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Abstract: Distributed programming paradigms such as MapReduce and Spark have alleviated sequential
bottleneck while mining of massive transaction databases. Of significant importance is mining High Utility
Itemset (HUI) that incorporates the revenue of the items purchased in a transaction. Although a few
algorithms to mine HUIs in the distributed environment exist, workload skew and data transfer overhead
due to shuffling operations remain major issues. In the current study, Parallel Utility Computation (PUC)
algorithm has been proposed with novel grouping and load balancing strategies for an efficient mining of
HUIs in a distributed environment. To group the items, Transaction Weighted Utility (TWU) values as a
degree of transaction similarity is employed. Subsequently, these groups are assigned to the nodes across
the cluster by taking into account the mining load due to the items in the group. Experimental evaluation on
real and synthetic datasets demonstrate that PUC with TWU grouping in conjunction with load balancing
converges mining faster. Due to reduced data transfer, and load balancing-based assignment strategy, PUC
outperforms different grouping strategies and random assignment of groups across the cluster. Also, PUC is
shown to be faster than PHUI-Growth algorithm with a promising speedup.
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1 Introduction

The era of Big Data has been ushered in not so much due to the availability of heterogeneous data from
ubiquitous devices, but due to the technological advances that have led to better network availability, fault-
tolerant storage devices, and efficient computing solutions to process it. Big Data Analytics (BDA) proces-
sing engine is largely fuelled by techniques that are at the intersection of machine learning and data
mining, often computations being carried out in distributed environments. One such data mining tech-
nique, Association Rule Mining (ARM), aims at discovering hidden, non-trivial inter-dependencies between
customer purchases from the voluminous customer transaction database of a retail store. It has seen a
plethora of applications and has evolved to be a formal, predictive, and exploratory BDA task. According to
a prediction by Gartner, “By 2020, more than 40% of all data analytics projects will relate to an aspect of
customer experience” [1]. Hence, retail industries that adopt predictive analytics using pattern mining
techniques are shifting towards distributed solutions for processing the herculean data and extract patterns
for providing an improved customer experience.
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At the core of ARM lies the phase of mining frequent itemsets. Essentially, any association rule X — Y
is deemed to be interesting if the probability of buying an itemset Y, provided another itemset X has been
already purchased, is atleast c. This measure is called the confidence of the rule. Also, not all combinations
of items are significant. Only those that are deemed to have a frequency/support count of atleast s are
considered for the formation of such rules. Frequent Itemset Mining (FIM) has been applied in various
domains such as information retrieval [2,3], bioinformatics [4,5], pharmacovigilance [6,7], and so on to
discover rules of statistical significance. However, a major drawback of the FIM model is that it does not
take into account the quantity or the unit profit of the items purchased in a transaction. On the contrary, as
per the support measure, it solely relies on whether the item is present in a transaction. To discover
profitable itemsets, mining HUIs has emerged.

Although several algorithms to mine HUIs exist, they are sequential [8-12]. Recently, a single-phase
algorithm, namely, SPUC (Single-Phase Utility Computation), using a compressed tree structure in con-
junction with a prefix tree was proposed [13]. While the prefix tree called Utility Count Tree (UCT) guided the
mining process, the transaction-compressed String Utility Tree (SUT) facilitated the utility computation
without an additional database scan. However, the sequential algorithms scale poorly as the volume of the
transaction database increases. In the past, a few multi-threaded solutions have been proposed [14,15].
However, the centralised shared memory architecture again poses a bottleneck. Recently, parallel com-
puting frameworks that leverage data processing using a cluster of commodity hardware such as the likes of
MapReduce (MR) and Spark have resulted in a paradigm shift for mining itemsets of interest from transac-
tion databases. Further, enterprises leverage these frameworks through PaaS via cloud to exploit the
elasticity and horizontal scalability that it has to offer.

Designing and developing algorithms in Big Data environment through computing paradigms such as
MapReduce [16] or in-memory computing using resilient distributed datasets [17] is not straight forward.
While the frameworks such as Apache Hadoop [18] and Apache Spark [19] (their respective open-source
implementations) offer a rich set of APIs in popular programming languages, a meticulous design that
translates the sequential algorithms to a cluster environment must consider such factors as load balancing,
and communication cost. The data transfer incurs network overhead, especially when shuffling operations
are used. This can have a significant impact on the overall mining performance. To alleviate this, several
studies incorporate clustering of items based on transaction similarity before assigning their respective
search-space across cluster nodes. This reduces the vertical splits of the projected database due to which
the shuffling bottleneck is overcome. However, not many distributed HUIM algorithms group the promising
items based on transaction similarity prior to search-space assignment. Another factor that contributes to
the mining performance is the strategy employed for assigning the items/groups to different nodes for
mining. Random assignments often ignore the mining load resulting in an uneven distribution of workload
across the cluster, thus affecting the mining performance.

In the context of mining HUIs, clustering the transactions merely based on the presence or absence of
items is not sufficient. This is due to the fact that each item is now associated with a purchase quantity in a
transaction. Furthermore, clustering overhead should be kept minimal as the end goal is mining HUIs. In
this regard, the current study explores to group the items by considering the Transaction Weighted Utility
(TWU) values as a degree of transaction similarity. While this minimizes the transaction splits during
partition, strategic placement of such groups across cluster nodes is also essential. To address this issue,
a prefix length-based workload estimation is designed. Given this, contributions of the study are as follows:
— A parallel adaptation of the sequential Single-Phase Utility Computation (SPUC) algorithm [13] called

Parallel Utility Computation (PUC) for mining HUIs is proposed. PUC develops a search-space split-based
parallel workflow for utility computation using SPUC on Spark cluster.

