B:23:82:7D) sends a Ping packet to the IoT node B (E3:4D:A2:83:D4:42), and the delay in return
data is shown in Figure 4 [30].

Based on this data, it is determined that the data interaction of the wireless Mesh network under the
topology structure is normal, and the hardware part of the module works normally.

DE GRUYTER Application of embedded Linux in the design of Internet of Things gateway =-— 1021

Gateway

DA<

Ping Packet

- VAZ,

Ping Packet

Access Point

IoT Sensor Nodes

Figure 3: Schematic diagram of Ping scheme for data exchange patency test.

Node A-- node B
— Drive the server in the node B
— Drive the server in the node A

0 T T T T 1
The middle drive server

Figure 4: Ping delay test data statistics table.

4.2 Multi-hop communication of B.A.T.M.A.N. adv routing protocol

Multi-hop communication means that IoT nodes use one or more fixed or mobile other IoT nodes to transmit
data to the central server gateway or destination IoT node. Therefore, the key to this test is to block the
direct connection of a certain IoT node (A or B) to the central server, and test whether it can achieve multi-
hop communication through another IoT node. There are two ways to block direct communication between
an IoT node and the central server. One is to place the blocked IoT node in a place where it cannot receive
the 802.11 protocol signal transmitted by the central server. The second is that the hub server uses the netfil-
terliptables IP packet filtering system to shield all data packets communicated with the IoT node under the
MAC address. Because the former has signal attenuation that causes packet loss or blocked nodes, they can
capture the 802.11 signal of the central server; therefore, the relevant variables cannot be controlled well, so
the second method is used for testing [31].

Set the IoT node and the hub server to set the IoT node B as the node that is blocked from directly
communicating with the hub server: Turn off the IEEE802.11 module of IoT node A first, and then use

1022 — Tao Wang et al. DE GRUYTER

ipotables to block data packet communication. Figures 5 and 6 show the commands for Hub server-side and
IoT node B.

ip6tables -AINPUT-p ALL-m mac--mac-source E3:4D:A2:83:D4:42-j DROP
#Discard the incoming data packet from Internet of Things node B

Figure 5: Hub server-side command.

ip6tables -A INPUT -p ALL -m mac--mac-source 94:A7:8E:32:2D:7B -j DROP
#Discard the incoming data packet from the hub server

Figure 6: loT node B commands.

After completing the blocking work, ensure that the IoT node B and the hub server cannot achieve
single-hop communication. Next, open the IEEE 802.11 module of IoT node A and connect to the wireless
Mesh network to view the routing table of IoT node A, the discovery node has detected the remaining two
devices.

Ping the central server (gateway) from the IoT node B, set it to twice: The first time ttl = 255 time =
1.9 ms, the second time: ttl = 255 time = 2.4 ms. It proves that node B of the IoT can interact with the central
server (gateway), and the multi-hop communication verification of the B.A.T.M.A.N. adv protocol is passed.
A test environment is generated to test the various functions of the IoT gateway. The results show that the
developed IoT gateway system based on embedded Linux can meet the design requirements.

5 Conclusion

This article introduces the research background and research status of the IoT gateway and analyzes the
shortcomings and improvement measures of the current IoT gateway. This work completes the perfect
transplantation and matching of the Iptables program at the core of the embedded Linux operating system.
The proposed uses rich rule settings to realize the firewall mechanism and NAT mechanism of the entire
system, which makes the system data transmission more reliable. It enables the data packets of the external
network and the internal perception network devices of the home to be forwarded to the corresponding
interface smoothly by the rules. The user-level uses the CSP language that inherits the advantages of the
C language to refine the CGI program, and a better man—-machine interface is realized. The system has the
characteristics of good real-time performance and high security and is suitable for use in the home IoT.
In the future more developing trends of embedded platforms in home appliances IoT, an application of
embedded Linux in the design of IoT gateway can be designed.

Conflict of interest: Authors state no conflict of interest.

References

[1] Qin H, Cao B, He J, Xiao X, Chen W, Peng Y. Cross-interface scheduling toward energy-efficient device-to-gateway
communications in loT. IEEE Internet Things). 2019;7(3):2247-62.

[2] Yang), Sharma A, Kumar R. loT-based framework for smart agriculture. Int) Agric Environ Inf Syst (lJAEIS). 2021;
12(2):1-14.

DE GRUYTER Application of embedded Linux in the design of Internet of Things gateway =-— 1023

(4]
(5]

(6]

(8]
(9]

(10]

(11]

(12]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

Hayashikoshi M, Tanizaki H, Murai Y, Tsuji T, Kawabata K, Nii K, et al. A cost-effective 1T-4MT) embedded MRAM archi-
tecture with voltage offset self-reference sensing scheme for loT applications. IEICE Trans Electron. 2019;102(4):287-95.
Dick RP, Shang L, Wolf M, Yang SW. Embedded intelligence in the internet-of-things. IEEE Des Test. 2019;37(1):7-27.
Atzori L, Bellido JL, Bolla R, Genovese G, lera A, Jara A, et al. SDN&NFV contribution to loT objects virtualization. Comput
Netw. 2019;149:200-12.

Chang CC, Lee WK, Liu Y, Goi BM, Phan RCW. Signature gateway: offloading signature generation to loT gateway accel-
erated by GPU. IEEE Internet Things J. 2018;6(3):4448-61.