— Jenks Natural Breaks Optimization (JNBO) is employed for grouping the sequence of TWU value of items.
TWU is a measure that accounts for the weighted presence of an item in different transactions. It sums up
the transaction utilities across the supporting transactions. Hence, items that co-occur fall into similar
groups. Experimental evaluations have demonstrated that TWU-JNB grouping strategy effectively
reduces the execution time of PUC in comparison to the grouping performed by either arranging the
items in ascending or descending order of TWU.
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— For load balancing, computation load across nodes is proportional to the mining load. This is estimated
as a function of length of the prefix path of items. Specifically, the number of subsets enumerated in
SPUC is determined. This load is utilized for a balanced assignment of the groups across the available
nodes of the cluster prior to mining. The proposed algorithm called parallel utility computation with
vertical partitioning using JNB of TWU and prefix-length-based load balancing is shown to be efficient in
terms of execution time as against the round-robin assignment of groups to nodes. Furthermore, PUC
displays superior performance in comparison to PHUI-Growth algorithm [20].

The rest of this article is organised as follows: Section 2 introduces the preliminary concepts of high utility
itemset mining. A summary of the studies relevant to mining frequent itemsets and HUIs using distributed
frameworks is provided in Section 3. The overall flow of PUC algorithm is provided in Section 4 with JNB-
based grouping and load balancing strategies in Sections 4.2.1 and 4.2.2, respectively. Experimental eva-
luation that compares the effectiveness of grouping and load balancing strategies along with relative speed
up is demonstrated in Section 5. This article concludes with Section 6.

2 Background

Given a transaction database D with n distinct items, I = {i;, i,, ...,i,}, each transaction T; in D is identified
by TID, the transaction identifier records a collection of items purchased along with its quantity or internal
utility as shown in Table 1(b). An ordered pair (i, g¢) in each transaction indicates that item i was purchased
in g quantities in that transaction. Each item is also associated with unit profit or external utility as shown
in Table 1(a).

Table 1: Sample database

(a) Profit Table

Item 1 2 3 4 5 6 7 8 9 10

Profit 5 1 2 1 3 1 10 5 2 4

(b) Transaction table

TID Transaction

n {(1,7)(2,5)(3,1)(8,9)(10,1)}
h {(3,1)(4,5)(5,5)(7,2)}

I {(4,3)(7,1)(8,10)(9,2)(10,1)}
T {(1,6)(2,3)(3,5)(6,7)(7,1)}
Ts {(5,3)(6,1)(8,1)(10,1)}

Definition 2.1. (Utility of an item) Utility of an item i in transaction T;, denoted by u(i, T;), is measured as
the product of quantity g and unit profit p(i).

Definition 2.2. (Utility of an itemset) Utility of an itemset X in transaction T;, denoted by u(X, T), is defined

as Yjexaxer Ui Ta).

Definition 2.3. (Utility of an itemset in database) Utility of an itemset X in D denoted by u(X) is defined as
uX) = Z u(X, Ty )

XcTunTyeD
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e.g.,

u{4}, ,)=5x1=5

u{4, 74, L) =u({4}, L) + u({7, L) =5+20 =25

u({4,7}) = u({4, 7}, L) + u({4, 7}, I5) = 25 + 13 = 38.

Utility measure is neither anti-monotone nor monotone. Table 2 compares the utility for few subsets of
{4, 7, 8}. Although the support is strictly increasing across the subsets, the utility is neither increasing nor
decreasing. Hence, while the support of an itemset is downward closed, the utility measure is not.

Table 2: Support vs utility

Itemset Support Utility
{4,7,8} 1 63
{4,7} 2 38
{7} 3 40

Definition 2.4. (Transaction Utility [TU]) Transaction utility of a transaction T;, denoted by TU(Ty) is
defined as the sum of the utilities of all the items in that transaction i.e., TU(T)) = Ziddu(i, T;). Table 3
records TU for transactions in Table 1(b).

Table 3: TU for transactions in Table 1

TID TU
T 91
3 42
T 71
T, 60
T 19

Definition 2.5. (High Utility Itemset) An itemset X is called a high-utility itemset (HUI) if u(X) > min_util,
where min_util is the minimum utility provided by the user. For example, if the threshold is set to 30%, then
min_util = 0.30 x 283 = 84.9, where 283 is the sum of TU of all the transactions in the sample database.
Then, HUIs for this threshold are {8}, {8, 10}, {1, 2, 3}, {1, 2, 8}, {1, 2, 3, 8}, {1, 2, 8, 10}, {1, 2, 8, 10}, and
{1, 2, 3, 8, 10} with utilities of 100, 112, 85, 85, 87, 89, and 91, respectively.

Table 4: TWU for items in Table 1
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Definition 2.6. (Transaction Weighted Utility [TWU]) Transaction weighted utility of an itemset X, denoted
by TWU(X), is defined as the sum of the transaction utility of all the transactions in D that contain X, i.e.,
TWUX) = ZXgTd ATy pTU(Ty). The TWU for items using TU in Table 3 is calculated and provided in Table 4.

Definition 2.7. (High-Transaction Weighted Utility Itemset) An itemset X is a high-transaction weighted
utility itemset (HTWUI), if TWU(X) > min_util. Also, if an itemset X is not a HTWUI, then it cannot be a HUI.

Definition 2.8. (Property 1. [TWU Downward Closure Property]) If an itemset X is a HTWUI, then all its
subsets are HTWUIs or if an itemset X is not a HTWUI, then none of its supersets can be HTWUIs. For
example, TWU ({5, 6}) = 19 < min_util. Hence, any higher order itemset need not be enumerated from {5, 6}
as this property ensures they shall be neither HTWUI nor HUI

In the current study, the goal is to discover all the HUIs from a given transaction database D that satisfy a
user-defined threshold or minimum utility min_util. As the database volume grows, distributed storage and
computing frameworks render mining HUISs feasible. By considering TWU as a degree of transaction similarity,
the proposed algorithm groups the co-occurring items for mining at a single node. Also, a prefix length-based
load estimation is determined for each group to facilitate their suitable assignment across the cluster nodes.

3 Literature survey

Parallel mining of itemsets has been implemented in both shared memory and distributed computing
architectures. However, scalability remains a major issue with shared memory architecture. In this regard,
distributed computing solutions, namely, Apache Hadoop and Spark, not only address the data storage
issue through a fault-tolerant Hadoop Distributed File System (HDFS) but also provides for utilities that
process the data in a real-time manner via MapReduce engine. In this section, a few algorithms for mining
frequent itemsets along with high utility itemsets in the aforementioned frameworks are discussed.

Apriori, FP-Growth, and ECLAT are the major centralized algorithms that have been widely adapted for FIM
using distributed computing frameworks. In [21], three Apriori adaptations was proposed using MapReduce
framework. Single Passes Counting (SPC) algorithm involves multiple phases of MapReduce to count the support
and outputs frequent k-itemsets at the end of the kth phase. To reduce the phases that involve disk I/0, Fixed
Passes Combined-counting (FPC) that generates candidates of higher orders in a single phase was proposed.
However, this burdened certain worker nodes with numerous candidates to process. Hence, the third approach in
this study called the Dynamic Passes Combined-counting (DPC) dynamically adjusted the extent to which the
higher order candidates are to be generated in a given phase based on the execution time of the previous phase.
PApriori (parallel Apriori) [22] was proposed in lines similar to SPC. YAFIM (Yet Another Frequent Itemset Mining)
proposed by Qiu et al. [23] on Spark has been reported to be 25 times faster than PApriori.

Parallel FP-Growth algorithms have been developed using both Apache Hadoop and Spark frameworks. PFP
(Parallel FP-Growth) [24] on Hadoop and DFPS (Distributed FP-Growth on Spark) [25] on Spark are well-known
implementations of FP-Growth. In the first MR phase, the frequent 1-items are identified and stored in a F-list. In
the second, the items in the F-list are grouped and the local projections of items are generated for each item
taking into account the grouping information. At the end of this phase, a projected database that contains the CPB
of all the items belonging to the group is available at a single node as aggregated by the reduce operation. In the
third phase, independent FP-trees are constructed and mined as per the FP-Growth algorithm [26].

Since the implementations of sequential algorithms in distributed environments have been proposed,
several challenges have required attention for enhancing the mining performance [27,28]. One of the major
challenges is reducing the shuffling cost at the end of the second MR phase. For example, The reduceByKey
() incurs a significant data movement across cluster nodes when local projections of items in the group are
generated. This intermediate data incur network overhead, adding to the overall execution time. Another
major challenge is balancing the workload across the cluster nodes. Recent studies such as FiDoop-DP [29],
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HBPFP-DC [30], and BIGMiner [31] have sought to address these issues. FiDoop-DP proposes to consider
transaction similarity to reduce the shuffling cost via LSH (Locality Sensitive Hashing) of items in F-list to
groups such that bottleneck due to shuffling can be alleviated. In addition to this, HBPFP also considers
prefix length-based approximation of mining load of items in the group for addressing the workload
skewness. A few studies that evaluated several popular distributed FIM algorithms focussed on the need
to develop suitable assignment strategies of independent subproblems, i.e., CPBs for better load balancing
and thus an enhanced mining performance.

Popular choices for parallelizing HUIM algorithms include the two-phase [8], HUI-Miner [10], and EFIM
[12]. Their counterparts are PHUI-Growth [20], PHUI-Miner [32], and EFIM-Par [33], respectively. Similar to
the distributed FIM algorithms, these algorithms work in three phases. In the first phase, mappers and
reducers are employed to determine (item, TWU) pairs or TWU-list for every item in the transaction data-
base. Transactions are then re-organised to reflect the ascending order of the items as per their TWUs. With
another MR phase, node data are generated in the case of PHUI-Miner and EFIM-Par. The node data
includes part or a complete transaction that contains all the itemsets that can be mined from the item(s)
assigned to the node. The items that form the part of the item’s search-space are as determined from search
space set enumeration tree. Eventually, with an additional MR phase, each node mines HUIs it is respon-
sible for. However, PHUI-Growth iteratively mines the itemsets in a level-order manner such that after every
kth iteration, all the k-HUIs are output. Recently, using the pruning strategies proposed in EFIM and the
concepts of fuzzy set theory, fuzzy HUIs were mined using Hadoop framework [14]. The authors employed
Apache HBase for distributed storage and Apache Avro for mining in three MapReduce phases.

Assigning the search-space corresponding to every item in TWU-list contributes to the overall mining
performance. In PHUI-Miner, a circular assignment of items to nodes was proposed. While pFHM+ [34] (that
parallelizes FHM+), and EFIM-Par also employ this strategy, a few studies have been proposed to modify
the assignment [35,36] for an enhanced mining performance. While, ref. [36] proposes to cluster the
transactions, in [35], the sub-space size corresponding to each item and a utility upper-bound constraint
was used for a better workload distribution across the cluster. Although studies such as [29,36] propose to
cluster the transactions, the clustering overhead can be large. Further, not many studies apart from EFIM-
Par and PHUI-Growth mine the complete set of HUIs in a distributed manner.