Yi HC, Choi JY. Cycle time improvement of EtherCAT networks with embedded linux-based master. IEICE TRANS Inf Syst.
2019;102(1):195-7.

Kang B, Choo H. An experimental study of a reliable loT gateway. ICT Express. 2018;4(3):130-3.

Salman AD, Khalaf Ol, Abdulsahib GM. An adaptive intelligent alarm system for wireless sensor network. Indonesian

J Electr Eng Comput Sci. 2019;15(1):142-7.

Chang K, Soong A, Tseng M, Xiang Z. Global wireless machine-to-machine standardization. IEEE Internet Comput.
2011;15(2):64-9.

Song J, Kunz A, Schmidt M, Szczytowski P. Connecting and managing m2m devices in the future internet. Mob Netw Appl.
2014;19(1):4-17.

Swetina J, Lu G, Jacobs P, Ennesser F, Song J. Toward a standardized common M2M service layer platform: introduction to
oneM2M. IEEE Wirel Commun. 2014;21(3):20-6.

ZhengY, Dhiman G, Sharma A, Sharma A, Shah MA. An loT-based water level detection system enabling fuzzy logic control
and optical fiber sensor. Security Commun Netw. 2021;2021:4229013.

Zeng H, Dhiman G, Sharma A, Sharma A, Tselykh A. An loT and Blockchain-based approach for the smart water man-
agement system in agriculture. Expert Syst. 2021;2021:e12892.

Singh PK, Sharma A. An intelligent WSN-UAV-based loT framework for precision agriculture application. Comput Electr
Eng. 2022;100:107912.

Nunes BAA, Mendonca M, Nguyen XN, Obraczka K, Turletti T. A survey of software-defined networking: past, present, and
future of programmable networks. IEEE Commun Surv Tutor. 2014;16(3):1617-34.

Al-Hamadi H, Chen R. Adaptive network defense management for countering smart attack and selective capture in
wireless sensor networks. IEEE Trans Netw Serv Manag. 2015;12(3):451-66.

Kshetri N. The evolution of the internet of things industry and market in China: an interplay of institutions, demands and
supply. Telecommun Policy. 2017;41(1):49-67.

Chen S, Xu H, Liu D, Hu B, Wang H. A vision of loT: applications, challenges, and opportunities with china perspective. IEEE
Internet Things J. 2014;1(4):349-59.

Huang H, Hu L, Xiao F, Du A, Ye N, He F. An EEG-based identity authentication system with audiovisual paradigm in loT.
Sensors. 2019;19(7):1664.

Mason S), Cleveland SB, Llovet P, Izurieta C, Poole GC. A centralized tool for managing, archiving, and serving point-in-
time data in ecological research laboratories. Environ Model Softw. 2014;51:59-69.

Mach P, Becvar Z. Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surv &
Tutor. 2017;19(3):1628-56.

Dick RP, Shang L, Wolf M, Yang SW. Guest editors’ introduction: embedded intelligence in the internet-of-things. IEEE Des
Test. 2020;37(1):5-6.

Mahbub M, Hossain MM, Gazi MSA. Cloud-enabled loT-based embedded system and software for intelligent indoor
lighting, ventilation, early stage fire detection and prevention. Comput Netw. 2021;184:107673.

Johns EM, Oestreich S. On the edge: how to provide course-and program-integrated library support without being
embedded. | Library Inf Serv Distance Learn. 2019;13(1-2):1-20.

Xiang Y, Chen Y, Ye |, Wen B, Hu H. Design of multi-parameter monitoring system based on embedded Linux + Qt.
Zhongguoyi Liao gi xie za zhi = Chin] Med Instrum. 2020;44(2):127-31.

Xue L, Huang Q, Zhang S, Huang H, Wang W. A lightweight three-factor authentication and key agreement scheme for
multigateway WSNs in loT. Security Commun Netw. 2021;2021:1-15.

Agrawal H, Dhall R, Iyer KSS, Chetlapalli V. An improved energy efficient system for loT enabled precision agriculture.

) Ambient Intell Humanized Comput. 2020;11(6):2337-48.

Gaur AS, Budakoti J, Lung CH. Vertical handover decision for mobile loT edge gateway using multi-criteria and fuzzy logic
techniques. Adv Internet Things. 2020;10(04):57.

Yao J, Ansari N. Caching in dynamic loT networks by deep reinforcement learning. IEEE Internet Things).
2020;8(5):3268-75.

Rodoplu V, Nakip M, Eliiyi DT, Giizelis C. A multiscale algorithm for joint forecasting—scheduling to solve the massive
access problem of loT. IEEE Internet Things J. 2020;7(9):8572-89.

	1 Introduction
	2 Related work
	3 Research methods
	3.1 Overview of the system framework and functional modules
	3.2 System design and implementation
	3.3 Software design
	3.3.1 BootLoader porting
	3.3.2 Embedded Linux kernel porting
	3.3.3 Root file system migration
	3.3.4 Iptables transplantation (Network address translation (NAT) implementation)
	3.3.5 DHCP service software
	3.3.6 Point-to-point protocol dial-up service
	3.3.7 Web service software

	4 Result analysis
	4.1 Data exchange patency test between nodes
	4.2 Multi-hop communication of B.A.T.M.A.N. adv routing protocol

	5 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