3.1 Differences from previous works

At the very outset, the current study develops a parallel workflow to adapt SPUC [13] for mining HUIs in a
distributed environment. Although SPUC mines HUIs in a single phase, scalability remains a major issue.
With the integration of distributed storage and in-memory computation provided by HDFS and Apache
Spark, PUC scales better than SPUC. Further, PUC mines a complete set of HUIs unlike PHUI-Miner. In
contrast to PHUI-Miner that parallelises HUI-Miner, which is a list-based algorithm, PUC parallelises trees-
based SPUC algorithm. Apart from distributed FIM algorithms, not many distributed HUIM algorithms
employ transaction clustering and load balancing prior to the mining task. PHUI-Miner and EFIM-Par
adopts a round-robin assignment strategy. However, PUC determines the workload due to every item for
a balanced assignment. While HBPFP-DC considers a prefix path length-based workload approximation,
PUC estimates it as proportional to the number of subsets in the prefix path of an item. Also, the items in the
TWU-list are clustered using Jenks Natural Breaks algorithm [37] to obtain groups of items such that the
vertical splits produced during the second phase are significantly reduced.

4 Parallel utility computation

In this section, PUC algorithm that parallelises sequential SPUC algorithm using Apache Spark is proposed.
Before providing the details of this, a brief overview of SPUC is provided first.
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4.1 Overview of SPUC

SPUC algorithm leverages two compact tree structures viz., Utility Count Tree (UCT) and String Utility Tree
(SUT), for efficiently mining high-utility patterns in a single phase. Both the tree structures are constructed with
a single database scan without discarding any items. After arranging the items of a transaction in ascending
order, UCT stores in its node the item, the count, and the utility along the path in the tree. SUT is also a prefix
tree structure. However, it captures entire transaction information in a node by concatenating the item and
utility values as string separated by a delimiter. For more details about the construction procedure, the reader
can refer [13]. Figures 1 and 2, respectively, denote UCT and SUT for the sample database 1.
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Figure 1: Utility Count Tree for database Table 1.

Algorithm 1 Single-phase utility computation algorithm — mining using UCT and SUT

Input: UCT, SUT, minUtil

1: HashMap hash_item_utilities(List_Integer itemset, Integer utility)
2: for each item i from the bottom of H do

3: CPB(i) < Get all the prefix paths of i and calculate path utility
4: if sum of the path utilities >= minUtil then

5: foreach prefix path, p € CPB(i) do

6: itemset _list — generate subsets from the items in p that include i
7: itemset _list — itemset _list\ subset _List

8: subset _List «— subset_List | ] itemset _list

9: foreach itemset X in itemset_list do

10: if OU(X) < minUtil then

11: itemset _list — itemset _list\ X

12: end if

13: end for

14: Call Mine(itemset _list, SUT. root)

15: end for

16: end if

17: end for
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Figure 2: String Utility Tree for database 1, the items and utilities are delimited by “x.”

The SPUC mining process begins by traversing the header list of the UCT from the bottom and collecting
the prefix paths of each item (line 2 & 3) as shown in Algorithm 1. This forms the CPB of the item. Path Utility
based pruning strategy is employed here to discard the CPB if the sum of the path utilities is not at least
min_util (line 4). If the item passes this test, then its CPB is examined for enumerating subsets of items from
every path (line 6). As the utility of the item stored in the node of the UCT is an overestimated value,
Overestimated Utility based pruning is applied to further discard the enumerated itemsets (line 10). The
utilities of the remaining itemsets are then obtained by traversing the SUT (line 14). The details pertaining to
the pruning strategies and accessing SUT for utility computation can be found in ref. [13]. Since SUT stores
the utility information in a compact manner, no additional database scan is required for utility computa-
tion. CPB of an item denotes the transaction database conditioned on the item under consideration. Upon
enumerating the subsets that contain this item from different transactions or paths in the CPB, all the valid
itemsets that participate with this item can be obtained, and thus, it is sufficient to calculate their utilities.
Intuitively, CPB examination of different items can be performed in parallel provided the different paths
that form the CPB are made available at a particular node. With this rationale, MR phases of Spark are
employed to mine across a cluster of nodes by partitioning the database and shuffling the projections at
required nodes. As mining at a node depends on the CPB to be examined, the proposed algorithm takes into
account the mining complexity for estimating the workload. Apart from this, to mitigate the network
overhead during shuffling, grouping of TWU is also incorporated in the parallel version.

4.2 PUC

The proposed algorithm works in three phases to mine HUIs. The parallel workflow is displayed in Figure 3.

The first phase determines TWU of the items, the second phase splits the transaction database vertically

based on the grouping strategy, and in the third phase, mining is carried out on the projected database. The

steps performed in these phases are as follows:

— During the first phase, the transaction database stored in different shards of HDFS is read and the TWU
values of the items are determined. This requires a single Map-Reduce (MR) phase. The map() operation
reads each transaction T, and outputs <item, TU> pairs for every item in T. The reduce() operation sums
the TU value for every item. As the item — TWU list is small enough to fit in the memory of a single node,
the collectAsMap() Spark operation collects this list as a global map/dictionary where item is the key and
its corresponding TWU is the value.

— Now, the TWU values are grouped using Jenks Natural Breaks algorithm. The details of this procedure is
provided in Section 4.2.1. The items corresponding to the TWU values in every group is then determined
and stored in a global dictionary, item_group. These disjoint groups of items are then assigned to
different nodes for mining.

- Mining requires Conditional Pattern Base (CPB) of every item to be present at the node where the group is
assigned to. In this regard, the database is scanned once again, and each transaction is projected based
on the group the item is present in. The projected database represents the collection of prefix paths of all
the items present in that group. Algorithm 2 denotes the steps in generating the projections for T using
the grouping information stored in item_group dictionary. As T is scanned in the reverse order (line 2),
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Figure 3: Flow of parallel utility computation algorithm.

the group corresponding to each item is obtained from item_group (line 3). The prefix path Pathi for an
item i includes i and all the items preceding it and output along with the groupld (line 6). To keep track of
the items in T that map to the same group, a group_list stores the resolved grouplds (line 4). Hence, for
any item j € Path; no prefix paths shall be output provided i and j belong to the same group. While map()
operation employs this algorithm to generate the prefix paths, the reduce() operation accumulates the
paths corresponding to a group into a single node. Using this projected database, the CPB for every item
in the group can be determined aiding the subsequent utility computation.

In the third phase, Algorithm 3 provides the steps for the utility computation. Essentially, a map()
operation is applied to the <groupld, DB'> obtained after the second scan of the database that splits
the database vertically so that each group gets the projected database containing the prefix paths of all
the items corresponding to the group. The suffix _items_list identifies all the items that belong to the
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group with id groupld. These are the items whose CPBs are to be determined for enumerating itemsets for
utility computation (line 3). Initially, the path utility corresponding to these suffix items are determined
(line 4 to line 12). The utility of all the items preceding the suffix item in a path contributes to the path
utility (line 8). The accumulated value is updated in a suffix_pu dictionary. The suffix items whose path
utility is not atleast min_util are discarded. The details of the path utility based pruning is provided in ref.
[13]. Following this, the subsets of the items from every path are enumerated. Specifically, those subsets
that contain the suffix items are required for utility computation (line 15). As the item and utility are
present in the path and do not get modified during any of the previous MR phases, the utility can be
directly obtained for the itemsets enumerated (lines 16 to 18).

Algorithm 2 Algorithm for the generation of local CPB by transaction partitioning

Input: Transaction T, HashMap item_group
Output: (groupld, prefix_path)
: group_list = ¢
fori — T. length — 1,0 do
if item_group. Get(T[i]) # group_list then
group_list. Add(item_group. Get(T[i]))
Path; < TI[i], T[i - 1],..., T[O]
out(groupld, Path;)
end if
end for

PN DT E RN

Algorithm 3 Utility computation algorithm

Input: Group Id groupld, Projected Database DB’, Minimum Utility minUtil
Output: (groupld, itemset _list)

1: itemset _utility _list = ¢

2: HashMapsuffix_pu(Integer item, Integer path_utility)

3: suffix _items_list — {i > item_group. Get(i) = = groupld}
4: for each path p € DB’ do

5: for each item_util in p do

6: if item € suffix _items_list then

7: k « p. indexOf (item)

8: pu < pulk]. util + pulk - 1]. util +.....+ pu[0]. util
9: suffix_pu. Put(item, pu)

10: end if

11: end for

12: end for

13: suffix _items_list — {i > suffix_pu. Get(i) > = minUtil}

14: for each path, p € DB’ do

15: itemset _list— generate subsets from the items in p that contain i € suffix _items_list
16: for each itemset X in itemset _list do

17: X. util — pli]. util, Vi € X

18: end for

19: end for
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4.2.1 Vertical partitioning using Jenks natural breaks

The items in the item-TWU list are collected by the driver program towards the end of the first phase. The
TWU measure for items that co-occur will be the same. For example, consider the items 1 and 2 from the
sample database 1. Both of these items co-occur in transactions T; and T;. Thus, they have same TWU of 151.
Since TWU measure is contributed by transaction utility of all the transaction the item participates,
grouping TWU of items intuitively accounts for transaction similarity. To this end, Jenks Natural Breaks
has been adopted to find “natural” breaks in the sequence of TWU values. JNB is an iterative approach to
find classes with similar ranges such that the in-class variance is minimized and between-class variance is
maximized. The following measures are adopted:
— SDAM (Sum of squared Deviation from Array Mean): Initially, the sum of squared deviations from the
array mean is determined.
— SDBC (Sum of squared Deviation Between Classes): The array values are grouped into m arbitrary classes.
For each class Cy, h € [1, m] SDAM is calculated. SDBC is then calculated as Z;l"ﬂSDAMh.

In each iteration, the measure of SDBC is calculated after moving data points between different classes so as
to maximise the goodness of variance fit (GVF), gvf = (SDAM — SDBC)/SDAM. Iteratively, the classes are
rearranged to attain the input gvf (between 0 and 1) threshold for given initial number of classes.

Employing JNB, the TWU values of the items are grouped into different classes. For the running
example, for initial number of classes as 2 and a gvf of 0.9, the TWU grouping obtained is shown in
Table 5. Thus, the snapshot of item_group dictionary is as shown in Table 6. Using Spark’s broadcast()
operation, item_group is made available to all the map() operations that vertically split the transactions of
the database as per Algorithm 2. For example, consider a map() operation processing transaction T3. The
transaction is processed from the tail and item 10 is encountered first. Hence, <groupld, Path;y> output will
be <4,{4,7, 8,9, 10}>. The next item is 9 and the <groupld, Paths> output is <1, {4, 7, 8, 9}>. For the next
two items, i.e., 7 and 8, no output is produced as these items occur in the prefix path of previously output
item 10 having the same group id of 4.

Table 5: TWU-grouping using JNB for items in database 1

Group Id TWU

G 61, 71

G, 79

G; 113

G, 151, 151, 173, 181, 181, 193

Table 6: Item grouping for vertical partitioning of database 1
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JNB provides for a grouping of TWU values that maximises the gvf. Grouping of items has a significant
affect on the number of times a transaction has to be split. For example, if the TWU values were arranged in
a descending order and divided into four groups (Table 7), T; would produce two splits, <4, {1, 2, 3, 8, 10}>
and <3, {1, 2}>, for such a grouping. However, with grouping due to JNB, as all the items of T fall in the same
group, G4, only a single split, <4, {1, 2, 3, 8, 10}>, is output. Thus, J]NB-based grouping of item reduces the
number of vertical splits of the transaction database.

Table 7: TWU-grouping based on descending order for items in database 1

Group Id TWU

Gy 61

G, 113,79, 71
Gs 173, 151, 151
Gy 193, 181, 181

4.2.2 Load balancing

The utility computation algorithm filters out unpromising items based on path utility. For the remaining
items, the CPB is determined from the projected database, DB’. For each prefix path in the CPB of item i, the
subsets of the itemsets are then generated. The number of such itemsets containing i is 20V, where
[ = |Path;| is the length of the prefix path being considered. This is computationally intensive, especially
for large values of [ and is a major component that contributes to the mining load. Hence, for efficient
mining, the groups generated based on JNB should be assigned to the nodes such that the load across the
computing nodes is balanced. In this regard, the load of every group L; is determined as follows:

L= Y L
ieG
Hence, the mining load L; due to any item i is estimated as follows:

L = Z 2 1Pathi.g;|-1),

icTynTyeD

During the first scan of the database it is possible to determine the length of the prefix path, and hence,
L; is computed in the first MR-phase. This value is stored in another dictionary similar to item — TWU,
item_load. For example, consider transaction T;. The load of item 10 is calculated as 2(Pathio,r) -1 = 25-1 = 16,
Similarly, loads due to the other items of T; from the tail end shall be 8, 4, 2, and 1, respectively. At the end of
the first MR-phase when TWU is determined, a separate collectAsMap() operation collects the loads of the
items in item_load dictionary. The snapshot of this dictionary for sample database 1 is as shown in Table 8.

Algorithm 4 Balanced assignment of groups to nodes

Input Number of Groups N;, Number of nodes N, HashMap item_group, HashMap item_load
Output HashMap group_node
: HashMap group_node(Integer groupld, Integer nodeld)
HashMap node_load(Integer nodeld, Integer load)
group_count «— Ng
fori=1to N do
group_node.Put(group_count, i)
node_load.Put(i, COMPUTEGROUPLOAD(group_count))
group _count «— group_count — 1

—

I A A R
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8: end for

9: for i = group_count to 0 do

10: min_load_node «— node_load. Key(min(node_load. Values()))
11: group_node.Put(i, min_load_node)

12: node_load.Put(min_load_node, node_load.Get(nodeld) + COMPUTEGROUPLOAD(i))
13: end for

14: procedure COMPUTEGROUPLOAD (groupld)

15: group_items « {iditem_group. Get(i) = =groupld}

16: group_load — 0

17: for each item, i in group_items do

18: group _load — group_load + item_load. Get (i)

19: end for

20: end procedure

Table 8: item_load dictionary for database 1

=
©
3
-
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1 2
2 4
3 9
4 3
5 5
6 8
7 26
8 16
9 8

N
o
~
o

Once the groups are determined using JNB, the groups are assigned to the available computing nodes
using Algorithm 4. The task is to assign N; groups among N nodes of the cluster (N; > N) such that the load
is balanced. Initially, N out of Ny groups with grouplds from N; to Nz — N + 1 are assigned to the N nodes
with nodelds from 1to N (line 4 to 8). A group_node dictionary maintains the mapping of groupld to nodeld.
As the groups are assigned, the load of each group is computed as the sum of the load due to individual
items of the group using the COMPUTEGROUPLOAD procedure (lines 14 to 20). This group load also
becomes the load of the node to which the group is assigned (line 6) and is stored in node_load dictionary.
The remaining N; — N groups are assigned to the N nodes by determining the node with minimum load
(lines 10 and 11) for each assignment. Once a group is assigned to the node with the minimum load
min_load_node, its load is updated with this new assignment (line 12).

Consider the assignment of N; = 4 groups to N = 3 nodes given the item_group (Table 6) and item_load
(Table 8) dictionaries for sample database Table 1. Initially, groups with Ids 4, 3, and 2 get assigned
to the nodes with Ids 1, 2, and 3, respectively. The node load due to this assignment will be the load
due to the items in the groups. If the load of assigning group 4 to node 1 is considered, then
it is Ly = load(1) + load(2) + load(3) + load(7) + load(8) + load(10). These loads can be obtained from
item_load in Table 8 as 2 + 4 + 9 + 26 + 16 + 40 = 97. Similarly, loads for other assignments are deter-
mined (Table 9). The remaining group with Id 1 is now assigned to the node, which has minimum load.
Here, the load on node 2 is the least. Hence, group 1 is assigned to node, 2 and the load of node 2 gets
updated with load of items in group 2 to reflect this new assignment. Thus, the final assignment along with
updated load will be as shown in the columns Group_final and Load_final of Table 9. In contrast to this, if
the groups were assigned to the nodes in a way as provided in ref. [32], the loads on nodes would be 97, 3,
and 21 resulting in an unbalanced assignment of groups to the nodes.



DE GRUYTER PUC for mining HUIs with load balancing on spark = 581

Table 9: node_group and node_load dictionary for database 1

Node Id Group_initial Load_initial Group_final Load _final
1 4 97 4 97

3 3 3,1 16

2 8 2 8

4.3 Complexity analysis

PUC mines HUIs in three phases of MapReduce. As displayed in Figure 3, JNB and load balancing (Refer
Algorithm 4) algorithms are executed as part of the driver program. Thus, the most crucial phase is the
second, where the CPBs are generated based on the grouping of items obtained in conjunction with the
predetermined loads. In this section, the Key Complexity of the different phases of PUC is discussed.
Although only a few studies provide the theoretical framework for determining computational complexity
in a MapReduce framework, the running time and size of <key, value> pairs output by a mapper have been
assessed for the proposed adaptation as per Goel and Munagala [38].

In the first phase, each mapper outputs the TWU and load for each item from the split of the database it
isworking on. If f;, f5, ... fi; denote the frequency of items in I, then the key complexity shall be O(f), where
f = max; f.. The second phase shuffles the transaction splits as per Algorithm 2, where each mapper outputs
all the unique groupIDs. Hence, a reduce record for a group N, with groupld, the size shall be upper-
bounded by the frequency of item j, where f; = max; fi(Vj € Ng). Hence, key complexity can be given
as O(f).

In the third phase, the local mining using the principles of SPUC is executed as per Algorithm 3. The
details of computational complexity can be found in ref. [13]. In the driver program, the proposed assign-
ment algorithm, Algorithm 4 runs a total of Ny number of times (N < N; < |I|). Let Nyax denote the group
with maximum number of items. In a case where two or more groups have |Npax| number of items, then
Niax = Ngj, k' € [1, k], where max Ng = maxyN,. The assumption here is that k(k € [1, Ng]) candidate
groups, i.e., Ng,, Ng,, Ng, ... N, generated by JNB contain the maximum number of items. During the assign-
ment, the complexity of computeGrourLoAD needs to be accounted for. As this depends on the number of
items in each group, the run time complexity shall be O(|Npax| * Ng)-

5 Experimental evaluation

In this section, the performance of PUC algorithm in terms of the effectiveness of JNB-based TWU grouping
and load balancing has been evaluated. The algorithm has been developed in Python using the Spark
utilities via PySpark API. JNB implementation available in jenkspy package is adopted for the grouping of
TWU values [39]. A cluster of upto 12 nodes was provisioned using the Elastic Compute Cloud (EC2) of
Amazon Web Services [40]. Specifically, r3.xlarge type of instances that has four virtual CPUs, with 2 cores
capable of running 2 threads each was selected as the type of EC2 instance. The datasets available from
SPMF were adopted for comparative purposes [41]. Their characteristics is summarised in Table 10. The
synthetic dataset, s1 has been generated using the transaction database generator provided in the SPMF
toolbox. As per the literature, the quantities of items for this dataset has been generated in refs[1,10] using a
uniform distribution with the unit profit values following a Gaussian distribution.

In Section 5.1, various TWU-grouping strategies have been compared. This is followed with evaluation
of load balancing in PUC against different assignment strategies 5.2. Also, PUC has been compared against
PHUI-Growth for a few datasets here. The performance of PUC as cluster scales horizontally, and the
relative speedup is reported in Section 5.3.



582 —— Anup Bhat Brahmavar et al. DE GRUYTER

Table 10: Characteristics of datasets

Dataset |D| 1] T Density (%)
Foodmart 4,141 1,559 4.4 0.28
OnlineRetail 540,455 2,603 4.37 0.17

Liquor 52,131 4026 7.87 0.19
PowerC 1,040,000 125 7.0 5.6

sl 300,000 9,956 5.5 0.054

5.1 Comparison of TWU-based grouping strategies

In this section, the effectiveness of the proposed TWU-JNB grouping is evaluated on a cluster of 12 nodes.
The initial number of classes and GVF are set to 2 and 0.9 for JNB grouping algorithm, respectively. The
obtained groups of items are then randomly assigned by the Spark scheduler across the nodes in the cluster,
i.e., no load balancing or assignment strategies have been employed during this evaluation. To compare the
performance of PUC due to JNB-based grouping of TWU, two more variants of grouping item TWUs are
considered, viz., TWU-ASC and TWU-DSC. In these, the items are grouped after arranging the TWU values in
ascending and descending orders, respectively. For the sake of uniform comparison, the number of groups
for these variants is also set to the number of groups determined by the JNB grouping algorithm.

The experiment has been conducted to evaluate the execution time of PUC on OnlineRetail, Liquor, and
PowerC datasets as shown in Figure 4. Two scenarios with N, set to 3 and sc.default.parallelism have been
considered (except PowerC, where N; was set to 50 instead of sc.default.parallelism). PUC with TWU-JNB
outperforms the TWU-ASC and TWU-DSC. This can be attributed to the JNB grouping that finds natural
breaks in the sequence of TWU values for grouping. Such grouping brings together items that co-occur in
different transactions. Consequently, with limited vertical splits, the bottleneck on the shuffling that occurs
at the reduceByKey() operation for collecting the group-based CPBs significantly reduces. Hence, the overall
execution time reduces. Further, with the increased number of groups, all the grouping strategies take
significantly lesser time. This is due to the inverse relationship between the number of groups and the group
size as per group_size = [|I|/Ny]. As each group gets lesser items with the increase of N;, the mining
operation converges faster as it has to consider lesser number of suffix items for mining. Nevertheless,
PUC with TWU-JNB remains effective due to the prudent grouping of items.

5.2 Performance evaluation of PUC with load balancing

In this section, the strategies of assigning the groups to nodes have been evaluated. PUC with TWU_JNB
grouping incorporating load balancing as proposed in Algorithm 4 is denoted as PUC(TWU_JNB + LB). This
is compared with two variants of PUC -PUC(TWU_JNB + CA) and PUC(CA). Both these variants adopt the
assignment strategy as proposed in PHUI-Miner [32]. However, while the former assigns the groups,
the latter directly assigns the items without grouping them. A 12 node cluster was provisioned to compare
the execution times of these.

Figure 5 displays the comparison of execution time of PUC variants. Overall, PUC with proposed grouping
and load balancing strategies performs better than the variants. Although at higher thresholds the difference
in execution time was significantly lesser, at lower thresholds, PUC(TWU_JNB + LB) converged faster than its
variants. Although PUC(TWU_JNB + CA) also groups the items based on JNB, the assignment does not take
into account the mining load. The former determines the load on each cluster as a function of the subsequent
utility computation algorithm, without any extra MR phase. LB calculates the loads during the first phases as
the length of the CPB. Thus, the consideration of mining load provides for a balanced assignment alleviating
workload skewness. Hence, mining converges faster with PUC(TWU_JNB + LB). For the rest of the experi-
ments, PUC shall refer to PUC with PUC(TWU_JNB + LB), unless otherwise specified.
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Figure 4: Comparison of TWU-grouping strategies.

Furthermore, execution time of PUC was compared against the PHUI-Growth algorithm on 8 (for
Foodmart and s1) and 12 node clusters (for Liquor) as shown in Figure 6. Although, PHUI-Growth was
proposed on Hadoop platform, the authors have customised its implementation on Spark for the sake of
uniformity. Across the datasets PUC performs better in terms of execution time than the level-wise
PHUI-Growth algorithm. Although PHUI-Growth enumerates candidates similar to Apriori approach,
it employs DLR pruning strategy to discard unpromising items from the conditional transactions
prior to enumerating itemsets of length k. However, due to the absence of grouping, the shuffling
cost affects the mining performance. Also, PUC employs path utility based pruning prior to enumer-
ating subsets of the items that are grouped in a node meticulously through TWU-JNB - facilitating
enhanced performance.

Using s1 dataset, a scalability test was performed on a 12-node cluster. At each step, |D| was increased
by 50k transactions. As displayed in Figure 7, at min_util of 2,000, the PUC variants that employed grouping
performed better. On an average, the execution time increased by 110.74 seconds when PUC(CA) was
employed. However, the increase was only 85.49 and 86.99 seconds in the case of PUC(TWU_JNB + LB)
and PUC(TWU_JNB + CA), respectively. Thus, grouping ensures faster completion of the second phase and
early start of mining phase. In conjunction with strategic assignment by load considerations, PUC
(TWU_JNB + LB) has a better performance over others as the database size grows.

On a 12 node cluster, the memory consumed by the algorithms for Liquor and s1 is compared and
displayed in Figure 8. The memory usage of the cluster was obtained using the metrics provided by Ganglia
cluster monitoring tool [42]. Across both the datasets, the PUC variants take up lesser memory during
execution than PHUI-Growth. Especially at lower thresholds, while PHUI-Growth becomes more space
demanding, space requirements for PUC does not show a significant rise.
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5.3 Speedup

In this section, the behaviour of PUC upon scaling the cluster is assessed. For this purpose, execution times
on a cluster of 4, 8, and 12 nodes were compared. Figure 9 shows that PUC executes faster with an increase
in the number of nodes. As the degree of parallelism increases, the number of tasks scheduled per Spark
operation increases. Furthermore, the number of groups into which the items are categorised also increases.
As a result of this, each group or map operation has lesser number of suffix items to process. Thus, PUC
performs promisingly as the cluster size increases.

For the datasets s1 and PowerC, the relative speed up is plotted in Figure 10 at min_util of 4 k, and 10 k,
respectively. Relative speed up of PUC on a cluster of i nodes is measured with respect to execution time on
a 3 node cluster as follows

ET_N;

Speedup = s
P p ET_N.

i.e., it compares the execution time of PUC on N;, i € {4, 8, 12} number of nodes to the execution time on a 3-
node cluster at a chosen threshold. Across both the datasets, a linear speed up was obtained for both PUC
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Figure 10: Comparison of speedup of PUC.

(TWU_JNB + LB) and PUC(TWU_JNB + CA) as shown in Figure 10. However, the former scales better due to
the intelligent assignment strategy that considers the load across the cluster with a given degree of
parallelism.

6 Conclusion

In this study, a Spark-based PUC (Parallel Utility Computation) algorithm for mining HUIs has been
proposed. The algorithm is a parallel adaptation of the SPUC algorithm. PUC considers TWU values of
items as a measure of transaction similarity. To this end, by grouping the items using Jenks Natural Breaks
algorithm, mining performance improved as the number of local projections reduced, a major factor that
contributes to the shuffling cost. Experimental evaluation also demonstrated that grouping items based on
JNB clustering of TWU values outperformed in comparison to the same number of groups generated after
sorting TWU in either ascending order or descending order. Furthermore, the groups were assigned to the
nodes by approximating the mining load based on the subsets of the item to be examined from the local
projected database. This load was estimated based on the prefix length of an item, which was determined
without additional MapReduce phase. This load balancing-based assignment strategy decreased the
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workload skewness across the cluster nodes resulting in faster convergence of the utility computation
procedure. Specifically PUC with TWU based grouping of items and load balancing performed significantly
better than the round robin assignment strategy and outperformed PHUI-growth algorithm. This version
also displayed almost linear speed up when cluster was scaled horizontally.

In future, with the promising results obtained, the algorithm shall be extended to mine HUIs by
considering on-shelf time. Apart from this, the authors would also customise the implementation on
Apache Flink, another promising distributed framework for processing workloads in cluster environment.
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